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1. Introduction

The casual reader of literature on the foundation of statistics is struck
with a curious anomaly. There is near consensus on the formal representation
of the subject, and wild disagreement on the meaning of statements in it. A
typical statement has the form Pe (E) = X, where E is a measurable set (an
"event"), X € [0,1] and Py a probability operator indexed by a parameter 6.

To what in the real world does E refer? To events in the literal sense?
To propositions? What about 6? And, these questions being resolved, what
meaning attaches to the '"mass" X that is assigned to E by PG?

We do not aim in this paper to review the voluminous literature on foun-
dations. For our purposes it is sufficient to think in terms of two broad
schools, called "bayesian" and "frequentist".

Our position is that all existing schools are inadequate, that their mu-
tual criticisms are generally justified, and that the nature and purpose of
foundational studies needs to be reexamined. In this paper our major goals
are: (1) to outline the principles of a new approach, which we call "post-
bayesian", and (2) to develop some specific statistical procedures that grow
out of this approach. (The post-bayesian approach should lead ultimately to
a revision of procedures across the entire spectrum of inference, so these

examples should be looked upon as a sampler.)

2, Basic Principles

Statistics is the art of living successfully in an uncertain world.

"Making inferences" is subordinate to this overall goal. Inferences are



guides for action. (Thus we side with Neyman in his long controversy with
R. A. Fisher over "inductive behavior'" wvs. "inductive inference", and with
Wald's decision-theoretic outlook.)

An adequate theory should be compatible with the way science develops
(the accretions of "normal" science with occasional revolutions, the role of
hypothesis. See Kuhn), and also with the way we accumulate knowledge casually
in everyday life. It should also be "axiomatically satisfying", a vague
desideratum including simplicity and straightforwardness.

The bayesian approach to statistical inference would be correct if peo-
ple had unlimited and costless information-processing capacity. However,
owing to human limitations, more-or-less serious departures from bayes are
warranted. Hence the name "post-bayesian". Formally, the post-bayesian cri-
terion for inference is to minimize expected loss (or cost). Thus it fits into
the general framework of decision theory: inferences are "bayes decisions"
with respect to some prior distribution. But major stress falls on two cost
categories which hardly appear in the work of Wald or his successors.

a. First, the complexity costs associated with information processing:
constructing models, gathering and storing data, solving models, communicating
results, etc. (Some forms of complexity costs have been taken account of in
the literature. Cost of observation enters into sample survey design, sequen-—
tial analysis, selection of variables in regression analysis, etc. But the
relative cost of alternative models themselves has been ignored*, and it is

from this that the most radical consequences flow.)

%
At least explicitly. As we discuss below, many, or even most, proce-

dures of orthodox statistics may be interpreted as attempts to take account
of this factor implicitly.



b. The second cost category is inaccuracy costs. We use the term "in-

accuracy" in a special sense to be spelled out in detail below. Briefly, it
refers to departures from the ideal pattern of bayesian inference, and here
the meaning of "ideal" requires discussion. But first we conclude:

The best procedure is one minimizing the expected sum of complexity and

inaccuracy costs.

3. Bayesian Inference and Models

The bayesian approach may be summarized as follows:

a. Probability statements assign numbers between O and 1 to propositions,
the numbers representing in some sense the credibility of these propositions.
The numbers assigned to a system of propositions satisfy the standard proba-
bility model. Specifically, propositions correspond to measurable sets, with
ﬁhe natural boolean correspondences (negation = complementation, conjunction =
intersection, etc.)

A propositional range is a set of propositions that are exclusive and

exhaustive (this corresponds to a measurable partition of sets). Quite often
a range is indexed by a numerical parameter in a natural way, e.g. "The world
population at Noon, 1 January 2000 A.D. is 0", 6 = 0, 1, 2, .. . Further, ranges
often form indexed families in a natural way, e.g. the range above is one mem-

ber of the family, "The world population at time t is 0," indexed by t real. It

is convenient to represent the range by the parameter 6, and the family by an

%
indexed set of parameters or random variables Xt . Thus Prob (_Xt = 3) is the

*We use the terms parameter and random variable synonymously, though with
the usual connotation that the former do not and the latter do, form a family.
Note that the entire family is often thought of in orthodox statistics as con-
stituting one random variable, a usage hung over from frequentist interpreta-
tions that we find inconvenient. Another connotation that we reject is that
parameters are not observable and random variables are.



probability that the proposition indexed by the number 3 in the t - th range
is true.

b. Having chosen the boolean algebra of propositions of interest, the
investigator is to assign probabilities to these according to his "prior" in-
tensity of beliefs.

c. If observation F is made, probabilities are to be modified by con-
ditioning on F: For all proposition G,

Prob"(G) = Prob'(G|F)

where

,» "' denote probabilities prior and posterior to the observation F,
respectively.
d. If an action is to be taken at time t, it should be chosen to mini-

mize expected loss, taken with respect to one's probability assignment at t.

A statistical model is a collection of random variables X X
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The X's are the exogenous variables, the Y's are the endogenous variables.

Note: Any of the Xi's or Yj's may be parameters or may be family-
member ranges. It is even possible for some ranges in a family to be exogen-—
ous and others endogenous (e.g. initial values vs. later values in time-
indexed families.)

No variables are intrinsically exogenous or endogenous (cf. Leamer).

The typical economic model does not look like (1) but consists mostly of
a system of equations. This may be regarded as a convenient way of represent-
ing (1) if one keeps in mind that the distribution of the residual terms is

an integral part of the model, and that this distribution itself typically



depends on further parameters not appearing in the equations (e.g. residual

covariances).

Critique of "Bayesian" Practice

The preceding outline of ideal bayesian inference is never followed in

practice, even by "bayesians'.

1. Choice of prior. Consider the following simple and typical set-up.
There is an unknown parameter © and an observable family Xt’ [ ] ARSI 1

The conditional probability is given by a likelihood function in density form

p(X |8) = p(X, | 8) ... p(X | )

and this is completed by a prior on 8, p(0).

Comments: All schools of thought use likelihood functions. Controversy
rages over the additional specification p(6). This is a good example of
straining at a gnat and swallowing a camel. For the major objections to the
prioxr p(0)--subjectivity and the like--apply just as well to the likelihood
function (Basu); further, the really powerful assumptions generally reside in
the likelihood function, in particular in the assumption of conditional inde-
pendence of the Xt given 6. This is the assumption that makes the conclusions
of a bayesian analysis insensitive to the choice of p(0). Widely different
p's are typically canceled out by one or two extra observations.

Actually, both the likelihood function and the G—prior* in practice are

chosen in a conventional simplified manner. This is well-recognized for p(6),
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The prior in bayesian analysis should be over all variables (B Ky eianis
X.), but in practice the word is reserved for the marginal on 0, factoring
off the allegedly more objective likelihood function.



where one uses diffuse priors, conjugate priors and the like., It is a little
harder to document for likelihood functions, but the following may be men-
tioned: for successive observations, the assumption of conditional indepen-
dence, of identical distributions, of distributions drawn from some standard
family, of conditional expectations linear in exogenous variables, etc. -Each
of these simplifications may of course be abandoned, but at any point there
always exists a reserve of further realistic complications that could be in-
corporated.

There is a simple informal test for the presence of these simplifications.
Ideal bayesian analysis never abandons models, but merely incorporates evidence
by conditioning within its models. Hence the question: would you keep your
mpdel in the face of any new evidence whatever? Usually the answer will be
"no", that for highly unusual observations, or those that seem to fall into
an aberrant pattern, you will abandon the model. But this contradicts the
principles of bayesian inference. cf. the role of hypothesis in science.

Our conclusion is that most "bayesian" inference is actually post-bayesian
in that the priors and likeiihood functions are not honest reflections of the
researcher's beliefs, but merely a simplified approximation to these beliefs.

Theories of "bayesian" estimation and hypothesis testing have also been
developed (Jeffreys, Lindley, Zellner). Here the departure from ideal bayesian
inference is patent. Estimation or hypothesis rejection involve assigning
probabilities of zero to propositions whose bayesian probabilities typically
are positive. E.g. an interval estimate A = [61, 62] of a parameter, or an

acceptance of the corresponding hypothesis, amounts to assigning Pr[6 ¢ A] = 0.



Decision Theory in Post-Bayesian Terms

It is customary since Wald to think of inferences such as estimation or
hypothesis rejection as decisions to which loss functions may be applied.
This is good, but the lumping-together of diverse kinds of decisions obscures
the interpretation of the costs involved. We distinguish

a. policy decisions (acts) - e.g. accepting a shipment, replacing a part,

making an investment, selecting a drug, passing a student.

b. observational decisions - e.g. experimental designs, sampling methods,

stopping rules.

c. cognitive decisions - e.g. estimating parameters, forecasting, hypo-

thesis rejection.
The loss functions associated with (a) and (b) are well-understood, and

discussed in books on cost-benefit analysis (Keeney and Raiffa, Decisions with

Multiple Objectives: Drake, Keeney, and Morse, Analysis of Public Systems),

sample surveys, experimental designs, etc.

But (c) is a different matter, and it is precisely the misinterpretation
(ox noninterpre;ation) of loss functions in this case that has led to setting
up the decision problem in a misleading way.

The two new cost categories in (c) are complexity and inaccuracy costs.

Complexity costs include observational costs, already well-understood
and coming under (b) above. But they include also model complexity costs, de-
pending on such things as--number of variables and parameters, whether the
model is deterministic or probabilistic, linear or nonlinear, whether obser-
vations must be processed or not, the number of qualitatively distinct hypo-
theses involved. All these factors influence the cost of model-construction,

processing, recording and communication.



The importance of taking account of nonobservational complexity costs is
illustrated by Lindley's theory of regression model selection (Lindley 1968).
Adding additional regressors involves extra observational costs, but adding
more complicated functions of the same regressors do not. Lindley considers
only observational costs, and so cannot understand why polynomial regression
of arbitrarily high degree should not be used.

Inaccuracy costs raise much deeper issues. Consider point estimation.

Typically, loss functions here are of the form L(0, 0), depending on estimate

0 and (unknown) true value 6.

But this is wrong. If bayesian inference is correct (absent complex-
ity costs), then "inaccuracy" should refer to departures from bayesian infer-
ence. Now, at any time, in any observational state, knowledge of 6 is summa-
rized in a probability distribution p(0). Inaccuracy arises if another dis-
tribution p(a) is substituted for p(6). Hence the loss function should have
the form L(P, p), with pairs of distributions as arguments.

What is L(P,p)? Somewhere down the line we Qill make an inefficient
policy decision from using p in place of p. The simplest case is a once-and-

for-all immediate decision. Let U(S§,0) be utility; then
A Al
L(p,p) = "5 | U(8,6) p(do) —fu(a ,0) p(d0),

where 61 maximizes~/-U(6,e) $(do).

(The trouble here, of course, apart from the gross over-simplication, is
that calculating L(P,p) requires using the complex p. In fact we can and must
estimate L itself by various simplifying devices.)

We shall not discuss in detail the proper form of L. The following prop-

erties of L(P,p) seem highly plausible.



1. L >0,

2. L(p,p) = 0.

3. L is jointly continuous in say, the weak p-topology.

4. L increases as D,p become '"farther apart" in some sense.

5. L is convex in p.

Now among distributions the degenerate ones are especially simple, which

suggests looking at losses of the form L(0,p), © standing for the distribution
Pr(6 =0) =1

(We act "as if" we were sure that 0 = 6.)

The following example is instructive, because it shows how the cognitive
decisions to test an hypothesis or not, or to estimate or not, can themselves
be formally incorporated into the overall decision procedure and not set a
priori.

Let -0 be an unknown real-valued parameter, with distribution p(6). (This
distribution itself may be posterior to preceding observations. We assume
here only that it is the best honest summary of evidence to date, if any.)
The option of point-estimating refers to the replacement of p by a distribu-
tion degenerate at some point g to be chosen. We need the complexity and in-
accuracy costs for this problem.

For complexity costs, assume for the moment that all degenerate 8 are
equally complex. Let C be the extra complexity involved in carrying the full

distribution p rather than some degenerate distribution.

For inaccuracy costs, a simple and not implausible formula is
~ A 2 ~ 2
L(O,p), = EP(G =g )= i ) plE) dE =

expected mean square deviation from the true value 0.



10

First conclusion: if a point estimate is made, it should be the mean:

60 = EP(G),

and then

L(go, p) = Varp(a).

~

For, complexity costs are fixed, and the optimal © is then the one minimizing
inaccuracy costs, which is well known to be EP(G).

Second conclusion: the full distribution should be kept if C < Varp(e);

the point estimate 90 should be made if C > Varp(@). (If ¢ = Varp(e), the

two decisions are indifferent.)
For this balances the extra complexity of p against the inaccuracy of 6.

ey

Next, drop the assumption that all degenerate O are equally complex.
Suppose, for example, that © = 0 is simpler than any 6 # 0, these others all
being equally complex. (This is plausible when 6 is a regression coefficient;
A

8 = 0 then corresponds to dropping a variable.) Inaccuracy cost is still cal-

culated as above. We then have the table

Decision s
"
I full distribution | II point estimate 60 = EO | ITI 60 =0
it Complexity C2 Cl 0
Inaccuracy 0 Var © Var © + (EO)

Here C2 > Cl > 0. The inaccuracy cost for III arises from E(O- 0)2 =
Var 0 + (Ee)z.
The decision for I, II, or III depends on the least total cost, and is

expressible in terms of the first two moment of the p distribution, as in Fig-

ure 1.
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We now make a radical suggestion: Decision IIT should read--"accept
the hypothesis that 6 = 0". The testing notion here is quite different from
that of any school in orthodox statistics (Fisher or Neyman-Pearson) and also
from the various bayesian approaches to hypothesis testing (Jeffreys or Lind-
ley). These approaches all say in effect: "Accept a hypothesis when it is
likely to be true." The post-bayesian approach says: '"Accept a hypothesis
when it is simple and likely to be approximately true. "

We shall first elucidate the differences in outlook, and then argue that
the post-bayesian concept is the right one for science and for the art of
living.

Suppose O is known to be equal to a number 90 # 0, where 602 < Cl' Then
(EG)2 < Cl’ and Var® = 0, so the hypothesis § = 0 is accepted, even though
known to be false. The point is that 0 is close to the true value, so that
the extra simplicity of © = 0 more than compensates the slight loss in accur-
acy. We make the same implicit judgment every time we round off an estimate.

It is an article of folk wisdom among statisticians that any null hypo-

thesis will eventually be rejected with a big enough sample.
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(J. Berkson, JASA, 1938). Indeed, we know a priori that almost all our models
involve idealizations that are, strictly speaking, false. There are no per—
fectly fair coins, etc. Any hypothesis specifying that a parameter 0 lies

in a lower dimensional surface of the full parameter space @ may be assumed

a priori to be false. Now conventional significance tests do test the literal
truth of hypotheses and are therefore bound to falsify them eventually, lead-
ing to Berkson's paradox. The disenchantment with significance tests in the
literature--the contrast drawn between "statistical significance" and "eco-

nomic significance" (Dillon and Officer; cf. Morrison, The Significance Test

Controversy)--attests to the growing awareness of this very unsatisfactory
situation. In short, standard tests appear to be asking the wrong question.
The post-bayesian approach avoids Berkson's paradox by asking a differ-

*
ent question.

Turning to scientific practice, we find everywhere theories being ap-
plied which are known to be false--e.g. classical mechanics. And even of
theories not known to be falsified, any of these can be embedded in a contin-

uum of "neighboring'" theories (perturbations) all of which are compatible

*A quick comparison with two alternative approaches. Hodges and Leh-
mann avoid Berkson's paradox by substituting H' for the original hypothesis
H, where H' is all 6-values within some distance 8 of points in H. This
raises the question of finding the appropriate metric, finding the proper
level § , and relating these choices to appropriate loss functions. Should
§ depend on sample size, for example? Thus, while the Hodges-Lehmann approach
is an improvement over more conventional ones, it has an ad hoc character
which needs framing in terms of a more general approach--the post-bayesian.

Jeffreys (Theory of Probability ) believes that simple hypothe-
ses have positive prior probability, and therefore denies that Berkson's para-
dox must occur for properly designed (bayesian) tests. But even if we grant
Jeffreys his prior for the sake of argument, the post-bayesian argument above
still applies: the posterior probability of an hypothesis may be very close
to zero, and yet the hypothesis still be perfectly acceptable if it is simple
and "close" to being true.
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with all known facts (E.g. add a term with coefficient €, where € is suffi-
ciently small). The specific theory accepted by the scientific community is
typically the simplest one in the neighborhood. To summarize, the post-

bayesian approach is (implicitly) the one accepted in scientific research.

Unknown Normal Mean, Variance Known

We give a post-bayesian analysis of the following standard problem.

Xl’ ...Xn are iid N(G,oz), 02 known. Make an inference concerning 0 on the

basis of X., ...X .
1 n

For simplicity (!), let © have a uniform prior; then (Gle, viskeits Xn) =
N(X, 02/n). A strictly bayesian analysis ends at this point. But consider
the alternatives (a) make a point estimate (b) test the hypothesis 6 = 0.

We use the cost functions suggested above, so that inaccuracy loss is quadra-

N

tic, Cl is the cost of a non-zero point estimate over 6 = 0, and C2 > C1 is
the cost of the full distribution. Then, if a point estimate is to be made,
it should be ® = X. From Fig. 1, we see that a point estimate should be made

if 22 > Cl and 02/n < C2 - Cl' Hypothesis 0 = 0 should be accepted if iz <

C., and )—(2

2
<
1 + 07 /n C
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