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Introduction 

When the Econometric Society was founded in 1932, the declared goal was 

to build econometrics on the twin foundations of statistical theory and 

economic theory (and perhaps economic data as the third input). 
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This program has been adhered to faithfully, but not always with happy 

results. Econometrics has inherited bad genes as well as good, and defects in 

its parents have passed down as defects in the offspring. I will concentrate 

on the inheritance from economic theory. Specifically, I will argue that 

the incorrect preoccupation of economic theory with equilibrium and 

simultaneous equations led to a decade of wrong-headed development by the 

Cowles Commission, followed by a decade of first-generation economy-wide 

econometric models equally wrong-headed. 

Another topic to be covered is the resolution of the conflict between 

"subjective" and "objective" probability. Without this; the very meaning of 

stochastic econometric models is problematic. 

From Economic Theory to Econometrics 

Where do econometric relations come from? There are two sources. The 

first is the "epsilon-method": Take a relation postulated by economic theory, 

and add an epsilon (a "random shock") to it. Thus F(x;, ..., X;) = 0 becomes 

EAlRa s s i) = 0% 

The second source relates to forecasting. To forecast x;, one thinks of 

plausible past variables (including lagged x values), and a plausible 

functional form, and puts them together, again including epsilons: x; = F(x.-1, 

s M= e s gt..). 

In general, the first source yields "structural equations", while the 

second source yields various time series approaches, such as ARMA models, 

distributed lags, and combinations of these. In general, the former are 

thought of as deeper and more justified theoretically than the latter.



Time and Uncertainty in Economic Theory 

Most of the relations postulated in economic theory are timeless and 

deterministic - that is, they do not in themselves have any reference to time 

or probability. (Think of utility functions, demand functions, material 

balances, input-output relations, etc.). Econometrics exists as a separate 

discipline precisely because these extra-theoretic considerations must be 

brought in to establish contact between economic theory and the real world. 

It behooves us to examine economic theory very carefully to see if 

anything essential is left out by the omission of time and uncertainty - and 

the closely related concepts of equilibrium and causation. 

Take uncertainty first. The justification of determinism goes something 

like this: 1In reality there are no exact relations among variables (except 

for definitive identities). But there is a central tendency that arises from 

the interaction of rational agents, and the actual world consists of this 

tendency buffeted by random disturbances. Thus the analogy is to a 

distribution and, say, its mean: The best that can be done is to predict what 

the mean is. 

However, this analogy breaks down for relations. Suppose theory 

postulates F(x, y) = 0 - say a demand relation, where x is quantity and y is 

price. In general one can solve for either variable in terms of the other: 

y = g(x) or x = h(y) - these both say the same thing. Now introduce 

uncertainty. One’s first thought is to introduce a bivariate distribution 

P(xX,y). But this just gives a single point (Ex, Ey) as central tendency, not 

a schedule between pairs of x,y values. To get a schedule, postulate a family 

of distributions over y, indexed by x: p(y|x), with E(y|x) = g(x), the 

regression line. Reversing the roles of x and y, however, with p(x|y) and 

E(x|y) = h(y) gives a system which is incompatible with the first (g(x) and 

h(y) are no longer inverses of each other - the problem of two regressions). 

The attempt to resolve these problems gives rise to new concepts apparently 

not present in economic theory - the distinction between exogenous and 

endogenous variables above all. 

These are pervasive problems: They arise for any deterministic relation 

among variables. With 3 or more variables in a relation the problems get 

worse, as they do with multiple relations. (How to keep these relations from 

getting mixed up - the identification problem). 
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Similar problems arise with time. Most relations postulated in economic 

theory are equilibrium relation - say F(x., y:) = 0. One realizes that these 

relations do not hold exactly out of equilibrium, but again the equilibrium 

relations are the central tendency to which the system tends to return when 

buffeted by dynamic disturbances. And again, the attempt to dynamize economic 

relations can be done in many ways: Theory radically underdetermines the 

possible dynamizations, just as it underdetermines the possible 

stochastizations. 

Things might seem to get worse when one considers both time and 

uncertainty simultaneously. But perhaps the problems introduced can be 

resolved only in tandem. For one thing, time yields a before-and-after 

asymmetry among variables, and asymmetry is what is needed to resolve the 

problem of the two regressions. For another thing, what would uncertainty be 

without a future to be uncertain about. As someone said, "Time is what 

prevents everything from happening at once.” 

Dynamics and Equilibrium 

We now bring these considerations to an abstract setting. A 

deterministic, discrete time) dynamical system consists of a set of possible 

states S, and a dynamical law F:S - S, the interpretation being that s.4; = 

F(sy) gives the transition from the state at time t to t+l. 

An equilibrium is a fixed point of F: F(s) = s. A dynamical system may 

have many, one, or no equilibria at all. And even if equilibria exist, the 

system need not be approaching any. 

An invariant set S’C S is a subset such that F(5’) € S’ (once the system 

is in S’ it stays there.) 

More generally, a dynamical law may be of the form F:SX...xXS - S, in 

which the preceding n states determine the next. However, we may think of 

SX...XS as itself the state space, which reduces things to the preceding. 

Next, the state space may factor, say S = S;X...XSy, so that a state is 

represented by a "vector" (%X;, ..., X¢). The dynamical law then splits into k 

components F;, .., Fyx, namely, Xj,¢41 = Fj(X3z, ..., %X¢). This introduces the 

notion of causality among the components: write x; » x; ("component i has a 

direct causal influence on j") if F; depends nontrivially on x;. For example, 

given state space (X;, X;), suppose Xj,44; = F1(x;:). Then the factor space S, 
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develops autonomously, and can be investigated without considering Xy. More 

generally, given dynamical system (S, F), a generalized factor is an onto 

mapping g: S + Q. This factor develops autonomously if, for all s,s’ such 

that g(s) = g(s’), it happens that g(F(s)) = g(F(s’)). This determines a 

dynamical law on Q, which can be investigated independently of the full system 

S. 

For example the factor may be in equilibrium while the full system is 

not. 

A parametric system is one with a family of laws F, indexed by a 

parameter space 1; which can be written as F:Q X S = S. However this 

introduces nothing new: Think of the overall state space as being Q@ X S with 

components Q, S developing by sy+; = F(wy, sy), and wyy; = G(w,, sy) = wy, so 

that the parameter space is“an autonomous compdnent that is, in fact, always 

in equilibrium. (Parameters should always be thought of in this manner. It 

would save much confusion in statistics and econometrics.) 

Consider a factored system S; X S,. Factor x; is in temporary equilibrium 

if there is a subset S, C S, such that F,(x;, X;) = x; for all x, in S,”, and 

the current x, componént is in Sy”. Thus x; will stay where it is as long as 

X, remains in S;”, which may not be forever. 

Finally, a non-autonomous system is one with a changing law of motion: F 

is indexed by time t. Trivially this may be autonomized by thinking of the 

state as T X S, where #, the "clock" variable, develops by the rule f.,, = 

G(fg, sg) = 6, + 1. 

Economic Theory and Equilibrium 

We now apply some of these ideas to economic theory. Note first that it 

concerns itself overwhelmingly with equilibrium: consumer equilibrium, 

equilibrium of the firm, supply-demand equilibrium, the classical stationary 

state, underemployment equilibrium, etc., up to "general" equilibrium. (Even 

so-called "disequilibrium" models--Barro-Grossman, et al--actually deal with 

temporary equilibrium). 

And of genuinely dynamic models, one would guess that most of them are 

concerned with approaching an equilibrium. 

: Now, if one thinks of economics as approaching a very complicated reality 

by a series of successive approximations, then this preoccupation with 
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equilibrium is understandable: Equilibrium states are easy to grasp and easy 

to find and solve for, compared with finding, grasping and solving for the 

full dynamic models in which they are embedded. The trouble arises when one 

forgets how poor and incomplete one’s approximation is, and "takes the limits 

of one’s vision for the limits of the world." This impedes the path to 

further progress, and distorts practice. My thesis is that preoccupation of 

economic theory with equilibrium has distorted econometric practice. 

How is equilibrium represented in economic theory? Take the most common 

case, in which the state space is (formally) R®, Euclidean n-space, so that an 

equilibrium point is a vector (%X;, ..., X,), the components referring to 

stocks, flows, prices, wages, incomes, etc. The equilibrium is usually 

represented implicitly, by a system of simultaneous algebraic equations 

FilZpy ovvy Ry) =0, 1 =1, ..., n (typlcally, first-order optimality 

conditions and market clearing conditions, and perhaps institutional 

constraints). 

Are these equations just a fancy way of representing the equilibrium, or 

do they have intrinsic significance? Suppose there are k additional 

"exogenous" variables or parameters y;, ..., yx among these equations, so that 

the equations are more correctly represented as Fi(%X;, ..., Xp, Y1, «++s Yx) = 

0. Then we are dealing with a family of equilibria indexed by y, which have 

solutions ("reduced forms") x = G(y). Evidently this schedule says more than 

just specifying the single solution x° corresponding to a particular y°. Do 

the "structural equations” F;(x, y) = 0 have any "surplus meaning" over the 

reduced forms x = G(y)? Only in the vague sense that they give a clue as to 

the dynamic system from which the equilibrium arose. 

Subjective and Objective Probability 

Now to bring in probability. A random variable Q may be thought of as a 

question, the possible answers to which are Ay, ..., A; (take n finite for 

simplicity). The distribution of this random variable is given by the 

probabilities P, = Prob (A;), satisfying P;= 0, ZP; = 1, and refers to the 

cognitive attitude of some mind at some time toward Q. Thus probabilities may 

vary from one mind to another, and in the same mind over time, and in that 

sense are "subjective." 
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If several minds are "similar", and they are all exposed to the same 

information (perhaps pooled by communication), then they may tend to have 

similar cognitive attitudes, so that there is rough intersubjective agreement. 

This is not quite the same as "objective" probability. 

Now the world we live in is a dynamical system, but we are not sure which 

one. The corresponding cognitive attitude is represented by a probability 

distribution over alternative dynamical systems. This has two aspects: 

uncertainty about the law of development, and uncertainty about the state the 

system is in. But the former can be reduced to the latter as follows: 

Let Q be a space of parameters indexing possible laws. The augmented state 

space is then Q@ X S rather than S alone. The law for this space is known: 

Sgr1 = F(wy, Sg), and wyy, = w,, where F(wy, *) is the law indexed by w,. Thus 

all uncertainty resides in the state of the system. 

The foregoing gives the "subjective" (or "Bayesian") concept of 

probability, as reflecting uncertainty. There is, however, another concept 

which I will (but probably shouldn’t) call "gobjective" probability. 

(Invariant measure is a better term). 

Consider a dynamical system with state space S and law F: S - S. A 

probability distribution P on S is invariant if it stays the same under the 

transformation F. Specifically, P(F1(A)) = P(A) for all (measurable) sets A. 

Here are some examples. 

(i) Uniform motion around a circle: the uniform 

distribution is invariant. 

(ii) Non-uniform motion around a circle (these 

examples are in continuous time). Let S(§) be the 

speed at angle §. The distribution with density   function proportional to 1/S(f) is invariant. (To see 0 

  

      

~ : : 

this, note that the probability mass passing any point 4 ftfifxiflav I 

per unit time = speed X density, is constant). P(A) = [ > T 

fraction of time spent in region A. 

(iii) The tent map x = min [2x, 2-2x] on [0,1] yh\ 

The uniform distribution is invariant. 

(iv) The logistic x = 4x - 4x?; the "arc sin" g 

distribution is invariant: P(x) = (x - x2)7%/x 0 X, { 

i“j;qT\Q, 

o
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For any dynamical system there may be none, one, or many invariant 

probabilities. (The set of invariant probabilities always is convex, since if 

P, Q are invariant so is AP + (1 - X)Q.) For example, uniform motion on the 

line has no invariant probabilities. (The uniform distribution on the line is 

invariant, but this is improper, since infinite). On the other hand, for the 

trivial system F(s) = s (no motion), all probability distributions are 

invariant. 

Let S, F: S » S be a dynamical system, and P a probability distribution 

on S, not necessarily invariant. The dynamical law induces a transformation 

on P to say P’, namely, P’ (A) = P(F1(A)), all measurable A C S. The 

invariant probabilities are simply the equilibrium points of this 

transformation. One may want to exclude "unstable" equilibria suitably 

defined, e.g., mass one concentrated at s;, where s; is an ordinary unstable 

equilibrium point. 

To call these invariants "objective" probabilities has some 

justification: They do seem to have something to do with "frequentist" 
  

probability, and with the probabilities that appear in scientific theories and 

that seem to be "out there" and not inside our heads. Take the ideal case 

when a dynamical system has a unique proper stable distribution P. Then P has 

a physical interpretation: P(A) is the fraction of time the system spends in 

state A. 

It is not true, however, that subjective probabilities are approximations 

of the objective ones toward which they should aim. On the contrary, the 

"objective" probability P of a system represents a state of maximal ignorance 

about the system. Any partial observation of a system gives a clue as to the 

state it is actually in now, and should modify P via Bayes theorem. Objective 

P is more appropriate as the prior distribution of Bayesian inference. 

Independent Identically Distributed Random Variables 

Consider a system exhibiting "sensitive dependence on initial conditions" 

such as the tent map, and which has an additional property which we may call 

ergodicity (which means, roughly, that any initial distribution which is at 

all "spread out" transforms to the unique invariant distribution (the uniform 

distribution for the tent map). The relaxation time is how long it takes for 
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virtually complete "memory loss" to occur (this depends on the precision of 

the initial distribution). 

Suppose one makes repeated "imprecise" observations on this system at 

intervals exceeding the relaxation time. This provides an "objective" way of 

generating iid random variables in a deterministic world! And, further, one 

on which all observers will agree provided their ability to observe precisely 

is uniformly limited. Example: the tent map, where in state x, the observer 

can determine only whether x < % or x > . 

Markov Chains and Stationary Processes 

Once a source of iid random variables exists, the generalization to 

Markov chains is easy. Let the state of a dynamical system be given by s = 

(x,y), where x¢y; = F(x;, y;) and the y's are iid with y, not influenced by 

Xg-1s Xg-z; .... Then the x's are a Markov chain - that is, P(xy4;|Xe, Xge-1, 

o) =Pt o) 

This property may be described as path-independence: The conditional 

distribution of x, given all preceding x's depends only on the last, so x,.; 

summarizes all information from the past. Now path independence also 

characterizes dynamical systems in general: If s;;; = F(s,), then knowledge of 

Sg-1, Sg-z doesn’t help, since si;; is already determined completely by s;. 

The Markov processes stochasticizes dynamical systems in the following 

sense: In place of the deterministic law F one has a conditional probability 

distribution over the state space S. A dynamical system is the special case 

where this distribution is degenerate for all s. Conversely, if P, is the 

probability distribution of the variable x,, then the P,’s themselves form a 

(deterministic!) dynamical system, the dynamical law Piyy = F(P.) given by 

(*) Pri1(A) = P(Ryyy €A) = [gP(Xe4y €A|Xy) P.(dx,) 

But more than this: The entire preceding discussion on dynamical systems can 

be "stochasticized" concept by concept. In particular, consider equilibrium. 

Point s is an equilibrium point if F(s) = s, and then s, s, s, ... is a 

possible history compatible with the dynamical law. For Markov processes, the 

corresponding concept is an equilibria distribution P, one satisfying F(P) = 

P, where F is given by (*). Then each x, has the same distribution P. But 

even more is true: The joint distribution of x., Xi4; is the same for all t, 

and so on for Xi, X¢41, ..., Xgan for any n. That is, the joint distribution 
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is shift invariant, or stationary. Stationarity is the stochasticization of 

the equilibrium concept. (Note that a deterministic stationary process must 

be a constant). 

(Technical note: must all stationary processes arise from Markov 

processes in this way? Well, just as there are two-stage dynamical systems 

with laws F:SxS - S, there are two-stage Markov processes where 

P(xy|%0, ..., Rgo1) = P(Ry|%pozs Xgpoq) 

In both cases, the state space may be redefined as SxS. Similarly, there are 

n-stage processes for any n. For example, an ARIMA (p,d,q) process is Markov 

with n = max(p+d, q). All of these may give rise to stationary processes. 

But the set of all these processes is in a sense "dense" in the space of all 

processes, and their equilibria are "dense" in the space of all equilibria.) 

Econometrics Once Again 

Having made this lengthy detour into fundamentals, we return to economic 

theory and econometrics. The aim of both is to get close to the causal 

structure of the economic system, theory by developing plausible hypothetical 

models, econometrics by identifying real world situations with these models at 

least approximately. Because of our limited abilities to observe, probability 

should be incorporated organically into these models, even in the realm of 

pure theory. 

Econometric theory stresses the import of "structural relations" over 

"reduced forms". But what is "structural"? Should it not mean causal 

structure? This is, after all, the deepest level one can hope to attain, and 

the one that is relevant for policy purposes. (Another, more subtle, virtue 

of causal models is their "modularity", their ability to fit together to make 

more complete causal models, a virtue not shared by simultaneous equation 

models). 

However, looking at what econometric theory calls structural shows a 

curious reversal. Causal influence goes from past to future. Simultaneous 

equations cannot do this, almost by definition. Reduced forms, on the 

contrary, do have this form (which, by the way, doesn’t necessarily mean they 

are capturing causal structure at all well). 

What is the source of this strange preoccupation with simultaneous 

equations? I believe it derives from economists’ preoccupation with 
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equilibrium. (Recall general equilibrium theory, usually considered to be the 

core of economic theory. But even Marshallian theory boils down mostly to the 

equilibrium of supply and demand. The only real exception is capital theory). 

Now equilibrium is not something that should be assumed. As noted above, 

dynamical systems need not have equilibrium points, and even if they do, the 

system need not be at or even approaching it. There is one further drawback 

to equilibrium from the point of view identifying causal structure: It gives 

no clue as to how the equilibrium arose. Only by disturbing the equilibrium 

can one obtain this information. 

Consider a two-dimensional state space s = (X,y) (say price and quantity) 

and suppose for simplicity that the dynamics is represented as a simple Markov 

chain: sy4y has a distribution dependent on s,. (A common specification is to 

have the conditional expectation E(sg+;|sy) = G(sy), with dispersing 

independent of s.). Suppose, for example, that 

(1) Xgep = @ + DXy + Cyp + U 

Yesr = d + exy + £y, + v, 

where uy, vy are jointly iid and independent of sy, S¢;, .... These are the 

"true" structural equations. Suppose now, believing that the system is 

"stationary", one tries to represent this structure. One says, & la Cowles 

Commission, that it is not legitimate to regress y on X, say, because the 

variables are "jointly dependent." One represents this as a pair of 

simultaneous equations. Which pair? To judge from (1), the best pair might 

be 

(tt) Xy = a + bry + ¢y, + 

yy = d + exy + fy, + v, 

This disturbs the situation, but at least the true dynamics can be recovered. 

Will (tt) be the estimated equations? Well, no. For one thing, they are not 

identified (b,c,e,f are in general all = 0.) Then one must seek further 

"identifying restrictions", find instrumental variables for estimation, etc. 

It is all very confusing. 

Note what the assumption of stationarity means here. (The stationary 

distribution is the invariant measure for the Markov chain, hopefully unique 

and stable). It represents a condition of maximal ignorance concerning the 

true state, and is destroyed by any partial observation of that state.



One standard argument for simultaneous equations is that the impact of a 

change in external parameter can be gauged with them, but not with the reduced 

forms. Add a parameter § to the preceding system, so that it reads, say, 

E(Sgs1]8e, 8) = G(sg, 8). Some or all of a,b,c,d,e,f may depend on 6. The 

trouble is, apart from getting the equations right, that # may enter both 

equations. 

What happens if we deal with variables that are not close to the causal 

structure (as almost always happens, since the variables we observe are 

aggregated to a greater or longer extent)? It would appear there is even less 

justification for a "simultaneous equations" treatment here, since the "true" 

structure is not attainable in any case. What one should do is postulate a 

causal structure that makes theoretical sense, even if the variables are not 

directly observable.


