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1, INTRODUCTION 

One of the most important problems in location theory is that of 
arranging @ system of facilities to meet a spatially-distributed demand 
in an optimal manner, The most familiar example is the location of manu- 
facturing plants, but the problem arises also for grain elevators, retail 
Stores, schools, hospitals, police and fire stations and many other facili- 
ties. 

An arrangement may be characterized abstractly as follows: (a) A 
set of points is chosen at which "plants" are to be located (the set may 
be finite or infinite in number). (b) A pattern of transportation flows 
is specified, from plants to surrounding territory. The total outflow 
from each plant equals its production level. 

We assume the following data are available: (1) For each point of 
space, @ cost function, representing the cost incurred in producing that 
level of output in a plant located at that point. (2) A transportation 
cost function, defined over all point-pairs and shipment. size: 

At this point we may distinguish two versions of the optimal loca- 
‘lon problem, The more restrictive version specifies: (3a) a delivery 
ee ne eee en ey 
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1 For an overview of such “service systems" see Faden (e].



Tequirement measure over space (for example, in the form of a density 
function). One is then to minimize the sum total of production and 

transportation costs while satisfying those xequired deliveries. The 

more general version specifies: (3b) for each point of space, a benefit 
function depending on deliveries to that point. One is then to maximize 
the sum total of benefits minus production costs minus transportation 
gests. We shall be concerned mainly with the first of these formilations. 

‘Two broad approaches to these problems may be distinguished in the 
literature, The first, and generally more recent, is to devise efficient 
algorithms for finding optimal, or near-optimal solutions.” The second 
is to make further idealizing assumptions, and derive the solution in 
general mathematical form, This approach, which may be called the 
Ghristaller-Lésch tradition ([2], [12]), is the one we pursue here. 

Let us, then, strengthen assumptions (1), (2), and (3a) or (3b) as 
follows: (1') Production cost conditions are uniform; that is, the cost 

functions are the same for all points of space. (2') Space itself is the 

ordinary Euclidean plane of high-school geometry, with its ordinary metrics 
transportation cust is proportional to distance, and to quantity shipped. 
(3a") For the restrictive version, delivery requirements are uniform over 
the entire plane.” (3b") For the general version, benefit conditions are 

yor example, Cooper (2), xuehn and tanburger {11}. 
thts assumption is nore realistic than it seems at first glance, for many systems. For example, law or custom may impose uniform servicing requirements for police, fire, street-cleaning, or school systems. The custom of freight absorption over short distances may lead to uniform demands in the case of water supply, electricity, gas and sewage systems, For further discussion of this point see Faden (6].



uniform; that is, benefit, as a function of delivery density, is independent 
of position on the plane. 

Under assumptions (1'), (2'), and (3a') or (3b'), the Christaller- 

Losch tradition cones up with some rather strong conclusions concerning 

the optimal arrangement: (a') The plant locations form a honeycomb lat~ 

ice. (b') Each plant is the exclusive supplier of ite dirichlet region.” 
Since most of our further discussion will revolve around these con- 

cepts, let us define them formally.> A lattice (in two dimensions) is a 
Set of points of the form uX + n¥, where X and ¥ are fixed, linearly- 
independent vectors, and m and a range independently over the integers -- 
Positive, negative, and zero. The origin of coordinates may be chosen 
arbitrarily on the plane. Thus in Figure 1, nine points of a lattice 
are shown, corresponding tom, n= =1, 0, 1, (All of these except the 
origin are circled.) A honeycomb lattice is a lattice in which the de- 
fining vectors X and ¥ are of equal length, and the angle between then 
(3+ A in Figure 1) is 60°. The dirtchlet region of a lattice point is 

that portion of the plane closer to it than to any other lattice point. 
In Figure 1, the dirichlet region of the origin is the irregular hexagon 
(abedef), and the borders of adjacent dirichlet regions are show extending 
from these six points. One easily shows that all dirichlet regions for a 

4 We do not claim that assumptions (1'), (2"), and (3a) or (3b"), and 
conclusions (a') and (b'), are stated explicitly by all writers in 
this tradition, but merely that they all seem to have this model in 
mind, with minor modifications. (In particular, our benefit functions 
are usually represented as demand functions.) 

5 see alsg Cassels [1; chap. 1], Coxeter [4; pp. S0ff], Dacey [5], and 
Fejes-Toth [7]. 
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given lattice are congruent. For the honeycomb lattice only, they are 
regular hexagons, A partition of space into dirichlet regions may be 
defined in the same way for any arbitrary collection of isolated points. 

What is the evidence for the assertion that (a') and (b") charac- 

terize the optimal arrangement? An examination of the arguments® reveals 
that it is based more on faith than on demonstration. The more careful 
arguments([9], [13 )compare the three possible ways of covering the plane 

by dirichlet regions which are congruent regular polygons, vig, regular 
hexagons, squares, and equilateral triangles, and, indeed, the regular 
hexagon -- corresponding to the honeycomb lattice -~ proves to be the 
best of the three, But this is only three cases out of an infinite nunber 
of possibilities. How do we know that some irregular arrangenent of 
plants will not do better than any of these? Is it really optimal for 
plants to supply just their own dirichlet regions? Should all plants 
Produce the same output? Furthermore, do the answers to these questions 
depend on the form of the production cost function, or the benefit function? 

The problem is, in fact, one of extreme difficulty, and the answers 
to these questions are unknown at the present time. 

The major aim of this paper is to prove that the Christaller-Losch 
Solution is indeed optimal in a certain class of possible arrangements, 
Nig, the class of uniform required deliveries, with plants arranged in a 
lattice, and each plant the exclusive supplier of its dirichiet region. 
That is, we restrict our attention to arrangements satisfying condition @') 

§ cpristatier [2; p. 63], waggett [8; p. 49), Isard ]; pp. 240-242], 
Losch [125 pp. 110-114), Mills and Lav 13].



of the Christaller-Losch solution and prove that the honeycomb lattice is 
optimal in the class of all lattices. Essentially no restrictions are 
placed on the production cost function. This class, though still a modest 
subset of the class of all possible arrangements, is much more extensive 
than any dealt with so far, 

Perhaps the most interesting aspect of this result is that even in 
this narrow class the proof required is so tedious and complicated.’ This 
gives @ measure of the difficulty in store for one trying to prove the 
general case, 

One last preliminary difficulty remains to be resolved. We are to 
minimize the sum total of production and transportation costs (or maximize 
total benefits minus costs, in the general version). If taken literally, 

this criterion becomes useless, since, in general, any arrangement meeting 
delivery requirements will entail infinite costs over the whole plane. 

For the class of arrangements under consideration here, a simple 
extension of the original criterion suggests itself. In each arrange- 
ment, the plane is covered by an infinite repetition of identical dirichlet 
regions, with identical production and shipment patterns within each re= 
gion, and no shipments acro: borders, Under these circumstances, it seems 

reasonable to e of tots u8_transportatio: 
Sosts in a dirichlet region to the area of a dirichlet region. This will 

be called the minimal cost-density criterion. It appears to be the 
criterion used, implicitly or explicitly, by previous studies in the 

* We will withdraw this statenent in adairation 1f soneone should find, say, @ twenty-line proof of our main theorem,



the dirichlet regions degenerate into rectangles. If all three angles are 
positive the dirichlet regions are hexagons, The honeycomb lattice is 
exactly the case in which & = p =¥ = 30°, 

Any generating vectors x, ¥ determine R,Q , B,¥ . Conversely, 

any R> 0, and any %, B,¥ > 0, with at least two angles positive, and 
satisfying (2), determine a lattice. R (or A, for that matter) may be 
thought of as determining the "size" or "spacing" of the lattice, while 

&, 6, ¥ determine its "shap + These are more convenient parameters 

for us to use than the original x and Y. 

The dirichlet area, A, is easily found in terms of R,& , B, 

by summing over the six isosceles triangles: 

3) A=R’ in 2Q + sin 28 + sin 2+). 

Total transportation cost for the dirichlet region is 

Type eee ) spr [cos af soc%od9 + similar terms in p and]. 
é 

(This 1s most easily computed by considering each of the twelve right 
triangles separately, integrating over a sliver from the origin to the 

edge of the region, integrating over the central angle, and summing over 
the triangles.) 

By the cost-density criterion, we are to minimize 

«) 2 [ccey + totat transportation cost] , 

the latter term being given by (4).



B. Let us use (1) and (3) to solve for A and R in terms of P, X , B, Y, 

and substitute these results in (5). We obtain, after simplification, 

(6) Potey/P + Tae oe c? odo +B and Y terns 
‘372 (sin 2% + ain 2B + sin 2) 

as the objective function to be minimized. 

We have chosen as our lattice parameters, P, %, 8, Y. The three 

angles , 8,Y may range freely, subject to (2) and to the non- 

negativity and positivity conditions already mentioned, and this range of 

choice is independent of the value of P chosen. Assumptions (3) and (5) 

guarantee that there is an optimal P* which is positive. 

These observations, together with the form of (6), make it obvious 

that the optimal values (*, p*, Y* do not depend at all on Ps, but should 

be chosen to minimize 

33 ¢ 
cos J,sec? ede + cos’p) , sec? ode + cos?) sec? edo ” 

(sin 24 + sin 2B + sin 272 

subject to (2) and to 4 , B, > 0, and to not more than one of those 

equalling zero. 

Thus the optimal "shape" of the lattice may be determined independently 

of its "siz 7 and is independent of the level of required deliveries, f, 

and of the form of the production cost function (except that these mst 

satisfy wmptions (3) and (5)). 

The rest of this proof is directed to showing that the formidable 

expression (7) has a unique minimm at {= 8 =/230° the honeycomb 

lattice case,
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€. The denominator of the objective function (7) is positive for all 
feasible values of X, (,Y, Hence a necessary condition that a given 

set of values minimize (7) is that they minimize the numerator subject to 

the value of the denominator being fixed, This suggests looking at the 
following problem: 

Minimize of @ 

8) eos? ij sec? ede + con?’ it ec? odo + ony f 

subject to 0, @,Y > 0, and to 

(O} A+ bry = 90°, and 

(0) sin 2% + ein 2@ + sin 2Y =K. 

Here (8) is the numerator of (7), (9) is the same as (2), and (10) 

is an auxiliary constraint introduced to fix the value of the denominator 
of (7) at x3? 

Broblen. 

The minimal value of the objective function (8) of the angle problem 

» K being @ parameter. (8) to (10) will be called the angle 

depends on K. Let us write it as ((k). In terms of K, (7) becomes 

ay gay > 

Optimal K® is the one minimizing the expression (11). The optimal angles 
*,@*,y* will be the ones minimizing (8) for this value of K inserted 

in (10). 

Let us now determine the range of values of K which give us even a 
feasible solution to the angle problem. Zero is clearly the lower limit, 
though not itself « permissible K value. To find the upper limit, note 
that, given (9), sin 2X + sin 2? + ein 2¥ may be rewritten as 

sin 2% +2 cosx cos (f-1) (since sin 27 + sin 27 = cos (26 - 90°) 

+ c08 (90° - 27) = cos ((F-1) -«) +08 ((f-Y) +x) = 2 cose cos 

(@-Y)). Thus, for a given value of %, K attains its maximum when (=Y,
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By symmetry, K attains ite upper limit when (= 6 = Y= 30° (and the upper 
limit is therefore 3 sin 60° = 3{3/2). Conversely, if K is at its upper 
limit, the only possible values satisfying the conditions of the angle 
problem are X= @ = ¥ = 30°, 

These observations furnish the key to our method of proof, Suppose 
it could be shown that (11) decreases as K increases. Since we are mini- 
mizing, K should then be taken as large as possibl ke = 3[3/2, 
and for this value {# =G% =y# = 30°, and we will have established the 
optimality of the honeycomb lattice. 

i, 

Thus we have reduced the problem to showing that ¢(K)K"°/? ts a 
decreasing function of K. It will suffice to prove this for K in the open 
interval (0, 33/2), since the function is continuous at K = 3{5/2. 

D, Let us form the Lagrangean for the angle problem: ei 
@2) cow fee? O10 + and y terms =) (d+ 0 +) ~ 4 (Sin 24+ ota 26 

° +sin 27), 

Wette ys Cys Vis for optinal angle values for « given K. If, > 0, 
the derivative of (12) with Respect to X must equal zero at these optimal 

values. Thus 
XK, 

(13) 1-3 cos" sina, f sec? od0 = ) = 2p e08 24, = 0 
° 

i€ % | > 0, with similar expressions in, and Y,» provided they are positive. 

Formula (13) may be rewritten in the more convenient form 
1%, 

2 2 niall 14) ayaa’ a - 3 cos Mt [ne 040 = 24) ~ 1, using the 

identity: cos 2X . 1 5 in? 7 1-2 etna, 

TE Ops CysYy > 0, multiply the X, @, andy equations (14) by cot, 
cot Cys eotY,» respectively, and add. We obtain
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let us take La #B,+ Consider a slightly modified version of the angle 
Problem, (8) - (10), in which both K and Y are taken as parameters. 
(9) and (10) then determine @ pair of values to be assigned to and p 
(4m any order), and substitution of these values determines (8) uniquely. 
Let us write the resulting value of (8) as h(K, V). Between h and @ we have 
the relation 

(20) GC) = min WKY) = REY) 
Differentiating, we get 

2 ARES) ay te = 2) he, yy) +s TF, NOD a hay, 
the last equality following from the fact that Yj, 18 optimal. From (8) 
we obtain 

ic) 4 aoe (test oh hed 3 ‘ ie eee) (22) >> hk, Y,) = (cos sec” ede) +7z- (cos sec” @d0) == ri meee Tay al st ae, i OK 

where Y, is held fixed in the evaluation of Ae and at . 

From (9) we obtain 

3) Bye ase 
amd from (10) we obtain 

(24) 2 cos 24, ay + 2cos a ak: 

(23) and (24) may be solved simultaneously for a and wh: 

24k 2% 
Qe ee Be cree) xy > on * Beak a eosH) * 

If these results are substituted into (22), the differentiations 
carried out there, and the results referred back to (21), we obtain
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% 

3 cos, stn, f ec? 040 -3 cos”, sind, re eae 
cos, = cose, 

(26) 4q"(K) = 

which is the expression we were eking. 

F. Since # Gs at least one of then, say d{,, is positive. Thus formla 
(19) obtains. Let us now substitute the expression for ¢ in (26) into the 

right-hand side of (19). 

After the smoke clears, we are left with the following expression: 

i my 
sec? odo - °° Xx | ec? gue | 

cos hy ‘ sinf, 5 sind 

3 sind, sin’, | cos”B 
27) pe: ea eee 

a 3/2, The sign of (27) is the same as the sign of $ (¢R™?/), by (19). 
(27) is symmetrical in ), and Cys 80 without loss of generality we may 

assume o> @. 

Outside the bracket, the numerator is non-negative, and positive if 
@,, 48 positive. the denominator is negative. (27) would have the negative 
Sign we are seeking if it could be shown that the bracketed expression were 
positive, and this in turn would be established if we could show that the 

x 3 
sin s [ms ace 

were decreasing in the relevant range (the open interval 0° - 90°), 

function 

(28) £(x) = 

To this final task we now turn.
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x 
G. Using the fact ty eae 1/2 sec x tan x + 1/2 log (sec x + tan x), } 
we find from (28) that 

3 a9) fa 1/2 cot x -(cos x + Soe se ; log (sec x + tan x). 
2 sin? x 

We must show that this is negative in (0°, 90°). 

Start from the obvious inequalities 

3 
(30) sec Naar Saray ee 

sin@o 

valid for 0% @ < 90°, 

Integrating (30), we obtain x s 
3. 

cot) ess wferese, » oF 
(in?o+ 1)? 

ct (32) log (see x + tan x)>——"=_ (09 90%) 
sin? x +1 

cos? x 
Multiply both sides by the positive number (cos x+ rer rp sin? x 

(3 * cos? x hog ( ren ) sin x 6 rs cox? x rs ) (cos x + ee Nog (sec x an x) > 7 (cos * Sate 

2 cos x sin® x +cos?x | 1 (2 cos x sin” x + co 1 
2 (ein? x +1) sin x 2 \2 sin? x + cos? x sin x 

wee al cot x, 
2 einx 2 

Comparison with (29) shows that f (x) is decreasing.
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H, This last result proves that (27) is non-positive for all K in the 
range (0, 3 3/2), and in fact negative if X,_ and 4. are both positive. 
However, for K>2, it follows from (10) that all feasible angles must be 

positive (since the sum of two sines cannot exceed 2). Therefore, (27) 
ie actually negative in a neighborhood of K= 33/2. It follows that 
p 05/2 45 watqualy minintsed atix* = 3 (3/2. Thereforesc* = St =7* = 30°, 
and the optimality of the honeycoub lattice is established, The proof is 
complete. 

3. THE PROBLEM OF INFINITE costs? 

We used cost-density minimization as our criterion in the previous 

section. This was possible because the class of arrangements under dis- 

cussion all had the property of covering the plane with an infinite re- 

petition of identical production and transportation flows. But we want to 

include the possibiliti of having plants arranged irregularly, or having 

plants supply other than their own dirichlet regions. In these cases 

cost-density is not even defined, there being no "typical" regions over 

which to minimize the ratio of cost to area, So if we are ever to find 
the best of all possible arrangements, we will first have to find a 

stronger criterion than cost-density. 

This difficulty may be overcome in a fairly satisfactory manner, 
but before doing so let us answer one plausible objection which may occur 
to the practical~minded reader. Why bother with an infinite plane at all? 

While the discussion in this section is phrased in terms of cost 
minimization, it applies almost verbatim to the more general criterion of maximizing benefits minus costs.
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After all, the entire Barth is finite, so that using a finite space is 
more realistic, and also avoids the difficulty just mentioned, 

The answer lies in the simplicity achieved through the approximation 
of an unbounded plane. However difficult the optimal location problem is 
for the plane, it is probably worse for, say, a spherical surface, or a 
bounded region. The use of infinite approximations to finite situations 
has often been accompanied by leaps in analytical power, the prime example 
being the Calculus. 

What we need, then, is a criterion which is (1) intuitively plausible; 

(14) powerful, in the sense that it enables us to decide for a large variety 

of arrangements which of a given pair is the better (ideally, it should 
enable us to order any two arrangements); (111) consistent, in the sense 
that the preference relation established should contain no cycles; further- 
more, (iv) in the special case where total costs are finite, it should 

Heduce to a simple total cost minimization criterion and (v) in the special 
case of a covering of the plane by identical, autarchic regions, it should 

Eeduce to the cost-density minimization criterion, as noted above; finally, 

and not least, (vi) it should be wieldy, in the sense that one can decide 
which of two arrangements is better without excessive calculation. 

Are there any criteria meeting these requirements? Yes, several, 
except that their wieldiness has yet to be tested. The best that we have 
been able to discover is the following: 

i ferab! M4 8 a bor di 

that, any circular d: ta the to! 

sor urred ' is le n_the t cost
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This will be called the circles criterion. 
Intuitively, the circles criterion proclaims one arrangement better 

than another if the first has lower costs in all sufficiently large regions 
of a certain regular character.” the eriterion is Powerful, though it 
does not succeed in ordering the set of possible arrangements completely. 
Tt can be shown to be consistent. It clearly boils dow to a simple total 
cost comparison when arrangements with finite total costs are compared. 
In Lemma 3, below, it is proved that it reduces to a cost per unit area 
comparison in the case of arrangements partitioning the plane into identical, 
autarchic regions. Its wieldiness is demonstrated in the simple class of 
arrangements we have considered in Section 2, at least, and remains to be 
tested for more complex arrangements, !+ 

4. APPLICATION OF THE CIRCLES CRITERION TO LATTICES 
This section is intended to illustrate how the circles criterion 

might be used as a working principle, as well as to give some results 
which may lead to the strengthing of our theorem. 

Let A stand for the dirichlet area of a lattice, and R for its 
dirichlet radius, as defined above, Section 2A, 

1° Sone regularity conditions must be imposed if the criterion is to 
have a reasonable degree of power, The class of circular disc: accomplishes this, and is at the same time not too unwieldy in ap- 

u 
of economic de- velopment programs with an unlimited time horizon, and a similar cri- 

terion has been suggested for these cases (von Weizsacker [15], and the entire issue {14]} The space problem is inherently more complex, however, because of multi-dimensionality, and the lack of anything 
corresponding to "time zero". 
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No point in a dirichlet region is at distance greater than R from 

the lattice point of that region, and no two points in the same region 

are at distance greater than 2R from each other. These simple observa- 
tions are the keys to the following two lemmas. 

Lemma l. Let M be the number of lattice points enclosed in a circle of 

radius W (>R); then 

(34) r+ RA > om mw - Ry2/A. 

Rroof. The dirichlet regions of the M points are all enclosed in a circle 

of radius W + R concentric with the given circle. The total area covered 

by these regions is MA. Hence MA< iW +R)”, giving the first inequality. 
(The strictness of this and similar inequalities follows from the fact that 

hexagons cannot be fitted together to cover a circular region exactly.) 

Now consider the dirichlet regions which overlap the circular disc 
of radius W - concentric with the given circle. ("Overlap" is under- 

Stood to include the case of complete enclosure of the region by the disc.) 

Bach of these regions has its lattice point within the circle of radius W. 

Hence there are at most M of them, covering an area of at most MA. At 

the same time this area covers the inner eircle, so that MA >77(W - R)?, 

yielding the last inequality. QED 

Lemma 2. Let N* be the number of dirichlet regions enclosed in a circular 
dise of radius W (>2R); let N° be the number of dirichlet regions over- 

lapping that circular disc; then 

(35) AW + 2R)2/A oN? > WP Sar = 2R)?/a
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Broof. Each of the N° regions overlapping the disc of radius W must be 
enclosed by the concentric disc of radius W + 2R. Hence N°A< 7 (W + 2R)?, 
yielding the first inequality. 

The middle inequality is obvious. 

Now consider the dirichlet regions which overlap the circular disc 
of radius W - 2R concentric with the given disc. Each of these must be 
enclosed in the disc of radius W. Hence there are at most N° of them, 
and their collective area covers the inner disc. Therefore N°A >7'(w - 2R)2, 
yielding the last inequality. QED 

We now use Lenma 2 to show that, for the simple class of arrangenents 
used in our theorem, the circles criterion reduces to cost-density minimiza- 
tion. 

Lemma_3. Let L, and Ly be two lattices in which each plant is the exclusive 
supplier of its dirichlet region. Let A, and A, be the dirichlet areas of 

Ly and Ly, respectively, Let C, and C, be the total costs (production 

plus transportation) incurred in a dirichlet region of L, and L,, respectively. 

Then, if C)/A, < Co/A,, 1, is better than L, (by the circles criterion). 

Brook. Let C/A, = By, C,/Ay = B,. By assumption, B, <B,. 

We must find a bounded region, H, such that, on any circular disc 

enclosing H, total costs for L, are less than for L). For the region H 

we will choose any circular disc of radius W, where 

mm, VB, + 2m VI, (36) W> 
VB > By , 

nd Ry being the dirichlet radii of L, and L), respectively.
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It suffices to show that total costs incurred are less under Loy than under 

Ly for any circular disc of radius W satisfying (36). 

let Z, and Zp be these total costs. Let ny be the number of dirichlet 

regions of Ly overlapping this disc, and let NZ be the number of dirichlet 
regions of Lg enclosed in this disc. Then 

@7) 2 20,8, > TW - 2)" c/a, = 7 - 2)” Ries 

The first inequality arises from the fact that total cost over the whole 
disc is at least as large as over a portion of it, e.g. the portion con- 
sisting of all enclosed dirichlet regions. The second inequality cones 
from (35). 

nce 2 = aie (38) 2, S GN} <a + 2R,)" G, /a, = 7EW + 21)” BL 

The first inequality arises from the fact that the disc is covered by the 
totality of dirichlet regions overlapping it, the second inequality again 
from (35). 

It remains only to complete this chain of inequalities. Now 

& - 2Ro) / (K+ 2R)) is an increasing function of X, so that, if we sub- 

stitute from both sides of (36), we get 

(oy HZ, VB + MR VH - mM, (HE - HH) peace Bi Ue Mile SER Pea 
We mm, Ry /B, +m (H+ WR, OH - 7H) 

The righthand side of (39) simplifies to, 3, / /®,. From this follows 
at once 

40) ar = 289)? 2, > aw + 2m)? By 
(37), (38), and (40) imply that z, <z), which completes the proof.
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Lema 3 may be thought of as a justification for the cost-density 
minimization criterion, where it is applicable. 

We now attempt a modest strengthening of our main theoren. The 
attempt almost succeeds, but not quite, Nonetheless, the partial results 
seem well worth presenting, both as an indication of what can be done, and 
of the surprising obstacles which can arise. 

The modest strengthening contemplated ie to broaden the class of 
Possible arrangements as follows: (4a) is retained -- that is, we still 
confine ourselves to arrangements in which plants are arrayed in a lattice, 
but (4b) is dropped, and replaced merely by the assumption (4b") that 
Production at all plants is the same, We no longer put any constraints 
on the pattern of transportation flows, save that demand requirements must 
be met, and of course, that total outflow from a plant equal its production 
level, which must be the same for all plants. 

The original assumption (4b) -- that each plant be the exclusive 
supplier of its dirichlet region =~ automatically fixed production at A/7 
(formula (1))at all plants, and thus satisfied (4b'), This shows that 

the original class of arrangements is a proper subset of the new class 
defined by (4a) and (4b'). Thus, 4 we can derive the optimality of the 
honeycomb lattice from these new premises we will have strengthened our 
result. 

Note that we can no longer use the cost-density criterion, since 
transportation flow patterns are unrestricted, there need no longer be a 
"typical" region whose production-transportation pattern is repeated 
indefinitely, and thus cost-density will no longer be defined for all 
arrangements. We must fall back on the circles criterion.
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Our first result states that, for a given lattice array of plants, 
the optimal common production level is A ./; the output which would just 

supply a dirichlet region, This ms Sort of obvious, but actually it 
is highly paradoxical, since Rothing whatsoever is assumed about production 
osts (except that they are finite). 

Note the difference in status of the formula P = Ahere, and in 
Section 2, There, it followed immediately from assumption (4b). Here 
it is derived as the result of an optimizing choice. 

Lemma 4, Given a lattice array of plants, such that required deliveries 
in any dirichlet region is a constant, AY, and such that output at all 
plants, P, be equal, the optimal common production level is PY = A”, 
Proof. Let us first consider the choice P= A/°. We have a large number 
of options as to the arrangement of transportation flows. One of then, 
clearly, is to have each plant be the exclusive supplier of its dirichlet 
region, This may not be the best arrangement, but it furnishes a conven- 
ient upper bound to the costs incurrable under the choice P = A_/7 

Let C be an upper bound for the total costs (production plus trans- 
Portation) incurred in a dirichlet region under the exclusive supplier 
arrangement. 

Now consider a circular disc of radius W, and let N° be the number 
of dirichlet regions overlapping it, and Z the cost incurred on it under 
the choice P=A/. Then 

ot) Zsa < ow + aR)? c/a, 
where R as usual ie the dirichlet radius of the lattice. The derivation 
of (41) is exactly the same as the derivation of (38).
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The important fact about (41) is that the right hand term is a 
quadratic function of W, Let us rewrite it in the form 
42) z<0 WW), 

where 0 (W*) 1s a generic eyubol indicating @ function approaching a fixed 
positive ratio to W? as W > <0, 

Next consider the choice P<A-/” As in Lemma 1 let M stand for the 
number of lattice points enclosed in a circle. 

It is clear for this case that any fair-sized region will incur a 
net defieit which has to be made up by imports. Let us find a lover 
bound for this deficit on a circle of radius V. Let D be total delivery 
requirements and $ total supply forthcoming in this circle. 
43) Drawer a/v - aya, 
where N° ie the nunber of dirichlet regions enclosed in the circular disc. 
The justification for (43) is completely analogous to the justification for 
(37) above. 

44) S= PM =7P( + R)7/a, 

The equality states that total production in the dise equals P times the 
number of plants in the disc. The inequality comes from (34). 

Subtracting (44) from (43), we find, for the net deficit, 

4s) p= 82 @/- 2) v? + tinear terms tn v= 0 (v4), 

Thus the net deficit goes up as the square of the radius. This quantity 

must be imported through the rim of the circle. Consider the transportation 

cost incurred in a thin ring between two concentric circles, of radii V, 

and V + dV, It must be at least equal to (D - 8) dV (greater, if traffic 

is flowing obliquely, or in two directions).



25 

Tet 2! be total costs incurred in a circle of radius W by a choice 
P<A/, 2Z' must at least equal the costs incurred by transportation alone, 

and so we have 

46) a> [@-5) ws OCW) av = of, 
The first inequality arises frog the integration of transportation 

costs over thin concentric shells, the second from (45). Comparing (42) 

and (46) we find that Z is dominated by a quadratic, while Z' dominates a 
cubic. Therefore Z' must eventually exceed z' for all sufficiently large 

circles, This denonstrates the superiority of the choice P = AP by the 
circles criterion. 

The third possibility, P>A/, is handled in a manner analogous to 
the second. One finds a lower bound for the net surplus in a circular 
disc, using the other halves of the inequalities (34) and (35). Integra~ 
tion shows that in this case also, total costs dominate O(W*). Detaile are 
omitted, This completes the proof. 

Lemma 4 did not assume that demand requirements were uniform, but 
merely that total requirements for each dirichlet region are equal. 

As mentioned above, Lemma 4 is quite paradoxical. To take an extreme 
case, suppose that average cost of production equals 10 at all output 
levels except for P= A/, where, by sone quirk, average cost equals 1000. 

I£ one had to choose equal outputs at all plants, the optimal choice would 
still be P= A/! 

The paradox arises from the imposition of the fixed production level 
constraint. It would clearly be better in this case to vary production 
from plant to plant, avoiding the high production cost level, even if a
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little extra transportation cost is thereby incurred. Here is a case 

where a non-Christaller-Lésch type solution is better than one which does 
conform to the tradition. This does not refute the traditional solution, 

however, since another conforming arrangement may be better still. 

We have merely assumed that production at all plants was equal, and 
concluded that it ought to be chosen just sufficient to supply a dirichlet 
region. It would seem fairly obvious that in this situation the optimal 
Pattern of transportation flows would be for each plant to be the exclusive 
supplier of ite dirichlet region, since each point would then be supplied 
from the closest available plant. 

Obvious -- yet it is just at this point that we have gotten stuck. 
The trouble is that, of necessity, we must compare arrangements over 
(ever-increasing) finite portions of the plane, and, although the trans- 
portation costs generated in supplying the circular dise are minimized by 

Ancurred on 
the disc need not be. We have not been able to overcome thie difficulty, 

the exclusive supplier arrangement, the transportation cos! 

80 that the optimality of the exclusive supplier arrangement is still 
unproved, 

We do have sone partial results which may prove useful to establishing 
the result. Let us enumerate all the lattice points in an infinite sequence: 
Ky, Xp, wr7+ Also enumerate all the dirichiet regions: D,, D, --- in such 
a way that X, is the lattice point of region D,. A transportation flow may 
be (incompletely) characterized by the numbers t(m,n), wich is the quantity 
shipped from the plant at X, to the region D,.
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Imagine the numbers t(m,n) arrayed in a doubly-infinite matrix. 

The sum of the infinite seri along each row,Z, t(m,n) te the sane, 

AP, since this is the output of each plant. Also, the sum of the series 

down each column is AY, since this is the requirement of each region, 

The exclusive supplier arrangement is exactly characterized by t(m,n) = 0 

if m#n, t(njn) = A/for all n: an infinite scaler matrix. 

A given flow is said to contain a cycle if the following is true: 

There are different numbers m,, m,, ~ 

tm) ,m3)>0, 

Lema_5. A transportation flow, T, containing a cycle is non-optimal. 

=, m, (K>1) such that t(m,,m,)>0, 

FG I> 0, and finally t(m,,m,) >0. 

Broof. We construct another flow, T', which is superior, in the following 

way. Let b be the smallest of the numbers t(m,, m1), (i = 1, ---,k), 

$ = - where m |, is identified with a. Lee e'(m,, mj.) = t@aj.m) > 

@e1, »K). Also let t? Ga, m) = tGm,, m) +b = 1, --,k). 

For all other pairs m, n, one keeps t'(m,n) = t(m,n). That is, one reduces 

the flows in the cycle all round by a positive constant, and increases the 

flow from each of these points to its own region by the same constant, 

First, one confirms that this is an admissible flow by checking that 

2, t'@n,) = A/éor all m, and i t'(m,n) = A/for all n, This being 

established, one must now find a bounded region H such that in all circles 

containing H, the costs incurred under T' are less than under T, 

For H we choose any circular dise containing Dy U--- UD, . For 

any point in D,, the distance to it from X is less than the distance to 

it from X,, if mn, Therefore, the transportation cost incurred in



28 

shipping a quantity from X, to D| is less than the cost incurred in 
shipping an equal quantity from X , if the distribution cver destinations 
in D, is the same. Thus, the saving from reducing the flow from mt 
Pay DY b exceeds the extra cost incurred in increasing the flow from MHL 
Ta £0 Dai4, bY b+ All of these changes, and no others, are incurred 
in H, and all circles containing H, so T' is proved superior to T. QED 

This result is partial, since there are lots of other flows for 
which t(m,n) >0 for some m#n, and yet which contain no cycles. And even 
if these could all be proved inferior, this would still not establish the 
optimality of exclusive supply, since there might simply not be an optimal 
flow. 

Tf the gap we have been discussing were closed, then the strengthened 
form of our theorem would follow at once. For, merely from the assumption 
Gb") of equality of outputs we would have proved successively (1) that 
these outputs were at level A, and (2) that each plant should be the 
exclusive supplier of its dirichlet region. But this means we would have 
proved that (4b) was an optimality condition. From this point on the 
Proof of Section 2 would be repeated verbatim. 

5. THE POSSIBILITIES FOR FURTHER EXTENSIONS 

Here we discuss, briefly and informally, other directions in which 
our theorem might be strengthened. 

What about the possibility of dropping the restrictive assumption 
(3) of uniform delivery requirements, and going over to a general benefit 

function? It may be shown in this case that one gets a formation of 

"Thtnen-rings" around each plant, density of deliveries dropping off with
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distance from the plant (possibly to zero near the corners of the dirichlet 
region, as pointed out by Mills and Lav/[13)), These rings are cut off by 
the hexagonal sides of the region in a manner which is mathematically most 
unpleasant, In particular, it is no longer possible to separate the "size" 
from the "shape" problem as was done in Section 2B. One might venture 

the guess that any attempt to tred the same path as our proof would become 
hopelessly bogged down in complications. Our methods -- elementary calculus 

and trigonometry -- would then have to be replaced by deeper approaches. 

These comments apply even more forcefully to the possibility of 
dropping the lattice assumption (4a). Here we must use the circles 
criterion or some equivalent, The dirichlet regions become convex 

Polygons of any size or shape. If production at all plants does not just 
fill the requirements of their respective regions, the borderlines become 

hyporbolic segments. In short, the complications go up by several orders 
of magnitude, Again, deeper methods are required, probably based on 

generalized properties such as the convexity of transportation costs as 

a function of position, and symmetry.‘ 

6. SUMMARY 

We have proved the optimality of the honeycomb lattice in a fairly 

extensive class of cases, though the achievement is very modest in com- 
parison with what remains to be done. We have also suggested, and applicd 
to some extent, a new criterion of optimality to cope with the problem of 
infinite costs. 

12 Elementary examples of such approaches are given in ny book [6].



30 

Finally, we have tried to convey the serious mathematical nature, 
the gaps and loose ends, and the very limited knowledge possessed, of a 
Problem which lies at the heart of location theory and spatial economics. !? 

13 these same strictures apply to other ranches of location theory as well -- for example, the theory of Thunen systems (see Faden{<]). 
They do not apply to "regional analysis", of which there has been a great efflorescence in recent years, and to which different standards of criticism apply. The difference in subject matter between these fields may be gleaned by comparing Isard 1956 [9] with Isard 1960 [10].
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