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1. From Economics of Space and Time to the Foundations of Probability. 

My book (Faden 1977, abbreviated EST) scarcely mentions probability, 

and yet in retrospect there is a clear path from EST to the present 

essay. Let me begin, then, by tracing this path. 

What is statistical data? This is the question that set me off. It 

turns out that most data--population, income, production, trade, etc.- 

-may be represented as measures, in the technical sense of measure 

theory: as distributions of mass over physical space, time, resources 

and activities (where "mass" is used in a suitably generalized sense; 

EST, Chapter 2). The point is that problems may now be formulated in 

terms of measures, and the resources of measure theory brought to bear 

to solve them. This program was carried out with great success in 

classical location theory, so that one can say that measure theory is 

the natural language for this subject, and, in principle, for any sub- 

ject based on statistical data. (I was inspired by several papers of 

Martin Beckmann, 1952, 1953, and also by Kantorovitch, 1942). 

EST dealt almost exclusively with deterministic situations, and yet 

the link to probability was there, though unobtrusive. One of the 

great foundational schools is the frequentist, which identifies prob- 

abilities with relative frequencies, perhaps in a limited or hypothet- 

ical form. (In fact all schools attach great importance to frequency 

data) . Now relative frequencies are special cases of the physical 

measures that are the stock-in-trade of EST. These physical measures 

participate in a network of relations which is ignored in frequency



theories. The insight into the architectonic of measures that I gained 

from writing EST gave me an unparalleled vantage point into the merits 

of these approaches. At the same time, insofar as I had thought about 

foundational problems, I was of Bayesian persuasion. This provided a 

certain creative tension in my thought, which has ripened with increas- 

ing rapidity of late and of which this essay is a progress report. 

2. The State of the Foundations. The aim of all science, all inquiry, 

is knowledge. Yet criticism reveals that little is known with certain- 

ty. But uncertainty itself comes in different degrees, from generally 

accepted facts at one end to wild speculations at the other. Probabil- 

ity theory is the formal apparatus that quantifies degrees of uncer- 

tainty. Probability is the central concept of epistemology, the basis 

of induction and statistical inference, and "the guide of 1life" 

(Butler). Or so it should be. 

Yet the foundations of probability are in disarray. The wvarious 

schools--classical, Bayesian, frequentist, subjective, logical--contend 

with each other about the meaning of probability statements, to what 

sorts of things probability statements apply, whether there is one or 

several distinct probability concepts. 

The situation is peculiar. Examination of individual writers--say 

Laplace, Von Mises, Carnap, Reichenbach, de Finetti--reveals glaring 

weaknesses. At the same time, the major schools of thought have echoes 

going back three centuries to the very founding of the subject. (See 

Fine, 1973, for a survey of schools; Hacking, 1975 for a critical 

history). 

What is one to make of this? First, if a point of view keeps being 

resurrected despite repeated "refutations" it is likely to have grasped 

a part of the correct interpretation, though perhaps in a one-sided way 

misleading to those attending to a different side. Second, the persis- 

tence of major disagreement indicates that no single interpretation has 

arisen and been sufficiently developed to incorporate the valid in- 

sights of all schools. 

3, Conditions for an Adequate Theory. Thus a study of the history of 
  

doctrines provides necessary conditions that an adequate theory must 

meet, I will single out four.



(1) 

(ii) 

(iii) 

(iv) 

Symmetry must play a basic role, as enshrined in the vague 

classical "principle of insufficient reason". 

Frequencies must be intimately connected with (if not identi- 

cal to) probabilities. 

Probabilities must reflect personal systems of beliefs. 

The ideal form of inference is Bayesian (i.e., conditioning on 

observations). 

In addition, there are other conditions of adequacy. 

() 

(vi) 

(vii) 

The intuitive notion of causation must be dealt with. There 

is a basic distinction between one state-of-affairs, A, merely 

providing information about another, B, and causally influ- 

encing B. A comprehensive probability approach might repre- 

sent these both by a conditional probability statement Pr(B|A) 

= x. There must, then, be something in the structure of the 

theory that captures this distinction. 

An adequate theory should be nondogmatic, in the sense that 

anything possible, or at least anything observable, should be 

given positive prior weight. 

It should be sufficiently rich to find a place for the great 

diversity of stochastic models that have found application in 

one area or another. 

Also, an adequate theory must take account of certain general features 

of "human epistemology:" 

(viii) 

(ix) 

(x) 

(xi) 

(xiil) 

(xiii) 

The fact that few of our probability judgments are numerically 

quantified, but instead involve terms like "likely", "plau- 

sible", "doubtful", etc. (At the same time they are not to- 

tally vague, and a cottage industry of assessing probability 

judgment has arisen). 

The fact that much of our thinking seems to work by conjec- 

tures and refutations (Popper,1982) rather than by condition- 

ing on evidence. 

The existence of apparent systematic illusions in probability 

judgments (Tversky and Kahneman,1974). 

The fact that we believe a lot not justified by critical 

judgment (in effect, assign probability one)--cf religion, 

polities or just ordinary perception. 

The limited information-processing capacity of the human mind 

(Simon, 1982). 

The limited intake capacity and sensitivity of our senses. 

 



4. My Approach. What follows is the sketch of a program to found a 

theory meeting the above criteria, and the carrying out of a portion of 

it. I stress the word "program" because I think many even of the basic 

principles remain to be discovered. It is important not to commit 

oneself prematurely to a formalism. I shall outline the main ideas and 

indicate what the theory will look like if succesfully completed. 

5. Random Variables. The concept of random variable is the key to the 

whole theory, and the greatest single source of confusion in founda- 

tional writing. In probability theory one writes, "Let (xt), &=l 2, 

.e., be a family of random variables," so that each moment of time in- 

dexes a different random variable. 1In applied statistics, on the other 

hand, the idea of repetition is part of the concept, so that the entire 

sequence x_ is thought of as one random variable, taking a series of 

values in atcommon "sample space". In the first case, the variation is 

over the possible uncertain values at one time; in the second case the 

variation is over time itself. Call the first kind "either-or" varia- 

tion, since exactly one value will be realized, we don't know which. 

Call the second kind "both-and" variation since a realization occurs 

for each time point. 

We adopt the first approach exclusively, for two reasons. First, it 

yields a more flexible language. Anything expressible in "both-and" 

terms can also be expressed in "either-or" terms, but not conversely. 

Second, and more fundamental, although repetition is indispensible for 

building a foundational theory, exactly what is being repeated, and 

how, is itself not to be decided a priori but is a part of concept 

formation. A theory should not be built into a definitiom. 

More concretely, think of a random variable as representing a question 

about the world, and its range of values as the possible answers to 

that question. Thus "what is the population of the world at time t?", 

corresponds to a random variable for each specific t and its range of 

values is the set of all propositions of the form, "the population of 

the world at .time t is n', n =10,1, 2, J.. . 

Note several points. First, the range of a random variable is a set of 

propositions (or, better, the states-of-affairs that they respectively 

affirm) that are exhaustive and exclusive. Often this set codes 

naturally into abstract mathematical objects--into the natural numbers



in the case above. Second, random variables almost always fall into 

natural families. 1In the case sbove there is the obvious indexing by 

time t, but also individual countries could be substituted for the 

world, and other species for homo sapiens. Third, random variables are 

often defined from others, or have logical relations to them: y is an 

abstraction of x if the value of x determines the value of y; e.g., 

inserting the phrase '"population to the nearest million" gives an ab- 

straction of the random variable above. Given a collection of random 

variables (xt) we can think of them collectively as a single combined 

random variable x. (A special case is thinking of a stochastic process 

as a single random function. Note that x is still an "either-or" vari- 

able). Fourth, when formulated in ordinary language, most random vari- 

ables are not sharply defined: a question does not always fix the set 

of exclusive exhaustive alternatives that answer it. This vagueness is 

an aspect of "human epistemology" that must be lived with. Any anal- 

ogy, any metaphor, establishes a random variable. The human mind is 

stocked with a wealth of variables, from the soft, dealing with subtle 

shades of feeling and perception, to the hard, dealing with the adaman- 

tine concepts of pure science. 

Think of the concept of "parameter" as used in statistics. This has an 

unknown value in a range of specified possibilities, and is therefore a 

random variable by our definition. But it seems to stand alone, not 

being one of a natural family of similar variables. (It is precisely 

this isolation that persuades frequentists that parameters do not have 

probability distributions). However, a parameter is rarely if ever 

completely isolated: there are similar models applying to different 

times, places or situations. These again have corresponding parame- 

ters, and the parameters again form a family, more sparsely indexed 

than the variables per se. 

Consider, for example, models of economic change at different time 

scales. For short-run inventory models, we may treat capital stock, 

population, tastes, and political institutions as fixed: they are 

parameters. For growth models capital and population may vary in a 

fixed institutional framework, while in the very long run economic 

systems ' themselves vary. A similar phenomenon arises for different 

spatial scale levels. In summary, what looks like an isolated param- 

eter at one level becomes one of a family of variables at a higher 

level, Variables fall into a hierarchy, a nested system of classes in 

 



which the higher-order ones are constant over a broader realm of space, 

time or objects than the lower-order ones. 

Now consider a person at a given time. He has a limited stock of con- 

cepts, of questions that he can understand--and thus, in our terms, a 

limited stock of random variables. Furthermore, this stock changes 

over time, becoming enriched as one grows up. An expert in a field 

acquires a richer stock of relevant concepts than a layman. An inhab- 

itant of a region has a richer stock of local concepts than a stranger. 

Animals, too, have in effect a stock of concepts, certainly poorer than 

that of man overall, but richer in certain species-specific ways, like 

von Uexkull's tick that responded only to the presence of butyric 

acid. 
: 

Let (Xi)’ i ¢ I, be the stock of random variables pertaining to a per- 

son at a given time. In probability theory one defines random vari- 

ables as (measurable) functions in an underlying space &. We have not 

yet mentioned the latter, and indeed for foundations the variables come 

first., Formally X is identified by the set of possible answers to its 

corresponding question. & may be defined as the cartesian product of 

these sets, and x; may be redefined as the function that assigns to w € 

Q@ its i-th component. We now have the familiar probability set-up. 

Each w € % may be thought of as a "possible world", giving a complete 

set of answers to all the questions that one understands. 

Now suppose one's stock of concepts gets enriched. The prescription 

just outlined requires that we now change @ to @': Each point of @ has 

been split into a multiplicity corresponding to the possible answers to 

the new random variables. Splitting of this sort is inevitable in any 

process of concept formation. Probabilists usually postulate an under- 

lying fixed @ which can accommodate as many random variables as 

needed. 

(Since there are logical relations among random variables, some "possi- 

ble worlds" involve incompatible answers, and therefore commit us to 

Meinongian impossible objects. We have no room to explore the deep 

implications of this fact, but merely mention that it opens the way to 

introduce probability into mathematical reasoning itself. Polya's 

"plausible reasoning" (Polya, 1954) is actually informal Bayesian in- 

ference, which means that in the process one assigns positive probabil-



ity to statements that turn out false--i.e., are inconsistent. They 

will, of course, end up with probability zero). 

6. Probability. Let random variable x be in a person's conceptual 

system. It corresponds to a question with its set of possible answers. 

His state of belief concerning the true answer is represented (ideally) 

by a probability distribution over the set. Pr(x e A) = c states that 

the "degree of belief" that the true value of x lies in A (a measurable 

subset of the set of possible answers) is ¢ (0 < ¢ < 1). Controversy 

flares up at once concerning the meaning and justification of such 

statements. 

The view advocated here will be called the perspectival interpretation 

of probability. Probability is thought of as a relation between a 

person in a certain cognitive situation, with a certain pattern of life 

experiences, and that person's stock of random variables. It is time 

to transcend the sterile clash between "subjectivists" and "objectiv- 

ists". The elliptical perspective of a penny from a certain point of 

view is a fact of nature, but one depending on the relative orientation 

of the eye and the penny. 

The speech and writing of others becomes part of one's own life experi- 

ences and in this way others' life experience, filtered and distorted 

to be sure, becomes part of one's own. Thus a certain convergence of 

world views arises within groups that communicate intensively among 

themselves (schools of thought). 

The hard questions remain: What is the quantitative meaning of proba- 

bility? Why should it be countably additive, or even additive? Why 

should it be revised by conditioning on observations? And finally, why 

should it be used as a guide to action? What follows is a synthesis of 

Bayesian and frequentist views, with the concept of ergodicity playing 

a key role. 

7. Ergodic Processes. Consider an experiment with two possible out- 

comes, 0 and 1, repeated indefinitely at times t =1, 2, ... . Given 

the outcomes up to time t, one is to give the distribution of the re- 

maining outcomes. We have a family of random variables indexed by t, 

each two-valued. The prior probability assignment P is over the space 

2 of all 0-1 sequences. What restrictions should be placed on P? As a



start, the principle of nondogmatism requires that P > 0 for every 

realization of Kyy ooy X what can be observed should be given some 

weight. Thus we may condition on observations without meeting 0/0 (the 

so-called Kolmogorov paradox will be discussed later). Let P' be the 

conditional probability on x With no further restric- X 
(ol e ) S 

tions on P, it is easily seen that any (nondogmatic) P' is compatible 

with any realization of Xy, eees X, even with the realization of all 

0's or all 1‘s. 

Since this freedom contravenes all experience of how people make in- 

ferences, it constitutes a crisis for the extreme subjectivists (above 

all de Finetti) for whom indeed any distribution P is as good as any 

other. De Finetti's response, 1937, is well-known: P should be 

exchangeable (i.e., invariant under finite permutations of random vari- 

ables) and then the posterior P's are not only sensible, but converge 

to an iid distribution determined by the limiting relative frequency. 

This result follows from de Finetti's theorem which states that there 

exists a distribution Q on [0, 1] such that 

BE s -on B0 = gy o0y 
for all t, where s = x1+ A h X . That is, the exchangeable distri- 

butions are precisely the mixtures of iid distributions. With experi- 

ence, posterior Q sharpens toward é(r), r the relative frquency of 1i%s, 

and posterior P moves correspondingly toward the iid distribution with 

parameter r. (Two observers with different Q's will converge to the 

same posterior provided both Q's assign positive mass to every inter- 

val). 

Note first that de Finetti makes a major concession in his response. 

Why should people have exchangeable priors? Indeed he concedes too 

much, for there are plausible observation sequences that would (eventu- 

ally) convince anyone that the drawings are not from an exchangeable 

distribution--e.g., readings of day or night at 12-hour intervals, 

yielding 01010101010l... . 

How then to proceed? Consider the frequentist approach. The probabil- 

ity Pr(xt = 1) is taken to be the limiting relative frequency of 1's in 

a long sequence of observations, and this is to be the same for all t. 

How about Pr(xt =1, = 0)? Presumably, this is the limiting X 
t+1 

relative frequency of 10's in a long sequence of observations of suc=- 

cessive pairs, and this is to be the same for all t. (These pairs will



overlap). Similarly for triples, etc., up to any finite length. Now 

we ask, for what class of processes are all these conditions fulfilled? 

That is, while we do not use the frequency definition of probability, 

we may still raise the question, when is it true (with probability one) 

that any realization of the process will, for any tuple iO, i1, oRely e 

of 0's and 1's, have a limiting relative frequency equal to Pr(xt = 
n 

io ’ 

e o £ 5 
cees XKoo 1n) for all t? The answer is the ergodic processes, and we 

may take these very conditions as the definition of ergodicity. To the 

extent that frequentist concepts make sense, to that extent do ergodic 

processes pervade the world. 

First some technical notes on these processes. (The concept of ergod- 

icity is not quite standardized). The definition extends immediately 

from two-point state spaces as above to arbitrary state spaces: for 

any n, for any measurable sets BO’ sri o Bn, Pr(xt € BO‘ cees Xy € Bn) 

is (with probability one) the limiting relative frequency with which 

(n + 1)-tuples lie in Bo, Seieny Bn respectively. Next, it extends to 

continous time, "relative frequency" being replaced by "fraction of 

time" . Next it extends to space (not necessarily isotropically), 

referring to relative frequency in a volume of space going to infinity, 

and thence to space-time processes. Finally, ergodicity embraces some 

rather surprising processes, e.g., the process that assigns probability 

1/2 to the two realizations 010101... and 101010... is ergodic (the set 

of translates of a periodic function with uniformly distributed phase 

is ergodic). 

Frequentists insist that probabilities can be unknown, whereas Bayes- 

ians, de Finetti in particular, regard the concept of unknown probabil- 

ity as confused. These positions are now easily reconciled. We may be 

convinced that a certain process Xy Ko, eee is ergodic, but not know 

which ergodic process it is. We then have an ergodic process-valued 

random variable (parameter) which itself has a distribution reflecting 

our cognitive perspective. Our overall distribution is then a proba- 

bility mixture of ergodic processes. But it is then a general station- 

ary process (i.e., one whose probabilities are translation-invariant) . 

To spell out this last point: A set of probability distributions is 

convex if it is closed under mixing. The set of all stationary pro- 

cesses On Xy, Xg, «o- is convex. As a convex set, its extreme points 

are precisely the ergodic processes, and any stationary process can be



expressed (uniquely) as a mixture of ergodic processes--that is, as an 

integral with respect to a distribution over the space of ergodic pro- 

cesses. (These statements are subject to technical qualifications; 

see Jacobs,1960, Maitra,1977). This set-up is completely parallel to 

de Finetti's theorem, which states that the convex set of exchangeable 

processes is constituted by mixing over its extreme points, which are 

the iid processes. (Note that exchangeable processes are stationary 

and iid processes are ergodic). 

We start, then, with a perspective represented by a stationary process 

over x1, Koy eee e As information accumulates (either by direct obser- 

vation of some x's, or by observation of other random variables depen- 

dent on them), the distribution over the mixing parameter sharpens, and 

in the limit may approach the true underlying ergodic process. It will 

approach the process if x_ can be observed directly, and the observed 
t 

relative frequencies yield better and better estimates of the true 

process, just as the frequentists maintain. 

The idea of an ergodic-process-valued variable is not just an artifi- 

cial construct, but seems to fit many common concepts. Let X, be the 

weather on day t in a certain place. Climate is the distribution of 

weather (not "average weather"), so that climate is a random variable 

(or parameter) whose range of values is the set of proceses that weath- 

er obeys. Living in a place for a while gives one a good idea of the 

climate, so that one's beliefs focus on a particular ergodic process, 

but variations in the weather remain uncertain. Similarly, for a geo- 

graphic province, physiography is the distribution of relief; for a 

fabric, pattern is the distribution of color, texture the distribution 

of weave; for a person, character is the distribution of mood and ac- 

tion; and zeitgeist plays the same role for an historical epoch. 

Furthermore, this structure captures at least part of the distinction 

between information-giving and causation discussed above. Causation 

refers to probabilistic dependence within an ergodic process. By ob- 

servation we find out which is the true process, and thus get a better 

picture of the true causal structure. 

8. Toward the Full Prior. It is pleasant to have found the necessary 

and sufficient conditions for the applicability of frequentist ideas. 

Nonetheless the task of quantifying cognitive perspectives is just be- 

 



ginning. For one thing, the world does not seem to be drawn from a 

stationary process. For another, the distribution over the mixing 

parameter has not been specified: which stationary process is the 

appropriate one? (By the principle of non-dogmatism, positive mass 

should be assigned to every nonempty open set in the parameter space in 

some appropriate topology, but this still leaves too much freedom). 

Finally there is the problem of the reference class that bedevils all 

frequency approaches. 

To take this last issue first, consider the probability that a given 

person will die within a year. One looks at relative frequencies: but 

which ones--all people, or people of the recent past, of the same age, 

sex, income, or what? The narrower the class, the more relevant, but 

the shakier the inference. Ultimately everything in the universe is 

ufiique (if only in space-time location), which yields a reference class 

of one, and no data. We want some kind of weighting scheme--the more 

similar the instance the greater the weight--but what is the appropri- 

ate metric? 

This is a difficult question with profound ramifications to which I 

offer not an answer but a method of approach. Consider the simplest 

form of similarity, which is contiguity in time. Time already comes 

equipped with a natural metric (the one in which the laws of nature 

assume their simplest form). Given an ergodic process, we may find the 

distribution of X, conditional on o§her observations; in general, the 

closer the observation is to t the greater its weight. Contiguity in 

space, and in space-time, may be treated analogously. Finally, simi- 

larity of "quality". One must ask, which qualities, and similarity in 

what respect? Some quality ranges have a natural ordering (intensity 

of light and sound, pitch, color, speed, shape, etc.). But basically 

similarity is established to the extent that qualities are associated 

in space-time processes: similarity itself derives wultimately from 

contiguity. 

Next we tackle the issue of non-stationarity. There are a number of 

transformations that take ergodic proceses into other ergodic pro- 

cesses, and that may also take some non-stationary processes into er- 

ic processes. The basic idea is to "invert" these transformations to 

generate non-stationary processes from the underlying ergodic ones. 

Ergodicity is preserved under abstraction: if Ky, Koy eee is ergodic,



so is f(x1), f(xz), +++; under clumping: yq, yp, ... is ergodic, where 

Yiee (xt, Kipqs soos xt+r)’ r fixed,.,® If the x are real or vector- ' 

valued, ergodicity is preserved under linear f;i;;ring, in particular 

under moving sums and differences (and under differentiation, if this 

operation is well-defined). These last seem the most important, and 

their inverses--cumulative sums and integrals--in general yield non- 

stationary processes. (The Box-Jenkins, 1970, approach to time-series 

analysis uses this as its basic method for generating non-stationary 

processes: the ergodic ARMA processes are cumulatively summed one or 

more times to yield the ARIMA processes). 

The standard paradigm for a process in the natural sciences is initial 

conditions together with laws of development (usually differential 

equations, perhaps stochastic) yielding the time-path of the process. 

The laws ideally are to be autonomous, i.e., independent of particular 

times and places. The situation here is analogous to that above, with 

the laws themselves being the state-values of the ergodic process, and 

the initial conditions specifying the constant of integration. The 

fact that differentiation tends to "ergodicity" is a clue to why the 

basic laws of nature are differential equations. 

The ideal concept of an ergodic process involves an infinite sequence 

of variables Ry, Koy oeee oo In the real world few things go on forever, 

so we must deal with processes bounded in time (and in space as well): 

the penny melts, the climate changes, the swatch of fabric is bounded. 

Note one consequence: if the run is short we may never get a good fix 

on what the underlying process really was. 

A related question is: are there any universal laws? To translate 

into our language: 1is there a family of random variables X5 g2 indexed 

by all space-time locations, such that Xt ¢ A is false for all s, t, 

where A is a subset of the common range of the x's that is observable? 

Some systems of induction assign probability zero to universal laws, 

which appears paradoxical in view of the numerous such laws that 

science seems to have discovered. Actually there is no paradox. The 

principle of non-dogmatism requires that the law holding in any bounded 

space-time region be given positive probability, but not for unbounded 

regions, since the latter would take forever to verify. (At the same 

time it is not clear why all universal laws should be given probability 

zero) . As for science, while many laws do hold over vast regions,



there seems little justification for extrapolating to infinity. For 

example, the "constants" of nature (of Planck, Boltzmann, etc.) may be 

slowly varying. But what is a scientist to do? Since no one knows as 

yet how to assess the probabilities of different extrapolations, it is 

simplest just to assert laws without qualification, and to wait for 

others to find their limitations. Thus a Popper-type strategy may be 

justified pragmatically for the time being. 

Note that bounded processes, coupled to each other by regime changes, 

may, form a broader point of view, be considered one overall process. 

Wars and revolutions generally signal regime changes, but from the 

panoramic perspective of a Sorokin or a Richardson they are routine 

events in an overall ergodic process. One's cognitive perspective 

should include the distribution over possible regime changes, their 

type, timing and location. 

Finally, we come to the distribution of the mixing parameter. "Objec- 

tivist Bayesians" such as Laplace, Jeffreys and Jaynes--who are close 

in spirit to the viewpoint of this paper--look for symmetry or invari- 

ance principles to fix the prior probability assignment. The idea is 

to find a natural way of expressing blank ignorance. 

The standard objection is that there is no such way: a distribution 

uniform over x is non-uniform over y = f(x) if f is non-linear, and y 

is as good a parametric representation as x. Laplace and Jeffreys are 

open to this objection. In addition Jeffreys makes his invariant prior 

depend on the likelihood function, a highly objectionable procedure. 

For suppose we now consider another variable which depends on the pa- 

rameter; then the likelihood function changes and so does the prior; 

but a (marginal) distribution should not depend on which other vari- 

ables are in our stock. The procedure of Jaynes, 1968, escapes these 

objections by making the distribution depend on the physical content of 

the parameter. Specifically, the distribution should be invariant 

under rigid motions in space-time. (Compare the notion that calendar 

time or geographic location should not appear explicitly in natural 

laws). Thus a distribution over time should be uniform, and if that 

3 nonuniform, so be it! Note that gambling devices such as makes t 

roulette wheels, dice and cards have this physical symmetry (with the 

minimal asymmetry needed to distinguish the various outcomes). Also,



with less ‘intuitive force, distributions should perhaps be invariant 

under scale changes. 

The case in hand involves the space of all ergodic processes. We want 

to find the distribution that yields the "centroid" of the convex set 

of stationary processes. Whether sense can be made of this concept 

remains to be seen. 

There is, however, one defect in this approach. We are never in a 

state of complete ignorance concerning the parameter. Similar situa- 

tions have arisen in the past, and we have some experience about the 

kinds of ergodic processes (or their non-stationary generated pro- 

cesses) that have been realized. The parameter, in short, is one of a 

family. If we now apply frequentist methods here, we are committed to 

an ergodic process over these parameters, which recreates the same 

situation at the higher level. 

Thus we get a hierarchy of processes. What perhaps closes things up is 

the requirement of scale or level invariance: a priori the world 

should look the same at any level, so that wholes and parts have self- 

similar distributions. This idea remains to be carried out. Note that 

experience will in general break this prior symmetry, so that a pos- 

teriori the atomic, human, and cosmic levels can be quite heteroge- 

neous. 

9. Human Epistemology. Of all the foibles of "human epistemology" 

listed above, the most fundamental is the limited information-process- 

ing capacity of the human mind. (Simon has pursued this theme for 

decades; see Simon, 1982). Detailed, accurate and timely information 

about the world is useful, of course, but the resources we devote to 

these tasks must compete with other uses. Thus complexity has a cost, 

and must be traded off against these other desiderata. A program, 

called the post-Bayesian approach, has been launched to refound all of 

statistical inference on the inaccuracy-complexity tradeoff (Faden and 

Rausser, 1976). For example, hypothesis-testing is viewed as a contest 

between a simpler but less accurate working model (acceptence) and a 

more accurate but more complex alternative (rejection). This viewpoint 

leads to a radical alteration of the usual test criteria. 

 



One consequence of these limitations has already been mentioned: the 

limited stock of random variables that we possess. Adding to this 

stock has a cost that must be balanced against the benefits of finer 

perception, understanding and actions that become possible. It pays to 

invest heavily in detailed concepts regarding our local environment and 

our occupation. (Eskimo languages have a rich vocabulary involving 

snow, Arabic similarly for camel-culture, according to Max-Muller). 

Another consequence is vagueness, both in meaning and probability as- 

sessment. Most of our concepts are identified by words. When we form 

new concepts it is often economical to name them by old words, changing 

the meaning of the latter, rather than coin new terms. Thus arise 

multiple meanings, doubts and misunderstandings in interpersonal commu- 

nication and even within ourselves with our faulty memories. 

As for vagueness in probability assessment, there is a cost to fixing 

and storing each successive decimal place of probability, just as with 

any other form of measurement. There are just two sources of quantita- 

tive probabilities--space-time symmetries and physical measures (rela- 

tive frequencies are a special case of the latter), and in any real- 

world assessment one must weigh the relevance of evidence from a diver- 

sity of sources, correct for selection bias (see below) and worry about 

ambiguous meanings. It is not surprising that few of our judgments are 

sharp. 

There have been attempts to model formally both these sources of vague- 

ness. For vague probabilities one deals with upper and lower bounds to 

the assessment--more generally with sets of probability distributions 

(e.g., Smith, 1961). These approaches appear to miss an essential 

point--by taking thought and attending carefully one can sharpen as- 

sessments (Winkler, 1967). Someone who realizes that there are no 

ideal lines and points in the world might try to redo geometry using 

thick lines and blobs instead, but the resulting complexity would prob- 

ably far outweigh the gain in accuracy. 

As for ambiguous meanings, a vast literature concerning "fuzzy sets" 

has come into being (Kickert, 1978). These may be given a probabil- 

istic foundation. Let a concept have an ambiguous meaning in a realm 

X, so that we are not sure to which subset of X it actually applies. 

We then have a set-valued random variable, and the probability assigned



to a given class of subsets of X represents our degree of belief that 

the correct meaning of the concept is in that class. Now for x ¢ X, 

define f(x) = Pr{A|x e A}, the probability that x lies in the scope of 

the concept. 0 < f(x) < 1, and it seems to correspond exactly to the 

notion of the "grade of membership" of x in the concept. I see little 

justification for operations that cannot be derived from this interpre- 

tation. Fuzzy sets should be replaced by random sets. 

We now come to actual distortions of the assessment process. The most 

common is the assignment (in effect) of probability one to propositions 

not justifying such faith. Thus there are "accepted" theories and 

"facts" that everybody knows. Most of the time we accept our percep- 

tions as veridical, ruling out of court the possibility of hallucina- 

tion. In effect we truncate the range of some random variables. 

Something like this is a necessity of our constitution, to avoid being 

swamped by a mass of possibilities. A person in a continual state of 

cartesian doubt would be unable to function. The strategy may be ana- 

lyzed in a complexity-inaccuracy tradeoff context. First, if a propo- 

sition has probability very close to zero, it may be set to zero with 

little distortion and possibly with much simplification. But even a 

proposition with low probability may be accepted as a working hypothe- 

sis if "close" to being true; for example, we may round off a measure- 

ment and act as if that number were completely accurate. Many random 

variables have a value that would make life simple (maybe x = 0), some 

with more complexity, and perhaps a "miscellaneous" or "none-of-the- 

above" value that would leave us bewildered. There is a strong tempta- 

tion to accept the first, or at least to reject the last. 

How does one reconcile this universal practice with the perspectival 

view of this paper? 1In using working hypotheses we are in effect as- 

sessing probabilities conditional on that hypothesis. One should think 

of all convictions, however firmly held, as working hypotheses. The 

danger 1is that, with strong convictions, one (rationally) does not 

investigate the possibility that they may be false (never read the 

opposition newspaper, etc.) so that one becomes locked into a dogmatic 

position. 

Psychologists have uncovered forms of probability assessment that par- 

take of the character of illusions (Tversky and Kahneman, 1974). 

Should one modify the principles of inferences to allow for this? 

 



Well, once an illusion is recognized as such we correct for it. In- 

deed, illusions are sometimes corrected in the very process of percep- 

tion, as in the phenomena of size, shape and color constancy. It 

would, of course, be interesting to know why these illusions arise in 

the first place. Presumably an explanation arising from the complex- 

ity-inaccuracy tradeoff exists. 

Closely related to these illusions is the phenomenon of selection bias. 

When fishing with a coarse net one should not infer the nonexistence of 

small £fish. In general, every observational stance determines the 

probability of observing entities of a certain type if they are pres- 

ent. The tendency to see the blatant and ignore the inconspicuous, to 

judge from appearances, has to be corrected for. In the case of testi- 

mony, the source of most of our knowledge, we have to assess the relia- 

bility of the source, motives for lying, etc. That we do an imperfect 

job of correction is attested to by the multiplicity of schools of 

thought, ideologies and sects. 

10. Social Versus Natural Sciences. The principles we have outlined 

are universally applicable, so there is no fundamental conflict between 

Geistes-vs. Naturwissenschaften. On the other hand to get a fix on 

human behavior requires insight into the complex "intentional" struc- 

ture of beliefs and motives that is not open to inspection and only 

imperfectly conveyed by speech. It is true that we have the advantage 

(first noted by Vico) of being more sensitive to the nature of other 

people than to rocks (say), but this "verstehen" advantage is more than 

cancelled by the covert character of these variables. Thus in general 

in the human sciences runs are shorter, general laws more limited, and 

Markov processes less appropriate (because of the presence of "memory" 

in a broad sense) than in the natural sciences. Also, processes in the 

human sciences (and in biology) tend to involve learning, adaptation 

and a trend toward optimization, in contrast to the physical sciences. 

But these differences subsume under the same overall framework. 

11. The Principle of Nondogmatism. The principle states that anything 
  

observable should get positive probability. We have mentioned this 

repeatedly, but a few points need clarification. What about sampling 

from a continuous distribution? The usual description is actually an 

idealization: we don't observe x, but a small interval around x, given 

by the limits of our measuring instruments or our eyesight. The dart



hits an area of the target, not a point. What of a random variable 
having uncountable range? Most of the alternatives must get probabil- 

ity zero. But again, we can observe one of only a finite number of 

alternatives in a finite time, and each of these should get positive 
probability. As t + « then of course probabilities close down toward 
zero and alternative paths are uncountable, so observability requires 

finite time. Finally, Kolmogorov's paradox: conditioning on an event 

of probability zero. The argument above indicates that this never 
happens in finite time. But Kolmogorov's theory of conditional expec- 

tations gives the right limiting answer as t + =, as may be proved by a 

martingale argument. 

12, Conclusion. The ideal realization of this program would be a 

single universal distribution to apply to any stock of random vari- 

ables, conditioned on a person's life experiences to give his or her 

cognitive perspective. The distribution would have a built-in struc- 

ture that does justice to frequentist insights, and also the space-time 

symmetry required to justify classical insights. 

The program has a long way to go, if indeed it can be realized. I 

think most of the difficulties in carrying it out have been mentioned, 

and none of them seem insuperable. If the program cannot be carried 

out it would be important to know that too. (Perhaps there is an ir- 

reducible surd inherited from our evolutionary history). "A man's 

reach should exceed his grasp, or what's a heaven for?" 
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