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THE THEORY OF THUNEN SYSTEMS}
—

8.1. Introduction

—One-often_finds, both‘gn'nature and society, spatial pat-
terns which may be describéa roughly as follows. There is a

certain special location surrounded by a series of concentric
e,

‘"rings" or shells"o At the locations in any one ring the

same activity is occurring. From rlng to ring there is a
tendency for activities to become less "intense" in some sense

as one moves outward.

An example is provided by a sphere in gravitational eqguig
librium. Here the densest sﬁbstances lie toward the centegﬁ
and density declines as one moves outward, ending iﬁ an ever
thinner atmosphere. The environs of a volcano provideg a less
cléar—cut example, as does an organic cell with its nucleus
and cytopjiasm.

In the social wogid onemh;z;the pattern of agricultural

land uses surroundﬁ%&’a city. These tend to decline in

\“intensity"j;lth incfeasing distance from the city. Within

the city itself enemhas the highly intensive land uses of the
central business dlstrldtﬁa;d a gradual diminution of intensity
as one moves outward. On the "micro" level, the fields of
individual farms ﬁend to be cultivated with diminishing
intensity as one;moves farther from the farmhouse. We might

also refer to thé distribution of onlookers at sports events

and other spectacles.
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We shall discuss these and other examples in greaﬁer
detail later. They are adduced here merely to intrqauce the
class of phenomena to be considered. MNote-that 1qf;11 cases
there is a greater or lesser degree of distortiqﬂifrom the

"ideal" pattern of concentric rings of hcmogengbus activities.

bmotamaiso~%hat;;he same general phenomenon caﬁ occur at very

different scales of magnitude: £from the spgtial ordering of
an individual household to the pattern oféi;rge geographic
regions, and even —~ (@s we shall see —:toﬁfhe entire world
economy .

These patterns will be called Thiinen systems, after the man

who first investigated one of them iq society,_£§g;4$thhe pat-
tern of agricultural land uses around a city in an isolated
region.k/ We shail make no use of Tﬁﬁnen's specific formula-
tions, however, because modern devglopments have corrected and
generalized them considerably, ané themgéééeﬂt chapter will
generalize them even further. :

In developing a thecreticaljmodel for Thiinen systems, the
first problem that arises is thit:cf specifying precisely what
iﬂﬁrﬂmma; by such systems. The concepts "activity“ﬁfhintensitﬁz
even the concept of “concentriq{ringé”,gwere used above in a
vague commonsense way and needfexplicé;ion. After doing this,
we present a model %hieh is both explanatory and optimizing;-ﬁw
th;@wis, it shows how the Thiinen pattérn will arise from the

behavior of individual agents, and also demonstrates that this

pattern solves an optimization problem.
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We shall place greatest strégs on this optimality feature
of Thiinen systems, because it has been largely neglected in the
past. -In—faet, it is shown that Thiinen systems are optimal for

a special case of the measure—theoretic transportation problen

& e,
of chapter 7,-called the allotment-assignment problem. (Certain

special Thiinen systems also optimize the allocation-of-effort

problem discussed in ghgpter 5}@3 The potentials for this trans-

i s
portation problem may be interpreted (in part) as land valueg,

and this establishes ihe connection between the optimiglng and'
explanatory aspects bf the model.

The special 1Qcation wh&eh is the center of symmetry of the
Thilnen rings w1ll,be called the nucleus (corresponding in the
examples above to the city, the CBD, the farmhouse, etc.). This
will play a basxc rﬁle for most of our exp031tion. In the end,
however, 1tuw1&ﬁrtﬂrn~eut~that -even the nucleus ¢¢n be dispensed
withs The essential point is that ths\“desirabilityfgmf a
location can bg summarized in a single real number. This is
usually thexméistanceﬁﬁg}om the nucleus, but may be well-defined
even if therejis no nucleus. All these points will be

oW |
elaboratedﬁbglow.

8.2. Ideal Distances and Ideal Weiggts

We now r%}introduce our three basic sets: »Resources,
Space, and Time (R,S,T). Actually, the formal model to follow
makes no concrete assumptions about the nature of these sets,

and the generality resulting from this fact is useful. For
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example, T can be interpreted as having a bounded hoéizonﬁ or

as being discrete, rather than as being the whole réal Tiﬁe¥"

axig; S may be thought of as a limited region ofA£he‘Farth's

surface, rather than as all of Space. Similarly?:R may be

thought of as restricted to Ehese.resourcé;typeé«ﬁﬁééh make

sense.in the Thiinen context. L-e g. those‘;hichfare "transportable?q
We suppose that there—is a real-valued functlon 8 with

domain R X T x S x %d the unit transport cost éunctlon.

Specifically, e(:,t,sl,sz) is the cost of shlpping unit mass

by . Oof resource type r at time t from origin sl to destination Sy

VQ%MBefinition; 0:R X T x 8 x S + reals is factorable iff there s

exist two functions, g:R x T + reals and h S x 8§ ~» realsﬁ such

ij : that ; 7. .
H (@
9(503?151132) = g(r,t) h(ﬁl'.iz)' 1)
( ' Fotn
for all re R, te T, Sys S, € S. Xg(r,t) is called the ideal -

(or]economlc) weight of resource r at time t, and h(sl,sz) is

[

called the ideal (or economic) dlstance from Sl to Sy

S SRR LN éis
Excluding the trivial case when 6 is identically zero,

one eas&iy establishes that g and gfare unique up to scalar
multiplication. To be precise, if % and h satisfy (1),-then
so does the pair gx, h/x .<x being | any noqzzero real number}—»‘
and these pairs are the only solutxons. Also, if 6 is non+
negative, and theée exist 9, hjsatisfying (1), then there
exist| non+snegative g, rjsatisfying{(l). For the following

discussion we assume g and h are né@%negative.
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Consider the economic meaning of 6 and the condition (1).
;;ﬁ&iba is;_firs:;pf~a&l* the problem of what instangsxt efers
to in thé;giﬁg/gk time-consuming trips. A simple convention
takes t to be the average of time of departnfe trom‘sl and time
of arrival at s,. (A more elaborate analysis would insert an
extra time component, resource r departin§ fram»pl at‘tl and
arriving at s, at t,. But this elaboragion is not needed for
the problems of this chaptequ
The mass flowing through the tran#éortation system will
be represented by a measure u on unive?se set R X T x 8 x S::’T
B(E x F X G x H) = total mass of resoﬁrces of types E flowing
at times F from sources in region G t§ sinks in region H.
Given u and 6, total transport cost incurred is assumed to be
\’\01 (;\ (%:2:20
fe AGM =)
RxTx8x8§ ;
This is a severe assumption, ignori§§ as it does large-lot
economies in transportation, congeségcn)and other interaction
effects. A few devices mentioned bé@cw help to overcome these
limitaticnstl?ut are only partially'Quccessful.
As for the factorability condition (l)fi*t states in
effect that no source-sink pair (_1,32) has a comparative
advantage over any other such pair £Qr the shipment of any
resource at any time vis-a~-vis anoth&r resource at another time.
This is again a strong condition, and it is easy to find

situations where it breaks down. For example, let s and‘g2
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=‘-};

g
have good pipeline and poor road connections, and vice versa
=l
for S5 and Sge Then sy and;sz might be "closer" for oil

transportation, and “furtnér apart" for passenger transporta-

™

tion,ithan S5 and S43 6~is clearly not factorable in this
case. Nonetheless, we-sha&l assume factorability as a very
useful first approxlmatlon. j

The great s;mpl%fication that arises from factorability
is that the same spélial transport—-cost pattern applies to all
resouré“&types andjtimestl?nd may be summarized\in a single
function having only spatial arguments,-ﬁéﬁéiy, the. ideal
dlstance function h.

/ "ietfﬂs now examine the two Ldeal functlons, g and h,
which arise from a plausible facﬁorable transpo;;«cost function
6. As noted abeve, g and h are unlque up to a scalar multiple,
80 that the ratios of nonTzero values g(rl,tl)/g(rz,tz) are /%f
uniquely determined by 6, and similarly fqr h. Theafgsulting :
patterns need not have any close relation;to physical weights
or distancesEk?espectively, though there will presumably be
some overall positive correlation betwee@ ideal and physical
values. |

Consider the weight functionf g. Résource—typesiwhichfv
for given physical weight, are bulky, ar-valuable,-ogjheavily
taxedJ or need special hanéling, will tegd to have relatively
high ideal weights. —Also, small-lot shi?ments of the same

—~—

resource tend to cost more per unit weight than large-lot
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shipments. It seems at first that the linearity éf (2) pre=
cludes taking account of this last phenomenon, bﬁt one

possible device for doing so is to distinguish different-size
packages of the same resource formally as distinct resource———
types, the larger packages having smaller idegl/physical weight
ratios. |

How will g(r,t) vary with time,xfor fixed r? The
secular trend will usually be downwafd,\for two reasons. First,
there are technological improvements igﬁtransport and communiZ
cations, extensions of the various grids, more vehicles in
existence, etc., all of which reduce real transportation costsf%/
The second reason is the need to discount. To make the cost
contributions of different times comparabie in the integral
(2) , they must all be discounted to the same moment. The
easiest Wéywé;idowthés is to build the discount factor directly
into the ideal weight function4g. The same real cost in the
far future is less weighty than in the near future, and disfa
counting introduces an additional "levitational" force over
time.

Congestion may sometimes be allowed for by adjusting ideal
weight. For example, suppose one is studying a metropolitan
area, and that congestion appears periodically at weekday rush
hours. One can represent this by letting g rise at these
timesE ‘ﬁhings get "heavier" during rush hours. (This is

another device for circumventing in part the restricted form of
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(2) . An adequate theogyﬁof congestion would require total cost
to be a non+linear function of u, howeverfl

Factorability;implies thatﬁafor any particular resource-~
type r, unit tramsport costs rise or fall proportionally for all
source=sink paiis over time. Thus transpért innovation must
reduce cost34§?~ rata; a reduction in one region but not in
another would violate factorability. Similarly, congestion must
raise costs proporticnally on all routes. These unlikely
circumstances underline the strength of the factarabllity
assumptlon. i

Turning to ideal distances, we note to- beqia-with that the
term "distance" is a misnomer, because h need not obey the
metric postulates., In partlcular, the symmetry postulate nay
be violated, due to up&lvs. down<hill movements, wind and water
currents, ongyay streets, tariffs on impcgts but not exports,
etc. Ideal distances will be distorted f?om physical distances
because of geographic irregularities, beq%use some paifs of
locations have "good connections™ relati&e to others, because
fares are not faithful reflections of distances, because of
heavy taxation at border crossings, etc.: Just as temporal
variations of congestion can be allowed for by adjusting ideal
weights, spatial variations can be allowed for by adjusting
ideal distances. That is, if certain regions ~(such as the
central portions of cities - are generally congested, ideal

distances between points in these regions will be large relative



780 }

/)

;
§
i

to physical distances, Speaking broadly, idé;l distance tends
to increase less than in proportlon to physical distance (except
perhaps for very long trips) The—maxn reason is that "over-
head costsi such as loading, packing, bllllng, ¢ gétting up
steam, etc, é—&@ych may be a substantial fraction of total
transport cost%4~ are Apread over a larger physical distance.
(For very long trips the factors of cumulatlve fatigue and

spollage,band the need to carry 1arge;amounts of food and fuel,

work in the opposite direction. For éocket flights,-the—longest

2oL AAV iy

+trips—of<all, the fuel -carriagé fact@r is cruciaiy

s
8.3. 1Ideal Distances in Thiinen Sysﬁems

We shall develop several varlant models for Thiinen systems.
The one to which most attention will be devoted is the entrepdt
model. In this section we shall cpncentrate on some of}its
formal qgaracteristicsﬂhand'not wo}ry about its realism,
The distinguishing feature of entrepdt models is the
existence of a special location, called the nucleus, having the
property that all transportation flows have the nuqleus either
as origin or as destination., That is, the exports of any land
use located anywhere in the system all go to thefﬁucleus; the
imports of that land use all come from the nuclgﬁs. The nucleus
functions as an entrepft in the sense that a sﬁipment from loca2
tion s, to s, can be accomplished in two stepsé from s, to the
nucleus, and from the nucleus to Sq. "Foreigﬁ trade" nféhat

ias., flows between locations in the Thiinen system and locations
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outside‘iﬁiﬁ-is not excluded, but any such trade must be
channeied through the nucleus, so that the nucleus also

functions as a gateway between the system and the rest of the

world.

For entrepdt models we postulate a transpo?t cost function
with a slightly modified factorability conditié%. Pirst—-of
“atld, transport cost between two nod}nuclear sgﬁes is irrelevant,

since by assumption no such flows ever occur. Hence we need 1

postulate the factorability conditlon, %i% Qé—ﬂeﬂtiﬂﬁzaf only
in the case where s, or s, is the nucleus. ;Formallyy the unit

transport cost function 6 satisfies the foilowing conditiong
(

~There-exist two functions} gin'agout*R x T =+ reals, and
\
two functions hin’ h .S -+ reals,;such that

(AN
o(r, ty3,8y ) = gi (r, t)h (S), : (1)
and }

F Y -
LY 3.4}

ou&(s) )

Gail)
X Here Sy denotes the nucleus. Compamlng (1) here with =(X)/

B(r,t,sy,8) =FQQEF(:,t)h

sefﬂsecb&eﬂ-z, we see that h, (s) = h(s,aN)@ The second
argument of h is fixed at sNﬁkand is drupped for simplicity.

& W

hin(s) is simply the ideal distance from location s to the

nucleus. Similarly, h (s) is the ideal distance to location

out

Puaeiasalivg

s from the nucleus.
The two g functions have a differentksignificance. We

axe allowing the same resource r at the sé@e time t to have
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two different ideal weights, depending on whetheg:it is flowing

into -the-nueleus or out of the nucleus. ?his ié'a further
G.Des
relaxation of the factorability condition (1) of-section—2:

Conditions (1) and (2) together are cleaély weaker than@lq}g
(X)-of-section-2. In fact they are a bit toé weak for our

purposes, and we now add the symmetry condition that

(3:3.%
Doyt = By 13)

That is, the ideal distance between the thleus and any other
location in the system is the same in boih directions. We

denote this common function by h. (Not§~that\phe domain of h
. g \

is,.simply S, not S x S as it was in section 2)\

Fannn e = i {

 h(s) will be referred to simply as "the distance of s'.

It provides a general index of inacces%ibility of locations in
the entrepbt model. The fact that the;relative locational
advantages of different places can be %ummarized in a single
number in this way is one essential pr;condition for the strik-
ing simplicity of the results obtainedfﬁor Thiinen systems.

An example or two will illustrateithat the symmetry
assumption is less restrictive than miéht appear at first
glance. Suppose the nucleus is percheé on top of a hill, so
that it costs, say, twice as much to tfansport resource r at
time t from location s to the nucleus a% to go in the opposite
direction. Then,?if (1) and (2) are saéisfied, so is the

N ¥

symmetry conditions We merely take ginrf e nr B ™ Bouge

so that a resource is twice as "heavy" t#aveling to the nucleus
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/
as when traveling away from it.fﬁNe@emthat We have merely
thrown the burden of represenﬁing cost differentials onteo the
weight function, leaving the dlstance function invariant, just
as we did in the case of tﬁe "shrinking glober/« ‘

The situation opposite to the one just mentloned is
probably more common in practice. All roads lead to Rome nore
readily than they lea& away from—Rome, because of;asymmetries
of information. 1In this case gi is smaller thaﬁ(gout, and the

same argument applies. j

c 5 ¢AQa1nK consider the rush hour phenomenon in big cities.

=
Mﬂbﬁgfzgy:£e morning it is easier to travel away from the central

business district than toward it, and the reverse is true in

the evening. in would then be larger than g

it
out at morning

s

times and smaller at evening times, and the symmetry condition (3)

would not necessarily be violated. ;?“!{
"\\‘; Q. T ~

-Let us now suppose that conditions é%}-’12?~andmés)
obtain, so that the distance function h:s + reals is well~
defined. The region :

(%, &)

w ot

{s|h(s) < z} { (%)

is then called the open disc of rad@us z (about the nucleus).

(A similar concept has already been?defined for metrics, but
we may not be dealing with a genuiﬁe metric in this case.

Still, the concept is well-defined if h is).4
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The shape of the region (4) will of-eourse depend on the
nature of the function h. Suppose that -Spase S ;é the plane,
and for convenience let the nucleus Sy be at thé origin,”(0,0).
If h is derived from a Euclidean metric, theawihe regions (4)
will be circular discs centered on the origiq; If h(s) =
|x] + |y| (where (x,y) are the cartesian coqédinates of s),
then the regions (4) will be diamondsg% thkg%is, squares with

V;c;p)(,\' /,._ sides at 45° to the 3(-5 and y-;axes. 'I'h;.s arises from a city=
B block metric, which in turnimay be though£ of as arising from a
road system permitting only motions parallel to thef}Q‘or'yL;xis.

Another common case arises from a limited number of tfaffic
arteries converging radially on the nucieué? \road, rail, river} 28
&te. Travel is relatively easy along such radials and dAiffic
cult off them. In this case the regioﬁs (4) will tend to be
amgeboidﬁéhaped, with "pseudopods’ projecting out along each
artery. It is even possible for these regions to fall into
several disconnected pieces. This occurs with limited-access
transportation systems (highways with infrequent ex{iﬁs, railE;
ways, airports,icte*x Here the immediate neighborhood of a
point of access to the transportation network may be an isolated
outpost which is economically "close" to the nucleus though
physically distant.

The significance of this discussion is that in Thiinen
systems land uses are arranged in "ring%" which are set=

theoretic differences of opeﬁ?discs (4) with different radii.
N
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Only in the Euclidean case will these literally be rings eaat 4
ts, annuli centered on the nucleus. In other cases ;@ese rings
will be more or less irregular and even disconnecteq; We

would expect, for example, that typically "urban" Xgnd uses
would "sprawl" deep into the countryside along major radial
arteries, and that-they would tend to appear 1n the vicinity of
comnuter railway stations and airports.

These diverse phenomena are all covered g} the entrepdt
model, which predicts the pattern of land us@;,in terms of
ideal distances. fhe geographical implicatig;s will then depend
on the shape of the regions (4). The modelgitself, however,
does not need and. éeea—agt make any such a&sumptions, but is
formulated throughout in terms of ideal éiatances not physical

distances.
8.4. Land Uses

The spatial field, with the particular structure just

discussed, is one of the two basic ingrédients which constitute'”
Thiinen systems. The other is the set oé land uses which-axe
to be distributed over this field. We‘how discuss theseg:

first, more or less formallyéﬂand then;with concrete interg

pretations and illustrations of the concepts involved.
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: F;;;;¥ Structurefw

7
We shall use a version of the activity analysis model of
ank

ﬂehapaermiaiggctionﬁsﬁ -Let-us—briefly review the salient con-

cepts, using the notation of that section. An activity, q;,

is a trlple of measures, p on (9 »Z'), and 11 and Az on

~—

x L) Here Q. is the space of transmutationipaths,

xs
“‘:’..

(R x T, Zr

and p represents the capital—goods structure of the aétlvity;
A is the "production" measure, describing the resource-time
distribution of outputs; similarly, Az is the “consumption"

measure. - ,
i f{&«ﬁ

_ %%géﬁf”ﬁThis describes one activity.é>g is the set of a11 feasible
a

: //// ctivities; and v, a measure on (S x Q, Zs
L

assignment of activities to locationsg On measurable rectangles,

X I ), Qescribes the

V(E x F) is the "amount" of activities of types F located in

region E. This determines the total production m%asure My over

the space (R x 8 x T, zr X zs X Zt) as follows: ;

0 | 3\ 3 P

, (g &.1)
Xl{Q:{(r,tH(r,s,t) € G}]V(ds,dq) '5 m

for all Ge L X X x Et Here Aliis the funcéion with domain
R (Z x I ) for which A (q,-) is the production measure
associated w1th activity q € Q. 1 is assumed to be an abcont
conditional measure, which insures that the integral (1) is
weli;defined, and that y; is a measure. Similarly, conditional
measure Az is constructed from the consumptibn measures of the

various activities. Replacing Al by 12 in (1), we obtain Bor
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the total consumption measure over RxS8S xT determined by v.
) e
Let—us now place these concepts in the Thiinen context.

The essential point is that all production ;-@o matter when,
where, or what is produced)lfmust get shipped to the nucleus,
Similarly, all consumption —aover all Time, Sgaee, and
_Resourees) — must come from the nucleus. COmbined with our
factorability assumptions, this yields an expﬁéssion for the
total transport cost incurred by an assignmeﬁt V. Furthermore,

we are able to apply the concept of ideal weight to the

activities themselves, not just to resource-time pairs; this
simplifies things considerably. ‘

We now spell out these statements. S@s«éiﬁﬁﬁéééﬂwabeVe,
“there-is an ideal distance function hiS + realéééiving the
"inaccess;bility“ of any location from the nucleus, and two
ideal weight functions 9in’ Joue 'R X T + reals.* we assume
these functions are nonznegative and)measurable. Define the

in-weight of activity q as follows: ;
W A
@ = |

The out=-weight of activxty 9, wrltten w ut(q), is defined by

7 ![‘, o

-~

(2) by substituting g out for qlnl\and A for Al Finally, the

wig) = wln(q) + W

‘out ()« 3)

Awin' wout4and w are all extended real?ﬁélued functions with

N

domain Q. The conditions on Iine gaﬁt and A;, A, insure that
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they are noquegative and measurable,

We now show that the total transport cost incurred in a

~ Thiinen system under assignment measure v is Slmply

| g4 kd

\&! 4 (g¥.4)
[ |newiavias,an, )
ng g
(S
ihxmtpefma%l, total transport cost zs the sum of cost incurred
on shipments into the nucleus plus cost incurred on shipments

out of the nucleus. The in~shipment cost is given by

\’1«6\; I LM/ f (g4.5)

ln(r t)h(s) ul(dr ds,dt), \ 45y
RXSXT| L B
J {,;& m} "*; %
since this is what 2) -of- seeg&on*ﬁ reduces to for the special
case in hand. Here ul is the total production measure as
given by (1) abeve. (Remember that all the mass of the
distribution U, must be shipped to the nucleus. A unit mass
of resourceﬁtype r 1ocated at s and shﬁpped at moment t incurs
a cost of g, (r,t)h(S))-;

4,;___

We claim that (5) i@ equal to

N

. f }h(s)win(q)v(ds dg). = ffj 46}
S XQ

To show thig we introduce the measure ul* on;the product space

B —

Q S x Q X R X T by the follow%ng iterated integral.

; R*T;» y

sxq|'

TR

ML) .
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q r
function.)) -6me verifies that M, given by (1) is the marginal

of u,;* on the component space R x § x o4

for all H € Zs Ny xF % ZﬁQ (Kere-;n is the indicator

It follows from the induced integrals theorem that (5) is
equal to i
IngxRxT ggy(r.t)h(_s) h'ui*v(.ﬁs.dq.dr,dt) -5
Q° ;
By (7) and Fubini's theorem?;this in turn equals the iierated
integral ( : :
i L g
|
3

| 2
i v(ds, dq) lAl‘(q,dr,dt)gin(r,t)h(s) : 8)
SxQ! 1RxT i -

S
Evaluating (8) from rigﬁt to left, the integration over R x T
yields the simple expression Wy (q)h(s), by (2), so that (8)

equals (6). We have proved that (5) and (6) are indeed equal.
The out-shipment cost is given by (Z) with g

out and L)

replacing Q;QT%Ed ulg;respectlvely. The argument just given, L
with 12, uz* replacipg Al' ul ¢ /proves that the out-shipment

cost is equal to

f A (A
ISXQ hgs)wqut(q)v(ds,dq). €9)

Finally, adding (6§ and (9)4 and using (3), we see that total

transport cost is indeed given by (4). This completes the

proof.

Ay
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/ In commoéjbanse terms, the argument just given amounts
to the following. An activity determines a certain production
and consumption pattern of resources over time. These incur
transport costs per unit ideal distance as determined by their
ideal weights, and this implicitly determines a weight for the
activity itself, négéi;h the cost incurred by its inputs and
outputs in moving unit distance. This activity weight is given
by (2) and (3). It is then intuitively plausible that the
total transport cost incurred by the spatial activity distribuf
tion v should be given by (4), the integral of the activity
weights multiplied by the ideal distances its inpﬁts and outf
puts must travel,

Thexre are important advantagggjobtained by éhis transf
formation. Fixst, the expressiég-(é) in terms oé activities is
much simpler than tﬁemexpression (5) plus the cqiresponding
expression for out-shipments. in:£aet$_gsing (é) and the other
constructions discussed below, it is possible té dispense with
explicit consideration of Reseurees and ?ines\aéd to work
entirely with activities (and Spaee). This is the natural
approach whea—onsweemes +o concrete applications and again
leads to great formal simplicity. n

Note that the "capital-goods" structure oféactivities,
given by the measure space (nr,z',p) (where o debends.on
activity gq), does not influence transportation cost. This is

-
as it should be5 p refers to the internal‘/operation of these
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activities, and no spagﬁal movement is involved. (Shipments
of equipment, construéiion materials, etc., are already
incorp;%fted in Al and Azp{J p,,in fact &plays a very sub{
ordinateQ;;le in what follows, and will be ignored except for
occasional commegts. ‘

We now come to the guestion éf constraints on the possible
activity distributions v. Just 6ne kind of constraint will be
imposed: allimit on areal capaéityi§/ That is, activities
demand "room" in which to operate; regions have a limited
amount oéxmrocmd?'and this 11mits the total amount of activities
é&ﬁé& can be sgueezed into them.

In chapter-4, gectioﬁi5; the areal capacity constraint was
written in the following fo;ﬁ:

(8. 4.10)
[ xavcem. 6
Fxq *

g,gf B

for all regions F, Here o is a measure on physical Space,

?

(S,Zs), the ideal areal measure. The nonrFnegative measurable

function k:8 x g + reals gives the "demand for room" by activity

q at location s. ﬂ(iﬂflthen}states that the total demand for
\‘ e .
room in region F cannot exceed the éapacity of that region,
We shall make the special assumption that k = 1

identically. 1(16)‘§hen becomes

VIE x @) < alE), o L)

We\

for all regions F.
The step from (10) to (l1l) is less restrictive than it

appears to be. It amounts, essentially, to the assumption that
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function k is factorable: k(s,q) = kl(s)kz(q) for some pair

of positive functions k,:8 » reals and kpi@ + reals. To see
k XYSN

this, define two new measures, a' on S, and v' on S8 x g as

-5 WRe )

follows: /

for all F e Es, and

28
¥

v' (G) k (q%y(ds,dq) “(12)

G|

i

1201 iy
1 ! L%
o

for all G e I X Zq.‘ Then from (10) we obtain, for all F € Ig
3 110 | Bh WQ 4

: xk()v(dd)aij k. (8)k (ds,d
[FXQ g (mh e, oy ‘FXQ g (8) z(q)/\v s ,dq)

TN i | \4\«:; q' ? l@i 5 3 L“’
W <laE) =] k,(s)a’(ds).
Chalt (F) %jﬁ, 1 % (ds)
|
Treating the left- and rigﬁtuhandiintegrals as measures over
S, we integrate the positive function 1/k1 with respect to them

to obtain .

VI(F x Q) < a'(F) 3)

7

o A
(vt

for all F ¢ Z ‘. \(13) has the same form as (11).

Now the units in which activities are measured are
arbitrary, and the "amount" of activity has no intrinsic
meaning. Suppose, then, we change measurement units as follows.

Activity g (or, more precisely, unit level of activity q) is

now redefined to be the triple
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p A

e

“where (p, Aye A,) is the original activity q. Then assignment
Vv in the original units is the same as v' in the néw units, v
and v' being related by (12). Similarly, there is no intrinsic
significance to the ideal areal measure o, and it might just as
well be replaced by o', with corresponding chaﬁges in k to keep
the constraint conditions invariant.

With these changes of units, (10) becomes (13). We may s
in fact, simply forget about the original measures v and o,
and drop the primes in (13), obtaining (1l1). (Corresponding
changes must also be made in the weight function w(q); we
suppose this has been done, without changing notationfl)

One can now give an intuitively appealing interpretation

Coreetn a

to the nondescript concept of "amount" of activities,iv. H(ll) 5.2
implies that v and a are dimensionally comparable, so that v
may be thought of as given in "ideal" areal units 4 acres" n.
if you w1sé¢ Spec;fically, V(F x G) is th;\‘acreage required
by the activities of typps g)which are operating in region F,
Similarly, the measures p, ll' 12 have the dimensions "mass
per unit areq“a For example, A;(E x H) would be the production
of resources of types E in period H, in "tons per acre"i say.
We have been discussiﬂs "activities™ “in general-=up to this
point. Let us refer to activities *héeh have a positive demand

for "room" as land uses. All the activities discussed in
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connection with Thiinen systems will in—fact be land uses, as
is clear from constraint (11). (Non-land-using activities
could not be measured in»acreqﬁfeﬁwsoursaﬁ since positive
amounts -of -them could be operating in regions of zero ideal

areé}ﬂ\

(11

’ﬁ‘The areal constraint (LI} is expressed as an inequality.
In what follows we-shall find it convenient to express this as
an equality. No real loss of generality is involved here,
since we can add a special land use called “vacancg“ whiqh
takes up the slack, if any.

This concludes our formal discussion of land uses. The
two basic formulas we have arrived at are (4), the expression
for total transportation cost in terms of distance, weight_J and
activity distribution, and (11), the areal constraint on
activity distribution.

Note that (11) has the form of the capacity constraint in

a measure-theoretic transportation problem, where the source
space is (s, Es,a) and the sink space is (g,zq,?), the question
mark referring to an agiyegiunspecified requirement measure.

Also, (4) has the form of the objective function for this

problem, v being the unknown "flow" measure. The only missing

ingredient is the requirement constraint, and this“;%le will be

filled by the "allotment" mentioned in footnote 5. But-we-are

now-jumping.ahead-of ourselves.
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e

Inteipretations and Illustrations

~J

Illustrations of theoretical concepts are always useful
for making connections with the real world. For the "land-use"
concept just developed they are especially important for two
reasons, First, a great diversity of phenomena are encompassed
by it, and this fact can be driven home only by examples.
Second, the concept is unusual in severél respects, and some of
the associated terms?;W§uch as "production" and “consumptionﬁ >
are used in strange ways; all this needs elucidation. |

=Pirst-of-ail, a land use is longitudinal, stretching over
the entire time horizon. Suppose ,—for-example, that a site is
successi%ely vacant, used for farming, then&residing, manu-
facturing,/office activities, and ends up as a parking lot.
This whole succession (tﬂé;§hax with the construction and
demolition that occurs between phases) must be considered to
be one land use, not a series of land uses. The production and
consumption measures on R x T, 11 and Az, will concentrate mass
on different resource types in different epochs, of course, and
the history of the "goings-on" could be reconstructed in part
from a knowledge of these two measures.,
égémus examine these measures in more detail. In the
entrep8t model all production is to be shipped to the nucleus.
This means that we must include in "production” all resources
éﬁf&h leave the site and travel to the nucleus. Consider a

residential land use in the context of an urban Thiinen systen,
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with the CBD aé;nucleus. Any household member who makes a
trip downtown,kfor work, shopping, recreation, or whatever,»
must be considered to be "produced"” at that time and "exported"
to the nucleus. The same is true for other household "exports"?t.-
outgoing mail and telephone calls, garbage and sewagernetagi-n% ‘
insofar as they move to a centralized processing point. ‘
Similarly, people traveling from the CBD §o the household must
be considered to be "consumed"” at the time of the trip,yand
will be recorded in Az. The same is ;rue for other reséurces
coming in from downtownﬁ {?onsumer goods, water, gas, and
electricity, incoming mail jandé telephone call§§ ete. A round
trip counts both as an export and an import. Every trip must
be counted separately.

What about local trips to neighborhood facilities = {say

/ & S
igoutine grocery shopping, children's school trips, local

movies} ete? These should not be counted.®/ The basic principle
for distinguishing these trips from those mentioned above i%j
this: kl and Az are to be constructed so that the land-use
weight, as determined by (2) ;hd (3), is an accurate reflection
of the "pull" of the nucleus on this land use. Extra trips to
the CBD increase this pull;“tﬁaﬁuis, a land use with more such
trips would save more in transport costs by moving one unit of
(ideal);'distance closer to the CBD than would a land use with
fewer such trips, all other imports and exports being the same.

But a change in local trips would be irrelevant in this respect.
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A

e

{" r’ M#ﬂ»ﬁ"
7y > A land use is defined by the triple (p,A 1,A ), and any

53‘Mvariation in any of these measures, however slight, yields a
different land use. Consider the general category of intensity
variations, for example. -One=wan—grow géfﬁAihﬁa éontinuum of
different ways, with variations of ferﬁilizer input per acre
leading to variations of corn yield per agie. Each of these
different input-output level combinations is to be considered
a different land use.

Intensity variations manifest themselves in the levels of
inflowing and outflowing traffic per‘acre,gand in the general
degree of crowding of resources upon the si{e. One particular
form that intensification takes is the phenomenon of multiple-
story land uses, and this is important enough to deserve
separate discussion.

An N-story structure provides a stack of N horizontal
surfaces of support, on which N different processes can run |
51mu1taneously, one above the other.z’«@gezewafé/aéyieast two
wags of -representing—this in terms of our categories. One
approach identifies Spa‘e,_sﬁkwith supporting surfaces in
general, including the (land?) surface of the}Earth and floors
above (and possibly below) it. From this point of Qiew, land
uses are inherently "single-storﬁ“ﬁ Most are placed at ground
level, some on floors above or below ground. Multiple-story

construction (including bridges, tunnelsjand pit mine construcs

tion) is then a way of creating new Space.
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The second approach restricts Spaece to the}ﬁarth‘s surfacq%’
A site may be utilized for any of several land uses, some of
which will be ‘multipleistory“:Q{The latter involve several

processes stacked vertically, usually preceded by construction

of the multiple=-story structure'l i . supports them. For
example, a ten-story office building, with detailed specificaa
tion of what goes on at each floor, would be a typical multiple=
story land use. On the preceding approach, it would decompose
into tén separate land uses. ~We~shall,‘§or the most part,?ﬁge
the second approach. n

Next,, consider timeldisplacement as a form of variation

among land use§§ Eaéuekémple, a trip is made sooner or laters
a crop is harvested (and shipped) sooner or later. A special
case is where tﬁe entire land use is shifted "rigidly" in time.
To be precise we must specify the structure of Pime, T,}as
used in the model. Suppose that T is the nonfnegative real
numbers, so that the Thiinen system is taken to begin at some
moment, time zero, but unfolds indefinitely into the future.

Land use qf is then said to be a ;o-forward displacement of q

(t, > 0) iff, for all E € I, x I,

v 4
Mbpw

/

/]

‘2’{ /
o

)\i (i'rE,, - Ai [q:{‘;:t) It A 0,‘:' and (r,t + tQ) € E}J:

i34
(1

ﬁ$\i = l,2f. That is, the production and consumption assigned
to any measurable subset of R X T by g is the same as that
assigned by q' to that set displaced forward t, time units.

Also, them*g > 0" insures that q' neither produces nor consumes

before moment t .

f } :
s

2 o

£ -
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This rigid displacement might arise in a land speculation

situation, in which the controller of a site knows what he
wants to do w%thxétt;but is waiting for the right moment to
initiate operations.‘ Just as with intensity variations, dis-
placements are to be considered as different 1and uses.

What can be said about the weights of thesa ‘various land
uses? To find w(q) one needs the measures Al' Az associated
with g, as well as the ideal weight functions gin, 9 ut’ and
then uses formulas (2) and (3). Certain general observations
concerning procedures and "tendencies" are in order.

First of-all; Al and kz are the production and consumption
on one "ideal acre" of Spaee. Hence invmeasuring shipments to
and from some actual land use, cne must always adjust for this
by dividing by the number of "ideal acres" on the site. As a
first approximation one may identify ideal area with physical
area, adjusting the former downward for sites with rough topo=
graphy or poor drainage. In computing areas occupied by land
uses, the accoutrements such as landscaped grounds and parking
facilities should be‘eean%edﬂén This of—course will diminish
the computed land-use weight by increasing the denominator.

Q:g"“‘ M"’"’”ﬁ;wgeneral , the more "intensive" land uses tend to have
//ﬁiflwgzeater weights, since Al and Az are larger. In particular, the
’ weight of multiple-story land uses tends to rise with the

number of stories. The imports and exports of such a land use

are the sums of the imports and exports originating on the

o
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various floors., (For—example, the trips to and from an office
P

building are the sums of those terminating on the first,

7
7

second, third, etc., floors). The ideal area of the site
occupied by such a land use, @ﬁ~%héié§hé§4haﬁéy is that of the
"ground floor" only, not the sum of the floor areas of the
successive stories., ;zz;emely high weights can thus be obtained
via skyscraper construction.

As for time-displacements, Eha:é”witi“bevsome tendency, for
forward displacement to make land uses lighter. This is a
reflection of the tendency already-discussed for ideal weights
of resources to become lighter over time, owing to transporta-
tion improvements and discounting. Forward displacement shifts
the masses distributed by Ay and Az toward smaller values of

the integrands 9in and g, ..» reducing the integrals (2).

O

S

Turning attention to the ideal weight functions, we note
the general tendency for the ideal weight/physical weight ratio
to be higher for people than for non-human resources, %giéw
arises—from—the—fact that people demand more in the way of
roominess, comfort, etc., for their own travel than they demand
for the shipment of their chattels. Thus trips by people are
an important contributor to the weight of most land uses, and
probably dominate in i§§é~uses involving "facilities”, such as
residences, churches, ichools, hospitals, office buildings,
retail trade. .

Ideal weight varies considerably from person to person. -

To assess what is involved here, remember that "transportation
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cost" is a composite money valuation of many diverse componentsﬁxvgﬁ)
not only fares and fuel consumption, but the value of time

spent in traveling, risk of accident, discomfort and fatigue,

etc. The potential traveler -himself evaluates these dimensions

in dollar terms, and it is this personal assessment.mhieh
constitutes his transport cost and determines his ideal weight.§,/
Thus we may expect idiosyncratic elements to enter into ideal
weight: Someone wiﬁh a pathological fear of travel accidents
will be very "heavy" on that accoﬁnt.

At the same time we may expect some regularities. Valua-~
tion of elapsed time will rise with foregone earnings, so that
people with high wages (actuél or imputed) will tend to be
“ha@yy?. Rich people will, on the average, be willing to pay
more tb avoid the same degree of accident risk and uncom-
fortable travel conditibns than -«wild poor people. Thus we may
expect that ideal weight will rise with both earned and un-
earned income, and more so per dollar of earned than of
unearned income.

There-is, however, one factor which gops counter to this
tendency; namely that the rich tend to use speedier and more
comfortable modes of transportation( airplanes, taxis, and
private automobilegé<£enwexampie' The automobile functions as
" a general "map shrinker" or, better, as a "1evitatorf%;
reducing the ideal weights of those‘who customarily'travel with
it.
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Ideal weight also varies over time for the same person.
We have already discussed some general features of this time
dependency. Over and above these are variations induced by
changes in the opportunity value of eme's time, Thus, weight
probably rises when éaé enﬁeré the labor force, and falls at
retirement. In the shorter run, weight is 1owér during

evenings and weekends, when there are fewer earning opportuni=-

ties;lo

These factors all enter into the computation of the ideal
weight functionsQ qigvand ggg;' which in turn enter into the
computation of land-use weight via (2) and (3). If one &s
dealz;gfwith a land use that is roughly steadyfstate over a

<L’ long period)eﬁttémaaiand in which trips by people are the

dominant weight influence, the following schematic may be

G,
helpful for megsurement purposes: 1 } |
\ , . ¢! * 6} § v, bL® f
2¥ g v ) il 3l c YV g L}
AN v W : huclear < ; -
weight of =§1?1 3:gnhtd§;1 trips per g:g:i:tigg real acres |
land use {I%J trigtakers Iperson— sitey ideal acres)*
y | Vil P per year 1 ; ?
:< H ‘ th
‘,<b Each of the right-hand factors should be roughly estimable.

)

Here i is the discount rate, inserted to convert the flow to a
present value; mean ideal weight is based on income,.car
ownership, etc., and is an average weighted by triﬁ%aking
propensities;, the real/ideal areal ratio is based on topography,

drainage, etc‘.RQ rouhd fvip counls as Two 1@

Finally, let us take note -of the realism, or lack thereof,

of the land-use concept we are using. The main departure from

realism appears to lie in the absence of restrictions on the
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possible assignments v (other than the areal capacity
limitation (11)). Thus land uses can be mixed freely, and the
presence of a distribution of uses in one region has no effect
on what is feasible in an adjoining disjoint region. In short,
neighborhood effects are excluded, as are the associated
effects of "scale" and "indivisibility?;; As discussed in
4&a§te%w4‘§ectionib, the resulting departure from realism tends
to be more severe,“the smaller the scale of the system under
discussion. :

Another unrealistic simplificétion arises in the form of
the areal constraint (11) itself,;.AB;discusse&uabeve,zphis
says in effect that the demand—f6£ihrooﬁ* function k(s,q) is

factorable. In more picturesque language, no location has a

comparative advantage over any other in relative suitability

for any pair of land uses. It is easy to find exceptions;
Eef;e¥§mpée, soil fertility ié relevant for agricultural land
uses but irrelevant for most urban land usesj hence. infertile
land has a comparative advan#age for the latter. Marshy land
has a comparative advantage for certain kinds of recreational
¥and uses, hilly land for résidences, etc. On the institutional
side, zoning isb\in,kfffect:the artificial introduction of
comparative advantages by differential exclusions of certain

land uses from certain regions. Some (but not all) forms of

real-estate taxation have @he same effect. All these phenomena

are excluded by assumption; (Later we shall discuss the

modifications induced by introducing some of them.)
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A similar difficulty arises if the Thiinen system starts
up from some designated "time zero", If "time zero® precedes

the settlement of the region one has only sthe geographic non=

£
uniformities of nature to contend with. But i# one places

d*time zero‘//

Jig_medias*res, with a preceding period of settlef

S
complicaliong
ment, # further

occurf@ Man himself
creates differential advantage95 by building different structures
in different places, and~leavin§ other places vacant, and by
distributing himself non+uniformly over the landscape. This
point is important, because the model has variables that refer
to: time zera“%}e.g. land values at that time) and not to other

times,

8.5. The Allotment-Assignment Problem

We have mew set up an apparatus of concepts for Thiinen
systems; and it is hﬂ&ﬁwtime to produce some models for=tivem.
Iwo kinds of-modeds will be considered. One kind is behavioral,
the interactions of many agents in the real-estate market
leading to the Thilinen configuration of land uses. The other
kind involves optimizationfkspecifically, the minimization of
total transport cost over a certain set of possible assignments.
This again leads to the same land-use pattern, so that the free
market interaction of numerous agents leads to the minimization
of transport cost.

In the theory of urban structure, a long controversy has

raged on exactly this point: Is the metropolis laid out So=as
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to minimize the "friction of sgace"/ﬁ(and should it be so laid

out)? The literature has been ably reviewed by Alonso, who

,,,,,,,,,,

concludes thagx\frictiona
because other desiderata — such as roominess > are also

11

important. While this is perfectly correct, the issue is not

settled&}because the meaning of "minimization" is left unclear.,

Specifically, one must name the set of alternatives under con-

sideration before one can say that the alternative actually
chosen does or does not minimize a certain objective. In“ﬁhe
following development, the éet of‘alternatives is such tﬁgg the
free market does minimize total éransport cost over that set.

(Whether it should do so is somefhing we discuss lateri;ﬁ
S — )

s

T2 We first.present the optimization model., The problem is

to choose an assignment vf&-which isclformallyﬁ a measure over
the product space (S x Qr Zs:* Xq) ﬁ-out of themfeasible set of
such assignments; The objective is to minimizé@total transport

costs on shipments to and from the nucleus, According to our
‘ )

previous analysis, this isiqiyen by ) of-mection-4.

10 L aL] ;

1 5D t4 (51D

\'{Z?ﬂ> ISXQ hfs)v;(q)v (ds,dq), )

~

ol

where h:S + reals and w;% + reals are the ideal distance and
land-use weight functioné;‘respectively. These are assumed to
be measurable. Actually, éll our basic results are still ob~-
tained with a much more;general objective function than (1).

We need the following concepts.
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) Definition: Let f be a real-valued function whose domain is two-

ﬁ/ "\
space (i.e.)the plane, reals ). ,&f has positive cross-differ-

ences iff, for all real numbers Ryr Xg0 Y0 ¥y such that

> ]

X, < X, andwyl < Yor we‘have

(‘Zt f}-e —.i;\'

%’yi(xlv yy) + £(x,, v,) > £(x;, Yg) 1+ LiZge Yyhe W)

[P —a
X

l{f{“ S
< f has non+negative cross-differences iff the same condition

A = 7 -'-" L T -
holds withiazﬁ replacing ">" in (2).

R

These definitions easily extend to the case where the

domain of £ is a rectangle
(g+5

X xY
X and Y being real intervalsg Simply restrict Xy0 X, to lie in
x)gndvyl, YZ,in b 4
> Now consider the integral
Wi GGt
] fch(s),w(qé#(dsqu), <4)
Sxﬁ

where £ is a measurable function having positive (or perhaps
noﬁ;negative) cross~differences. (From~this point en we no
longer write Q in boldface, since we are dealing with an -~ .,
abstract problem in which S and Q enter symmetrically) (l) is
the special case of (4) in which £ is simply the product: ™
£(x,v) = xy. (This function clearly satisfies (Zn)” Hence any
general results obtained using (4) as objective function will
apply to (1) in particular. The domain of £ in (4) will usually

be the plane, but, if the ranges of h and w are both bounded,

b

5 3

et
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it is possible -(?nd sometimes advantageous Qlto let it be a
rectangle with interval sides;;;'
"(, én @ ,f;,__s

(l) and (4) are written as definite integrals. 1In case

>

they are infinite or not Wellhdefined, however, we interpret
them as indefinite integrals in the sense of @seudomeasures (v
being 5i;;a-finite), and "minimization" of (12 or (4) is taken
in the sense of (reverse) standard ordering of pseudomeasures,
FPor well-defined finite integrals this of c@u&se reduces to the
ordinary size comparison of definite integralé.

Next we come to feasibility conditions 6n V. First there

’4’»3”
is the areal capacity constraint, tt&% eé—setttun—4—(1n equality

(f»,g'-a’»‘.,,,
£5)

form) :

~Nl3(§ x Q) = a(F),

for all F ¢ ZS. Here ideal area o ls, formally, a measure on

vS§a¢a,‘(S z ) o is given and &s assumed to be aégma -finite;

(5) then guarantees that any feasible assignment v will also

be s&gma -finite.

We now have two-thirds of a transportétion problem, with

objective function (4) and capacity constréint (5); what—is

'A«miéainqy%sjthe requirements constrqlg;kl l% is perfeectly poss

sible to stop at this point and consider éhe "one-sided"
transportation problem: ‘ﬁinimize (4) oveé measures v, subject
to (5). Formally, a model of this sort hés been constructed by
Benjamin Stevens \with an inequality constraint, and in noni

N
measure-theoretic terms).%;f Note—that this "one-sided® problem

)



808

is in fact the special case of the transportation problem
(variant III) in which the requirement measure is zero. Hence
the theory of the problem is more or lesé encompassed in the
results of chapter 7.

In any case, this hone--sn.dedf;:apprg;ach does not appear to
get one very far, and for deep resultsféne must go on to the
full "two-sided" transportation problg#. ;giius therefore add

the following constraint:

, (2.$:6)
V(S x G) = B(G),; 16)

for all G ¢ Zq. Here B is a given éigma—finite measure on the

space of land uses., 8 will be calléd the allotment measure and
g 1 SaipEhens R

(6) the allotment constraintg the entire problem of minimizing
(4) over aisignments v, subject to£c0nstraints (5) and (6), will

be called the allotment—assignment problem,
// = f

w,"?l;

0 (6) may be interpreted as follows. For any measurable set

of activ1ties G, a total acreage: allotment B(G) is specified
which must be met by any assigngents we¢g3?two acres must be
devoted to turnip growing, fivejacres to education, etc. There
is still freedom to shuffle thgge land uses around over Space,
but the totals are fixed. 1In éontrast to the areal-capacity
constraint (5), which represe#ﬁs a "real" restriction on
possible assignments groundedfin natural law or human institu-
tions, (6) is best regarded as an "artificial" restriction
Fherp p

added to attain certain results. (Pne exception: (6) is a

"natural” restriction in layout problems, for whicﬁlggchnology



809

dictates the allotment, as in the separate processes of a
gaaufacturlng complex. But the Thiinen framework is:not well
suited for layout problems.)14

Though artificial,fin the sense of not represg%ting an
actual constraint on beﬁavior, {€¢) -dees servéga fuéction aﬁieh
arises from the "inner logic" of Thiinen systems. éonsider the
matter in the following light. Thiinen systems ariée in a great
diversity of contexts, on all different scales. ‘Wha% they have
in common is precisely the pattern of land uses: the ring

structure and the ordering of uses. -What they doénot have in

common ave the particular land uses present in ea?h,%and their

relative proportions: in short, the allotments éf land uses.
For someone looking for a universal theory of Thénen systems,
the allotment measures are the contingent featurés. It is
then reasonable to treat allotments as exogenous} and to set
up a model whteh yields the Thunen pattern of land uses regardS
less of what the allotment is. - (6) does just thisw, The
allotment B is given a priori, and we are to fi@d the optimal
assignment within that given allotment. The reéulting pattern
is (within very wide limits) independent of 8.§

This ap;roach is not used by any other coétemporary model=
builder in the Thiinen tradition.%?’ Rather, thése authors try
to predict the assignment of land uses withoutgassuming the
allotment in advance. 1In this sense our aim %% narrower and
more modest than theirs. But by the same tokéh we cut through

the aspects of these models which iﬂfrom the éoint of view of
: J :
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predicting the Thiinen pattern?; are irrelevant and distracting,
and thus:gﬁtain a deeper understanding of that pattern. From
this point of view our assumptions are much weake? than any of
theirs. .

The allotment-assignment problem, then, islgiven by
objective function (4) to be minimized subject to constraints
(5) and (6) on assignments v. This is,}formally,ha measure-=
theoretic transportation problem of variant;;i}tgaééis, with
equality constraintsff: (ﬁther variants could be used, but I
is'the simplest.)% The special feature of the allotment=
asiggnme?t problem lies in the form of the integrand in (4),
‘zz;eézﬁikiléﬂéxfact that £ has positive (or nonrnegative) cross-—
differences.

This special feature enables us to make very strong

statements concerning the nature of the solution. We need a

few concepts for this. First, on the plane it will be con—

-,,,..ug

1w

venient to say that point (xl, yl) is southkest of (xz, yz) iff
Xy <X, and y; < y,, northwest iff x15< x, and .y, >‘¥2:Letc.
Next, given two subsets of the plane,gEl and Eye By is said to
A

be southwest of E, iff every point oi E, is southwest of every
point of E, in the sense just definéd. Next, let functions

h:S + reals and w:Q + reals be given, and let (sl, ql),

(52' qz) be two points of the cartesian produc£Z§ x Qs (sl, ql)
is southwest of (s,, qg,) iff h(s;) < h(s,) and w(q;) <.W(92)-2

Finally, given two subsets of S x Q, E, and E,, E, is southwest
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ofPE2 iff every point of By is southwest of every 901nt of Ez

+ in this sense., Using this last concept we havep

‘ »mm.wﬁm *

%Q ,,,,,, | Definition: ILet v be a measure on the;ﬁroduct space (S x Q,

x}!é Zs X Zq), and let h:S8 + reals and w:Q + reals be functions.7ﬂ*""

[/ /
* £ A

v satisfies the measurable weight-falloff condition iff there
A

do not exist twd]sets El, E, € Z /% X + both of positive

V=measure, with E WOuthwest 05192.

N

i‘ As with potentials, there 1s a corresponding topological

concept. We suppose that top?&ogies T and T have been placed
on S and Q, respectively, maylng them topclogical spaces as

well as measurable spaces. %hese determine a product topologx)

&
i

Ty T on 8 x Q, and this With Ig X I, determines the support

of measure v. f

&
jzg}b Definition: Let v be a measure on (S x Q, I, x Z ), and let

oo h:8 + reals and w:Q + reals be functions.:v ﬁatisfles the

\
I\ J
a“;§ topological weight-falloff condition iff there do not exist

two points of support for v one of whigh is southwest of the

other,

"»

T T Pp— F

#
4

| Roughly speaking, both thesagconcepts state intuitively

mass where h is high and w low, and vice versa. Note that h
and w enter symmetrically in%o tﬁese definitions, so that,
instead of speaking of we;ght (w) falling off as distance (h)

rises, one could speak oﬁ'distance falling off as weight rises.
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The two functions, h and w, determine a 51ngle function

mapping S X Q into the plane, namaiy, the one assigns the_ﬁ

,,n"' '

value (h(s), w(g)) to the point (s,q). Assume that h and v,
are measurable; then this function is measurable. Hencefafor

any measure vV over universe set S x Q, it induces a mﬁasure A

over the plane:

“, A(E) = \){(Slq) l (h(s)' W(Q))E E}l

r
%,
P 4

anfér'any Borel subset E of the yléﬁeQ"m”}7
Now the two weight-falloff defiﬁfiions above apply just
as well to A as to v (the plane bef%é furnished with its usual
topology and Borel field, and with h and w each replaced by
the identity map, X *+ X, on the real line). Hence we have
apparently four\different qancepts. But our next result shows

that three of these cond;tlons are logically equivalent.

Qq&i. Theorem: Let v be a meé@ure on (s x Q, & o X z ), let h:S + reals

(“1} , and w:Q -+ reals be Measurable, and let A be the measure on the
= plane induced frqm v by h and w. Then each of the following

.conditions imp;j%s the other two:

fg(i) v satisﬁges the measurable weight-falloff conditioni
¥ s :

(ii) A sati fies the measurable weight=-falloff condition;

]

i (iii) A satisfles the topological weight-falloff condition.
"W 7

Proof: g{) implies (i) s Let Ey» E, be two measurable subsets
of thé;plane, withnEl southwest of E,. Their inverse images,

o
D

\

g
",



el VS —

g sy —

813

(g:$.7)
{(s,q) | (h(s), w(q)) e Ei}ﬁ i

(i=1, 2), retain this southwest-northeast relation. Hence at

least one of them has v-measure zero, which implies A(Ei) = 0

for at least one Ei’ Thus A satisfies measurable we&ght-falloff.

q“;;ﬂ(&;) implies (iii): ILet 2y, 2, be two points cﬁ’fhe plane, with
There are open discs El’ Ez about Zy0 Z

z; southwesy of Zge
1 and E2 cannot

; !Q reSpectively such that E, is southwest of EZ' “E

“k both have positive A-measure, hence zq gnd Z, cannot both

support A. Thus )\ satisfies topologigél waight~falloff.

ci (iii) implies (i) Let El' E2 be fwo measurable subsets of

i ¥

[ S
8 x Q, with E, southwest of Ez, and consider their images in
the plane:
i=1, 2. F, is southwast of F,. Hence at least one of these
e 8 _

two sets;h say Fj:— cgnnot own any points of support for ).

Thus each point (x,yf<e FJ has a measurable neighborhood of

A-measure zero, Rew the usual topology of the plane has the

strong Lindel8f property, so that FJ is contained in the union

of a countable ﬁumber of these neighborhoods. Call this union

G; G is measugable, and A(G) = 0, It follows that

0 = v{(s,q) | (h(s), wiq)) € G} 2 v(Ey). +8)
The equalﬁ%y in (8) arises from the fact that )\ is induced
from v;féhe inequality arises from the fact that §j is cone

4
5
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e

\ .
% tained in the inverse image ofrrj;which in turn is contained
\ 3 ,

\

% in the inverse image of G. Thus at least one of E;r B, has

v—measure zero: v satisfies measurable weight-falloff.

f We now have a closed circle of implications. L#f‘; 78

s

T — ;
We shall speak simply of v (or 1) satisfying>the weight=
falloff condition in the event that any (hence all) of the

above three conditions obtains. \

S — _,/

.—~What about the fourth condition, which is topological
—

weight-falloff for v? This depends on: the topologies T and

v

Tq, which do not enter the deflnitian of the other three con-
q\?ceptse

%%%nﬁ Theorem: Let v be a measure on (S X Q, Zs x Z ), let h:8 + reals

and wiQ + reals be measurable, and let A be the measure on

gfj}j the plane induced from v gy h and w; also let T and T be
=4 topologies on S and Q, réspectively, then
/yfli) if v (or 1) satisfies the weight-falloff condition, and h

and w are continuous functloﬁs, then v satisfies the topologi-
Xcal weight-falloff condition,

(11); if v satisfies the topological weight-falloff conditionrk

and f X fé has the strong Lindeldf property, then v (or 1)

satisfles the weight-falloff condition.

e
CP: Proof: (i}”f: If (s,q) is a point of support for v, then (h(s),v{(g))
P wtagr)r is, ‘a point of support for A. To show this, let (h(s),w(q))
'/tlgj € El 4 E2' where,E is open and E2 measurable. The inverse

images (7) are open for El and measurable for EZ' since h, w
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are continuous and measurable. Hence the inverse image of,E2

has positive v measure, implying A(EZ) > 0. Thus (h(s),w(g%i

supports A.

Now let (s o qi), i= 1,2, be two points of support for v,
Since (h(si), w(qi)), i = 1, 2 ,are both points of support for

A, they cannot stand in a southwest-northeast ﬁelation. Hence

neither can (si, ql),ti =1, 2, so that v sg&isfies topological

}‘iﬁl

weight—falloff

\/é (1¢) let El' E2 be two measurable sub&ets of 8 x Q, with El

e

southwest of E,. At least one of thése two sets & nay EJ -

IV
./ cannot own any poﬂnts of support gér Ve Utllizing the strong

/@”dafﬁ LindelOf property as in the preg@ding proof ((iii) implies (L)),
, »2/" it follows that Ey is containgd in a v-null set. Thus at

least one of El' E, has v-measure Zero: v satisfies weight<

falloff. Y& [T /

&

i
Jr

These results imply that, if h and w are both continuous,.

and T X T has the strong Lindelof property, then any of these
weight-falloff conditions implies the other three. The next
result establishgs a connection between weight-falloff and
allotment-assighment.

Q@&,;ﬁheorem:A Let (S Zs,a) and (Q, ,8) be s&gma-finlte measure

spaces. Let T ¢ Iy and Té [~ Zq be topologies on S and Q,

raspectively. Let h S + reals, w:Q -+ reals and f: reals2 -

\\ reals be functions such that the composite function

f(h(s),w(e)):8 x Q + reals is measurable, and continuous with

P e
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. o e

respect to Ts X Té. Finally, let_£ have Epsitive)&rqggi

differences. s

Then,k}f measure V2 is unsurpassed for thg;éllotmenti
assignment problem of minimizing (4) (reversgfstandard order)

subject to the constraints (5) and {6), itf%ollows that ve

satisfies the topolo ogical weight-fallaff condxtion (with

respect to h and w).

el ?gyffProof: The premises 1mp1y that ve satisfies the circulation

7" wf )'-v\!") ;
condition ((10)-or—(ii)-of 7. 5}, Thusk if (sl, q,) and (sz, a,)

are two points of support for v , we have

( €5 y’)

21

where fij abbreviates f(h(si), w(q*)), i, j =1, 2, We cannot /u«%
have both h(sl) < h(s } and w(ql) < w(qz), because in this

case (9) would cont:ﬁdict the positive cross-differences

condition (2). Thai is, (sq, q,) cannot be southwest of

i

(sz, d,). Thus vﬁfsatisfies topological weight-falloff., ”LLPQ 78

-f; k. ‘\/

j Our next result is similar to this one. Though its proof

is more comp;icated, it is also more interesting because it
makes no ccntlnulty assumptions; indeed, it uses no topological

concepts whptever. Recall that a function is half-bounded iff

it is baunded below or bounded above (or both, i.e., bounded) .

E;r' \\%_.M fﬂ‘ =

Q};nggggggﬁﬁ Let (§lzs'“) and (Q:Zqoﬁ) be aiéma-finite measure

,}’V ™ i Zt
{ v

o

ggaées. Let h:S -+ reals, w:Q‘+ reals, f:realsz + reals be
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functions such that f has positive cross-differences, and the

composite function f(h(*), w(-)):8 x Q + reals-isiméasurable.
~ be . I
Let measure vﬁfEeAfor the allotment—assignment,@roblem of

minimizing (4) (reverse standard order) subjéét to constraints

(5) and (6).

Then v satisfies the (measurable} we1ght~falloff condi-

tion (with respect to h, w),

- If v& is merely unsurpassed,ﬁihe same conclusion follows

¢
provided ome adds the premise that‘?Thf*%rq%e*ff is half-=
bounded/ on any Bouhdeo{ subsef of the p'eme Gnd h w are "‘Q"S“V‘\"'le

TR

_ Proof: Assume that«vnfvialates measurable weight-falloff, so

that there—are sets Fl‘ Fz € I, x Zq of positive v&-measure,
with Fl southwest offFZ. Either ofiihese may in fact have
infinite measure, bﬁt in any case they will cbntain subsets
G [ Fi' i=1, 2, of positive flnlte measure, sxnce Ve is

s*gma finite. ﬁefine the measures Vir V5 On (8 x Q, I, x Eq)

bY j.‘a‘f ( % € ;@,3

/vy (H) = vetH n Gl/veda), o, | (20
i=1, Z,fH € Zs X Zq, and define the signed measure v by
/ = ' - - :
/ v .(vl x vg) + (vé x vi) Vy = v, t11)

(Hergjvi, v; are the left;,and right;;arginals, respectively,
of,éi). v is wellidefined)since both v, and vV, are bounded

méasures. Finally, consider the (signed) measure
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e ————

VW + zy, © 2y
\ | .
g A where z,sfg gig[u!(Gl), v8162)}%> 0. One easily verifies that
% (12)(rema1ns feasible for the allotment-assignment problem” 2£ﬁ;
1.5,20) o
(cf. "(20)-of—7:4). ﬂ
Now, taking the case where vﬂ is best, we sﬁa&&-nﬂach a
contradiction. Since (12) is feasible, we must hawé
e (5. /3)
Lf(h(S), w(g)Jv(ds,dq) » 0. & (x3)
(The integral in (13) is a pseudomeasure;pwer S x Q, and "»"

refers to standard ordering( of. @9&+M¢¥uq 5} The integral

in (13) can be written as the sum oﬁ four indefinite integrals,

corrneponding to the splitting of v into its four components
(11). Wwe ﬁow show that

A . » H
i 3y g
& £ ok,
- 3 \ o | »~ i o ro
2\ 16 21 /o \ /

1 & ». _ \ é/ f’/‘
M £ d(v] x v3) + [ £f d(v! x v") -I \£ dv ‘J \£ vy (14)
ISXQ 1 sxQ ¥ 2 ) SxQ A— L SxQ 2

I
i

"f'? |

fA

is a well-defined expréssion.

1ﬁere “f“ abbreviates
£(h(e), w())).

That is, each of the four definite integrals
in (14) is well—defined, and their sum is not of the form

ﬁf”- To see thxs, note that there are numbers x, y such that

(g:5.18)
hisy) < x < hisp) o
& s16)
wigy)sy S wilgy), s

for all (sl, ql) € Gy (sz, qz)e Gy, where one of the ing

equality signs in (15), and one in (lG),\can be replaced by

N\
\:
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73 -
vés y
U olodA a4

;5<*;u\This follows from G, being southwest oflgz.;z}lég

determines a partition of’gzinto two pieces, one set satisfye

ing the lefg{ the other the right, inequality, Similarly7(lﬁ)

splits gainté two pieces. Together these split S x Q into

four pieces.qéé; is contained in the "southwest ‘quadrant" of

low h, w values; G, is contained in the “noitheast quadrant" of

high h, w values. It follows that{the_qohplement of the (southe’
1

And from this it follows that thefébmplement of the (southeast,

west, northeast) guadrant has v -; yzﬂﬁeasure zexro, respectively.
northwest) quadrant has v X vi ' X v;-measure zerogxrespecs
tively. Thus the four compoments of v are mutually singular in
pairs, The 1ndefin1te integral (13) can therefore be expressed
as a direct sum of four integrals over these quadrants., Being
comparable to 0, the integral (13) must be a signed measure, so
that (14) is indeed wellidefined In fact, the relation (13)
implles that the gkpression (14) is noégpegative, by the

standard integrgi theorem.

Now cons%éer the "four-dimensional" product-measure space
B R R Ty x gy vyb v (B X kg M Byr Vohe.

Here Sl and S, are replicas of S‘)and Q1 and Q, are replicas of

Q; the $ub90rlpta are addeﬂ for clarity. We have

\3:

A E { {ig.fj}'{‘? }
i)Y ISXQ f$dvi =/I filﬁd‘” X vz), {x7)
‘ lexszxgz

i=1, 2, and
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\ j; e ;: A3 5 f
ﬁ‘f;r‘\ [ O 2":;:? ,,w' | @)

| (%59
[stff a(vy x vy) = f £19080vy X v5), s
S XleSZxQz 4

where (i,j) =(1, 2) 4, and (i,3) = (2,1). p.
In (17) and (18) ?mf“ on the left again abbreviates
f(h(*), w(e)), while fij stands for f(h(s )y w(qu), i and j
ranging over 1, 2 (four cases). The four equgtions in (17) gud
(18) all arise from the induced integrals théorem, resulting
from four different projections from thejspace S * Q) % 8, x Q,
to S x Q. Thus (17) for i =1 arises ff;m the projection
(sl, dye Sy qz) +> (sl, ql); for i= 2 it arises from
(sy3r 930 Sp0 @) > (550 @y)e (1s)ffor (1,3) = (1,2) arises
from (sl, dyr Sy qz) -+ (sl’ qz); for (i,3) = (2 1) it arises
from (sl, dis 850 qz) + (52' ql) The only difflculty in
demonstrating all this arlses in (18) , where it must be shown,
fe@mexample that vi X v is the measure induced from vy X v,
by the projection (sl, qlq S qz) + (sl, qz) This follows
from direct substitutiop in the definition of product-measure.
The well-definedness Qf the left integrals in (17) and (18)
implies the wellndefinedness of the right integrals and the
stated equallties.gd

1‘

(l!),.(ld), and the nonﬁnegatlvity of (14), then yield
~¢;\" : ) \ {/f; }!;

L I (145 f 21 =~ £33 -, 22)ﬂd‘“1 X vy) 2 0. 4599

S lexsﬁxQza
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/ 3 sl /

But this is a contradiction. Pirst eésaii “1(351 x Qi)\Gilaﬂ
i=1, 2, so thai ‘the complement of GyX 1 Gy has v; x v, =measure
zero. Second, (v X vy )(G x G2) = v (Glrvz(Gz) =1 >0,
Finally, the integrand in (19) is negative on Gl X Gz, since f
has positive cross=-differences. Hence the integral 1n (19)
must be negative, a contradiction. This proves thﬁﬁfirst half

of the theorem. rd

v¥ is merely unsurpassed, and again assumg»that v® violates

measurable weight-falloff. Proceeding as above, we find a set
G, southwest of a set GZ' both with positlve finite v°-measure.

Each of these contains a subset of p051t1ve measure on which Vﬂ

as well as h and W 'l'kew\selves re, . ;‘ ":H
£({), w(e ) ),Yie bounded, é measurable sets NAR R

/

G; N {(S.q) |m< £lals), w(q)) <m+1,nghlO<n, F<V(3)<P‘”}

qf / | ‘#

= 0, +1, +2,..., countably partition Gi' hence one of these
has positive measure. F@r simpllﬁity, we designate these sub"

sets by the same symbols, G, and G

1 2’

Now define v, aQa V, as in (10) and consider the expres=
sion (14). The fouf{measures appearing in these integrals are
bounded. The complemant of Gi has vi-measure zero, w3, 2.
and £(h(-), w(- )) is bounded on G; U Gy; hence the %ast two

integrals in (14) are well-=defined and finite. .As'for the
v, xv" are batl, zero off some set on. whicl, kL and w aye

bounded, and The wlegrends are hal€ -bounded on This set. It €o lows
that they, too, are well-defined, and not infinite of opposite

sign.ﬁ;Hence the whole expression (14) is wellidefined.
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It follows that the indefinite integral (13) is a sigﬁed
measure, not a proper pseudomeasure, and is therefore gooparg
able to 0 under standard ordering. Now Just as above we conz
struct the new feasible solution (12), a;d the uneﬁfpassedness
of v® together with comparability then yields reiation (13).
Hence (14) is nohlnegative. The argument above then again
yields a contradictlon, and the last part of the theorem is

Al g proved.w
. ne lmmuhm\'e a\mnhurg.\ The _Frem!ses on b n hold

ke — ov\\ (—or £ resteicted o range o (l‘w e proof above STI ‘w
1 These theorems have a very simpig intulgive meaning:' 1ds verbglin,

;/// Suppose v fails to satisfy, say, topological weight-falloff,

""
.i‘,

C’Wf so that there are points of support (el, gl), (gz, 9,), the

first southwest of the second. Then shift a mass of activities

o 5 &

in the neighborhood“ of q, from the

\

neighborhood“ of loca<
tion Sy to the\ neighborhood"of location Soe and shift a mass
of activities in the neighborhood“ “of q, in the opposite
direction. This reshuffling does not affect the feasibility
conditions (5) and,(ﬁ), and the positive cross-~difference
condition on f implies that the total transport cost (4) has
been reduced. Hence the original assignment v has been
gsurpassed. Tﬁe proofs above are merely a rigorization of this
informal argument.

I1f we‘are looking for optimal soclutions to the allotment-
assignmeht problem under the mild conditions stated above,

these theorems sayp-that we might as well confine our attention

to assignments v satisfying some weight-falloff congiition. But
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note—that there is as yet no guarantee that such solutiqﬁs will

be best, Or even unsurpassed. We do not know at thiqgstage

whether hheue even ex1st such feasible assignmentséﬁ And even
if they exigt they may not be optimal, since the possibility
remains that there are no optimal solutions, /

We shall attack these difficulties by ttansforming the
original a lotment-assignment problem 1ntq ‘a simpler one.
Specifically, we "induce" the original p%oblem, which is set
in the product space s x Q, into the plane by means of the
functions h and w."a on (S ¥ ) is iﬁduced by h into a measure
on the real line. Similarly, B8 on (Q z ) is induced by w into
a measure on the real line. Finally,~wa«havema&reaéymmantlonadw
that v induces a measure )\ on the plane via the combined
function (s,q) + (h(s), W(q)}

We shall retain the ngtatlon ¢, B for the ‘measures on the
real line induced by the&e respective original measures, and |
rely on context to distinguish them. The transformed allotment="
assignment problem now reads-  :

Find a measurefk on the plane which satisfies the con~

&
i

straints r

A (B) = a(E) 20

o,

A"(E) = 8(E) (23

for all Bq&el sets E on the real lineruhup and minimizes
/ (¥:$>2)

g% ar. 22)
Lreals
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/

Héte A', A" are the left;hand righ%%iarginals of A respecs
tively'%and are of-course measures on the real line," (20) ‘and
(21) are the analogues of the areal-capacity and allétment
constraints(h(S) and (G)L)respectively. The ;ntegrand f in the
objective function (22) is the same as theuﬁyappearing in (4),
and so has positive (or noﬂ%negative) creés~differences.

The transformed measures o and B An (20) and (21) must be
sigma-finite. This is not implied py the s&gma-flniteness of
the original o, B measures in (s)fénd (6), and must be
explicitly postulated. In facg;%e shall make an even stronger
assumption below. 'cé

This transformed prob;gg has been placed on the. plane.
More generally, it could ?é placed on a rectangle X x Y (with
interval sides) providequnly that the ranges of h and w are
contained in X, Yr%reﬁﬁgctively. X xmgyisv;hgn the domain of
f and the universe sai of A; X and Y are the>universe'sets of
transformed o and B, respectively.

The objectivg function (22) is written as a definite
integral. Buth just as with (4), if it is not well~defined or
finite for cer@aln feasible measures A, it is to be inters
preted as an xndeflnite integral pseudomeasure; and “minimiza+
tion" is to;ﬁ; understood in the sense of (reverse) standard
ordering. gf
The ﬁirst thing to notice about this transformed problem

is that,gformally, it is just a special case of the allotment=
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assignment problem: Both (g,zs) and (Q,zq) are the real line fy“
€:§§lwith its Borel field, and both h and w are the identity function.
\é?, The preceding theorems then apply and take a very simple formc -
0
/

= let maasurable f:raals + reals have f~positive erossaP

differences, and let A\¥ be best for the problem of

minimizing (22) subject to (20) and (21); $hen A&

satisfies the weight—falloff condition., i&ha sane

conclusion holds if A\¥Y is merely unsu:pasaed, provided

\uis eibher—contimuons—or half—bomjxded oh l,oumo\ ea! setg,

Lg;we shall now investigate the féasibility and optimality
relations between the original and;;ﬁe transformed allotment-

assignment problems. The follow@ﬁé property of induced

pseudomeasures is needed,

?Q,,ijnemma: Let (B,Z') and (C,I") be measurable spaces, and g:B » C
a measurable function. Let-15=%§ be two measures on (B,L'),

P

7 T)] and A, A% the measures on (C,Z") induced by g fram v, VW
Y

respectively, all four of these measures being ségna-finita.
Then (A2,)) is the pseudomeasure induced by g from

pseudomeasure (v2,v).

“?‘ﬁ,iProofa Recall (page coo ) that the pseudomeasure induced by g

\WW from ¢ on (B,E') is (ul,uz), where Uy, M, are the measures
{j}é induced by w*, W"ﬁkreapectively; this is defined iff L D
are both7aiqma-finite. Now Sor'w = (v2,v) we have

| o o " (%.4.23)
! 7 vV +v=1 + v +23)
f
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(equivalence theorem). This implies

ey

o

Qr
e

N
o &
E? ~
i~ %

My + A =, + N0

To show this, let E € I", and apply (23) to tblg(e) e E}.

The four terms in (23) are respectively equal to the four terms
in (24) applied to E. Hence (24) is true.
Now w < veand ¥ < v (minimizing property of the Jordan

&
form). Hence My < A2  and Uy < A, so that ul and U, are s hgma -

S——

i

finite and the induced pseudomeasure ex1sts. From (24) we

obtain .

S .

(ulluz) = (AS{A)tffﬁ

L
e

by the equivalence theorem againg

R 5 A TR S

. =

A——

#,wvfégrﬁmmheoremz Let (8, Zs,a) and (Q, ,B) be measure spﬁaes, and ‘el

s Mw

h:S + reals, ws Q + reals, f raals + reals ,measurable functions.

. Let o and B, as well as their namesakea induced on the real
A:L}; line by h and Vs respecthely, be s*gma finite. ILet v® be a
j' measure on (S x Q, ES X/ % ) @&éeh is feasible for the original
/ allotment«assignment problem, (4)yw+§i}%((), and let A%'be the

[ measure on the plane induced from v by the mapping (s,q) -+

(h(s), w(qg)). Thgn
o

]
a3

S (ii) | if A2 /s unsurpassed for the transformed problem, then
s

2~ is unsurpassed for the original problem.
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-~

/ ; ,
) ¢i§:?roof: (i) The feasibility condition on v% is that its 1efg/b
jg"'s

y 4

/ and rightfmarginals coincide with o and B respectively.
/ /

;E;' any Borel set E on the real line we have

Lo

L'

(3.8.25)
\ \'\/\’A (25')
%* vi{{slh(s) € E} x Q] = a{fs|h(s) € E}.

For

e ——

x”(E)'= AZ(E x reals)

e ———

\%

The right~hand texm in (25), however, is simply a(E) for the

induced measure o; this proves (20) for A%{ A similar argument

establishes (21).

é blem.
i ?iéxffo

r& \
9»5(13) Assuming that v& is surpassed, we ~shall prove that AS~
/i

Thus A2-is feasible for the transformed

s surpassed. Abbreviate the composite function f(h(+), w(-))=:>

: S x Q » reals by k. Then by hypothesis shegefggiéts a feasible

: w& v/such that

igi,/, /':‘_w [ -k) d\% I "'k} ane %

> ]

-\9 (These are indefinite intg%rals over S x Q, and "»" is the

"greater than" relationjfcr standard ordering of pseudomeasures.

The minus s3ign is intréduced to convert the objective from

:a minimization to maximization )
| b W:a“T

; > (26) is nquivalent to

[xav »0n 27
A =N ;

where ¥ is the pseudomeasure (v2;v).

.

From the definition of
standard’order, (27) is the same as



\ E A7 aﬂ 7\ 5 \ -0 ;
e S a AR 3h[ 5@ | e
- & \ [ \itay* +f \kTay” >1[ Kiay” +| [ kTav*, - LSVt
| &:}") SKQ . Usxg N sxg " Sx\a“ i
i : 5 % / 4
| where these are four ordinary definite integrals. ﬁf

Now 1et U3s ¥, be the measures induced on the plqﬁe from

¢ . ,\respectlvely, by the mapping (s,q) -+ (h(s), w(q))

! 4 y
§ &’“(28) implies & ‘ff
}Q”‘é ! dtdu 1 & [ f:;g}lz > I f d 2 * ] 2; f;élul ~— (2. ')
: reals® reals®|) | rea]_s reais 2»:;;““_‘
<V ) | ! / | ¥ il e
since by the ordinarvy induced 1ntegralsftheorem, the four

integrals in (29) are equal to the inﬁegrals in (28) , respect

tively from left to right. y
We have w+ < v&'by the mini@iéing property of the Jordan

L |

fzrm. Hence their induced measﬁies stand in the same relation:

Y < A2{ A similar argument,yields Hy £ A, where A is the

% measure on the plane induced from v, Part- (i) established
that A2 and A were feasible for the transformed problem. Hence

they, and therefore My gnd Uy, are sigma finite. §29);then

| implies ;f (5.<.30)
r‘“ I,\f Sliftg) = 0, t30)
% in terms of pseudoﬁ;asure (ul,uz). This latter is the pseudo?
é measure induced from ¥ = (v2v), and we now invoke the pre3
; ceding lemma togestablish the pseudomeasure gquallty-
(uq o Hy) = (A2). ér)”

' \
n 4
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e’

"/ Finally, (30) and (31) vield N

— >

S I«‘"f’»d* > Ih}ef)Adxs.

But @j«f)AdA'isL;ust the (negated) objective functigﬁﬁ(zz) for

Mjwmwwﬁﬂ'”the transformed problem, end so AY is surpassedﬁ?§?k. ﬂLkﬁﬁiﬂﬁ

fmw (Note—that if (4) is a well-defined, f%ﬁ{te, definite
integral for all feasible v, then part (igf?of this theorem
can be proved in a few linesj égéiihéﬁﬁiZZ), for the A
induced from v, is equal to (4) by gﬁe induced ihtegrals
theorem, &lso, in this simple casgiithe distinction between
"unsurpassed" aﬁd "best" disappegié.) |

In general, these resultqféannot,be strengthenedg One
cannot infer the feasibilityf;f v® from that of A%, nor the
optimality (in any sense) df A® from that of v®. This latter
inference, for example, is blocked by the following diffiéulty.
To establish the optimality of AY one must consider éll other
feasible measures Af‘ But it is not necessarily the casé that
every such A is the'induced measure from some feasible v. (In
fact there may not be any such v, feasible or not.) The
optimality ofﬁé@vtells nothing about such ”uqinduced" feasible
measures A,yég that the optimality of A° cannot be inferred.

We-egéi&—now make a fairly detailed study of the trans-
formed gf;blem,#and then use the preceding theorems to draw
ccnclugions about the original problem,

5éansider the following conditiohs on the original measures

o aﬁd B
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5, ~ m‘-""
—— ,;_,,.,. ppm——

&?%— ‘Definition: Given measure o on (s,zs), and measurable

h:8 + reals, o is finite from below iff

;‘?‘ a{s|h(s) < x} is finite, — S me

for all real numbers x. Similarly, given 8 on (ngé) and

measurable w:Q + reals, B is finite from above {iff

Bla|w(q) > x}| is finite‘,f_-.;,; (33)

for all real x.

e ———————

The interpretation of (32) is tgét the ideal area of the

region within ideal distance x of ;ﬁévnucleus is finite, for
any real x. This is not implausiri;len and does not preclude
the possibility that the ideal area of Space as a whole is
infinite. Similarly, (33) states that the allotment to the
set of land uses of weight exceeding x is finite, for any
real x. ”;

These properties cah be stated in logically equivalent
form in terms of the transformed measures o and B8, Namely,

(32) and (33) are thg same as

A

£ A

. ¥ | .
alyly <,X}\[ and\ Biyly > x} | are finite,” 434)

for all real x,x%espectively. That is, the a-measure of any

left half-line,land the B-measure of any right half-line, are

finite. Note that (34) implies the stgma-flniteness of o and 8.
Thewyeasmmd&umimposing these conditions is~£hat they

insure thg existence of a unique measure A on the plane

/
/
s

A
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satisfying the weight-falloff condition with marginals a and

B. As a preliminary, establish a connection between

the weight-falloff and northwest corner conditions.*”We have

already encountered the latter condition for afmeasure A on a

product space A x B, where A and B are both countable (in . 2)
The general idea is that, given its mafginals, A ha}e as much

mass as possible concentrated 1nt9“”corner“ sets, these being

defined in terms of certain complete orderings on A and B. In
the present case, both A and B are the real line, which has a

natural order. A is| thén |to concentrate its mass in the

"corner" with low A~va1ues and high B-values. The  following

definition makes this precise.

e
N

-

Definition- Let A be a measure on the plane, with leftjﬁand

rightsmarginals A', A",;respectlvelzj ‘A satisfies the north-

west corner condition iff - Efﬁ }szf’
/ )

t
v

for all pairs of real numbers (%35 ¥q) .

o e, )
e \ Lt G - F

?{(x,y)lx <Xy, ¥ >_y1} is the quadrant of the plane "north<

~

west" of the point (g{; ¥q)- It is -easy to see that, for any
- ]

measure, the left s{de of (35) never exceeds the right. Hence
(35) is indeed thé condition that the mass on these northwest

sets be as laggé as possible.

y 2

,u",

AN MlUEgI iR < By ¥ > gglm “‘5’“(" {x|x < x;},A" {yly>y1) B&%
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Q%L,‘ Theorem: Let A be a measure on the plane whose 1eft22arginal

e A' = a is finite from below, and whose right marginal A" = g~

 £2}* is finite from above??tﬁ%£¥is, (34) holds). Then A satiﬁfies
the weight-falloff condition iff it satisfies the noggﬁ;est

v
4

corner condition.

?}- Proof: For any point (xl,yl) define the three §é§s

— T\v'%‘, = {(x,y) lx < Xy0 ¥ > Yl},@“:’f"’
) / (¢85
o 'F o= {(x,y) |x < x5, ¥ 24} “36)
¢ = {(x,y)|x > xl';yf> yl}. \/
Then o 7 Pty
AE) + A(F) = A'{x|x'< x ), 37
awnd Jfﬁ '
A(E) + A(G) = Af{y|y > y;}, 438) -
‘ L7 DA .
so that (35) takes the./form né*
/ W
,;"/: IIS/E ( WA )
@) = mia{i@ + @, AE +a@). - " 439)
Now let A satisfy%weight-falloff. Then either A(F) = 0 or
A{(G) = 0, sincgﬁF is southwest of G. Either of these cases
- yields (39), éo that A satisfies northwest corner.

//ConveLSely, let (39) be true for all (xl,yl) By (34),

»wﬁ"’wy

all terms/in (37) and (38) are finite. r“t.es’;)?«:nen implies that
{ either A(F) = 0 or A(G) = 0. Now let (xer ) and (x3,y3) be

"'7 «V
: any tWO points, the first southwest of[the second, and choose
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Xy and Y, such that x, <

2 3 < Xar ¥y < Y, < Y3 Then F and

G of (36) are measurable neighborhoods of (xz,yz) and (x3,y3),

respectively, so these points cannot both support A. This.

proves that A satisfies weight-falloff. |[HEL/@

e

Our next result is based on the theory of dLstribution

functions. Owing to the fact that we are deawing with "northg

west"” rather than "southwest" sets, the stghdard theorem

(ppers 00O ) must be rephrased in a slxghtiy different formg

=

} %“TLemma~ Let g:realsz + reals satisfy ?ﬁé following three condiZ

PN - Rlonwd 4

f i % | d
¥ i e ——, w\E =
. r

lgii) for All real numbegs x

17 %37 Y10 ¥, with X, < X, and
&
¥y < izéwe have i

b

("“J")’«r Y
g(xl.yl) + 9(x,,y,) < gﬁkl'yz) + g(xz.yl). 29y

-W

(1:) g is continuous fgbm the “northwestfj for any (xl,yl)

e —

[ and any € > 0, there ﬁs a § > 0 such that

| l,g’ .4 )
7 : o el
l Flgx,y) = glxy,yy)| < e L)
| ' 4 |
K ‘for any (x,y) sﬁ%isfyingi X, -8 <x< Xy and y; + 6§ >y > Yqi
N By /
{ T} (lll)for flxqﬁ Y 9(x,y) - 0 as x + -w, and, for fixed x,
\ g(x,y) * qwgs y + 4o,

,'!‘ ,\}”

% fV Theg there is eﬁactly one measure A on the plane satisfylng \

§; f;ff A{ (x,y’ lx < xl' Y > yl} = g(xllyl) \"H%)

o for §il points (xllY1)¢

| y
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2 &
U!/
[ Note the opposite sign orientations of X and y in parts
. ,}q (i}) and giig).(o?Zj;{aﬁétes that g has nontpositive cross="
';Lyi o differences (cf. (2)), whereas the}usual distribution functions

iﬁ?ﬁy‘ have the opposite property. This,iemma follows from the
usual statement by "reflecting" the plane through the X-axis:

(x,y) + (x,~y). We are now reaay for the main result.

| Theorem: Let o and 8 be two measures on the real line L

3 ; -
satisfying Fé%ij o is finite from below and B finite from above.

l)¥ Also let a(L) = B(L). Then;éhere is exactly one measure A on

= the plane having o and B as its 1eft;7and righg%&arginalsq e
' }

satisfying the weight—falléff condition.,

| W’f G Bxoot: :

[ 9(Xy07) = min(afﬂx f< x,}, Blyly > yl}) 43
pey Fimte,
3/ This is indeed .xeaL-vaiﬂeév,by (34). We now show that g

+ satisfies (1), (11), an& (111) of the preceding lemma.

;T As=feor (1)& choose real numbers x; < X, and Yy € ¥Yye We
/l/ 3?%)“’

clearly havélg(xl,yl) < g(xz,yl) and g(x,,¥,) < g(x,,y;). If

V.

Y]
/{L@ﬁ a{x|x < Xy } < B{yly > yz}, then also g(xl,yl) = g(xl(yz). If
\ a{xlx < % b B{yly > yz}, then also g(x,,v,) = g(x;,¥,). In

either case, the uquali;y, combined/with one of the inequalities,

yields (493).

is continuous from below; and B{y|y > yl}, as a function of Yyr

A R AN =
o

o
q;
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is continuous from above. (This follows from the basic

continuity property of measures, p;ge (0, é§) ») That is, given

(xl,yl), for any € > 0 there is a § > 0 such that
| (5.4
A44y

la{x|x < Xy} alx|x < x¥?1 < g

—and f‘; L™
|etyly > y,}- B{yly > yiH < e, 45y

_1for all Xor Yo satisfying: xl -6 < X, £ Xy and Yy, + § i.Yz
y (%4) and (45) together vield (41).
’\;- 155

fiﬁ:rﬁsméer (iii)} the llmit of a{x|x < x;} is zero as X1

and the limit °£szYIY >gy1} is zero as Yy, * +=. Hence the

lJimit of g(xl, yl) is zero in?both cases, which is (lih)
5 Applying the lemmﬁ, we conclude that there-ewigss a

e
measure A satisfylng g43)

b -'w,

f:

We now show that this A has the

required properties.

Let Y] 90 to =»iin (42). The left side has the value

AMix|x < xl} as limgi, where A' is the left marginal of A.

Biv|y > yl} has thefvalue B(L) = a(L) as limit, which is at

least as large as afx|x < xl} for7any Xq . Hencea g(xl,'yl)

This proves that
e

approaches of{x|x <§xl} as limit.
TAf{x|x < x.} = o{x|x < x,}
: 5 1 3
for all real X3 }' and o have the same |[distribution function, o™
and must therefore{coincide. :
Letting Xy 90 to +» in (42), a similar argument shows

that A" = 8. ‘Thus o and B are indeed the left and right

marginals of ), respectively. e T
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“fﬂ-This being the case, (42) is the same as (35), so that
A satisfies the northwest corner condition. By the preceding
theorem, it therefore satlsfies weight=falloff.

JLgme existence of A has now been established. To prove
uniqueness, let A satisfy weight-falloff and have marginals
o and B. By the precedgng theoreq,l satisfies northwest
corner. Hence ) satisfies the relation (42), where g is $7

given by (43), But taere is just one measure satisfying this

T relation, so A is unique. L4y e

o

» We now show that this result, establishing the existence
and uniqueness of é weight-falloff measure on the plane,

extends in part tgfthe original problem on § x Q.

— ’T’,

yfﬁuTheorem- (uniquenass theorem) Let (s,z %) and (Q.Z +B) be

B

measure spaces, and h 5 reals,» :Q + reals measurable ftmc:J
tions such that a is finite from below and B finite from above
(with respect to h w, respectively). Let a{s|h(s) = x} = 0

for all real numbers X, and let E be the class of all sets of

the fo {qlw(q§ € E}, E ranging over the Borel field on the

real line. g
;

\qﬂﬁa‘ Then theéé is at most one measure v on (S x Q, Es X Zq),

with marginal§ o, B,xsatisfying the (measurable) weight=
falloff condi§ion.

=3

:%LProof: Consider the class, R, of sets of the form

J

F x {q]x < w(q) <y}, €46

where F ¢ Zs %nd X, Yy are real numbers,

i
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7]
(Lo
»/'/,

XR generates the'siéﬁa—field Es X Zq. To show this, it

suffices to prove that all measurable rectangles belong to I,

-

’!'w

the sigma-~field with universe set S x Q generated by éi ConZ<
sider the class of Borel sets E on the real 1ine having the
property that {g|w(g) ¢ E} belongs to the s%gmaufield on Q
generated by the sets {g|x < w(q) £y}, %, y real. This
class is closed under countéble uni&ns and complements; it
also includes all half—open intervals {z|x < z < y}, X, ¥
real. But the laéér generate the Borel fleld;l‘?nce the sets

lr'

{a]lx < w(qg) & y} generate the sigma-field of sets {q|wl(qg) ¢ E}MZ

-lF ranging over all real Borel sets. By assumption, this s&gma-

field is Zq. Hence Z;owns all measurable rectangles, so that
L= I, x Zq. 4 :
Next, R is a sem1~ségma~ring (paw= 000). 1Indeed, ¥ ¢ R,
the intersection of;two R-sets is an R-set, and/’ the differ;
ence of two é?sets éan be expressed as the union of three dis<
joint é-sets.: Qin:%act, é—is a semiéringi)‘
“Now- let Vqs vz be two measures with marginals o, 8,
satisfyxng (measurable) weight-falloff. We will prove that
v; and v, must coiﬁcide on ﬁ,‘and that there exist a countable
number of R-setséwiose union is S8 x Q, such that v, and v,
are finite on each; The basic extension theorem (gggeﬁ”“)
then guarantees that vy and vV, are equal, and we are through.
First, the R-sets S x {g|n <w(g) <n + 1}, n = o0, +1,

+2,..., cover § x Q; and vy and vy must be finite on each,
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since their common right marginalkxﬁ,_is;finite from above,
This proves half f the statement in thé paragraph above.

/ It remains to show that Vye Yy cainc1de on R Since they
satisfy measurable weight-falloff, the measures, Al' XZ'
induced from them on the plane by the mapping (s,q) + {(a(s),
w(g)) must satisfy weight—fallofquand must have as marginals
the measures on the real line indu;ed from o and 8. These
marginals are finite from below ana z:ﬂ:mvea,s respectively, so
that there exists exactly one weightufalloff measurek A whaving
them as marginals., Thus A = A —12. A ls, 1n fact,ttne EEEEE?

west corner measure with these @arglnals. It follows that

jﬁ?"l’:{‘fqu"h‘s’ <x', wi@ > x} = minfatslnee <x'},, 6w

f ¢
ff ) p‘i‘ Colqlwlq) > x} ]

M

ﬁ **ﬂ !

g jo

is true for all real numbers, x,'?', for i = 1,2, For this is 4/;:;ﬁ

merely the northwest corner co?dltion (35) expressed in terms A
of Vi @ and B. %Yg;siglso hoi%s for infinite x or x', as may
be verified by direct substitﬁ%ion.

Next, for any number k be%ween 0 and Q(S), inclusive,

ehere (exists an extended real number y'/such that
<o e ;

a{slh(s) i< y')} = ke K‘féﬁi

To see this, take the supremumgpf the numbers y' for which the

left side of (48) does not exceed k. For this value we have

/ 2
wq )

a{s|h(s) < y'} <k < a{slﬁ(s) <y'}, 8 :449)
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u W " 4
from the continpity of measures. But, by assumption, the left
and right terms in (49) are equal,;ﬁence (48) follows,
7 &
Now choose any member of R.  Given the numbers x and y in

(46) choose x' and y' to satis§§

a{s|h(s) < x'} = [S{qlw(q) > x}, 150)
;‘ (qf;gﬁ;
a{s|h(s) < y'} = gig|w(q) > vi. +51)

NAAAA 2

x' and y' exist, by (48),3since the rightAterms in (50) and (51)

11e between 0 and B(Q) = v (s x Q) = a(s).

From (47) and (;0) ‘we obtain
vi{(s.q) In(ts) < x', w(q) > X} (4.4.€ 2
(52)
Y= a{slh(s) < x'}fs B{qIW(q) > x},

Vs
(nl
((
\LY

_?wfor i=1,2. The common value in (52) is fin1te5>because x is

s X

finite and B finite from above., It follows that
\W ;
v, {ts,@) In(s) > x', wi@ > x}

(53)

S = 0= v, {(s,@ |ns) < x', wlg) < x},
‘2;; = 1,2. To see this, note that the sum of the left-hand terms
riﬂ (52) and?(sji‘is &i{(s,q)[w(q) > x} = B{g|w(g) > x}, and the
first equaliéy in (ﬁzggfollows by subtraction. The second
equality is proved sim;iarly. The same argument applies with
Yo y' substituted foé,x, x',érespectively, and we conclude that

s———

{53) remains true witﬁ these substitutions. Thus we have four

equalities (53).
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Now let G = Fn {s|y' < h(s) < x'}. We then have

A
B |\ ’
SRS
A=

] ue! & : [ )
'g ViE‘ x {g|x < wiq) < ya - "i@ x {qJ:e’ii <wlq) < yi]. (54)

ﬁ for i = 1,2, Fox, the set of points (s,q) belonging to the

{ 1eftﬂ/ but not the rightnhund seggln (54) is contained in the
4 53), as one

union cf two of the four sets of measure zero of |

verifies. Finally, one has

é i[% x {g]x < w(q) < gi] = v; (G x Q) = a(g), ’;55L

i
H
&

i=1,2, PFor the set of poﬁnts (s ,q) belonging to the middle,

but not to the left-hand sat in (55) is contained in the union
easure zero of (53), as one Verifies,

of the other two sets of ﬁ

{ 0 ”
i (6 #3
i Vi (5@) ‘and (55) show éhat vy and vy coincide on all R-sets.

4

]

Hence they are identlcal,dLLF’hJJ?

Note that the assumptions imposed on the two component

spaces are quite dlffeg@nt, unlike all the other theorems of

"uf’;ﬂ e

this section. The con@ition that a{s|h(s) = x} = 0 states that

the measure on the reag line induced by h from o is nonqatomic,

while the condition th?t Zq is all sets of the form

{g|w(g) € E} states tf%t Zq is the sﬁgma—fleld inversely

induced by w from thé real Borel field.

From the symmetry

of the allotment—assignment problem in S§ and Q, it is clear

that these conditions zould have been interchanged (making

induced B noniatomlc, and Z inversely induced — without invali=

f
dating the conclusion.; But the form in which the theorem is

/) stated is the one~which applies neatly to realistic Thiinen systems.

Vi
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AN Neither of these assumétions can be dropped without
invalidating the conclusigh. This will be illustrated later
o with counterexamples froﬁ-simplelzﬁﬁnen systems.,
Next we have an ex?étence theorem for the original
allotment-assignment pfbblem similar to the one proved above

for the transformed pﬁoblem. 2 function is said to be semi+

continuous iff it is 'either upper or lower semicontinuous for

both, i.e., continuqﬁs).

—

fe

iL%”}ﬂTheorem: Let (S,Zs,é) and (Q,Zq,B) be measure spaces, with
a(s) = B8(Q) < e, ;et Iy and I, be the Borel fields of
topologies Tsandqut%r;épecti;ely, these making 8 and Q Borel

subsets of topoloéically complete and separable spaces, Let

(WMK the functions h:§:+ reals and wiQ + reals be semifcontinuous.
; Then thexe éxists a measure v2 on (S x Q, Zs x Zq) with
marginals o and é, which satisfies the (measurable) weight~
falloff conditionf (with respect to h, w).
“71 Proof: First, 1et§h and w be lower semijéontinuous. Let
" G A hngich
_f:reals2 + reals be a function whieh has positive cross=

differences, and%whéeh is bounded, continuous, and increasing
a By
in egch argument; An example is
§ ¥y

f(x,g§ = e e sl L 1569

We now show that f@e composite function £(h(+),w(e)):S x Q +

reals is lower semfj?ontinuous. Let (s ) belong to the set

0’9o
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{(s,q) |£(n(s), wig)) > z}, 57
/d:{«wci J{é
Z being a real number.,  f being continuous, the set
A y
{(x.y)tf(xay) > z} (58)

g {
\Lw\/f cpen in the plana.L’(h(s ), w(qo)) belongs to (58), hence
there is a wlpoint (x rY o ) southwest of (h(s ), w(qo)) wwxcn
belongs to (58), Consz&e;LEhe following subset of S x Q:

{5

{SIh§S) > xo} x {qlw(q) > yo}. : (Sé)y

Q.

‘J(‘uﬁw g
(59) isg open, ny the lower semlﬁcontlnuity of h and w.ax(s

s

)

o’qo
belongs to (53) by censtruction. Finally, ) 1§mggnta1ne6

in (57), since £ isrlncreasing in its arguments. Hence {573
is an open set for any 2, so that £(h(*), w(*)) is indeed lower
semi*continuous. |

It is also a H%unded function, and these properties,
‘together with the cher premlse » imply that the allotment-

ass;gnment problem - (4),—%&$¢w(6) has a best solution v° (ﬂ 4),
3 Since f has positive cross- differendces, thls Ve satisfies

'Ii7 the measurable weight-falloff condition.

Hé?or the remaining thr%? cases, replace f by f', where
T ;

f(-x,»y)f

h&f' ,;f h, W are koth upper semitcontinuous;

f'(x,y) = -f(-x,y);if h is lower and“?gupper semi-continuous;
£'(x,y) = -f(x,-y)'af h is upper and gilower semi-continuous,
f being given by (36)
In all cases f’ remains bounded; continuous, with
positive cross-differences (be?ause the number of sign changes

©

is even). And in al} caseéz’f(H( ), w(*)) remains lower semii
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continuous. This is clear for £(-h(+),| =w(*)), since negation
converts upper to lower semitcontinuity. For|=f(=h(e), w(e))
and -f(h(*), =w(°)), the two ;rgumenﬁifunctions ofl; are now
upper semi-tcontinuous. In'tﬁis case, reasoning similar to
that above shows that the cqﬁposite function ;@(..;) is_upper

sem{?bontinuous. (Reverse‘ihe inequality signs in (57)%;(53),

-and-{59)., and take (x 1 ) northeast rather thahn southwesqﬂﬁ

Hence f'(...) = -f(...) xs indeed lower semi-continuous.

As above, a measurable weight-falloff measure v then

exists in all cases. [ < L@

Unlike the situatgon in the transformgd problem, the v°
of this theorem need ést be unique. A trivial example of this
is where h or w is a éonstant and there are at least two
feasible measures. é%r here every feasible measure v satisfies
both weight~falloff éonditions ¥acuously.

We have obtaineﬂ conditions under which an optimal solution
must satisfy a welghx—falloff condition, ‘Our next result is a
converse, indlcatin%-condltlons under which a weight-falloff

b4

measure is optimal.

L4
T %
Mw.m,, 3

ggﬁr%f'Theorem: Let (s, Z ,a) and (Q, q,B) be bounded measure spaces.

©

N‘N;:“ SR T e N

(
Let the functlons h«s + reals and w:Q -+ reals be measurable,

and let f:reals -+ raals be boundedialower semircontinuous,

with non+=negative crass-differences. Let measure v? on

(s x Q, ZS x Eq) have marginals o and B and satisfy the

(measurable) weight-falloff condition.
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Then v® is best for the allotment-assignmenggﬁtoblem of
minimizing ;ﬁf
354D ($.€.60)
j £(h(s) ,w(q) )v(ds,dq) 4 {60)
SxQ 4

over measures v with marginals o and B.f

W ;
;;(/f{zeff;gofg FirstJ&aﬁmﬂs assume that f has;éositive cross-differences,
5 Consider the allotment-assignment pioblem on the plane induced

{ig;é from the given problem. Since f ié bounded lower semi+

continuous, o and B8 are boundedy:and a(s) = v¥(s x Q) = B(Q),
!r 1’
there-exists a best solution AzE to this transformed problem
ct. (Dt
Q¥M¥5'74').) A°’ must satisfy'the weight=falloff condition,

since f has positive cross-differences.

Since v? satisfies weiéht—falloff, the measure A2 on the

plane induced from it by tﬁe mapping (s,q) + (h(s),w(g)) must

A AR NS

satisfy weight-falloff. A% is also feasible for the transformed
problem. But there is oniy one weight-falloff measure feasible gﬁ

§ for the transformed problem, since a and B are bounded. Hence<wﬁ§ﬁ

ot
R ——IELL

AL = o0, EAQ.is.yherefqre;unsurpassed for theggransformed
problem, implying that Qz‘is unsurpassed for tiﬁjoriginal.
But (60) is well-defined and finite for all feasible v, so

"unsurpassed” coincides with "best". This proves'the theorem

\;

lL for the special case of positive cross-differaﬁces.
7

Choose a function g: reals2 -+ reals-whieh»is bounded, lower

semi~continuous, and has positive cross-differences (such as
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(56)). ‘Then, for any positive real number €, the function
£ + €g has the same properties as g. Consider the perturbed

allotment-assignment problem in which £ in (60) is replaced

f by_§ + €g. By the results just proved, v® is best for this
g problem. Hence
i 30 20¥ '
] (£ + €g) (h(s) ,wig) fy° (ds, dg)
SxQ _
22ﬁ> 30 T .

| / : < [ (£ + eg)(h(si,w(q)yy(ds,dq)
Ly SxQ : / iy

fcr'any other feasible measq%e v and any real € > 0. Now let
€ go to zero., By the dominated convergence theorem, the limit .

of the integral on each sidé is the integral of the limit.

=

§ Hence v& remains best when e = 0, This-completes—t} E*«Pfr:ifﬂ!
g‘ 4

We . shaill later 'show | that this theorem can be strengthened
to some extent. Name&y, the premise that f is lower semi+
continuous canxbe dropped.szut the method of proof just used
is quite instructive,ﬂand é;mpletely different from the method
to be used below, which invélves the construction of a
potential. i

The resulting theory i% a fairly satisfactory ome, and the
conditions under which it hélds are, for—the most-part, not
too onerous. The boundedneés of f, however, is a nuisance};«fnu
For-—example, the product function, £(x,y) = xy ~ (which is the
original form in which transgort cost presented itselé 2 iz
not bounded on the plane. Tﬂ%s limitation is easily remedied

if the ideal distance and weiéht functions, h and w, have

N
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bounded ranges. For then we can take the domain of the tranqg
formed problem to be;i-not the entire planegﬁ-but a rectangle

with bounded intervals as sides. On such a set the product

function (and most other functions of interest) will be

bounded, and the preceding theorem can be applied.
0
Insight into the distinction between ppéitive and non-
negative cross—diffeiénces can be gained by contemplating the

; e,
case where f has zero cross-differences, that—is, where

5 ,\/ 9 ( q. a f /)
BUY  g(xy,yy) + £(Ry.y,) B E(R),Y,) + E(Xy,yy)e S (63
for all numbers Xy0 Xy0 Yy yzﬁfx(él) holds iff £ can be
o :
writte&tgs the sum of separate x~- and y-functions:
| (.50
£(x,y) = fl(x) + fZ(Y). {t62)

(Proof: If (52) holds, thenzkal) is verified by substitution.
Converselyjlgﬁﬁose an arb%%r?ry yQ, and define gl,,gz bys’
fl(x) = f(x,xg), fz(y) ;If(xgy) - f(x,jQ). For the definition
of f2 to be sound, the expréssion £(x,y) - f(x,yb) must not
depend on x. But this is géaranteed by (61)) &Kﬁié;follows at
once.) But if (62) holds (and £, a, 8 arélfll bdun;;d), then

the objective function (59)@13 equal to _
1 ‘

: e <
‘;l) 1% i“ Si 10) \ﬁ{ D \
| J | (£ ;oh)das.:ug(fﬁo‘w)ds,
L ’8 g ‘ "

N\

by the induced integrals thébrem% ("o“'signifies the composifg

tion of functions). Thus trgnsport cost depends only on the

marginals, o and 8, of v. Sipce all feasible v have the same
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marginals, they are all best solutions. Thus, while positive
cross-differences restrict best solutions to tﬁe weight-falloff

measures, nontnegative cross-differences may allow others.

Potentials

(®
()
We now turn ouf attention to the construction of potentials,
# 7o
This is of interest not only for ‘the further insights it

furnishes concerning the optimality properties of weight<
falloff measures, but because potentlals have direct intuitive

interpretationsg as land values and as "gross profits" on

<~ %]

land uses. §
Let measure v& on (8 x Q, ZS X Z ) have 1eft;%and right}g
marginals o and 8, so that it is feasible for the allotment-

[ assignment problem. Recall that a pair of measurable functions\v/
”*».

pP:S + reals and k:Q + reals is a measure potential for v (in

the wide sense) iff

4 Y/k(q) - p(s) & £(a(s), wla)) w3

for all s ¢ 8, q € Q, and ;f"
L ;A" g.g64)

x{(s.q) 'k(q) = p(s) < £(h(s), w(q))} = 0.‘7 t64)

Now 4 ¢
New- furnish 8 and Q. with topologies T and T " respectxvely.

J The pair of measurable f&nctlons (p,k) is said to be a topol

logical potential for v&ggin the wide sense) iff (53) holds for

all s e€ s, gqe Q, andﬁ i% (s,9) is a point of support for v,
then (63) holds with eguaéitx}n
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wWe shall make essential use of the transformatlon of the
ali&tment-asslgnment problem into the giane. The transformed
problem is itself a special case of tﬁe allotment~assignment
problem, and we may therefore contgmplate potentials for its
feasible solutions, A. Our flrsﬁ task will be the following.
Let v be feasible for the orig;hal problem, and A the measure
induced from v; )\ is feasibla‘for the transformed problem.
What relations then hold beﬁween the prOperties of there being
potentials (measure- or topological ) for A and for v?

First one prelxminary. We shall take the transformed
problem to be defined, POt necessarily on the whole plane, but
on a rectangular subseﬁiof the plane, X x ¥, The exact defif
nition will be given léteriuaad for the present we need merely
assume that X and Y contain the ranges of h and w, respectively.
A potent1a1 for the transformed problem is then a ;air of
measurable functlons,Sg X + reals, k:Y -+ reals, satisfying one

N 74

or the other of the definitions above.ﬁ X x Y is the domain of

*-u_.J&_n$§~:jd the universe set of feasible measures A.

%?¥W3Theorem: Let v be a measure on (8 x Q, ZS X,Eq) with leftfﬁand

rightfﬁarginals ¢ and B. Let X and Y be measﬁrable subsets of
the real line, andjyssf& X, w:Q » ¥, £f:X x Y + reals,
p:X + reals, and k:Y - xealsuﬁeasurable functions. Let AY be

the measure on X x Y induced from v® bl the mapping (s,q) =

(h(s), w(g)), and consider the following three conditions:

o S
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5
ﬁQJ?ﬁi [§11’4 (p,k) is a topological potential for p .
ﬂ / (ii)} (p,k) is a measure potential for A°;
N\ $ ‘ Hy
1\ ﬁ%'(i§i) (peh, kow) is a measure potential for p LI N
. P et
{ iﬁfa*W“Then condition (1) implies condition (11), which in turn

L'i;.mw

implies condition (111).

plane, has the strong Lindeldf property. This insures that any

topological potential is a measure ‘potential (7 5).

ﬁ

i

E

? 7@  Proof: The usual topology on the plane, or any subset of the
Thus ii}

ng

implies (11).

Let condition (11) be valid. Thenﬁm

N ;; (y) - p (x)s, £(x,y)

" for all x¢ X, vy € Y. Lettiné'g = Q(g),yx = w(q), we verify

(63) for the pair of functiong (peh, kow).

Also we have (g“"

v-{(s.q)lk(w(qn - pln(s)) < f(h(s). wan}

| @€ 4 - ;\°{(x,y)|k(y> - p(X) . f(x.y)} = 0.

fact that the argument of v%!is the inverse image of the argu=-

i

Ad ol L ' g, «gw*..

ment of A% under the mapping (s,9) + (h(s), w(g)). A(SS) yields
(64) for the pair of functhns (peh, kow). Thus (%}i) is

valid. | [T B

5@4 v ’z/ghis theorem is silent ébout topological potentials for
/ :

o
R P FAWT T R
L

V2. Indeed this concept is n§t even defined, since nothing is

said about any topologies on_g or Q.
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Our plan of action is to construct a topological potential
for the weight-falloff measure X?. If A2 is induced from a
measure v feasible for the original allotment—assignment
problem, the preceding theorem yielqé a measure potential for
v?, From this 9&@ can make infereqces concerning the optimality
of v2. v

In constfucting a potentialgfor ) we could make use of
the theory developed for the trgﬁsportation problem. Instead,
however, we use a special procqaure‘égiéh utilizes the
distinctive properties of weiqét—falloff and noQEpegative
cross-differences. This not énly allows us to weaken the
assumptions needed, but the éﬁocedure is of interest in itself
and has intuitive appeal. i

We begin with an obseré%tion. A measure A on the plane
has all its mass concéntrat;d on its support. That is, if E
is the support of A, then tée complement of E has measure zero s’
(E and its complement are Qérel sets, since E is closed). The
proof of this rests on-the?strong Lindeldf property of the usual
topology of the plang) Foéﬁasvery point of the coﬁplement of
E has a measurable neighboghood of measure zero. A countable
subcollection of these neiéhborhoods covers the complement of E,
which therefore has measuré zero.

Given measure A on thé:plane, we shall restrict it to a
rectangle X x Y.as follows;% X consists of all numbers x
having the propertyff‘eithe% there is a number y such that

(x,y) supports Ak or x is bétween two such numbers, Xy and X,
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Y is defined analogously, the f%les of x andﬁf being inter:
changed; X is an interval, which may be the entire real line,.
or may be bounded below, or above, or botn. If bounded, the
endp01ng\may or may not be included in X. The same remarks
apply to Y. The support E of A is contained in X x ¥. Henceq
by the preceding argument, we agé throwing away a set of
measure zero. Finally, note thatmg and Y are empty iff ) has

empty support. By the precqﬂing argument this occurs iff

A =0, We exclude this trivmal case by assumption. Call X x Y

the support J:'ec:tamglce.’1-92:5é

Now let A2 be a meaéure on X X ¥ satisfying the weight=
falloff aondition. With the point of support (x,y) associate
the value gﬂg No two points of support have the same value,

for if this were true of (xi,yi), i=1,2, we would have

X =X, =y - ¥, # 0; the points would thus stand in a southf)

west-northeast re&ation, contradicting weight-falloff. The
valuation thus dgtermines a complete antiwsymmetrlc ordering of
the points of suppcrt. We have, in fact, a "Maginot line" of
points of supp@rt strung across the plane, running from north=
west to southaast (possibly including vertical, north~to~southhx
stretches, ana/or horizontal, west-to-east, stretches). Es
This llne may have gaps in itgy A gap is defined as a
pair of distinct points of support, (xl,yl), (xz,yz), with no
other p01nts of support "hetween" them in the orderlng. Wher—

-

ever such afgap exists, connect the two points constituting it

by a straight line;sagment. The union of the original support
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o
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and all these line~segments is called the line of support,}Lk«

of A2, It is easy to prove the following facts about the line
of support. No two points of it stand in a southwest—northg
east relation. For every x € x,Atha%eTékiQEsia Y € :;such
that (x,y) € L. For given x € X, there is either a unique

Y € Y such that (x,y) € L, or a closed interval (possibly
unbounded) of such y's. Similar statements apply with x and
¥ interchanged. The line of éﬁpport is contained in the
rectangle of support.

Having furnished the lﬁﬁe of support, the measure A° has
completed its role in the éénstruction of a topological
potential for itself, andi%ttention now passes to the cost
function f£:X x Y -+ realsg? From f we shall construct a function
p:X - reals}which turns gut to be (under certain conditions)

the left half of a topoibgical potential for A°.

ot

—M T‘p(x) is defined asﬁfollows. Choose a fixed point x, € X,

4 4
and define p(xo) = 0, For x # xogKtake a seguence gxi,yi),

i= 0,...,n,‘bf points;on the line of support, with X, = X.
This sequence is to bé;monotone,~thé£:§54\either strictly
increasing in the vglée LT (for x > xo),;or strictly
decreasing in %y = yi;(for 2 < xo); n is any Sositive integer.

With this sequence aséociate the real number

(_{qu S . Lf/r

where we use the abbréviationlﬁ§y“’for f(x,y) here and below.

[ p(x) is)then defined @s the infimum of (€6) over all such

monotone Sequences from x, to X.
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¢ i~ Lemma: Let measurable £:X x ¥ » reala have non+negative cross=

. é\n|fe, '
e differences. Then p is &, measurable, and
7Ty e Fa (L=
el P(x') + £(x',y') < p(x) + £(x,y") 64

for any x,x' € X, y' € Y such tﬁat (x',vy') € L, the line of

support.

f} \ Proof: Let (xi,y ), i = 0,...,m, be a monotone sequence of L-

point for x = X,. Then

A Smiilo = ®3¥9) f.(?‘i-lyi % ’?iyi)iéki-lyn ¥ ,xiyn},

i ~
This follows: at once from non*negative cross<

iﬁ ;alpoooyn-
Adding these

differences and the monotéiicity of the sequence.
inequalities over i, we oﬁtain
(‘.801(_0 e nYQ )= £2¢< ’xoy I)g} (68)

Fﬁom this we obtain

L { ( ’

where z is of the form (§6).

X0Y0 ""Yo 2 p(x) < %)y - xy,

SRty =
st memnage .

[, %)

j where Yo and y are any two numbers such that (xgyo) € L and

5 (x,y) € L. The right 1nequality in (69) follows from the right
§ of (68) by taking the i%fimum of z over all permissible
g sequences with fixed (yéy) = (x.,¥,) € L (n any positive integer)
§ The left inequality in §69) foiiaQ; from the left of (63) by
% taking the infimum of zgover all permissible sequences with
; flxed;yo, on notlng thaﬁ this does not restﬁ%ztnfhe range of
\ i/ values (65).}\(u ) shows that p is indeed A
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] & i;(67; foliows at once for two special cases besides the
obvious x = x';z /Forﬂg' =”§0,2from the left of (69), and for
X = x, from the right of (69). This le&§es the case where
Xos X, ;hd x' are all distinct. Theré:are threg:g%Ses,
2 _depending on which of these numbers is between the other two.

*ﬂ+“£) If x, is between x and x', we have

A

Lol g s (g.£n0)
Yay RIX') £ Mgy ff~ 2'y' (70)
_.
’, : ol ‘*
| p(x) 2> x, xyo - Xy'. A Ven
Z; ¢ Kto { "'f/a

(70) and the left lnequality in (71) arise from (69); the right

of (71) arises from nonTnegative cross--differences.1 {70) and

A (71) together yleld (67),
l}‘ﬁ'éd If x 1s between x0 and %', we consider monotone sequences
(xi,yi), i = 0ys40,n, of L-points, with (%, Yo) = (x',yY),

?kw which include xﬁpmong the xi)sA\ say X = xj. Separate the

corresponding expression (66) into two sums: the first 23

; {
| ’}(‘f terms (ending with —xjyj), and the last 2n-2j terms (beginning

with xjyj+1). This latter sum does not exceed xjyn - X ¥ .
(The argument for this is the same as that leading to the right-
inequality of (68), except that we begin with xJ, not x 6J

Hence we have
(\?‘_\,n«)

p(x') < (xoyl - xlyl)"'"“"(xj Ly:,j‘-{x._.,j,r:,’) + xjy - Xy . 2)
AN

'



855

Now (72) holds for all monotone sequences (x
of L-points for which x

..3.){.
-l

—

thyo)c--:fﬁerj)
Taking the infimum over the
f corresponding sums (ﬁﬁffhwe obtain -

P(g') < plx) + xjyn - xnyn"

o which is the same as (67).
E ——

~4T¥-(&¢)Flnally, g x' is between X, and x, we note first that

L//fremOVLng a point (g.,yj) L (where 0 < § < n) £ does not decrease
7 f‘ the corresponding sum (66).
A A 7

Forr\tﬁe change in (66) is
N
ﬁ;%

T

(5 17541 ~<-;+1Yj+1’}',{‘l‘-j-1yj 3 %ﬁxj’(‘{"‘jyfwl j+1¥341)
e i I A

RIS NN

which is > 0, by nonfnegative cﬁoss-differences and the monozy

tonicity of the sequence (xi,yf), i=20,...,n, of L=points.

s ISV
R

Now, for any € > 0, we can find a sequence of L-points
Y
such that the sum (66) does npt exceed p(x) + €.

If (x',vy")
is not among these points, Sllp iﬁ into the sequence so as to

preserve monotonicity: say (x Y') = (xj,yj) after relabeling.

By the observation just made, this insertion cannot increase
(66), so that it remains < g(x) + €.

Now separate (66) into
two sums as above.

The firét sum (which ends with the term
-xjy .) is at least as large as p(x').

begxns with x

The second swm (which
’j & i

);, @
jyj+1) is at least as large as x, L

1 f\

(68) f ),Hence
i (::}k\)\n'ﬂace P () }
p(x) + e > p(x ) + xjyj - X yj ' /

,,g' g

Fnd 4
($ame argument as leads to the left 1nequa11ty of
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That is,
SPX) + e 2 p(x') + x'y' - xy,

‘Since ¢ > 0 is arbitrary, we again obtain (67) .

#}'It remains only to prove that P is measurable. We show
Ll V.

that p restricted to the bounded interval from Xy to x2 is

measurable h// Since x? is arbitrary, this implies that
itself is measurable.

For each m = 1,2,..., let (Xmi'ymi)’ i=20,..0,n_, be a

-m
monotone | (

/sequence of L-points, with Xng = Xg and x
' -
for all_mﬁ such that . :

i

= %0

4 (8.5 73)
° . -

|7 Now let (x,0%4), i{é 0yee.,n be a monotone Sequence of

L-points, with g, = xﬂm? In terms of this sequence, we define

the function pY on the(x }bxf)interval as follows. First,

for each number x in the interval, choose a v(x) for which
(x, y(x)) € L. Then '

p'(x) = (xgy, = xly]j§+...+(xj_lyj\-&xjyj)+(x-y(x)ny(x)).

Here j is such that (x, y(x)) lies between (xj,y .) and

(xj+l,yj+1) (possibly coinciding with the latter) in the
natural ordering of L=points,

p 1s,§;me;éurab1e functlonj For, jy(x) = f(x cr V(X))

and xy(x) = f£(x, y(x)) are ooth measurable, since f itself is

measurable,)and y(x), géing monotone, is measurable. Thus p'
Q :
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is measurable on the interval from xj to x3+l’ hence on the

whole interval(x j x9).

Now let P be the p'=function defined ‘in terms of the

i’ Imi m

sequence (x ), i=0,...,n_. We clﬁim that, for all x
in the interval (xo J;z xg,

pm(x) 2 p(x) > p,(x)

The left inequality in (74) is immed%éte. To prove the right
inequality, insert the point (x, y(xi) in the sequence

(x

’“ml' le)p l = 0,...,!1

Doy and make ﬁhe corresponding change on

the right side of (73). Since this side does not increas?}(73)

remains valid. On the right side@;the sum of terms up to

-xy (x) is p_(x), so we have

p(x°) +AE (x) + zZ. (75)

Here z is the sum of the remain@ng terms; it begins with“gymj
for some j. Now let (xéyi), i " 0,...,e,be a monotone

sequence of L-points, with %, éug. We have

s

p(x°) < (xoy1 - xlyl)+...4(x -1y

Taking the infimum over all such sequences, we obtain

i f 3./

p(x°) < p(x) + z. +#6)

\75) and (70) together yield the right inequality of (74).

© But (74) implies that p(x) is the limit of Pp (x) as
m -+ o, for all x in tha interval(x }Px@L{NAs the limit of a
J

~

o
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sequence of measurable functions, p itself (restricted to

I L

2‘x°)) is measurable. The-proof-i

RS S

e " »

{ This lemma implies that p)%as defined by (66) Ps a left
(1.5%)

half-potential for A® (see€+§+ie§w4754\

, For, if (x',y")

°
& U
v

\
supports A°, then (x',y') € L, and (67)Ai

s then the half-
¥ f

f:j;a a\ potential condition for p.

E%L Theorem' Let a, B be ségma~fin1te measures on the real intervals
X, Y,\respectively, and let measurable f.x X Y + reals have
_i}; ncq:negative cross~differences. Let A-;satisfy the weight=
falloff condition and be feasible forgﬁhe allotment-assignment
problem of minimizing f f dk, subject?to the constraints
A' = o, \" = 8, Let X x Y be the rectangle of support for A%,
Then there. ex1sts:a (p,k)’whieh is both a topological and

measure potential for AL (wide sense).

= Jpwee

ﬁwﬂfggjf“;;oofz Any topological potentialils a measure potential here,
hence we need only construct tné former. Construct L, the

line of support for A2, and tnén construct p:X + reals

!Zii> according to (66). Now definé the function k:Y + reals by

§ (%.477)
k(y) = i&E{P(33 + £(x,y)}, —77)

Fanchon, O
the infimum taken over all x ¢ X.‘ k is indeed. |

for, by (67), the infimum ;s attained at any x such that

(x,y) € L, and such an x exists for each vy.
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It follows at once from (77) that,f

k(y) = p(x) < £(x,y)

Furthermore, (78) is satisfied with

for all x ¢ X, vy € Y.
ﬁbr in this case (x,y) ¢ L,

equality if (x y) supports A2,
and the infimum of (77) is attalned at this x. .
N

€)

Next we show that k is measurable. For each y g Y,

L..
choose an x(y) such that (x(y), y) € L. Then

.
B
B T

S

(1, 8149)
(79)

PR LB

k(y) = p(;;f(y)) + £(x(y), V).

((y) is Qmonotone functibn, hence measurable, £ and p are

also measurgble, and (79) then shows that k is measurable.

i S

LH/" 5 |

Thus the pair (p,k} is a topological potential for A2

i" The properties of;p and k, other than measurability, are

unspecified, However, if one makes further assumptions about

f one can say more.

Mm
?4 f Theorem: Assume the premlses of the preceding theorem, and
Thend '

7N\

}}r\ G iqconstruct the potential (p.k) according to its proof.
?EQ\ ZJQ (i)\ If £ is bounded, p and k are bounded.
(11)/ Consider £ as a family of functions f(-,y) X + reals

[ indexed by vy € Y. If these functions are all strictly
(increasing, decreasing), hen p is strictly

\\}decreasing, increasiqg), respectlvely.

ey

Q (111)( COnsider‘g gs a family of functions f(x,°):Y + reals

If these functions are all strictly

P
| indexed by x € X.
(increasing, decreasing), them k is strictly (increasing,
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'decreasing) , respectively.
N
%u(iv) If the functions f(-,y), y e ¥, are all concave, then P
fis convex, if the functions f(x,-), X € X, are all concave,

Q.wm tucn k is concave.
S/E \%}Q

continuous, then P is lower semi<continuous; if the functions

\

*(v) If the functions f(-,y) Y € Y, are all upper semi+

f(x,*), x € X, are all uyper semi-continuous, then k is upper

semi-continuous.

i

¢
%u(vl) ‘If the family ingﬂii) is equicontinuous at XA}; X, then

p is continuous at ﬁzi if the family in (111) is equicontinuous

at %215 Y, then k is continuous at y}?

[T (vii) If the familyé%n ((ii), (iii)) is uniformly equif

Bt

|\ continuous, then (p,g) is uniformly continuous, respectively.

TN Proof. (1) Boundedné;s of p follows from (595’and boundedness
of k from that of p and £.
m\&m L

N ) 3
f@f T fiad for

) Let £(-,y) be strictly increasing f£gr all Y € Y, and let

RN NE T X-Lat:x.sfyi X < x'. Choosing y' ¢ Y so that (x',y') € L,
we obtain from (6?)m ”\

1 e --‘ra-r""

-
A

S

o

> px) - p(x') > f(x'.y ) = f(xpy ) > 0. —

ﬂ : > so p is strictly deéreasing:LiIf f(+,y) is strictly decreasing,
| all ye ¥, let x > #f. The same argument yields p(x) > p(x')

again, so p is stricily increasing.
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‘i*’(iii) Since the infimum in (77) is attained at any x such that

¢,>

_Eyalld for all x' ¢ X, y,y 6 Y such that (x',y') ¢ L. 1If now

ik

~ (v) For fixed y € ¥, k(y) - £(°,y) is lower semiépontinuous.

| a8

From (8l), p is the supremum of a family of such functions,

b o,

for

(x,y) € L, we have
D)
k(y') - k(y) > f(xf;?ay') - £(x',y) S~ —£84)

wd

1@(

f(x,*) is/strictly lncreaﬁing, all x € X, choose y' > y. (80)

then implies thaéZk(y') % k(y), so k is strictly increasing.

o

r—————-—\

If f(x,*) is strictly &ecreasing,[ghoose v ey (80){again
Yl#lds k(y') > k(y), se k is strictly decreasing.

(iv)z) For each x € %;there is a y € Y such that (x,y) € L.

Since (77) is satisfied with equality at such a point (x,v),
we cobtain :
p(x) = sup(k(y) - £(x,v)}, —t83)

the supremum takenfcver all y ¢ ¥, Now, for fixed y,

k(y) - £(+,y) is QOnVex. Hence p, as the supremum of a family

of convex functions, is convex. Similarly, from (77), k is
the infimum of a Eamily of concave functions, hence ii itself

concave.

hence is itself lower sem&}continuous. Similarly, from (77b
k is the infimum}of a family of upper semijpontinuous functions,

hence is itself upper semi-<continuous.

e
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;;f§(g$) and (vii)% Treating p, k again as the supremum,
infimum of a certain family of functions, repeat the arguments

{,{4{ Lol e Yt R |
-already given in 7.5, pgges yﬂ;,_ /J*fm (78

g nder certain conditions, p and k can be expressed as

line integrals along the line éf support. These are defined as

follows. Let g be a bounded;measurable function whose domain
is a subset of the plane coﬁtaining the line of support, and

let ;:l < xz, where x Xy0 X, e_)g. Then we define

v'f }52 o :i‘ 2 ( % L‘{' q‘?”’)
gdx = | / g(x,y(x))dx. 482
Xy fxl,xz)

On the right of (82), g(x) is any function such that
(x, y(x)) ¢ L for all x € X. The integral is then over the
open interval (xl, x § with respect to Lebesgue measure. For
this to be a ggggigigg definition, the value of the integral
must not depend on the particular function y(x) chosen. That
this is so may be segn as follows. For given x ¢ X, the set
of numbers y such th%t (x,y) € L is either a singleton or an
entire interval, the interiors of two such intervals being
dis;oint. Since each such interval has a rational number in
< " its interior, there ?re at most a countable number oézi?em.
= Hence, except for a %ountable number of g-values; y(x) is
uniquely determined.% But the Lebesgue measure of a countable
set is zero, so that bhanges in y(x) on this set do not affect

(82)., Hence the defigltlon is sound. This is called the
§
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integ;allofjg along the ligé of support with respect to %,

from fl to‘ng y
It is also convenigﬁt to define this in the case when

Xy > X, by the rule

33— [ 25
.:'f'\t?\J
22 >
ggdx = - g dx.
X 7 5

The line inteékal of g with respect to y, from y, to y,

(yl <y, is defiged analogously, with g(x(y), y) replacing

g(x, y(x)) on thq right of (82).
In the follbwing theorem recall that D f(x,y) represents

‘Yative of £ at the point (x,y) with respect to

the partial de

its 1+th arqumeﬁt (i = 1,2y,
)

i s,

.

T,

" Theorem:

Let al; the premises of the theorem above (pa@e
be satlsfled,sand let the potential (p,k) bhe defined by (66)

Le% G be an open subset of the plane containing

and (77).
Then

X X Y, and 1@% £':G + reals coincide with f on X x ¥

I 48 le §X'Y) exists and is continuous on G, we Lq\/e

/2(
9‘.;! BD - »
< J ( 24© S 8 ( Z <,%3)
p(xy) - p(x,) = D, £ (x,y)/dx

\

xgq; all xl,gxz € X; and

i£ D f'(x,y) exists and is continuous on G, we hqv@
e (Z-$-324)

PN 92 £ \
sz(X.y)dy/x - (84)
y

'f’{igi

1



864

for all Yir Y5 € Y.

{£r§#? Proof. (i) Note first that the inéegrands D, £ in (83) and (84)

"Z."b

sul.ccrr l—/

exist and coincide with Dif"}i = 1,2, respectively) To
y =

prove (83), we needﬁgemonstrate only the special case where

Xy = Ko, Xg being the speci@i number used in the definition of

p; for then (83) follows iﬁJQeneral by subtraction. Thus we

must show that 10 ‘£5¢
199 %°
Nk (€585
-p(x2) = Dlg(x.ykex {85

Bo+
for all x° ¢ X, §
Takgﬂnumbers Yor f!, such that (xo,yo) € L and

(xﬁ,y°) e L,\and consider the c}osed, bounded rectangle F

o O;""‘JQS«O ¥2) &s ‘
having the points (xo,y )—Yfk~,y _ corners. By
assumption, wlg' is cqntiﬁkPus on F; hence it is in—faet
bounded and uniformly’cdntinuous on F, Boundedness insures
that the integral (85) is well-defined. By uniform continuity,;
for all m = 1,2,... there is a § > 0 such that, if ly' = yv"|

< ém; then

fa 2 =™y
{ 4.5 8¢’

D £tx,y*) - DyE(x,y) | < 50 436

for all x between Xq and x2, all y', y" betweenggo and Xz.
Now take a sequence of points along the line of support
%
from (XO'YO’lFO (x D' ) = (x&,yf){k?uch that lyi-l - yil < Gm
for i =1,...,n. Then:lfor each i = 1,...,n,
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2\ iq’( \07 \H r\
W ,?3;_1 X401 ; i/ \%.; wi®
: le‘xcyiyéx % Dy £(x,y)ax 5_@"“1 - X3
x5 X4 w :

from (86), since, for each x between %51 and(xi, the y(x)

such that (x,y(x)) € L differs from Yy by less than Sm' Now

§

W, [ 8 S | (4.$.8)
Y | Dy Fx,yy)@x = £(y_1,¥s) 7 £0207;) n 87>

[ X ,

[ i

T . m
'i.b The right of (87) is a typical pair of terms in the sumpiation
I\

(66) for the sequence (%x;, ¥4)s L = 0,...,n. It follows that
the sum (66) differs from the line integral

| ?.SQ ‘ AT ZL /
e D% <f Dy £(x,y)dx 338)
X:Jw—f P‘ / xg ¥ )\
‘ a" MOS"’ :
% by %Jx° - xok} if the differences between successive

y;'s are all less than 6 _.

i Now take a sequence, the meth member of which is itself

| a sequence of points along L whose corresponding sum (66) is
within/%/of p(x2). ;Add to this m+th sequencef if necessary,
sufficient extra péints s0 that successive yi’s differ by less
than 6m’ These aqaitions do not increase (66), so that it
remains withinﬁiféf p(x2); it is also withinié{xs - xGy?Of (88) .,
Letting m + =, wé conclude that (88) equals p(x2). This is the

same as (85), which implies (83).

<ﬂ ’g(ii) To prove Kﬂét’we need yet another expression for k, one

“\ similar to (66). Specifically, we now show that
1 /1A
I

\J



.')«%

A Y
; ] %
Y, ‘m-m«/ j
by

S

Q

Z)é}iv

LSy

866 ‘?f’f \;' :
: ‘(L’ U ) i ’

£ R
\ f;{;%-ﬁ"ii

k(y2) = i&fﬁxn_lyn f-‘n—an-l”'"*5‘?51.1’2\‘&‘13’1)}*?‘05’1]’ (89)
A A " ! A AN

for all yS € Y zxxy“ abbreviatesgf(x,y)). Here the infimum is
to be taken over all monotone sequences of 901nts, (xi,yi),
i=20,...,n, along the line of support such that Yy ™ y_. (n
can be any positive integer). é ‘

To prove (89), note that fhe bracketed expression in—(89)
is simply z + x ¥ ,Zpﬁé;e z is the sum (66). Since k(y2) =
p(xn) +xXy <z+x e thiéz?roves (89) with the sign “<”
substituted for ™=%, To prove the opposite inequality, choose
a number x° for which (x“,y°) € L, =and then a sequence of
L-points such that (66) comgs within € of p(x2?):

5 ' (%:S:90)

p(x°) + € > x4y, - x1?1)+...+(xn_lyn o & A I 96

Here X, = X2, We may also~§ssume that Ysi = y°: for if not,
insert the point (xf,y°) in the sequence. This does not

disturb the validity of (9G) lput does make (xn 1 oy *- B ) =0,
since -l = X, = x2, Hencn Wézgan keep or delete the 1ast

parenthetical term in (90),§allow1ng us to make -x°y°® the last

. term. Adding x°y° to both éides,'and letting ¢ -+ 0, we obtain

(89) with the opposite ingquallty. This proves (89),
A
Now' choose a number Yo | such that (xo,yo) € L. Note that

k(y,) =7x0y0, since p(x;) = O. Hence

k(y®) =- k(yo) = inf[(x -1Y \}cn_lyn_l)h--+(X0Y1§*{KOYO)]
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[ ~
At this point we repeat the argument of the first half of this

proof, interchanging the rdles of x and y, to conclude that

YD ¥_°
k(y2) - k(yo) = § sz(x,y%Fy.
0

Letting y2 = yz, and theg ye = yl,band subtracting, we obtain
(84). L€ |

. Note yhy&the*way? that in (83) X, is on top, while in
(84) Yo is on top. Fdr theZprdﬁuct function f£(x,y) = xy, we

have D f(x,x) = vy, 2f(x,y) = x,L?o that the lineiihtegrals
(83), (84) take on a@ especially simple form in this case.
&e@—us now retu?n to the problem of showing that weight—

falloff measures aregoptlmal for allotment-assignment.
(#%b} Theorem: Let (S,Es,ag and (Q,Xq;B) be bounded measure spaces,

let h:S + reals andngQ + reals be measurable, and let v be a

measure on (8 x Q, ¥ox % ), with marginals o and 8,

e ——

s
satisfying the (meaéurable) wexght—falloff condition (with
f““\"u
'53C>; , respect to h, w). Let bounded measurable f:reals® + reals have
o i nonfnegative cross—@ifferences.
§ Then v is best;for the allotment-assignment problem of
minimizin - e
!‘ @t (g.821).
\ 48 [ £(h(s), wig))v(ds,dq) 51)
i 8%Q |

over measures v with marginals o and 8.

k: RS
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\

%ﬂbji?roof: ' Let \° be the measure on the plane induced from vo by

7
’G
o

\ 5
N

AY

-

the mapping (s,q) + (h(s), w(q)). Since v satisfies
measurable weight-falloff, so does A2. Let X XJf be the
rectangle of support for A°., If X x Y = @, then v& = 0, so

a = B = 0 and the theorem is trivial. We may, therefore,
assume that X x Y is not empty. Let S, = {s]|h(s) € X} and

9, = {g|w(q) € Y}. The complement of X x Y on the plane has
Aﬂ-measurezfero: hence ve((S x Q)\ (S, x Q;)) = 0, a(S\Sl) =0,
and B8(Q\Q,) = 0.

Now consider the modified allbtment-assignment problem in
which o and h are restricted to §i, B and w are restricted to
Ql' feasible measures v have universe set Sl X Ql' and the
integral (91) is over S, X Ql’ Any measure feasible for the
original problem has the form v ® 0, where v is feasible for Jﬁﬂﬁfr
the modified problem, and 0 is the zero measure on (s x Q)\

x Ql)f v]This establishes a 1-1 correspondence between the
feasible solutions to these two problems, and the values of
the objective functioaf(Ql) for corresponding solutions are
equal. Hence we nee¢;prove only that the restriction of v2
to Sy x Q; is bestvfbr the modified problem,

New let O v Qi, El,_yl)and vf denote the.appropriate
restrictions of these functions for the modified problem. Also
let £,, Ay be thé restrictions of £ and A° to X x Y. Since Ay
satisfies weight-falloff and £, has non+negative cross<

differences,;@hexe;exlsts a measure potential (p,k),\for AL,
i d - - o e — ,,,,_.,,_.4' ™
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) 9V j 30643

} Xl Hencék}pohl, kowlg is a measure?iotential for v, since v{

N/ f
induces X%.

’fl is, alsolbounded, sogthat p and k,%and therefore p°h1

=
and kowl are?boun ﬁf. It ﬁollows that the integrals
— )

@ ' Ufohr ?and\[

k“’xtﬁl B

~ are wgllldefined and finite. I-Ience (P°h1' k:owl) is a measure}

,,_.,l,-‘

1
{
é -
H

potential for vy in the narrow sense.(PThls implies that v§-
is best for the modified allotmentfaésignment problem, and so

v® is best for the original. ,ka'tﬂ’
e &

\  This strengthens a previous result {page— ). Finally,

fﬁ we conclude with a theorem on the existence of optimal solutions,

‘iﬁi Theorem- Iet (8,2 ,a) amﬁ (Q z ,B) be measure spaces with
a(8) = B(Q) < =, Let 2 and Zq be the Borel fields of
topologies T and Tqﬁkrespectively, these being topoleogically

complete and separable. Let h:S8-=» reals and w:Q + reals be
: 3

_fiiii semiﬁcontlnuous,;andﬁf.realsz + reals bounded measurable with
élwf! nonrnegative cxéss-differences.

Then the?é{ékféﬁé(a best solution|to the allotment-
i \ -
assignment problem of minimizing (91) over measures v with

marginals o and B.
; w””’ﬂqlf;:;ofz By a preceding theorem (page—~—), thete'égigéé a measure
P
’de} v2 with marginals o and p ‘which satisfies measurable weight="
: falloff. By the theorem above, ve is best. 3Lkﬁj£fjf

«-«""’W-’f’

,a”isﬁwﬂw
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:The allotment measure 8 over (Q,Xs) is also characterized as

870

/ 8.6, Applications of Allotment-Assignment

The preceding section has been written at a rather abstract

level, and the hurried reader may have trouble interpreting the

results for the allotment-assignment problem infﬁerms of a
concrete Thiinen system. We shall now give several illustra-
tions, and show in—fact that the allotment-assignment problem
has applications well beyond the range of models contemplated

A

in sections @*& to d§4.

Let»as begin with the original Thiinen model. Here Space
is a circular disc of finite radius r, its center being the
nucleus. (S,%,a) is ordinary two-dimensional Lebesgue measure
on thewglane, restricted to S;‘so that the area of the entire
system, o(S), is wrz. The iﬁeal distance of location s, h(s),
is simply the ordinary Euclidean distance of s from the nucleus,
The set of land uses &! is finite — . say {ql,...,q }. It is

natural in this case to 1et Zq be the class of all subsets of

Q. The ideal weight function.y is now simply an n-tuple,

-0

(wl,...,wn), Wy being the weight of land use qy i‘=_1,...,n.
We shall assume to begin with that all o%f. these wiis are ke
positive and diétinct, and we may suppose that land uses are

numbered in order of decreasing weight:'x>

3 Wy > Wy >ee> W, > 0.

e ot
=T

X

an n-tuple (Bl,....Bn), Bi being the alloéhent of the singleton

set {qi}. We assume that iz
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Q=" # (RGuh)

oY 8la) = By+...48, = mr? = a(s). e

That is, the acreage allotted to all activities togather just
uses up the area of the system.A (l) is a necessary condition
for the existence of a feasible solution to the allotment~
assignment problem with marginals o, 8. |

Now consider assignments v on (S x g, I_ x Zq). GeometriZ,

s
cally, S x Q consists of n replicas of the circular disc S, one

5( =f x{zl.
Hhck wel
Mq7 udcn‘f,

sy |

for each gy Label these replicas Sl,...,S .‘(; is then the

direct sum of n measureq;\vl,...,vn, vy belng over S o Vi is,

in fact, the areal distxibutionymf land use g; over Space.

For feasibility one must have .

i=1l,¢..,n, and

L(F) Heeit v (B) = alE). (3)

f.{ﬁ«r::‘&"‘"‘

for all F ¢ Es. (2) states that the acreage occupied by each
land use meets i;s allotment, while (3) states that the area
of any region ;ékjust exhausted by its assignment to the various
land uses. ﬁ%he sets F on the left of (3) are replicas of
the region F g S, and should, strictly speaking, be distinZ
guished b§ subscripts i)%

~Nak;§mong these feasible v's, consider one very special

assigﬁment: the Thiinen assignment, v2., This is characterized

x\
by .an n-tuple (rl,...,r ), where
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ﬂ'ri = Sl +00|+ Bi’m y y (4_)

Lebesgue measure truncated to the circular ring

»gj f'[ ’{ NE/
{s|r;_; <h(s) < xry}, - —5)

i=1l,0e0/n. (Pori=1, r,= 0). ffhe feasibility of v2 is
easily checked; Eeswexamp%e the area of region (5) is
ﬂri = nri 7™ Bi' which establlshe» (2).

It is customary to represent v® by collapsing the replicas
Sl,...,s onto the disc S.*jG{:;..,vu are mutually singular,
and one can say, roughly, that land use a4 occupies the ring-
shaped region (5). This gives the familiar picture of Thiinen
systems with concentric ;ings of land uses.

The Thinen assignment v2 satisfies the measurable weight=

falloff condition. This is almost obvious, since weights fall

as one moves outwarqffrom ring to ring. To prove it, let
Eyr By be two sets of positive ve®-measure, with Ey southwest

of EZ' This implies that

v!(Ei n Si) > 0, uz(Ez n sj) > 0

for some i, 3 with i > j (since wy < wj). Hence there must be

———

points (sl,ql) € El’ (5 gj) € E,, such that ,( JZJ

{Q‘l\"((;\ {r )
h(s)) 2r; 5 214 > h(s,). +6)

(6) contradicts the assumption that E, is southwest of E,,

§« and the proof is complete.



873

/ f Furthermore, v is the only feasible assignment satisfying
e ’_ﬂé

the measurable weight-falloff condition. This follows from
the unigueness theorem (page—), whose premises are
satisfied: Eq is the sééma-field inversely induced by w from

the real Borel field, and

6)
af{s|h(s) = x} =0 F & &7

for all real x. ;(7) states that the area of thglset of loca-
tions exactly at distance x from the nucleus_ié zero.
It follows (pagecc s ) that the Thiinen assignment is the
: y SN ;

unique feasible assignment whieh minimizgs:total transportation

costs, given by

I h (s)w(q)kv (as,dq)r‘i eé!)
Sxq :

(Exercise: gvaluate (8) expliciti& in terms of 31""'6n':f°r
! vo)} : ;

Furthermore, we can calculate the potentialfh (Pek) o
explicitly for the Thiinen a§51gnment. (8) is the sPecial case
of the allotment-assignment;problem for which f£(x,y) is the
product function xy. This is continuously dlfferentlable,

g%) { ¢ )
hence we may use the lina—integral formulas, éﬁﬁ% and {8@% of

—seetion-5, to calculate p and k.

Jgﬁié;”fghe line of suppbrt, L, along which the integrals are to
n ; y

be taken, isA“stairéase“ polygon in the rectangle of support

X x Ya going horizontally from (O,Wl) to (rl,wl), then down



h migy
one

1

874

vertically to (rl,wz), then over to (rz,wz). etc., ending at
\ .>

(r v ) 21,

Applying (83} o£ sectien 5, we find that p ﬁ-@hose.?
domain is X = {x|0 < x < r} {f@ is a decreasing, convex,

polygonal function, whose slope is -w; on the segment from

ry.y to ri\?i = 1,...,nf} p is unique up to an a@ﬂitive cons

stant.2? | ‘.
The composition peh determines a real-va;ﬁed function on

Space;=8; which is a left half-potential fo;’éhe allotment=

assignment problem. This may be interpretéd as land value —.

or,/yore precisely,:as land=-value dens%t}, taken per unit of
ideal area ("dollars per acre"). 'Diif;rences in land values
at different sites reflect differenbes in locational advantages.
In particular, the decline in lagé;value density at a rate of
W, per unit distance as one moyéé outward from the nucleus
matches exactly the increasefin transport cost incurred per
unit ideal distan?e per uqi; ideal area.
Applying&céli;d%~secfion:ﬁi we find that k‘iﬁwhose domain
is ¥ = {y|lw, <y < w }ﬁJ}'is an increasing, concave, polygonal

function, whﬁfe slope is r; on the segment from Vsl to wi ‘
n=| ; 2

\(i = 1,000 A, Actually, only the values of k at the p01nts

Wyseeo,W, are rglevant, since the composite function kew,zl

n
which determinés a right half-potential onhgx,takes on only
these valugs. The interpretation of k is also less clear
than thgﬁfof P, since k corresponds to the "artificial"

allotméht constraint, while p corresponds to the "natural"”
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areal capacity constraint. k(w.) may be thought of as the

gross cost density associated with land use q;+ the sum of

——

transport cost and land value per unit aréf;/faé have spelled u/@COC
out the application of the allotment~assignment analysis to
this simple Thiinen model in considerable etail. For the
models whzeh follow ;§~aaa%&~be briefer, leaving the task of
filling in the details of the argument to the reader,

Suppose the precedxng Thiinen system is modified by having
a total allotment wh&eh is less than the total areal capacity
(change the middle equality sign of il) to "<“). This is no
longer in allotment-assignment form, but can be brought into
this form by the device of addlng an artificial "vacancy" land
use, 9,4 to the setigé E§n+l has an ideal weight, LYY of
zero,vand is given an allotme?t, Bn+l' which just exhausts:
the surplus areal capacity. ;f

The above analysis nowgapplies verbatim to this modified
systen, and we find that qn+l occupies the outermost ring of
the system, s;n¢e i¢ ls the lightest land use. In other words,
the occupied land is growded in as closely as possible to the
nucleus, the surplusﬁ§acant land being on the outskirts. The
only other dlfference is that land-value density, poh, is
constant in the}vacant rlng beyond radius r, (since the slope
of p is “Wo.41 = 0 there) .

Concerning the meaning of "vacancy“, it should be stressed

that it refers to permanent vacancy\ thatwls, over the entire
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time horizon of the system. Suppose/for example, thatﬁkTime;
is a certain 100-year interval, and that a given site is un€
occupied for 99 yearsﬁkbut that—it-does trade with the nucleus
in the final year. The land use assigned to this site ;E'BEE
the vacancy land use. —Fhe—reason_is that ideal weight iﬂQolves
an integration over all Timeﬂ'and will therefore be poéitive
in this case, whereas it must be zero for ”vacancyfi

Going a step further, ona can allow some (or all) ef the
weights w; to be negative. Formally this creates no diffis
culties, and the unique minimizer of (8) is again the Thiinen
assignment: Concentric rings are occupied by land uses in
order of decreasing weight, the outermost zone being occupied
by the land use whose weight is mosgfgegative, The half-
potential pqﬂ is still convex bug;ﬁo longer decreasing; rather,
it decreases at distances occupiéd by land uses of positive
weight and increases at dis;&hbes occupied by land uses of
,negatiﬁe“ﬁéight. |

How does one inte;yiet negative weights? One possibility
is to think of theseﬁiénd uses as béing repelled from the
ﬁucleus&ilgay b; pgilution, crime;or other aspects of the
urban syndromezﬁiiathe: than as being attracted by transportag
tion linkage.lffhe land use of highest negative weight is the
one most repélled, and it will naturally settlg in the outerS
most ring,'

7:’”f‘*('l"}:x’ére is also a purely formal use for negative weights.

Suppqdé the problem given is to maximize, rather than minimize,
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(8). This is equivalent to negating the weights and minimizing,
which is again in allotment-assignment form. Tn—faet,fit

follows that the solution to maximizing (8) is the aﬁti—Thﬁnen
&

assignment, obtained by reversmng the dlstancehorderlng of
land uses: the lightest one in the closest ring, the heaviest
in the outermost ring, etc.)

We now drop the assumption that'Spacelis'a circular disc,
and instead let it be any bounded measurable subset of the

NN(‘-.

plane. a is still @we-dimensional Lebesgue measure restricted
;ﬁ S, and we still assume that BQ@) = a(s)zk h(s) is still the
Euclidean distance from the nucleus to location s.

With these weaker assumptians, it-still-turns-out-that

Al

there is a unique feasible assignment satlsfying the measurable
weight-falloff condition. This assignment has virtually the
same form as the Thiinen agsignment vm. auaﬁely land use ay
will occupy part of a gﬁng—shaped zone (centered on the
nucleus) of the form{j%), the q; ranging outward in order of
decreasing weight. f%he novelty is that not all the points of
the plane SatlszIAQ (5) are available, but only those Wwhich

-are in S. %(4) will also be false, in generalJ Instea@)we have

i 7~ |
£ { L1 \L

‘: afs n {s|h(s) < £} o= By teeut By 499

is= 1,...{5. Here Iy the distance of the borderline between
the landf%se zones for a4 and IS, will generally be larger
than tgé,ri of (4)s One must go further out to get the same

areagﬁsince pieces of the plane are missing.
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The existence of a weight~-falloff measure follows from

n
be proved using the argument of (4#;.449; oﬁwseeﬁtoa~5 -Akso

the existence of TireeerX satlsfylng (%L,4qnd this in turn can

the uniqueness theorem still applies. This megsure still
minimizes (8). The potential (p,k) is the égﬁe as before. In
short, removing an arbitrary piece of land;%rom the system
makes no qualitative difference in the saiﬁtion.

The foregoing generalization appliés to cases where a
portion of the region is unavailable for occupancy. For
example, this may be due to bodies of water, poor drainage,
irregular terrain, or other natqral adversitiesfgﬁ/ Or, some
land may be-preéempéiéd for qulic use or lie outside the legal
jurisdiction of the.éystem.; for another application, suppose
the system is subject to aVéoning ordinance. This invalidates
the alldtment—assignment:formulation, because some land uses
can be assigned to some zones but noé%bthers. However, if we
confine attention tq;any one zonesthen the formulation becomes
revalidated, the séf of land uses Q being replaced byﬁs;'vthe
subset of uses aliowed in'that particular zone, Wevmay there-
fore expect thgé the Thiinen ring pattern will be present within
any particulgé zone, but that land uses, and the radii of the
borderline b;tween them, will vary from zone to zone.

ﬁgé;gé now drop the assumption that o is two-dimensional
Lebesgue;ﬁeasure. Instead, we let it be any measure such that
a(s) éfﬁ(g? is finite, where S is still a bounded subset of
the piane% (#his could represent differehtial "fertility" of
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land, or the fact that land in some places has been augmented
by the building of multiple-stof}& structures)._\Itmauxn5~ont
—thrat—there
i}lll ex;sts a fea51ble assignment satlsfylng the
measurable weight-falloff condltlon, and that it has virtually

the same Thiinen form as above. The only aovelty that can arise

would be if
a{s|h(s) = :i} >oﬁ 103

for some i = 1,...,n~1, ry being the radius of the borderline
between land uses qi and q, i h?or suppose x acres of this
borderline are to be assigned fo activity q . Where x is
positive but less than (10 ) f Then, provided o on {s|h(s) = ri}
is not simplyhconcentratadg there will be more than one way to

apportion the land of (103 between a; and q, without

2i+l
violating welght-falloff. Thus uniquenesgq__x.break down with
this more general are&l capacity measure o; 5 Any of these
weight~falloff measqxes is best for the allotment-assignment
problem. The poteﬁiial (p,k) is unchanged.

"

A slight modificatlon of the procedure outlined above

enables us to canstruct one of these Thiinen assignments. There
may not exist an r; satisfying (9). Instead, we let ri be the
smallest number fo; which the right side of (2) does not
exceed the left. If (10) obtains for ;bhé r., assign to q

that proportion of o on the borderllne which just fills out its
allotment, and the rest to qi+l (If the allotment of qi+1 is

also exhausted, assign the rest to q 421 etc. )&
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fgééus continue to generalizerQWe}now abandon the
assumption that h(s) is the Euclidean distance from s tb the
nucleus, Instead we let it be any bounded measurable function
on 8. h(s)), of course, is interpretéd as ideal distance, and
our present generalizétion amounts to breaking the identifica-
tion between geographical and economic distance. Thus we can
incorporate irregularities of terrain, ef the transportation
grid, tariffs not proportional to distancg, zonal tariffs, etc.

Formally this generalization makesjlittle difference,.
because the theory of'the allotment—agéignment problem makes no
assumption that h(s) has any relatigﬁ:to a metric on S. We
cannot assume that there is a unigéé feasible weight-falloff
measure,)?ecause the (10) phenoméﬁon invalidates the uniqueness
theorem.' We can still assert,{he existence of such a measure,
- constructing it by the procgéﬁre outlined above. This measure
still minimizes (8), and tﬂé potential (p,k) retains its pro-
perties. 4

But despite all tﬁis formal similarity, the geographical

appearance of the regulting Thilnen system can be radically
altered. The~peig£wis that the land-use zones lie between
contours of h(s); as in (5). If h(s) is Euclidean distance from
the nucleus, tﬁése contours are concentric circles, and the
familiar pattérn emerges, With general h(s), however, the
zones can bééome quite'irregular.

Let_‘_,:«{'fslh(s) = r.} be the "borderline" between zones

occupigé by71and uses gy and di41° Then Qyreeesdy OCCUPY the
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open disc {s|h(s) < pi}.szhe borderline itself, if it has
positive area, may beﬂoccupied by dg 0 gf 94410 ©OF shared by
them, etc.) The geographical shapes of the Thﬁnen:“rings“ can
then be gauged by examining the shapes of these dpen discs.
This returns us to the discussion of gectichﬂB, For the city-
block metric 4-@enerated perhaps by a rectaggﬁlar road grid}—w

the open discs will be concentric diamonds;, and the "rings”

will be the regions between two diamonds at ideal distances

Ty and ri'(i = l,.ss,n). For the d;étance function deters

mined by a system of high=-speed rad;él arteries converging on
the nucleus, the open discs will/yéve an amoeboid shape,
projecting outward along the agﬁéries. We would then expect
high-intensity land uses to fggrawl“ along the arteries, while
sites away from the arterieﬁi at similar geographical distances
from the nucleus, would hg%e lower-intensity, more "rural"uses.
Limited~access traggportation systems lead to ideal
distances with discongécted open discs, and a corresponding
fragmentation of thg;Thﬁnen rings. The resulting geographical
pattern is intrig;ing. Consider, for example, a plane~§hé;h is
uniform excethfAr a high-speed commuter railway connecting the
nucleus with a;series of isolated stops, S8,/ S5, S3e.. in order
of increasin; distance. Away from the railway;land uses will
be arrangeé in concentric circulgt rings in order of decreasing
land~uséi&gight,_ql, Tgrese o Suppose the first stop, Sy
satisﬁiés& Iy < h(§l) < Ty07 sozfgat points off the railway at

thatfdistance are ‘in the zone of 910 (sl itself is geographically
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far beyond that zone, but the railway shrinks the eqdncmic

distance). The weight-falloff condition then calls:for a

secondary sequence of concentric rings, centered on_gl, and

——

P

beginning with land use d;, rather than ;- The second stpp,
S,r Will be fﬁrther out, say at ideal distancé between r,. and
Ty9e Thf? another secondary sequence will spring up around S,
starting Q370 Dygeecer and so on for 831 54,... .

The resulting pattern is a simple ;nrban hierarchy"”
organized in the form of a “metr0politgﬁ region", The "central"
city is—-the-one that growé up about gﬁé nucleus. "Satellite"
cities grow up about the points of aécess to the transportation
network. 'These cities lack,,howe?ér, the full range of land
usegf The heaviest, most intengi%e, most "urban" uses are
missing. The further out thelsgtallite is, the more uses will
be missing. The incidence mgérix, indicating which land uses
are present in which citiegf»is of the "central place" type,
in thatﬂ\if a given 1and£ﬁse occurs in a givﬁn city, all lower
type land uses are alsquresent (in this case, "lower" means

“lighterj).

ne could makej%he transportation system itself hierarchical,
which would lead #g the satellite cities themselves spawning
satellites, etc; The central place pattern would still obtain.
The 1nterest1ng point is that this rather complicated scheme
follows frgm simple and plausible assumptions concerning the
transporpééion system, coupled with the weight-falloff condition,

which ;fself follows from the minimization of transport costs,(Xl
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B

. R
To round off the discussion of “non—Euclideaé“ ideal

distances, it should be mentioned that the "borderlines"
{s|n(s) = r;} can themselves be broad geographic zones. That
is, changeémin geographic distance 1gad to no change in trans-
port cost over a certain range. This can occur in a
thorougégéoing regime of freight absorption, or uniform charges
over broad zones. This is quite common;fﬁ postal and telephone
rates, utility charges, retail delive:ies, etec.. Conversely,
ideal distance can jump discontinuously, as at a tolling point
or pofitical border.

In all this, the pattern of‘land-value densities depends
on ideal distance{ and will tuérefore behave irregularly with
respect to geographical disténces. Thus land values will reach
local peaks at points of access to the transportation system
(highway interchanges, railway stops, etc.), will have ridges
along radial arteries,wém&quy4nh

We have devoted,élmost all our attention so far to modifi-
cations in Space;;§$ and its associates, o ané\g. Let us now
turn tovg: This gés been assumed finite with unequal weights,
Wyreao W, with Eq being all subsets °f13;

—Let-us now suppose that two different land uses have the
same weight® féay,w1 = W, Then unigqueness of a feasible
weight—falloff assignment can, in general,“no longer be
guaranteedff Either q, or g, may occupy thé innermost Thiinen

ring; moré generally, any mixture of these over the innermost



P

884

two zones which satisfies their allotments will do. (CorZ<
respondingly, -of course, some premise of the uniquoness theorem
must fail. In this case it is the premise that ﬁ is the
sigma -field inversely induced by w* ssénees for”exampéeA the
singleton {gl} is not the inverse image of any real Borel set.)
Let us now assume thatm is lnflnito.f This encompasses
the case, for example, where continuous Varlation in the
intensity of a land use is possible.{k(Rscall that intensity
variations in “"one" land use are to 53 formally considered as
different land usesb@ We have an*allotment measure 8 on (Q, )
and a measurable weight function wiQ + reals, and we shail
assume as usual that BQ§) = ags) < », We .shall also assume
that different land uses haveidifferent weights., It is then
natural to assume that 2 is the s:gma-field inversely induced
by w from the real Bore1~fie1d Also assume that {w(q)|q € Q}
is a real Borel set. Einallyf—ﬂtowm&keuthinqs—s&mgigA-assume
that 8, I_, @ and h tgke the classical form, h(s) being
Euclidean distance té the nucleus('which is the center of
circular disc S) and o being two-dimensional Lebesgue measure.
Under these conditions, xhote ex1sts exactly one feasible
assignment u34satlsfying the measurable weight-falloff condic
tion. Uniquegess follows at once from the uniqueness theorem.
To prove existence (paqe 1, we construct topologies, T ¢

v

Tq, on S and Q, respectively, making S andbg Borel subsets of
: S Y -

separablg’and topologically complete spaces, with respective

Borel ﬂields.zs and Zq, and makingrn and w sem{icontinuous.
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For Ts we choose the usual topology on the plane, restricted
to S, For Té we take all sets of the form {q|w(q) ¢ E}, E
ranging over all open subsets of the real line with its usual

topology. This collection is a topology over g, the'topology
Rolies

inversely induced by w. One verifies that all thé’statad
conditions are satisfied. 3

This unique Thiinen assignment is,iintuiﬁiﬁely,‘a limiting
case of the classical pattern. We still Qgge circuiar
symmetry of land-use assignments, but dof;ot necessarily have
broad rings devoted to a single land use. Instead, there may
be continuous variation of land use& 'as one moves outward o
always going from heavier to lighter uses, of course. The
potential (p,k) may still be constructed by the line-lntegral
formulas éaa) and ésé)g;ﬁ seetionxs.iﬁp is Stlll convex (and
decreasing, if w is positive); k is still concave and increasing.
If p is differentiable a;fany given distance x, its slope' is
given by =-w, where w isfkhe weight of the land use located "at"
distance x. The onlyfhovelty is that p and k need not have
polygonal graphs, bﬁt may have continuously turning tangents

over certain ranges.

As a final generalization, we can relax the factorability

i tim
[‘ﬁ assumption (transport cost = ideal weight iines ideal distance),
' which undeflies the objective function (8). Recall that the

allotment-assignment problem, in its general form, calls for

the mlnimization of
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where £ has positive (or nontnegative) cross-diffeténces. ;(S)
is merely the special case in which f(x,y) == xy.;jNow the
measurable weight-falloff condition characteriggs the optimal
solutions to (ll)ﬂ\in general. Hence all thaﬁéualitative
features of the Thiinen system carry over the more general
situation of minimizing (11). The one naVelty is that the
potential (p,k) may lose its convexityuor concavity.

This concludes our discussion oﬁ the application of the
allotment-assignment problem to tha classical Thinen model and
its generalizations. The varlety of situations covered is
already considerable. We now géneralize still further, depart=-

ing more or less radically frem the classical interpretation.

.2'
4
A

AllocationZLﬁZ;ffortfﬁs a Thiinen Problem

Me have taken up 3 iéAthis book‘two broad types of ;;timi-
zation problems: the allocation-of-effort problem of chapter 5
and the transportation problem of phapter 7 (of which the
allotment-assxgn%p;t problem is a special case), These problems
are guite diffgﬁiut in construction; but there is one kind of
situation to ﬁgich they both apply, each in its own way.

Consider the following search problem, One is prospec-
ting an unexplored region for mlnerals and one-—is—to distributé ér
searchiqgseffcrt over Space so as to maximize expected return.

#
.;’ v\
i .
i

7
7 = h
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There—is a single location which is the\ybase of ogérationsf -
say,;the railhead-ﬁhiéh connects one with civilization. Now,
even if the prospect of finding minerals is unifhrm over the
region, it seems reasonable that é%éféﬂould search more
intensively in the vicinity of the base than far away from it.
For greater transport costs are incurred:at distant points;
ihe process of exploration itself is mgfe costly, and so is
the shipment of any minerals %hieh ggéjdiscovered.

Now this search problem is of“éhe allocation-of-effort
type of chapter 5. Yet the optimal solution appears to be a
pattern~whfch is symmetric abgnt the base of operations, such
that intensity falls off wiﬁh increasing distanceszgg the
base, This certainly mim#cs the Thiinen pattern. The question
then arises& Can we asgbciate an allotment-assignment problem

the
with original allocation—of-effort problem, such that their

optimal solutions car;espond in some wayf This would provide
insight into the phenomenon of the Thiinen pattern arising in
an apparently v?xy different type of problem.

Before goi;g into this, let—us give a few more examples.
Consider a farmer faced with the problem of distributing
fertlllzer over his fields. The farmhouse provides the "base
of operations". If there are no geographic irregularities, the
distribﬂtlon~w¥&é§ maximizes total return would again appear

to cqpform to the Thiinen pattern, with more intensive

feggilizer use on the nearer fields.
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Again, consider a discriminating monopolist, with a single
factory located at_§°. We suppose that consumarskare uniformly
distributed over Space, ana)that all have idgntical demand
functions for the commodity produced at,aq.F Assume that the
%gnopolist pays for transportation, and ﬁﬁat he can freely vary
delivered price from one location to another —-or, what is the
same thing, that he can freely choose the density pattern of
deliveries over Space, §: s » realsﬁ; (§ is measured in units of,
say, tons per year per acre). The profit-maximizing density
would then appear to have the Thunen pattern, in the sense that

find

§ should decrease with incregsing distance from s_.
As a simple generaliza%ion of this case, drop the assump€

tion that consumers are uhiformly distributed. Then we still

reach the same conclusimn, provided §(s) is interpreted as

the density of delivexies per person, rather than per acre.

ﬁ&j//; non-i-rig;lrous argument for the ":Lntensity-falloff"z of § goes

as follows. Suppose there were sites, Syv Sy with Sy further
from the factory;than,sl, but with 6(32) > 6(51). Then interj
change these dqﬁsities between one person at S and one person
at Sqe This ;gaVes gross revenue intactkkbut reduces transport
costs¢\hencg;the original distribution was noﬂ;pptimal.

As a lést example, let some public-service facility — such
as a pollge or postal station — be ‘located at so. This is to
serve a certain hinterland and the question isp How shall the

services be spatially distributed over this region? (Intensity

of service oould be measured, say, b; frequency of police



889

patrols or mail pickups.) With uniformly distr}éuted popula-
tion{&?nd with uniform benefits as a functionféf service
intensity, it again seems reasonable that intensity of service
should decline with distance from Sq0 to;maximize to;al
benefits net of transportation cost;Z |

We now proceed to the analysxs.gvThe allocation-of-effort
problem is determined by a ségma finite measure space,
(S,Zs,u), three measurable functmons, u:sS * reals > reals, and

\

b,c:S + extended reals, and two‘extended real numbers, L, and

m
L%, The problem is to choose a measurable function &: S+ reals

to maximize gﬁ

J,_g{s, § (s) )fo(ds) 2)
subject to the constraigis
v COARLY,
w4 Lgf_[ s do < 1o @3)
g S iy
s | J4)
f  pesze. phe

Here (12) fg an indefinite integral over S, and "maximi-
zation" is toﬁﬁe understood in the sense of standard ordering
of pseudomeasures. (If (12) is well-defined and finite as a
definite 1ntegra1 for all feasible §, this ef-eeurse reduces

L3
to the ordinary 81zegcomparlson of definite integral@). It is
?'; L »/m
alderequired that | 3 da be finite,xeven if L, or L’ is

inflnipe. (For conveniencé\fe have changed notation somewhat

from that of Chapter 5).
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We now identify a special subglass of the problems (12) -,
(14) , one which embraces all the examples cited, and for which
the Thiinen pattern emerges. The first special asgumption is
that b and ¢ be constants (one or both may be 1nfinite).~ The

second special assumption is that

u(s,x) =-f(a(s), x), = “(15)

for all s ¢ S, X real, for some measurable functions

h:8 + reals, f:rea )7 + reals, where f has positive cross="
differences. There are a few more(yinor technical assumptions,
but these are the two major ones,pfgctwus interpret them.

The first states that the ;imits on the range of permisc
sible densities do not vary frcm point to point. This is
plausible for all &f our exaﬁples. In fact it is reasonable
to take b = 0, since neg;ﬁive densities are meaningless for
them, and there-is no pggitive minimalcdengi;y‘required.
(Exception: in the c§§c of public services, there may be an
institutional requi:éﬁent to reach some social minimum for all
regions or personsés In this case, b > 05 but still constant)
As for the upper 1imit ¢, there may be either no such limit
(c = °°), or) soma uniform gaturation level" of intensity, for
regions or p%ﬁsons.

As forféhe second assumption, the special form (15) is
clearly rgminlscent of the integrand in the allotment~
assignmant problem; (11). (The minus sign is inserted because

the chﬁective in (12) is to maximize, whereas one minimizes in
-———-——7-— ———7—\-.-—.———-.‘

S i
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allotment—assignmen?)( Lét—as show that (15) is a éiausible
form for the objective in each of our examples. ;fn evaluating
a density pattern there are two factors to consider: the

3

s N \ 3
gross return over Space-whieh accrue from that pattern, and
A A /

the transportation cost whiech—is incurred b§ that pattern.

In the exploration example, gross returng@buld be the expected
payoff from mineral$ discoveries (lessﬁééarching costs other
than transportation). For the farme%f gross return is hﬁa”
profit on crops grown, 1es§Jéost off}ertilizer. For the mono=
polist, it is his revenue from sa};s. And, for the public
service facility, it is the soc%él benefit from the service
rendexed. .f

{? 4Hew in all these cases the gross return at a point will

¥

f;fwﬁw depend only on the intensxty at that point, not on the locaZ

tion of the point g&_ se.: This results from our uniformity
assumptions. The gross return is represented by a measurable
functicnlg:reals > reals. As for transportation cost, let-us,
to bégin-with, make gﬁ; simplest factorability assumption:
;&ansport cost incuried at point s is the product of intensity
at s and the distance, h(s), of s from the base of operations.

We Ehen have

£

/ . @l
* u(s,x) = g(x) - h(s)-x . k)

Thé critﬁcal observation to make is that (16) is of the
form (lS)E%EQith‘f having positive cross-difference% @ regards

less of whét the function g is. This follows at once from the
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fact that g éoes not depend on s, We may also discard the
special transport cost assumption, and assume more generally
that transport cost is of the forﬁ%fl(h(s), x)fufox some
measurable function £, with positive cross—diff;;énces.
Throwing in g(x) does not alter this property,iand (15) is
still valid. Thus all the examples given ﬁa~seem to be
encompassed by our special assumptions. y

We now want to translate from the lé;guage of the
allocation~-of~-effort problem to the 1anguage of the allotment<
assignment problem. The latter speaks ofﬁuland uses®. We

now let each possible intensity 1§ve1 be a land use. The set

of land uses, Q, ‘may be formally identified with the real 1inen
(Actually, the interval [b,c] wnuld suffica). This is a
radically stripped-down versman of the full-blown land-use
concept. For the latter, the answer to the question, "what's
going on here?@;”would reqﬁire at least the specification of
two measures over R x Qﬁg production and consumption. —Fexr-us
here, it requires jusggﬁhe specification of a real number,
indicating intensityf%(éntensity of search,™or of sales, et
fertilizer use, etétw The weight=function w is simply taken
to be the ident%tf,mand ghy be ignored.

Choice in‘fhe éllotment-assignment problem is over

measures v on (S x q, I
= WA

g X Zq); in the allocation problem,

choice is over measurable functions §:S + reals. To translate

from the latter to the former, use the formula



893

v(G) = a{s](“s,a(‘sﬁ)) € G}, : ﬁ%

for all G ¢ Lg qu (z is the Borel field on the real line
\&). Here a is the measure of (12)- (13), and has the inter-~
pretation of acreage, ox population, etc. That is, given an
intensity distribution represented by §, (17) eﬁews how to
express it as an assignment measure v. For ei;mple,‘iet G
be the rectangle E x F, and let o be areal geasure.:43fﬁ x F)
is the area in region E~whiehnés'assigned {e intensities
among the numbers F, and this is just what the right side of
(17) equals. 4»

To see that v defined by (17) is indeed a measure, note
that s + (s,8(s)) is a measurgﬁle mapping from S to S X,Q,'
(17) states that v is the measure on S x Q induced by this
mapping from o on S. (There is one fine point here: ﬁhe
solutions to the allccation problem are not really the
densities §, but the 1nde;inite integrals /[ 6 do they represent.
Two densities, y and 62, represent the same indefinite

1f 2t

integral iff they are 1dentical a—almostheverywhere. (17)

(2

would hardly be satisfactcry if two equivalent §'s yielded
different v's, Eut-&nwﬁaet they yield the same v, as one may

,@

verify.) A
In the”illotment—assignment problem, v is feasible iff it

has the prescribed marginals, o and 3. As our notation

1ndicatés, we are taking over the measure space (S,I ,a) of the

allqgation-of-effort problem bodily to be the left marginal
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space of the allotment-assignment problem., We now show that
any assignment v defined by (17) automatically satisfies the

left#marginal allotment-assignment constraint. Iﬁ fact, for

any E€ I,

\%>v'(E) = V(E x Q) = q{E);JQ
3a : T ek r :

i oA
——— — s

35 from (17), so that a is the left margina;{of V. We have not

yet defined the allotment measure 8 onfag,zq); this will be
5:“‘ A, i

| Y later. 4
i o ; £

3Q%inheorem: let (S,Zs,a) be a noé}atgﬁic sigma-finite measure

space; let h:S + reals and f:rgglsz + reals be measurable, with

f having positive cross-diffg%encesf‘and f(y,*) being upper

semircontinuous for each real y; let b, ¢, Lo, and L® be four

¥

o

extended real numbers.

Rt es———T

Let 62 be unsurpagéed_for the problem of minimizing

)

/ ) 4 \
( \Bl ,ﬁ{ (f ' (zl q)
Idf(h(s),ﬁ(S))a(GS) ()
f over the set of mggsurable functions 6:S -+ reals satisfying
1 \\5"‘@‘“‘ ! ,\ 2 bi | "i
VA T I § do < L% ~19)
f ~ s M
m\the integralﬁin (19) being well-defined and finite), and
' £ (7.6.20
{ bté§ <@, 20)

£
)

/
Theny%ﬂ, defined by (17) for § = 82, satisfies the

T e S e

5 (measurabﬁé) weight-falloff condition (with respect to h and w,
| the lagéer being the identity function).
/, X F4
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\/w‘”‘" :
Jﬁf Proof: The premises imply that-there-exists an extended réal

number, Po' and a seé%E € Zs& such that u(E ) = 0, and, for
each s ¢ S\E ¢ 62(s) minﬂmizes

5/‘ & /"{
k ’%f' {" ’{f | & bx}
£(h(s), x) + p/ f 2 /’%X
! over the real numbers x in the closed intervgi [b,c] (page - '

)= Suppose first that p is finite, qﬁ% let s,, 8, € S\E .

Using the abbreviation fij for f(h(si). gi(sj)). i=1,2,

4"

j = 1,2, we then have F

?‘f“ |
fll + poﬁm}sl) < if 4 p §° (sz)
‘and 4
f“* ;

TS

i

{
These yield 4

f . (X 2
é"

New 1t is impossible that both h(sl) < h(sz) and

1.3 (sl) < 6°(sz) be trué, for in this case (22) would violate

™
the positive cross-differences condition. Hence

f{ ‘/ b 2 )
h(s,) <£ﬂ(sz) implies 682(s;) > 8°(s,). -HHH' %

Now suppose tha@;po 4o, Minimization of (21) then means#by
convention) thgt x is to be as small as possible, so that
§2(s) = b fom all S € S\E *(73) then holds automatically.

{ A similar c@nc1u31on follows for po -», We conclude that

(23) is true for any Sys 8, € S\E .

;f

f
§
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W2 g
et—us now go to the product spacef (s x g, T, x g ),

W

Let Gl' Gz be two measurable sets, with Gl southwest of G2.

Thatm;sw if (s <y ) € G " a = 1,2, then h(sl) < h(sz), and
V
9y < dy. (Remember that Q is the real line). Define_two new

A, L

sets, Hiv Hy, by .

M : Hi o= —-Gi\ (Eo % hQ) i f\ \j:;_

= £

> i=1,2, At least one of the sets Hl' H must own no point of

the form (s, 6°(s)), for otherwise (23) would be violated.

Hence, from (17), _ ;?

v°(H ) = alﬂ) = 0

emr—_ V
g e it

must be true for at least one index i = 1 /2. We also have -

Ve (B x/ Q) - a(E ) D
~ £\ e

‘_,.«a*'( -

so that
/

ve (G V<o) + ve(E, x 0) = 0 7
\
must be true for atﬁ/gast one index i = 1,2, Thus V° satisfies

measurable weight*falloff. “Lkﬁ‘igfﬂﬂ

This resuli ratifies our intuition concerning the nature
of optimal solutions to the allocation problems discussedﬁ
They do indge& yield a Thiinen system when translated by the
natural formula (17) into the proper language. The assump-
tions made, in addition to the two already discussed, are that
o be noégatomic and that £(y,+), as a function of its second

argument alone, be upper semi+continuous for each real Ye

6@\

i 2
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We mention a few generalizations. As discussed in'
20, /7o
ugmagtez 5%

Lo

4 the nonﬁatomicity assumption on a could be dropped,m

< At the cost of assuming f(h(s), °) to be convex for all s in
the atomic part of S. (If a is population measureﬁfthe atomic
part may be thought of as the "cities"; if o is agéal measure,

it may safely be assumed to bevnonratomic). For éhe objective

r? o function of type (16), convexity of £ is the samg as concavitz
,{3 «&f » of g (= diminishing marginal returns to intensity of effort),
A
fy which is not implausible but somewhat restrictﬁve. Upper

sem{?continuity of £ is the same as lower sem@§continuity of
g, which is so weak as to amount to no assumpﬁion at all from
the practical point of view. »

The assumptxon that b and c are constants can also be
weakened tdzthe followings Ebr any s,, S, ¢'s, if h(s;) <
h(s,), then b(s,) 3‘b(52)iand c(sy) > c(sz), The preceding
proof still goes through,b;ith some minor cémplications whose
discussion we omit. i

It remains for us to complete the cong%ruction of the
allotment-assignment problem to be derivedéfrom the allocation=
of-effort problem (lS)ﬁ(ZO). We make the édditional assumption
at this point that o is finite, and definegthe allotment

measure B on the real line (Q,Eq) by
WA

! fff 24
B(F) = a{s|é2(s) ¢ F}, ‘(24)

for all Borel sets F, This is the measure%induced on the real

line from o by the function 62, (If o wer% infinite, one could

N
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not guarantee thewaiéma-finiteness of B; in paréicular, B
would not be sigma-finite if §° were constant?

)

% MR
o

fﬁﬁ. Theorem: Assume all the premises of the precsding theorem, and
in addition assume that £ and o are boundedi Consider the
following allotment~assignment problem on the space (S x Q.

W

;’f}f; Es x Eq)@ Minimize f
v’;r:;‘:d/ " /‘ . 4

(S I f£(h(s), q)v(ds, dq) %fEZf;T;"
sxq |
over the set of measures v on S ngrwhégh have left and right
marginals o and B,Nrespectivelylj B is;given by (24), where
62 is unsurpassed for the problem (18)3&20).1
Then the assignment v°, defined b; (17) for 6 = 82, is
best for this problem. :

i

Proof: First, one immediately verifies ihat ve2 has o and 8 for

its left and right marginals,(respectlvely, so that it is

S feasible. By the preceding theorem v® satlsfies measurable
\gzﬁﬁ weight-falloff, and this fact, togethe; with the boundedness
of £ and a (hence B), implies that v:.ﬁs best (page ¢0o ), |[HW& /&

This artificially constructed allétment-assignment
problem has the following intuitive meéning. Start with the
density pattern 6° which is unsurpasseé for the allocation-of-

.effort problem. Now consider any "resﬁgffling' of the pattern
»whieh nreserves the distribution of dengity aggregated over

all-ef s, (FerAexampiew if als|so(s) < 20} = 100, +hen the
J



\&

899

reshuffled pattern will also have 100 acres with d?hsity
under 20, though ef~eeurse the actual region of lQW density
may be different). These reshufflings remain feé;ible for
the allocation-of-effort problem, hence ncne~e£;£ham can
surpass §°, Now in the associated allotment~a$éignment
problem, the allotment measure 8 is precisely this density
distribution, and the corresponding const;aint assures that,
in a sense, the feasible assignments v <"1x'e{\“.v.fe.-;thuffl:l.-m;;rs?h of
va., :

The boundedness of £ and o insures thatjflﬂ) is well=-
defined and finite as a definite integral. ;In fact, it is
equal to (25) if v is derived from § by (175. Hence the
objective functions of the two problems coiﬁcide. The allotg
ment~assignment problem is in a sense a suﬁgroblém of the
original allocation-of-effort problemﬁlih ;ﬁat it imposes the
extra allotment constraint}#%é;h restriéts‘comparison to reZ
shufflings. ~ﬁﬁ“ﬁm@vieu&1ywdiseussed#$thi§ is the ggnerai”fgle

of the "artificial" allotment constraint.gs

Thiinen Systems without a Nucleus
I

Bp“tv“fﬁéé;pei#;q the nucleus, or "bﬁse of operations"/
has played a crucial role in the interpréiation of the allotg
ment-assignment problem, since the ideal:ﬁistance-h(s) has
been taken to be h(s, sN), the distance b?tween location s and
the nucleus sy . We now show that a qonsiaerably more general

w. Uhod :
interpretation is possible, one yhieh need not single out any
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particular location for,épecial treatment.
\ .

Q§QQv>’The idea is this. We have assumed that any point S must
trade exclusively with nucleus Sye Suppose instead that the

pattern of trade of a point is given by a dist;ibution, P,

over Space: p(s) =1 ;&%ﬁat~is, p is formallg;a probability
measureftﬁ@nd p(F) is taken to be the fractiqg of total trade
(exports plus imports, measured by ideal wegght) of gjwhich
terminates in region Fo for all measurable 5. The "nuclear"
case is precisely that in which p degenerates to a measure
51mp1y-concentrated at s :

N°® .

For example, there may be several nuclei —-@ay, SN%,...,SN }‘45~\¥
and trade is to be divided among them in the given proportions (:”'\,i/
PrreserPpe Oriﬁp may be noq:atcmic, pr?portional perhaps to the \\n f
distribuﬁion of population over Space. EIn any case, p is given &
as a condltlon of the problem. 5 ,;-

~Le%wus now generalize still further,vby allowing the
spatial distribution of trade to depend on location. To

represent this, we take p to be a conditlonal probabllity

measure, with domain S x 253 That»isg for any s ¢ S, p(s,e)
is a measure over S, with p(s,S) = 1,3and, for any F ¢ Z
p(*,F) is a measurable function. The interpretation. is:
p(s,F) is the fraction of total trade;of location s whiﬁh
terminates in region F,.

This allows a good deal of flexiéility and realism to be

incorporated into the conditions of tﬁe problem. We expect in
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a general way, for example, that locations tend to trade
heavily with regions near themselves. One restriction is
essential, however, for the analysis»ﬁhiéh follows. Though
distribution may depend on location, it must not depéﬁd on the
land use whose exports and imports are being distr%ﬁuted.

It remains to show the conditions under whicﬁ“this more
general scheme still leads to an allotment—assigﬂhant problem.
Feasibility conditions are the sames There isjén areal measure
o on (8,I ), and an allotment measure B on (inq{)which are the

N

marginals of any feasible assignment v on (S X‘Q, I X Zq). il

As for the objective, we still postulate a w@ightxfunction
wiQ + reals, But the distance function h:SfQ reais seem;ZESM
be missing, since there is no nucleus. 'In%iead, we go back a
stepkkand assume that unit transport cost éetween any two
locations can be expressed by a measurabléFfunction
g:sl X 8y + reals.i(sl and §, are both iéentical to S; the
subscripts are inserted for clarity).i:§‘§ééd no;lg?ey any of
the postulates for a metric¢;except for %%mmetry: 9(51’32) =
9(8508y). |

The total transport cost incurred bé an assignment v is

thenq-/ 35 Wl 20 ol 7
J v(dsl,dq) j p(sl,dsz)iW(q)i§sl,sz). 426
S, %@ S

1'% 2 !
Integrating from right to left in (26), tﬁe integration over

5, yields the transport cost (per ideal acﬁe) incurred in the
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process of distributing the exports and imborts of land use g
at»sl, according to the spatial pattern b(sl,'). But if we

now define the function h:S + reals by

033 e koias (81637
s h(s) = I g(s,s,)p(s,ds,), 27)
By ;,
then h is measurable, and (26) is equal to

S 5“\;’»« i? 6.2
| ntsrwetayvias,aa, (28)
5xQ §

WA

which is in allotment—assignmeit fdrm:%ﬁ/

Thus our generalized inﬁérpretation has the same formal
structure as before, provi@éd we define "ideal distance" by
the special rule (27). Lei us check to see what happens when
there is a nucleusﬁ\sN. ;in this case we have p(s,F) = 1 if
sy € F, and = 0 ifésN e;é\F, all s ¢ 8, F€ I . The integral
(27) then reduces toﬁgfg,sn), and this is indeed'our definis
tion of h(s) in the “ﬁﬁclear“ case.

The optimal solﬁtions to the allotment-assignment problem
with the objective éf minimizing (28) must of course satisfy
the measurable weight—falloff condition with respect to (h,w).
Thus the heavy la@é uses will be assigned to regions of low
h-values. In th;?\nuclear case this has the geometfic inter=
pretation that tﬁe heavy land uses croﬁd in about the nucleus.
What interpretaﬁion offers itself in the general, non+

nuclear, case? -
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\ ,

fﬁ;ﬂ‘%-—\~we shrall discuss this under the assumption that p is
independent of S. Th%&-«’xs, there-is a fixed r@easure P over
Space determining the distribution of exports and imports
from any location with any land use. Also assume that g is a
metric on S. -New in the nuclear case,;%he nucleus can be
characterized as £he site for which_gjis minimal (h(sy) = 0,
and h is otherwise positive). m“i%-suggests looking for a
site Sq éh&éh minimizes h(s) of (27) Indeed, the weight-
falloff condition requires that heavy land uses crowd in
about So just as they do aboutgthe nucleus when the latter
exists.ﬂ |

Now the problem of finding a location 8, that minimizes

(27) is a basic one in spagial economics. This is the Weber

problem —(to be discussed in detail in chapter 9).& and an

optimal location is a Weber point or median of the distribu=

tion p. (Remember that p is independent of s; hence it may
be thought of as simply a measure, not a conditional measure).
Thus_land uses will tend to arrange themselves in a pattern
"éﬂgé% mimics the nuclear case, the median of p playing the
role of "pseudofnucieus“ The difference is that the median
may be otherwise just like any other point, 4&5@% AR tendency
for transportation flows to concentrate on it. Also, the
points on a borderline between successive land uses will not
generally be equidistant from the median, as they would be

from the nucleus;%zf~
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Quality Complementarity

It is a matter of everyday observation that rich people
tend to live in better housing than poor peOple,:fhat good
students tend to go to good schools, that abler~ﬁanagers
hold more responsible positions, and that "desi&able" husbands
tend to marry "desirable" wives., Do these cagés have anything
in common? j

ﬂhﬁ%he,girst;piacev they refer to assqéiations of two
kinds of entities: people and housing, stﬁdents and schools,
workers and jobs, husbands and wives. 1n"the-secondﬂgéace,
each of these two kinds of entities are ordered on ;&*quality
scale of some sort &qﬁheehemgby wealth, gy ability, by'gsthetic
appeal, etc.{ And thirq;yq out of all tﬁé possible ways
entitiés of various gqualities could asséciate with each other,
those of "high" quality on one scale tghd to associate with
those of "high" quality on the other, énd similarly the "lows"
associate with the "1ows“,; | f

These characteristics establish a formal link with Thiinen
systems. Here the two kinds of entit;es are locations and
land useszLuaﬁdé_is, the points of § %ndwgrlrespectively. The
scaling of these entities is accompli%hed by the distance and
weight functions, h and w, respectiveﬁy.};(For vividness,
think of heavy land uses as being of “high" quality, and
similarly for "close" low-h, locationsé Note—that site

quality varies inversely with h; this inversion is needed to
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conform to the above usage% ~Aﬁd‘the high=high, low-low
quality association is represehted precisely by the weight-
falloff condition'wh&eh charabterizes optimal land—use assign-
ments v. ;‘ ;

{%gﬁ_us illustrate this iast point by the £ousing example.
Interpret S as the set of housing types, and Q as the set of
family types. 2An assignment of families to hcuszng is repre-
sented by a measure v over S8 x Q,I(E X F) is,.sa¥* the number
of square*feet of housing of types E occupied by families of
types F. “Now let w(gq) be the wealth of family type q, and let
h(sTZ?e an index of quality nghousing type, low h correspond-
ing to high quality ("h" stands for "humbleness“). Then the
fact that wealthy families occupy highpquallty housing is
expressed by the measurable weight-falloff. ondition on v:
if G, is southwest of G2%¥§§o that (si,qi)je Gy, 1= 1,2:1_
implies s is of higher quality and q; of iower wealth, than
Sy qz,_respectivelfyﬁ then either v(Gl) = 0 or v(G,) = 0.

This all suggests that the analytlcal apparatus we have
developed in this chapter may serve as an gxplanation of these
rather diverse phenomena. Now Ehis apparaéus so far has run
exclusively in terms of optimizationé}%épeéifically, the
minimization of cost in the allotment-assighment probleq?

Some of the situations we=hﬁve mentioned ma& be intérpreted
directly as optimization problems. For exaﬁple, a firm has

an executive staff of varying ability, and a set of positions
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of varying responsibility, and £t is~to fili'the latter with
the former seo-as to maximize profits. Buﬁfmore often we are

talking about social equilibrium situations, where no 91ng1e

wrii decldes the final outcome. Even;here, it is often /
enlightening to express the equilibr$am as the solution:to an
optimization problem, though no onéfi;ZSonsciously tg§ing to
solve this problem. (In thewfnllew%ng_gectiogffbgithe-sha&i
connect the "classical" Thiinen eguilibrium witﬁ‘tué al;otmentﬁ‘
assxgnment problem in this way). ‘:

Le%mns examine both of- these approaches fox the situations
we—have mentioned. For the optimization apprqachellt is con;,
venient to choose a slightly altered form offihe aiiOtmenté
assignment problem, in which one maximizes:géther than
minimizes., Specifically, one is to maxim;;e

3“ f o 4 {;‘
I\g(-h(s), w(@))Y(ds,dq) LA

over feasible assignments v. Here w(q);is the quality index
of g € g, and -h(s);éhe quality index'éf s € S.B?The minus
sign is used to facilitate comparisonfwith the original form
of the problemf?w"- :

If we define the function fireals® + reals by o
{ 5{»(:"",’5‘ \
f(x,y) = 'g(fx"Y)t (309

Bhé~éaéi%y seeq that the preferencé ordering determined by (29)

is the same as that determined by ﬁinimizing
- <
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je\f(h(S)p wi(qg)) (ds’dq‘)'. . (F.¢ R

which is the original allotment-assignment:6bjective function.

Now the critical feature of the allotment—a581gnment
)

problem is that f in (31) haVe positive cross—differences. By

(30), this is true iff the function g hag positive cross=
dlfferences. ;

What is the concrete significance @f this property? One
may speak of positive cross-difference§ of g in (29) as

expressing complementarity between théftwo quality indexes,

w and =h. —Indeed, an older generation of economists were in
the habit of defining complementarityfbetween two commodities
by the sign of their cross-derivative in someone's utility

function: X and Y are complementary iff
(% 6.3

D, (B9 xyy)] 2 6 62)
for all x,y. Now one may. show, Erov1ded D2[Dlg] exists and is

finite, that ¢ has non-negative cross—differences iff (32)

holds.28

(When utility came to be interpreted as merely an
indicator of preference, the definition (32) had to be
abandoned. For the same preference brdering might have two
utility indicators, one satisfying (32) and the other nct:.z.9
This objection does not apply to g of (29}3;

Consider the jbb-assignment example. A firm has a

managerial staff( graded by ability) and positions to be
filled(igraded by responsibilitg} Suppose Ehat g(x,y) is the
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profit generated by ;ﬂmumrof ability x placed in a position of
responsibilityzg, total profit generated by an assignment v
being given by (29). ®New it is plausible that abilityféifferg
entials show up more stronély, the more responsible ii'the
position to be filled. Thus brilliant A might outshine
mediocre B in a 1§adership position, but not do much better as
as@ﬂmm,mmmemehuupmumnM%nwjﬂMdmm
scope for A‘s talents. Letting Xy < Xy be two Sbility levels,)
and ¥y < y2 two job responsibility levels, the assumption just

{a
sfjfited is that

(7;,3e,;

’ g(xy,y5) = g(x;,¥,) > g(x,,y;) 1fg(x1,yl). (#3)
But this is precisely the positive crossédifferences condition
on gl

Again, to take the school—assignmént example, let g(x,y).,
measured in dollars, be the "social bénefit" from having a
student of abillty level x attend a school of guality level y.
Condition (??) then states that the; /differential benefit in
favor of the mewe ablel student is greater at the higher quality
school. This again is a notglmplgnsible assumption. If we
now imagine a coordinated school éolicy aimed at assigning
students -so=as to maximize overaxi social benefit, it will have
an allotment-assignment problem to solve. The optimal solution
will then be, under rather geneéal conditions, a weight-falloff
measure%k which means that the better students go to better

schools.
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To illustrate how a "weight-falloff" assignment might be
a social equilibrium, consider the housing example. Again
_ we make the unrealistic assumption that there is a single
ﬁx*qualityﬁkégmension along which housing types can be arrayed.
Let 8, and S, be two housing types, Sy having the higher
qualityé say s; has'a scenic viewlﬁhi;h S, lacks, 6r sl'has
central air conditibning, etc§g;A given family is willing to
o ?Epay a premium to odcup§l§ousing type sy rather than Sqye We
Y now assume that,'the wealthier the family, the greater the
premium it is willing to pay for the quality differential.
This highly plausible assumption leads to thé$}weight—falloff*i
equilibrium.'eThe basic argument can be illustrated in the
case where there are just two wealth levelséw “ri;h' and
“poor?}) Supposeq“rich"LE;milies are willggg to pay $100 to
occupy s, with its scenic view rather thgﬁ Sy while "pooxr™ <
families are willing to pay just $10 forfthis privilﬁge. It
cannot then happen that in equilibrium gﬁere are both rich
families li%ing in the lower quality h%ésing s, and poor
families living in the higher quality}iousing 8,. For if the
rent differential exceeds $10, the poér families in S do
better to switch to 52: while if thef}ent differential is less
than $100, rich ﬁ&milies in 8, do better to switch to Sqe
Since one of these cases must occu:; somebody is out‘of equil
librium. 'We conclude that the rich occupy highéand the poor
low-quality housing in equilibrium,
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—Furthermore., this situation is associated in a natural

way with the following "artificial" allotment-assignment
2

{;;,C-fm 3ub)

problem. Let Xy 2 lekand choose a function g:réals + reals
such that J
g(x;,y) = 9(x,,y) . 34

ﬁquals the premium whieh families of wealth y are willing to
pay to occupy housing of quality index X, rather than Xy. The
assumption we made above is that the diffeience (34) increases
with y for fixed x,, X,; this is the same as saying that g

has positive cross-differences.

“Now let measure’ o on the set of housing types S, and B
on the set of family types Q be given by: a(E) = square-feet
of housing of types Ea\B(F) = square-feet of housing occupied
by family tyelgs F in the above social equllibrium, ve, ”93
will then be the optimal solution to ghe problem of maximizing
(29)Eﬁ-§he integrand g satisfying (34{?@ over assignmeﬂts with
marginals o and B. Furthermore, the érices associated with
the various housing qualities turn oot to be a left half-
potential for this problem.

Note that (34) does not determioe g uniquely. Indeed,
adding to g an arbitrary function Jﬁioh depends only on y will
not affect (34). But this transformation does not alter the
preference order determined by (29), ‘hence' yields essentially
the same allotment-assignment proble@. One should be cautious

in drawing normative conclusions from the fact that v°
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optimizes the problem just constructed: The market implicitly
weights the preferences of different families, and this
weighting need not coincide with that derived from some
ethical principle.

We have run through the foregoing analysis rather rapidlyrgk\
because thewnex%ggection(‘8.7, will cover the same ground more ‘

elaborately in the context of Thiinen systems proper.

A Combinatorial Application

Given 2n real numbers, Xy < Xy <eos< xn,land y1<...< Yyt
)
consider the problem of minimizing the sum

X ¥r1) * ¥yt Y (n) ~+35)

t

over all permufations m of {1,...,n}. According to a theorem
of Chebishev, the unique minimum éccurs when the y's are
taken in reverse order, matching;}n with Xy 0 etc., This is
easily provad@ For any other pe?mutation T, there is an index
j such that Yo () < Yo (441) * Bét then
; (F.6.>C)

G X3¥n(3) * Fya¥ngrn) > Easen T Fe¥n(d) .
so switching these two y's redﬁces the sum (35). A finite
number of these transpdiitions?leads to the reversing permutaZ
tion, which therefore minimizes.

This same argument yields the following generalization.

Instead of (35) we minimize
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(‘Tz-(a-:‘. i)

f(xl,;z,"(l)) *,.0+ f(xn'y.n (n) )- : (37)

Then,’if f has non-negative cross~differences, the reversing
permutation minimizes (37). If £ has positive cross=
differences, this minimizer is unlque.m_i25é{'I; replaced by
the cross~difference 1nequality. Note that (35) is the
special case of (37) where f is thé product function:
£(x,y) = xy).

fﬁ i ~—LAs-one suspects;”there is an allotment-assignment problem
lurking about. Indeed“ let 8 = @ = {1,...,n}, Iy, ™ zq = all
subsets, o =vB = enumé%&%ien*measure, h(i) = Xy and w(j) =
¥y for i,j=1,...,n, and/f be as in (37). The resulting
allotment-assignment proble@ reads as followsy

Minimize the sum of the n? terms

(i,j ranging independently over {l1,...,n}), over all non-

negative (n,n) matrices (vij) whose rows and columns all sum
to 1 ("bisstochastic matrices").

The values (37) are embedded among the values (38).
Specifiéally, for feasible matrices consisting of just 0's
and 1's ("permutation matrices"), (38) reduces to (37). If f
has positive cross-differences, the unique optimal solution is
the "weight-falloff" measure,’given by: vij =1if i + 3§ =
n+1, “ij = 0 otherwise. This solution corresponds to the

reversing permutation above.
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The allotment-assignment problem just constructed is a

special case of the assignment problem of ordinary linear
programming. ABméumweii:knéwnaaghis in turn is a séecial
case of the transportation probi;m. The positive;érossz
differences property of the objective function enables us to

read off the optimal solution at sight.

8.7. The Thunen System as a Social Equilibriumi Formal Theory

A social equilibrium is a system involvin§ several a.gent:ss/7
(with possibly conflicting preferences) such that no agent can
take any action whieh improves the situation according to his

own preferences. An example is the real-eatate market of

chapter 6, in which agents acquire regions of§Space (or Space=-

Time). Here each agent has a preference ordéring over pairs
consisting of the region acquired and the coét of acquiring itf
Equilibrium consists of a pattern of realaesiate values
(represented by a measure over S or S x T) dﬁd a partition of
S (or S x T) among the agents,'such that nO‘%gent can improve
his position by switching to another region‘§nder the existing
pattern of prices. 1

The equilibrium of this section is simiiar to that of the
real-estate marketg)but goes a step deeper. gyamely, we assume
that people acquire\land in-order to operate }and uses on it.
The decision problem facing each agent is accérdingly more
complicateds He must decide not only what 1and to acquire but

what to do with lt v th&%«%S, what the land- usa assignment is
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to be. The separate decisions of the various agehts then
result in a pattern of land uses over the whole system. We
will show that, under certain mild assumptlons, this overall
land-use assignment is a Thilnen system, in t@pt it satisfies
the measurab;e weight-falloff condition. :

Now for Eﬁé formal model. We are given the measure space
(s, Xs,a), where S is phy51cal Space,}and q is the areal measure
on its ségma field Xs. The measurable fuiction h:S + reals
gives the distance of locations from thgfnucleus. Also given
is the measurable space of 1aﬁd uses, %kzq),-tegeehex with the
measurable weight function w;§ﬁ+ realgﬂ Area, distance;and
weight are all "ideal" and ma&wbe conéiderably distorted from
the corresponding physical magnitudes (recall section 2).
‘Spe01f1ca11y, they have the following pﬁOperties. Iet v be a
measure on (S x Q, Es x ¥ ) representlng a certain land-use
aisignment- v(E X F) is the (1dea1) acreage in region E
devoted to land uses of types F. »Then ¢ measures the capacity
of regions to accommodate land uses, in the sense that any

feasible v must satisfy
(9.1,

V(E x @) < afE) (1)
for all regions E, Also, the ﬁ}anSportation cost incurred in

region E by assignment V is

A / AL
Wy [ f(h(s).wiq)) (ds,dq) . +42)
Exa ;
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N7 A :
0 Here};ﬁ:reals2 * realsﬁis a given measurable function; one case
we have mentioned oftén is the product function, f(x,y) = xﬁ.
fﬁ??avf1‘1~We now introduce a countable (possibly finite) number of
agents, labeled n = 1,2,... . At time zero,bwhén the system
starts up, there is a big real-estate auction‘wﬁich 1eads‘to a
measurable partition of Space, S, among the agentsj sn;is the
region falling under the control of agent n. Upon acquiring
Sn’ agent n chooses an assignment Vot which is a measﬁre cver
S, x‘g; The only constraint on ¥ is that it satisfy (1) for
all subregions E of S . " (Agent n will also have a budget con=
straint, but we suppose that this is reflected indi?ectly‘in
hisrpreference ordering to be discussed below,\andftherefbre

need not be taken into account explicitly)ly The éeveral

assignments v, on ]

nXQ n=1,2,..., then yield by direct

summation an overall assignment v on S X Q-
’ A ¢
“fhere are two kinds of costs incurred by agent n. The
first is transportation cost, which is given by (2) with

E ='Sn, v = v_. The second is land cost. We %uppose‘%kat the

n
| “1 ‘

real-estate market leads to a system of land values which is

represented by a measure (or perhaps a signedfmeasure) U over

Space. The net cost of land to agent n is

/ ,':" .

u(s,). ’ 3

(u(Sn) is/ actually| the opportunity cost of land, in the sense

1

that, even if agent n uses his own land, and therefore pays no

rent, he still loses the opportunity to rent or sell to someone
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else.) Total cost incurred by him is the sum of land‘cost and

transportation cost.

We now come to the structure of agents' preférences. The

idea is to make assumptions whmch are very weak, yet whieh lead
\:?p’

to substantive conclusions. Let 8 be the right marginal of

assignment v _. Théé»isr 3
P

E—

, s (F) = v (s x F)NL

:for all I ¢ Eq. It is natural to call B zhe allotment corres-
ponding to assignment v,. We now assume that thﬁ preference
ordering of agent n satisfies the followigg condition: If two
different actions yield the same allotmeni, the first is at
least as preferred as the second iff theécost incurred under
the first does not exceed the cost incuééed under the second.

Symbolically this may be written

=\

L? ‘;
(8, ¢y) >, (B. cz) ifflc lig Cye

‘“""“‘1"‘7

Qa4
&dﬁ%

Here cy is the cost incurred under actgon i, i=1,2, 8 being
the common allotment. No assumption ié made concerning pre§
ferences among actions leading to diff;rent B's; these need
not even be comparable. Also preferenées may vary in an
arbitrary way from agent to agent, excépt that they all
satisfy (4). i

The rationale for (4) is worth exémining in some detail.

At first glance (4) appears to be S0 weak as to border on

B A =

tautology. It states that, other~things—being~eq&ei more
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money is preferred to less. This condition would appear to be
universally satisfied{ except possibly for the small minority
for whom poverty is a virtue; and even these have the option
of throwing excess money away. In particular, (4) should be
distinguished from the much stronger condition of ﬁiofit maxif:
mization (or rather cost minimization in this casé). Cost
minimization entails indifference between two ac%ions yvielding
the same cost, whereas (4) states nothing concerning actions
‘which yleld different allotments. '

awn d
(4) does, however, carry esme implic1t substantlve assump-

else doeﬁy\since he
In reality, of _course, age

existence of public servic

8 own-land. Secondly; Agent n ;% indifferent to all

aspects of his own land-use assignmentébther than allotment and
cost. These other aspects include 1agéut, shape of parcel,
whether his land is in one piece or fcggmented, etc. From one
point of view this assumption is not implausible. Consider,
for example, an agent contemplating two actions, both of which
y:.elc;midentical allotment of one acre devoted to a certain
residential land use, three acres devctad to his various

business activities, two acres for reéreation, and so-on. The

agent's life-style will be the same i& both fhses, and-his
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%

i
,

income-expenditure pattexrn wzll-be"ths“samaﬂtn -both cases
(except for transportation and land costs)k The only differ<Z
ence lies in the spatial distribution of these a