
J \“ . 798 

g 
THE THEORY OF THUNEN SYSTEMS} —_— 

/@ 

  

F} 8.1. Introduction 

—One-often_finds, both,gn'nature and societyfikspatial fiat- 

terns which may be described roughly as follows. There is a 

certain special locatlon surrounded by a series of concentric 

/j;:/1éf "rings" or shells“o At the locations in any one ring the 

: ! /ikfi same activity is occurring. From rlng to ring there is a 

Y tendency for activities to become less "intense" in some sense 

as one moves outward. 

An example is provided by a sphere in gravitat{onal eqguis 

librium. Here the densest sfibstances lie toward the centex;> 

and density declines as one moves outward, ending ifi an ever 

thinner atmosphere. The environs of a volcano provideg a less 

cléar-cut example, as does an organic cell with its nucleus 

and cytopljiasm. 

In the social wogid anemhézF%he pattern of agricultural 

land uses surroundfi%%’a city. These tend to decline in 

“intensity" with incieasing distance from the city. Within 

the city itself enehhas the highly intensive land uses of the 

central business dlstrléfi ;;d a gradual diminution of intensity 

as one moves outward. On the "micro" level, the fields of 

individual farms fiend to be cultivated with diminishing 

intensity as one;moves farther from the farmhouse. We might 

also refer to thé distribution of onlookers at sports events 

and other spectacles.
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We shall discuss these and other examples in greafier 

detail later. They are adduced here merely to intrqauce the 

class of phenomena to be considered. <MNote-that iqféll cases 

there is a greater or lesser degree of distortiqfi;from the 

"ideal" pattern of concentric rings of hcmogengéus activities. 

Lmotawa;so—%hat3§he same general phenomenon cafi occur at very 

different scales of magnitude: £from the spatial ordering of 

an individual household to the pattern of(iarqe geographic 

regions, and even - as we shall see —:tohfihe entire world 
\ 

economy . 

These patterns will be called Thfinén systems, after the man 

who first investigated one of them iqjsociety,ugggéigqxthe pat- 

tern of agricultural land uses around a city in an isolated 

region.x/ We shall make no use of rfifinen's specific formula- 

tions, however, because modern devglopments have corrected and 

generalized them considerably, ana themééééent chapter will 

generalize them even further. | 

In developing a theoreticalgmodel for Thiinen systems, the 

first problem that arises is thétzaf specifying precisely what 

TfifirflEMfl; by such systems. Thé’concepts “activity“éfi“intensitfiz 

even the concept of “concentriq:ringé",ywere used above in a 

vague commonsense way and needfexplicé;ion. After doing this, 

we present a model &héeh is both explanatory and optimizing. — 

Eh;@wis, it shows how the Thfinen pattern will arise from the 

behavior of individual agents, and also demonstrates that this 

pattern solves an optimization problem.
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We shall place greatest stréés on this optimality feature 

of Thiinen systems, because it has been largely neglected in the 

past. In—faet, it is shown that Thiinen systems are optimal for 

a special case of the measure—theoretlc transportation problem 

of chapter 7,.-callesd th;égllotment-assignment problem;d?(Certain 

special Thilnen systems also optimize the allocation-of-effort 
  

problem discussed in chapter S}ag The potentials for this trans- 

portation problem may be interpreted (in part) as land values, 

and this establishes the connection between the optimizing and 

explanatory aspects Df the model. 

The special 1acation wh&eh is the center of symmetry of the 

Thilnen rings w1ll;be called the nucleus (corresponding in the 

examples above to the city, the CBD, the farmhouse, etc.). This 

will play a ba31§ role for most of our exp031tion. In the end, 

however, 1t~wri%~turn«eut—that -even the nucleus ¢¢n be dispensed 

withs The essential point is that thfi\“desirability‘gwf a 

location can bg summarized in a single real number. This is 

usually the&*fiistancefifig}om the nucleus, but may be well-defined 

even if there;is no nucleus. All these points will be 
oW | § 

  

fi f ;L elaborated balow. 

‘{.P\} 8.2. Ideal Distances and Ideal Weights 
et 

We now régintroduce our three basic sets: »Resources, 

Space, and Time (R,S,T). Actually, the formal model to follow 

makes no concrete assumptions about the nature of these sets, 

and the generality resulting from this fact is useful. For
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example, T can be interpreted as having a bounded hqfizonfi oxr 

as being discrete, rather than as being the whole réal Tified" 

axig: S may be thought of as a limited region ofAéhelFarth's 

surface, rather than as all of Space. Similarly;:R may be 

thought of as restricted to Ehese-resource—typeS«w%ieh make 

sense in the Thiinen context — e.g.. those which are “transportable”' 

We suppose Ehat there—is a real-valued functlon 8 with 

domain R X T x S X %fl the unit transport cost éunctlon. 

Specifically, e(:,t,sl,sz) is the cost of shlpping unit mass 

mm,mux_utznf resource type r at time t from origin sl to destination Soe 

  

}\ Definition: 0:R x T x § x § - reals is f.?fii’.’i;‘.‘?..li iff there mdw 
exist two functlons, g:R x T + reals and h S x 8§ » realsfi such 

Ljf’ that 55 5.3, \7 

8(x,t,8y,8,) = glz,t) ncgi.-é*z). @) 
,»/ 

for all re R, te T, Sys S, € S. lg(r,t) is called the ideal - 

or}economlc) weight of resource r at time t, and h(sl,sz) is 
[ E— 

called the ideal (or economic) dlstance from sl to Sy 
.(.: . 5 

Excluding the trivial case when 0 is identically zero, 

one easily establishes that g and ggare unique up to scalar 

multiplication. To be precise, if % and h satisfy (1),-then 

so does the pair gx, h/x .(x being | any nogzzero real number}—»_ 

and these pairs are the only solutxons. Also, if 6 is nonj 

negative, and theée exlst gs hjsatisfying (1) , then there 

exist| non-negative g, rjsatisfying;(l). For the following 

discussion we assume g and h are n¢nfnegative.
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Consider the economic meaning of 6 and the condition (1). 

j}fi@&iflifi}fgirs:;bf~aal* the problem of what instan§§§ ¥ refers 

to in thé;%ifigfgf time-consuming trips. A simple convention 

takes t to be the average of time of departnfe trom‘sl and time 

of arrival at Sye (A more elaborate analyéia would insert an 

extra time component, resource r departiné framApl at‘tl and 

arriving at s, at t,. But this elaboragion is not needed for 

the problems of this chaptequ 

The mass flowing through the tranibortation system will 

be represented by a measure u on unive?se set R X T x 8 x Szzr 

P(E x P X G x H) = total mass of resofircas of types E flowing 

at times F from sources in region G t% sinks in region H. 

Given u and 0, total transport cost incurred is assumed to be 

5] (220 
loagn @) 

RxTx8x8§ ¢ 

This is a severe assumption, ignorifié as it does large=lot 

economies in transportation, congesfiéan)and other interaction 

effects. A few devices mentioned bé@aw help to overcome these 

limitaticnstl?ut are only partially;éuccessful. 

fi@~£eaéthe factorability condition (1)'i*t states in 

effect that no source=-sink pair (_1,32) has a comparative 

advantage over any other such pair f@r the shipment of any 

resource at any time vis-a~vis anothér resource at another time. 

This is again a strong condition, andiit is easy to find 

situations where it breaks down. For example, let s andfg2
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have good pipel1ne and poor road connections, and ;égg_versa 

for 84 and Sy Then sy and / 52 might be "closer" for oil 

transpcrtation, and “furthér apart" for passenger transporta- 

tion, than s, and Sy} B;is clearly not factorable in this 

case. Nonetheless, we<§%aél assume factorability as a very 

useful first approximgéion. _ 

The great simpl#%ication that arises from factorability 

is that the same spélial transport—-cost pattern applies to all 

resouré“itypes andjtimestl?nd may be summarized'in a single 

function having cnly spatial arguments,-fi§§2i¥ the. ideal 

dlstance function h. 
. ot 
Wi e WS 

" > = Let—us now examlne the two Ldeal functlonsb g and h, 
N\ 

which arise from a plausible fac#orable transport«cost function 

6. As noted abeve, g and h are unlque up to a scalar multiple, 

so that the ratios of nonvzero valueimg(rl,tl)/g(rz,tz) are ,%? 

uniquely determined by 6, and similarly fqr h. Thézfgsulting : 

patterns need not have any close relation;to physical weights 

or distancesfikfespectively, though thereIWill presumably be 

some overall positive correlation between ideal and physical 

values. | 

Consider the weight functionf g. Résource~typesiwhich,» 

for given physical weight, are bulky, az-valuable,-oxjheavily 

taxedJ or need special hanéling, will te@d to have relatively 

high ideal weights. —Also, small-lot shipments of the same 
— ~— 

resource tend to cost more per unit weight than large-lot
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shipments. It seems at first that the linearity éf (2) pre= 

cludes taking account of this last phenomenon, bfit one 

possible device for doing so is to distinguish different-size 

packages of the same resource formally as distinct resource——— 

types, the larger packages having smaller ideél/physical weight 

ratios. | 

How will g(r,t) vary with time,kfor fixed r? The 

secular trend will usually be downwafd,\for two reasons. First, 

there are technological improvements ififltransport and communiZ 

cations, extensions of the various grids, more vehicles in 

existence, etc., all of which reduce real transportation costsf%/ 

The second reason is the need to discount. To make the cost 

contributions of different times comparabie in the integral 

(2) , they must all be discounted to the same moment. The 

easiest way_é;iaomthis is to build the discount factor directly 

into the ideal weight functionfig. The same real cost in the 

far future is less weighty than in the near future, and disfs 

counting introduces an additional "levitational" force over 

time. 

Congestion may sometimes be allowed for by adjusting ideal 

weight. For example, suppose one is studying a metropolitan 

area, and that congestion appears periodically at weekday rush 

hours. One can represent this by letting g rise at these 

timeSj !fihings get "heavier" during rush hours. (This is 

another device for circumventing in part the restricted form of
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(2) . An adequate theogyfiof congestion would require total cost 

to be a noé§linear fuhotion of u, howeverfi% 

Factorabilityfiimplies thatfiafor any particular resource-~ 

type r, unit tramsport costs rise or fall proportionally for all 

source=sink paiis over time. Thus transport innovation must 

reduce costsJ§?~ rata, a reduction in one region but not in 

another would violate factorability. Similarly, congestion must 

raise costs proportiocnally on all routes. These unlikely 

circumstances underline the strength of the factorabllity 

assumptlon. ' 

Turning to ideal distances, we note to- beqin~w&%h that the 

term "distance" is a misnomer, because h need not obey the 

metric postulates., In partlcular, the symmetry postulate nay 

be violated, due to up&'vs. down<hill movements, wind and water 

currents, oneyay streets, tariffs on impogts but not exports, 

etc. Ideal distances will be distorted f?om physical distances 

because of geographic irregularities, beo%use some paifs of 

locations have "good connections™® relatiw%e to others, because 

fares are not faithful reflections of dietanoes, because of 

heavy taxation at border crossings, etc.: Just as temporal 

variations of congestion can be allowed for by adjusting ideal 

weights, spatial variations can be allowed for by adjusting 

ideal distances. That is, if certain regions ~/such as the 

central portions of cities - are generally congested, ideal 

distances between points in these regions will be large relative
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to physical distances. Speaking broadly, idé;l distance tends 

to increase less than in proportlon to physical distance (except 

perhaps for very long trips) The—main reason is that "over- 

head costsfi such as loading, packing, bllllng, ¢ getting up 

steam, etcgl ihal ich may be a substantial fraction of total 

transport costeljfiare Apread over a larger physical distance. 

(For very long trios the factors of cu@ulatlve fatigue and 

spoilage,}end the need to carry 1argejemounts of food and fuel, 

work in the opposite direction. For'rocket flights,-the—longest 
oS ANV i 8 4rips—of=all, the fuelfieaeeeagé fact@r is crucia!% 

;s 
o 

8.3, Ideal Distances in Thiinen Syséems 

We shall develop several varlant models for Thiinen systems. 

The one to which most attention will be devoted is the entrepdt 

model. In this section we shall concentrate on some of}its 

formal ogaracteristiosflhand‘not worry about its realism, 

The distinguishing feature of entrepSt models is the 

existence of a special location, called the nucleus, having the 

property that all transportation flows have the nueleus either 

as origin or as destination. That is, the exports of any land 

use located anywhere in the system all go to thefoucleus; the 

imports of that land use all come from the nucleos. The nucleus 

functions as an entrepft in the sense that a s@ipment from loca2 

tion s, to s, can be accomplished in two steps; from s, to the 

nucleus, and from the nucleus to Sq. “Foreigfi trade" nTEhet 

ia., flows between locations in the Thiinen system and locations
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outside ié}k-ie not excluded, but any such trade must be 

channeied through the nucleus, so that the nucleus also 

functions as a gateway between the system and the rest of the 

world.' 

For entrepdt models we postulate a transpo?t cost function 

with a slightly modified factorability conditigh. Pirst-of 

“atl, transport cost between two nodznuclear sites is irrelevant, 

since by assumption no such flows ever occur. Hence we need Ao 

L) i 
postulate the factorability condition,\%i% of-section-2, only 

in the case where s; or s, is the nucleus. fFormallyy the unit 

transport cost function 6 satisfies the foilowing conditiong 

( ,. 
-There exist two functions} gin'agout”R x T + reals, and 

\ 

two functions hin’ h .S -+ reals,‘such that 
out F CF30) 

e(r,t,s,sN) = gin(r't)hip(f)’ : (1) 

cand f . 
i {3, 2) 

out( s). {2) 

Gat) 
\ Here Sy denotes the nucleus. Comparlng (1) here with (1) 

B(r,t,sy,8) = g (r,t)h 
out 

-of“secteefl—Q, we see that h, n(8) = h(s,eN)@ The second 

argument of h is fixed at snfikand is dropped for simplicity. 

B 
hin(s) is simply the ideal distance from location s to the 

nucleus. Similarly, h (s) is the ideal distance to location 
out 

s from the nucleus. 

The two g functions have a differentzsignificance. We 

axe allowing the same resource r at the sé@e time t to have
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two different ideal weights, depending on whether it 1« flowing 

into -the-nueleus or out of the nucleus. This is a further 

relaxation of the factorability conditionfiii)’fir“secteearfix 

Conditions (1) and (2) together are cleaéiy weaker than (2.1) 

(X)-of-section-2. In fact they are a bit toé weak for our 

purposes, and we now add the symmetry condition that 

(3.3 

Bout = Byn- ) 

That is, the ideal distance between the nhcleus and any other 

location in the system is the same in both directions. We 

denote this common function by h. (Netewthat the domain of h 

is“simply S, not S x § as it was in sectionIZ)\ 

1?;(s):§111 be referred to simply as "the distance of s". 

It provides a general index of inacceseibility of locations in 

the entrepbt model. The fact that thefrelative locational 

advantages of different places can be summarized in a single 

number in this way is one essential precondition for the strik- 

ing simplicity of the results obtainedifior Thiinen systems. 

An example or two will illustrateithat the symmetry 

assumption is less restrictive than miéht appear at first 

glance. Suppose the nucleus is percheé on top of a hill, so 

that it costs, say, twice as much to transport resource r at 

time t from location s to the nucleus as to go in the opposite 

direction. Then,\if (1) and (2) are satisfied, so is the 

symmetry condition@ We merely take ginrf 2*gout' Bl ™ B eis 

so that a resource is twice as "heavy" traveling to the nucleus
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as when traveling away from it. / Note that we have merely 

thrown the burden of represenfiing coct differentials onto the 

weight function, leaving the dlstance function invariant, just 

as we did in the case of tfie "shrinking globe?/« | 

The situation opposite to the one just mentloned is 

probably more common in practice. All roads lead to Rome nore 

readily than they lea& away from—Rome, because ofgasymmetries 

of information. 1In this case gi is smaller thefl out and the 

same argument applies. f 

€ 5 sfifialnfi consider the rush hour phenomenon in big cities. 

(2= 
r«*fi;’;:y:te morning it is easier to travel away from the central 

business district than toward it, and the reverse is true in 

the evening. in would then be larger than g at morning 
out 

canmm 

times and smaller at evening times, and the symmetry condition (3) 

would not necessarily be violated. :(l ‘ 
) ~' 5 

N 2 = 
e 

-Let-us now suppose that conditions; 6%+~"f21~ands¢3) 

obtain, so that the distance function B:S + reals is well~ 

defined. The region " 

(.5, &) 

{s|h(s) < z} 4) 

is then called the open disc of rad@us z (about the nucleus). 

(A similar concept has already been?defined for metrics, but 

we may not be dealing with a genuifie metric in this case. 

Still, the concept is well-defined if h isfé
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The shape of the region (4) will of-eourse depend on the 

nature of the function h. Suppose that Spase S ;é the plane, 

and for convenience let the nucleus Sy be at the origin,”(0,0). 

If h is derived from a Euclidean metric, thenathe regions (4) 

will be circular discs centered on the origiq; If h(s) = 

|x|] + |y| (where (x,y) are the cartesian coordinates of s), 

then the regions (4) will be diamondsg% th3§¥is, squares with 

f&('o‘»p)(,‘f /..r sides at 45° to the S(-f and y-;axes. 'I'h;ls atises from a city< 

B block metric, which in turnimay be thought of as arising from a 

road system permitting only motions parallel to thef}@lor'y:exis. 

Another common case arises from a limited number of traffic 

arteries converging radially on the nucieus; xroad, rail, river} 2 

&te. Travel is relatively easy along such radials and dAiffic 

cult off them. In this case the regiofie (4) will tend to be 

amgeboidishaped, with “pseudopods’ projecting out along each 

artery. It is even possible for these regions to fall into 

several disconnected pieces. This occurs with limited-access 

transportation systems (highways with infrequent ex{i&s, railE; 

ways, airports.ictesx Here the immediate neighborhood of a 

point of access to the transportation network may be an isolated 

outpost which is economically "close" to the nucleus though 

physically distant. 

The significance of this discussion is that in Thiinen 

systems land uses are arranged in "ring%" which are set= 

theoretic differences of opefi?discs (4) with different radii. 

5 N
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Only in the Euclidean case will these literally be ringe that . 
ts., annuli centered on the nucleus. In other cases tpese rings 

will be more or less irregular and even disconnecteq. We 

would expect, for example, that typically "urban" Iand uses 

would "sprawl" deep into the countryside along major radial 

arterles, and that-they would tend to appear 1n the vicinity of 

comnuter railway stations and airports. 

These diverse phenomena are all covered g} the entrepdt 

model, which predicts the pattern of land uses'in terms of 

ideal distances. fhe geographical implicatiq;s will then depend 

on the shape of the regions (4). The moderfitself, however, 

does not need ané~éeesmeot make any such agsumptions, but is 
formulated throughout in terms of ideal éistanees not physical 

distances. 

8.4. Land Uses 

The spatial field, with the partic@iar structure just 

discussed, is one of the two basic ingredients which constitute’u 

Thiinen systems. The other is the set oé land uses which-axe 

to be distributed over this field. We‘how discuss these: 

first, more or less formallyhhand then;with concrete interg 

pretations and illustrations of the concepts involved.
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: FormaL Structure 

We shall use a version of the activity analysis model of 

@k 
«ehapeerflt,rsectionrsfi -bet-us—briefly review the salient con- 

  

cepts, usiné the notation of that section. An activity, q; 

is a triple of measures, p on (9 +L'), and Al and AZ on 
— 

X Z.). Here Q. is the space of transmutation#paths, 

p2
2 

(R x T, Zr 

and p represents the capital—goods structure of the aetlvity; 

A is the "production" measure, describing the resource-time 

~distribution of outputs; similarly, Az is the “consumption" 

measure, , 
S : f{k o 

////%%géfif’jThis describes one aotivity.: 8 is the set of all feasible 

activities; and v, a measure on (S x Q, I %z ). qescribes the 
- S L 

assignment of activities to locationsg On measurable rectangles, 

V(E x F) is the "amount" of activities of types F located in 

  

region E. This determines the total production m%asure u; over 

the space (R x 8 x T, Zr x Es X Zt) as follows: ; 

2 2 P o 
l{q,{(r,t)l(r,s,t) € G}]v(ds,dq), ) 

for all Ge I X E x Et Here Al-is the funcéion with domain 

a (E x I ) for which A (q,-) is the production measure 

associated w1th activity q € Q., ?1 is assumed to be an abcont 

conditional measure, which insures that the fntegral (1) is 

weiildefined,xand that ¥y is a measure, Similarly, conditional 

measure Az is constructed from the consumption measures of the 

various activities. Replacing Al by 12 in (1), we obtain Yoo
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the total consumption measure over R x S x T determined by v, 

ies;us now place these concepts in the Thiinen context. 
The essential point is that all production ;-@o matter when, 
where, or what is produced)—-must get shipped to the nucleus, 

Similarly, all consumption —aover all Time, Spase, and 

_Resourees) —~ must come from the nucleus. Combined with our 
factorability assumptions, this yields an expression for the 

total transport cost incurred by an assignmeet V. Furthermore, 

we are able to apply the concept of ideal weight to the 

activities themselves, not just to resource-time pairs; this 

simplifies things considerably. 

We now spell out these statements. Qfls«discfisseflwabeve, 

“there—is an ideal distance function h:S + realsgéiving the 
"inaccessibility“ of any location from the nucleus, and two 

ideal weight functions 9in’ Joue'R X T + reals.* we assume 

these functions are nonTnegative and;measurable. Define the 

in-weight of activity q as follows: ; 

    

W2 ] i £, 33 vt =[] %‘-fin‘r +t)hy (q,dr,dt) . ) 
T 

8 
L 

The out-weight of act1v1ty 9, written w ut(q), is defined by 

(2) by substituting gout for glntxand A, for Al Finally, the 

Awin' wout4and w are all extended realjfialued functions with 

domainwg: The conditions on gip, gfifip and Al' AZ insure that
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they are nonfnegative and measurable, 

We now show that the total transport cost incurred in a 

Thiinen system under assignment measure v is Slmply 
] 3t / g s:t # ( Kb ) /[ h(s)w(q)v(ds,dq) ; 4 
Sxq : 

| \ A . 

rinxmzwefme%l, total transport cost isfthe sum of cost incurred 

on ehipments into the nucleus plus eost incurred on shipments 

out of the nucleus. The in—shipment cost is given by 
»aé« o 

\’Lfl_: I q,k‘/ *‘ (g.4.5) 
(r,t)h(s) (drd ,dt), \ : — mr “1 s ~£5) 

since this is whaté%%ficef eeetmon;%qreduces to for the special 

case in hand. Here ul is the total production measure as 

given by (1) abeve. (Remember that all the mass of the 

distribution U, must be shipped to the nucleus. A unit mass 

of resourceitype r located at s and snfipped at moment t incurs 

a cost of 9; (r,t)h(s)).; 
_.___ 

.J«? 
-J 

We claim that (5) is equal to 

fst 

#( 

h(s)win(Q)V(ds dg) . < jfi (6) 

To show thig we introduce the measure ul* on;the product space 

      

S x @ Xx R x T by the followrng iterated integral. 
N K 57 g | ; )T - 

| Isxq|' ¢ RxT A 
{ \w&i i 

  

    

    

o A
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for all H € £§ X Zq x Zr X Zé& (fiere-;H is the indicator 

function.)) -6me verifies that M, given by (1) is the marginal 

of ul* on the component space R X s x T.$ 

It follows from the induced integrals theorem that (5) is 

equal to 

gy, (T t)h(s) 1 *(ds,dq,dr,dt). 
IS"Q"RXT Anter 2 M7 1SR ER s 

B 
) 

: ; t 
By (7) and Fubini's theorem, this in turn equals the ifierated 

integral 7 !» i 

5 Bt i TR, ay | g Kl 3! i v(ds, dq) lliq,dr,dt)g.n(r,t)h(s). {8) 
| SXQ? ‘WRxT| - e g o 

v 

Evaluating (8) from rigfit to left, the integration over R x T 

yields the simple expression wy (q)h(s), by (2), so that (8) 

equals (6). We have proved that (5) and (6) are indeed equal. 

The out-shipment ‘cost is given by (%) with gout and Uy 

replacing gi;jénd ulg raespectively. The argument just given, L 

with 12' uz* replacing ll, nl ‘2proves that the out-shipment 

cost is equal to 

g 

. (T ) 
hfls)w (g)v(ds,dq) . “£9) 

!ng 3 Qut 
i 

Finally, adding (6) and (2), and using (3), we see that total 

transport cost is indeed given by (4). This completes the 

proof. 

i
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}V‘In commonjsense'termsi the argument just given amounts 

to‘the following. An activity determines a certain production 

and consumption pattern of resources over time. These incur 

transport costs per unit ideal distance as determined by their 

ideal weights, and this implicitly determines a weight for the 

activity itself, nefiei;fi the cost incurred by its inputs and 

outputs in moving unit distance. This activity weight is given 

by (2) and (3). It is then intuitively plausible that the 

total transport cost incurred by the spatial activity distribu£ 

tion v should be given by (4), the integral of the activity 

weights multiplied by the ideal distances its inputs and outf 

puts must travel, | 

There are important advantageslobtained by this transf 

formation. Fixrst, the expression (4) in terms of activities is 

much simpler than the-expression (5) plus the cqrresponding 

expression for out-shipments. -Ennéaeti_using (é) and the other 

constructions discussed below, it is possible té dispense with 

explicit consideration of Resources and Pime, and to work 

entirely with activities (and Spaee). This is the natural 

approach when—one~eemes +o concrete applications and again 

leads to great formal simplicity. . 

Note that the "capital-goods" structure of}activities, 

given by the measure space (nr,z',p) (where p detends.on 

activity gq), does not influence transportation cost. This is 

as it should be; p refers to the internal‘/operation of these
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activities, and no spatial movement is involved. (Shipments 

of equipment, construction materials, etc., are already 

incorpoka:ed in Al and Az?\; p,zin faot/}plays a very sub4 

ordinate role in what follows, and will be ignored except for 

occasional comments. ' 

We now come to the guestion of constraints on the possible 

activity distributions v. Just one kind of constraint will be 

imposed: allimit on areal capacityfé/ That is, activities 

demand "room" in which to operate; regions have a limited 

amount ot%hroomfannd this 1imits the total amount of activities 

%fii;h can be sqgueezed into them. 

In chapter-4, gectioflis; the areal capacity constraint was 

written in the following forn: 

/ (8. 4.,10) 
[ xavcem. o) 
Fxq 

for all regions F, Here o is a measure on physical Space, 

(s,I), the ideal areal measure. The nonrnegative measurable 

function k:8 x g + reals gives the "demand for room" by activity 
W 

q at location s. fi(lflfl then |states that the total demand for 
\ hat ,_.,«‘/ ; 

room in region F cannot exceed the capacity of that region, 

We shall make the special assumption that k = 1 

identically. ’(lfl)’then becomes 

V(F x @) < u(F), (ll)»’ 
e\ 

for all regions F. 

The step from (10) to (l1l) is less restrictive than it 

appears to be. It amounts, essentially, to the assumption that



792 

function k is factorable: k(s,q) = kl(s)kz(Q) for some pair 

of positive functions k,:8 + reals and k,:Q + reals. To see 
AR 

this, define two new measures, a' on S,Land v' on S x g as 
-, W J 

follows: 

X, (q)v (ds,dq) 412) 

% 
20 

o= 

2 a" 
{ 1 

for all G e I X Zq.‘ Then from (10) we obtain, for all F € Ig 

3 110 | | % \Q 0 
[ xytenvr tas e -=’%] |k, (8)k, (a)v (s, dq) ‘ 

Tag P Loty 
'W( F 51’ .k, (s '(a ° ; __a() ]F ) (8)a" (ds) 

| B 
Treating the left- and right=hand integrals as measures over 

{ 

!\w “ 

S, we integrate the positive function l/kl with respect to them 

to obtain 
% bg 

VI(F x @) < a'(F) (13) 

{'4' A AAAA | 

for all F ¢ Z ¢ ¥(13) has the same form as (11). 

Now the units in which activities are measured are 

arbitrary, and the "amount" of activity has no intrinsic 

meaning. Suppose, then, we change measurement units as follows. 

Activity g (or, more precisely, unit level of activity gq) is 

now redefined to be the triple
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“whexe (p, Al' lz) is the original activity g. Then assignment 

Vv in the original units is the same as v' in the new units, v 

and v' being related by (12). Similarly, there is no intrinsic 

significance to the ideal areal measure a, and it might just as 

well be replaced by a', with corresponding changes in k to keep 

the constraint conditions invariant. 

With these changes of units, (10) becomes (13). We may s 

in fact, simply forget about the original measures v and a, \ 

and drop the primes in (13), obtaining (1l1). (Corresponding 

changes must also be made in the weight function w(q); we 

suppose this has been done,\without changing notationi;) 

One can now give an intuitively appealing interpretation 
., P -, 

to the nondescript concept of "amount" of act1Vities,;v. “(ll)lmfi 

implies that v and a are dimensionally comparable, so that v 

may be thought of as?given in "ideal" areal unitsifi-“acres“,wx 

if you wish. Specifically, V(F x G) is the\macreageffirequired 

by the activities of typ%s g)which are operating in region F, 

Similarly, the measures p, Al’ 12 have the dimensions "mass 

per unit areq“a For example, A, (E x H) would be the production 

of resources of types E in period H, in "tons per acre 3 say. 

We have been discussing "activities™ An general‘t@ to this 

point. Let us refer to activities nheeh have a positive demand 

for "room" as land uses. All the activities discussed in
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connection with Thiinen systems will in—fact be land uses, as 

is clear from constraint (11). (Non-land-using activities 

could not be measured in»acreakeefimsourse.,since positive 

amounts -of-them could be operating in regions of zero ideal 

area)!.) 

’M.The areal constraint }i&? is expressed as an inequality. 

In what follows we-shall find it convenient to express this as 

an equality. No real loss of generality is involved here, 

since we can add a special land use called “vacancg“ which 

takes up the slack, if any. 

This concludes our formal discussion of land uses. The 

two basic formulas we have arrived at are (4), the expression 

for total transportation cost in terms of distance, weight, and 

activity distribution, and (11), the areal constraint on 

activity distribution. 

Note that (11) has the form of the capacity constraint in 
  

a measure-theoretic transportation problem, where the source 

space is (S, Es,a) and the sink space is &g:zq,?), the question 

mark referring to an agiyetlunspecified requirement measure. 

Also)(4) has the form of the objective function for this 

problem, v being the unknown "flow" measure. The only missing 

ingredient is the requirement constraint, and thisflrfile will be 

filled by the "allotment" mentioned in footnote 5. But-we-are 

now-jumping..ahead-of ourselves.
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ey 

Interpretations and Illustrations 
~J 

  

  
Illustrations of theoretical concepts are always useful 

for making connections with the real world. For the "land-use" 

concept just developed they are especially important for two 

reasons, First, a great diversity of phenomena are encompassed 

by it, and this fact can be driven home only by examples. 

Second, the concept is unusual in several respects, and some of 

the associated terms?LWsuch as "production" and “consumptionfl — 

are used in strange ways; all this needs elucidation. 

=Pirst-of-ail, a land use is longitudinal, stretching over 

the entire time horizon. Suppose ,—for-example, that a site is 

successi%ely vacant, used for farming, then&residing, manu- 

facturing,/office activities, and ends up as a parking lot. 

This whole succession (tegsgher with the construction and 

demolition that occurs between phases) must be considered to 

be one land use, not a series of land uses. The production and 

consumption measures on R x T, ll and 12, will concentrate mass 

on different resource types in different epochs, of course, and 

the history of the "goings-on" could be reconstructed in part 

from a knowledge of these two measures. 

#et“us examine these measures in more detail. In the 

entrepd8t model all production is to be shipped to the nucleus. 

This means that we must include in "production" all resources 

éhich leave the site and travel to the nucleus. Consider a 

residential land use in the context of an urban Thiinen systen,
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with the CBD as;nucleus. Any household member who makes a 

trip downtown.kfor work, shopping, recreation, or whatever, 

must be considered to be "produced"” at that time and "exported" 

to the nucleus. The same is true for other household "exports"fi.v 

outgoing mail and telephone calls, garbage and sewagernetc%i-gk 

insofar as they move to a centralized processing point. 

Similarly, people traveling from the CBD Xo the household must 

be considered to be "consumed” at the time of the trip, and 

will be recorded in Az. The same is ;rue for other resources 

coming in from downtown% {consumer goods, water, gas, and 

electricity, incoming mail jandé telephone calls§ ete. A round 

trip counts both as an export and an import. Every trip must 

be counted separately. 

What about local t _Eigg to neighborhood facilities = /{say 

\routine grocery ;E:;;ing, children's school trips, local 

movies} ete? These should not be counted.®/ The basic principle 

for distinguishing these trips from those mentioned above ifij 

this: ll and Az are to be constructed so that the land-use 

weight, as determined by (2) ;nd (3), is an accurate reflection 

of the "pull" of the nucleus on this land use. Extra trips to 

the CBD increase this pull;utnatuis, a land use with more such 

trips would save more in transport costs by moving one unit of 

(ideal);'distance closer to the CBD than would a land use with 

fewer such trips, all other imports and exports being the same. 

But a change in local trips would be irrelevant in this respect.
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' 
0y 2~ A land use is defined by the triple (p,A 1,A ), and any 

    

Fi‘fivariation in any of these measures, however slight, yields a 

different land use. Consider the general category of intensity 

variations, for example. -@ne=wan—grow gornAin‘a continuum of 

different ways, with variations of fertilizer input per acre 

leading to variations of corn yield per agre. Each of these 

different input-output level combinations is to be considered 

a different land use. 

Intensity variations manifest themselves in the levels of 

inflowing and outflowing traffic pertacre,;and in the general 

degree of crowding of resources upon the site. One particular 

form that intensification takes is the phenomenon of multiple= 

story land uses, and this is important enough to deserve 

separate discussion. 

An N-story structure provides a stack of N horizontal 

surfaces of support, on which N different processes can run | 

s1multaneously, one above the other.f’-gheremare at least two 

ways of representing—this in terms of our categories. One 

approach identifies Spaee., §5>with supporting surfaces in 

general, including the (land?; surface of the}Earth and floors 

above (and possibly below) it. From this point of view, land 

uses are inherently "single-storfi“% Most are placed at ground 

level, some on floors above or below ground. Multiple-story 

construction (including bridges, tunnelsjand pit mine construcS 

tion) is then a way of creating new Space.
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The second approach restricts Spaece to the/fiarth's surfacezq 

A site may be utilized for any of several land uses, some of 

which will be ‘multiplelstoryd:%{The latter involve several 

processes stacked vertically, usually preceded by construction 
   

of the multiple=-story structure'” ich supports them., For 

example, a ten-story office building, with detailed specificas 

tion of what goes on at each floor, would be a typical multiple= 

story land use. On the preceding approach, it would decompose 

into ten separate land uses. -We-shall, for the most part,?fise 

the second approach. . 

Next,xconsider timeldiSplacement as a form of variation 

among land usesj Eoreenample, a trip is made sooner or laters 

a crop is harvested (and shipped) sooner or later. A special 

case is where the entire land use is shifted "rigidly" in time. 

To be precise we must specify the structure of Time, T,}as 

used in the model. Suppose that T is the nonfnegative real 

numbers, so that the Thiinen system is taken to begin at some 

moment, time zero, but unfolds indefinitely into the future. 

Land use qf is then said to be a to-forward displacement of a 
  

(t, > 0) iff, for all E € I X L., 
v ¢ 

Mfipw 

Y 

(i = 1,2). That is, the production and consumption assigned 

to any measurable subset of R X T by g is the same as that 

assigned by q' to that set displaced forward t, time units. 

Also, them‘t > 0" insures that q' neither produces nor consumes 

before moment t_. 

Ai(gfrE) = Ai[?'{(g't)lt * q: and (r,t + tg) € fi}]:’fr” ”wlg*’ o
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This rigid displacement might arise in a land sgeculation 

situation, in which the controller of a site knows what he 

wants to do with=#t, but is waiting for the right moment to 
\ ) 

initiate operations. Just as with intensity variations, dis- 

placements are to be considered as different land uses. e 

What can be said about the ggighgg of these various land 

uses? To find w(q) one needs the measures Al' Az associated 

with g, as well as the ideal weight functions gin & and ’ gou 

then uses formulas (2) and (3). Certain general observations 

concerning procedures and "tendencies" are in order. 

First of-all; ll and lz are the production and consumption 

on one "ideal acre" of Spaece. Hence invmeasuring shipments to 

and from some actual land use, cne must always adjust for this 

by dividing by the number of "ideal acres" on the site. As a 

first approximation one may identify ideal area with physical 

area, adjusting the former downward for sites with rough topo; 

graphy or poor drainage. In computing areas occupied by land 

uses, the accoutrements such as landscaped grounds and parking 

facilities should be-seanted‘én This of—course will diminish 

the computed land-use weight by increasing the denominator. 

“}SA\ .M"'”’”fn”general , the more "intensive" land uses tend to have 

//&xffwgieater weights, since Al and Az are larger. In particular, the 

/ weight of multiple-story land uses tends to rise with the 

number of stories. The imports and exports of such a land use 

are the sums of the imports and exports originating on the 
T
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various floors., (For—example, the trips to and from an office 
2 

building are the sums of those terminating on the first, 
b 

7 

second, third, etc., floors). The ideal area of the site 

occupied by such a land use, oemthéiEther;handq is that of the 

"ground floor" only, ng? the sum of the floor areas of the 

successive stories. Extremely high weights can thus be obtained 

via skyscraper construction. 

As for time-displacements, Eheremwilr“be«some tendency, for 

forward displacement to make land uses lighter. This is a 

reflection of the tendency already-discussed for ideal weights 

of resources to become lighter over time, owing to transporta- 

tion improvements and discounting. Forward displacement shifts 

the masses distributed by Ay and Az toward smaller values of 

the integrands Iin and“gqgg, reducing the integrals (2). 

Turning attention to the ideal weight functions, we note 

the general tendency for the ideal weight/physical weight ratio 

to be higher for people than for nonfihuman resources, %iié” 

arises—from—the—fact that people demand more in the way of 

roominess, comfort, etc., for their own travel than they demand 

for the shipment of their chattels. Thus trips by people are 

an important contributor to the weight of most land uses, and 

probably dominate in land uses involving "facilities", such as 

residences, churches, ichools, hospitals, office buildings, 

retail trade. | 

Ideal weight varies considerably from person to person. - 

To assess what is involved here, remember that "transportation
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cost" is a composite money valuation of many diverse componentegzwgflg 

not only fares and fuel consumption, but the value of time 

spent in traveling, risk of accident, discomfort and fatigue, 

etc. The potential traveler -himself evaluates these dimensions 

in dollar terms, and it is this personal assessment.nhieh 

constitutes his transport cost and determines his ideal weight.\// 

Thus we may expect idiosyncratic elements to enter into ideal 

weight: Someone wifih a pathological fear of travel accidents 

will be very "heavy" on that accopnt. 

At the same time we may expect some regularities. Valua~ 

tion of elapsed time will rise with foregone earnings, so that 

people with high wages (actual or imputed) will tend to be 

“heavy".)] Rich people will, on the average, be willing to pay 

more to avoid the same degree of accident risk and uncom- 

fortable travel conditions than -wild poor people. Thus we may 

expect that ideal weight will rise with both earned and un- 

earned income, and more so per dollar of earned than of 

unearned income. 

tendency; namelg that the rich tend to use speedier and more 

comfortable modes of transportation(j airplanes, taxis, and 

private automobile%a~£errexample, The automobile functions as 

' a general "map shrinker" or, better,»as a "1evitatorf@; 

reducing the ideal weights of those‘who customarilystravel with 

it.
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Ideal weight also varies over time for the same person. 

We have already discussed some general features of this time 

dependency. Over and above these are variations induced by 

changes in the opportunity value of one's time., Thus, weight 

probably rises when eee enters the labor force, and falls at 

retirement. In the shorter run, weight is 1ower during 

evenings and weekends,‘when there are fewer earning opportuni=- 

ties.lo 

These factors all enter into the computation of the ideal 

weight functions,. g4 and g , which in turn enter into the e out 
computation of land-use weight via (2) and (3). If one &s 

dealz;g with a land use that is roughly steadyfstate over a 

long period of—time, and in which trips by people are the 

<L’ dominant weight influence, the following schematic may be 

helpful for mepsurement purposes: 
’1 ‘ . e '- 1 v\ o ] B g i, R i L | 

v i fmean ideallfnuclear (. o ulation) | " smipler - B[Rl Jleen el B G etz ). 
: | ‘ triptakers per year site 1 5 
< '!’ i 3 Y 

.‘ v 

,\ Each of the right~hand factors should be roughly estimable. 

s 

  

   

  

Here i is the discount rate, inserted to convert the flow to a 

present value; mean ideal weight is based on income,.car 

ownership, etc., and is an average weighted by trié%aking 

propensities;, the real/ideal areal ratio is based on topography, 

drainage, etc. (& roahd fvip counls as Two 1@ 

Finally, let us take note -of the realism, or lack thereof, 

  

  

of the land-use concept we are using. The main departure from 

realism appears to lie in the absence of restrictions on the
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possible assignments v (other than the areal capacity 

limitation (11)). Thus land uses can be mixed freely, and the 

presence of a distribution of uses in one region has no effect 

on what is feasible in an adjoining disjoint region. In short, 

neighborhood effects are excluded, as are the associated 

effects of "scale" and "indivisibilityf.; As discussed in 

-chapter 4 section%b, the resulting departure from realism tends 

to be more severe,hthe smaller the scale of the system under 

discussion. : 

Another unrealistic simplification arises in the form of 

the areal constraint (11) itself.;-ns,discussed~ebove,gthis 

says in effect that the demand—forihroom" function k(s,q) is 

factorable. In more picturesque language, no location has a 

comparative advantage over any[other in relative suitability 

for any pair of land uses. It is easy to find exceptions; 

Eer;erample, soil fertility is relevant for agricultural land 

uses but irrelevant for most urban land usess hence infertile 

land has a comparative advantage for the latter. Marshy land 

has a comparative advantage for certain kinds of recreational 

Fand uses, hilly land for residences, etc. On the institutional 

side, zoning isb\in,keffect:the artificial introduction of 

comparative advantages by differential exclusions of certain 

land uses from certain regions. Some (but not all) forms of 

real-estate taxation have the same effect. All these phenomena 

are excluded by assumption; (Later we shall discuss the 

modifications induced by introducing some of them.)



&
 

fi*time zero‘/f 

804 

A similar difficulty arises if the Thiinen system starts 

up from some designated "time zero"q If "time zerofi”precedes 

the settlement of the region one has only ithe geographic non+ 

uniformities of nature to contend with. But i& one places 

Jin_medias*reg, with a preceding period of settle& S 
complicaliong 

ment, 4 further occurfa Man himself 

creates differential advantages, by building different structures 

in different places, snd»leaving other places vacant, and by 

distributing himself non+uniformly over the landscape. This 

point is important, because the model has variables that refer 

to: time zero“\}e.g. land values at that time) and not to other 

times, 

8.5. The Allotment-Assignment Problem 

We have mew set up an apparatus of concepts for Thiinen 

systems; and it is highwtime to produce some models for=tivesm, 

Iwo kinds of-mededs will be considered. One kind is behavioral, 

the interactions of many agents in the real-estate market 

leading to the Thlinen configuration of land uses. The other 

kind involves optimization‘kspecifically, the minimization of 

total transport cost over a certain set of possible assignments. 

This again leads to the same land-use pattern, so that the free 

market interaction of numerous agents leads to the minimization 

of transport cost. 

In the theory of urban structure, a long controversy has 

raged on exactly this point: Is the metropolis laid out So=as
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to minimize the "friction of Space"/fi(and should it be so laid 

out)? The literature has been ably reviewed by Alonso, who 
"""" 

concludes that\\friction is not (and should not be) minimized,- 

because other desiderata - such as roominess -~ are also 

11 important. While this is perfectly correct, the issue is not 

settled, because the meaning of "minimization® is left unclear, & / 

Specifically, one must name the set of alternatives under con- 
  

sideration before one can say that the alternative actually 

chosen does or does not minimize a~certain objective. In" the 

following development, the set of alternatives is such that the 

free market does minimize total transport cost over that set,. 

(Whether it should do so is something we discuss later).s s 

2 We first present the Optimization model. The problem is 

to choose an assignment vja-which is, formally, a measure over 

the product space (S x 8 Zs x 2 ) &-out of the feasible set of 

such assignments. The objective is to minimize\total transport 

costs on shipments to and from the nucleus. According to our 
{14 o ) 

previous analysis, this is given by ) ef-section—4. 
1D 

; -1 3D = £ (3:4,1) 
\ ‘“} f h(s)w(qg)v(ds,dq), ) 
\fi/ SXQ i 

where h:S + reals and wrfi + reals are the ideal distance and 

land-use weight functions;‘respectively. These are assumed to 

be measurable. Actually, all our basic results are still ob- 

tained with a much morefgeneral objective function than (1). 

We need the following concepts.
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- Definition: Let f be a real-valued function whose domain is two- 
filv‘v’fl"‘(\ 

space (i.e.)the plane, reals )« ,Kf has positive cross-differ- 

ences iff, for all real numbers Ryr Xo9 Y0 ¥y such that 
4 

Xy < X, andmy1 < Yor we‘have 

; o N 
(Z;‘e-* | 

8§%£(X1: yy) + £(xy, vy) > £(x), ¥5) + £(xy, vy)e  +2) 

£ has non;negative cross-differences iff the same condition 

holds withifizgrreplacing‘5>“‘in (2). 

  

These definitions easily extend to the case where the 

domain of £ is a rectangle 

(g5 
X xY 

X and Y being real intervalsg Simply restrict Xy0 X, to lie in 

x)andvyl, yzrin Y. 

> Now consider the integral 

N—a”‘ ] £ G St 

£(h(s) ,w(g /v(as,dq) ks 4) 
Sxfi ¢ 4 

where £ is a measurable function having positive (or perhaps 

non;negative) cross—~differences. (From~this point oa we no 

longer write Q in boldface, since we are dealing with an ,f“ 

abstract problem in which S and Q enter symmetrically) (1) is 

the special case of (4) in which £ is simply the product: ™ 

f(x,y) = xy. (This function clearly satisfies (Z)Q Hence any 

general results obtained using (4) as objective function will 

apply to (1) in particular. The domain of £ in (4) will usually 

be the plane, but, if the ranges of h and w are both bounded, 
9 

5 13 

o
t



o
 

807 

it is possible —(and sometimes advantageous éflto let it be a 

rectangle with interval sides L% 
[ 

n{,"(.lt 

P (l) and (4) are written as definite integrals. In case 

they are infinite or not wellhdefined, however, we interpret 

them as indefinite integrals in the sense of pseudomeasures (v 

being sigma-finite), and "minimization" of (l} or (4) is taken 

in the sense of (reverse) standard ordering of pseudomeasures, 

Por well-defined finite integrals this of course reduces to the 

ordinary size comparison of definite integrals. 

Next we come to feasibility conditions dn V. First there 
(th 1 1) 

is the areal capacity constraint, 1) eé—secttcn~4-(in equality 

form) s @%S) 
VE X @ = al®) s 5 

for all F ¢ ZS. Here ideal area o is, formally, a neasure on 

vSpeeo,.(S z ) o is given and &s assumed to be eigna -finite; 

(5) then guarantees that any feasible assignment v will also 

be sigma -finite. 

We now have two-thirds of a transportation problem, with 

objective function (4) and capacity constréint (5); what—is 

"«missin -#8 the requirements constraint. It is perfeectly posC % SRR, 4 > 

sible to stop at this point and consider éhe "one-sided" 

transportation problem: ‘fiinimize (4) over measures v, subject 

to (5). Formally, a model of this sort has been constructed by 

Benjamin Stevens Ywith an inequality constraint, and in noni 

measure-theoretic terms) %;“ Note—that thish}one-sided“ problem 
) :
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is in fact the special case of the transportation problem 

(variant III) in which the requirement measure is zero. Hence 

the theory of the problem is more or less encompassed in the 

results of chapter 7. , 

In any case, this'*one-Sidedz approach does not appear to 

get one very far, and for deep results;one must go on to the 

full "two-sided" transportation problem. izt?us therefore add 

the following constraint: } 

1 (§.56) 
v(8.x ) = B(6),. 16) 

for all G ¢ Zq. Here B is a given éegma—finite measure on the 

space of land_usess 8 will be called the allotment measure and 

(6) the allotment constraintg the éntire problem of minimizing 

(4) over aisignments v, subject tojconstraints (5) and (6), will 

be called the allotment—assignment problem. 
s Sl i # 

%pv (6) may be interpreted as follows. For any measurable set 

of activrties G, a total acreage’ allotment B(G) is specified, 

which must be met by any assignmenti flcega?two acres must be 

devoted to turnip growing, fivejacres to education, etc. There 

is still freedom to shuffle the;e land uses around over Space, 

but the totals are fixed. In éontrast to the areal-capacity 

constraint (5), which represedts a "real" restriction on 

possible assignments grounded;in natural law or human institu- 

tions, (6) is best regarded as an "artificial" restriction 
TA At 

added to attain certain results. (One erception. (6) is a 

"natural” restriction in layout problems, for whicthechnology
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dictates the allotment, as in the separate processes of a 

gaeufacturing complex. But the Thiinen framework is not well 

suited for layout problems.)l4 | 

Though artificial,:in the sense of not represehting an 

actual constraint on behavior, (&) -dees servéga fuéction Lhieh 

arises from the "inner logic" of Thiinen systems. éonsider the 

matter in the following light. Thiinen systems arise in a great 

diversity of contexts, on all different scales. ‘Whet they have 

in common is precisely the pattern of land uses: the ring 

structure and the ordering of uses. -What phey do;not have in 

common ave the particular land uses present in ea;h,%and their 

relative proportions: in short, the allotments éf land uses. 

For someone looking for a universal theory of Thénen systems, 

the allotment measures are the contingent features. It is 

then reasonable to treat allotments as exogenous} and to set 

up a model whneh yields the Thunen pattern of land uses regardS 

less of what the allotment is. (6) does just thisd The 

allotment B is given a priori, and we are to find the optimal 

assignment within that given allotment. The reéulting pattern 

is (within very wide limits) independent of B.g 

This ap;roach is not used by any other coétemporary model=- 

builder in the Thiinen tradition.%?’ Rather, thése authors try 

to predict the assignment of land uses withoutéassuming the 

allotment in advance. 1In this sense our aim %s narrower and 

more modest than theirs. But by the same tokén we cut through 

the aspects of these models which 2 (from the point of view of 
s J };‘
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predicting the Thiinen patternf; are irrelevant and distracting, 

and thus:attain a deeper understanding of that pattern. From 

this point of view our assumptions are much weaker than any of 

theirs. v 

The allotment-assignment problem, then, isrgiven by 

objective function (4) to be minimized subject to constraints 

(5) and (6) on assignments v. This isi}formally,\a measure- 

theoretic transportation problem of variant_gf}tgseeis, with 

equality constraintsftx (fither variants could be used, but I 

is'the simplest.)* The special feature of the allotment= 

assignment problem lies in the form of the integrand in (4), 
ganiic.l o [’.. Lan~ 
espeeially the fact that f has positive (or nonfnegative) cross-— 

differences. 

This special feature enables us to meke very strong 

statements concerning the nature of the;solution. We need a 

few concepts for this. First, on the plane it‘will be con- 

venient to say that point (xl, yl) is southgest of (xz, yz) i1ff 

Xy <X, and y; < y,, northwest iff x1;< X, and .y, >‘y2:Letc. 

Next, given two subsets of the plane,;-iEl and Ez, El is said to 

be southwest of E, iff every point of'§l is southwest of every 

point of E, in the sense just defined. Next, let functions 

h:S + reals and w:Q + reals be given, and let (sl, ql), 

(sz, qz) be two points of the cartesian produthf x Qs (sl, ql) 

is southwest of (32’.q2) iff h(sl) < h(sz) andpy(gl) < W(QZ):YL_ 

Finally, given two subsets of S x Q, E, and E,, E; is southwest
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ofrE2 iff every point of By is southwest of every pOint of Ez 

+ in this sense. Using this last concept we havep S, b 
., 

%Qiigbefinition: Let v be a measure on thefproduct space (8 x Q, 
. 

§ ZS X Eq)" and let h:S + reals and WSQ + reals be functions. 7!,! 
¥ # 

[ /7 Ll 

v satisfies the measurable weight-falloff condition iff there 
A 

do not exist twozsets Eq E, € Z /% z + both of positive 

v-measure, with Ey WOuthwest 05192. 
et 

i‘ As with potentials, there is a corresponding topological 

concept. We suppose that topelogies T and T have been placed 

on S and Q, respectively, ma@ing them topological spaces as 

well as measurable spaces. @hese determine a product topology, 

v Ts X T on S x Q, and this With z X Zq determines the support 

of measure v. 

  

oy +y- Definition: Let v be a measure on (s x @, Zs X Zx?, and let 

%\\ 
h:S + reals and w:Q + reals be functions.lv satisfies the 

7 topological weight-falloff condition iff there do not exist 

two points of support for v one of whiph is southwest of the 

other, 

+“9 o 4 
¢ 7 

|  Roughly speaking, both thesegconcepts state intuitively 

that h and w are negatively correlated- Vv tends to concentrate 

mass where h is high and w low, and vice versa. Note that h 

and w enter symmetrically into these definitions, so that, 

instead of speaking of weight (w) falling off as distance (h) 

rises, one could speak of/distance falling off as weight rises.
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The two functions, h and w, determine a single function 

  

mapping.g X Q into the plane, nemeiy, the one assigns the . 
A5 

& 
0 value (h(s), w(g)) to the point (s,q). Assume that h and w 

are measurable; then this function is measurable. Hencefikfor 

any measure vV over universe set S x Q, it induces a measure A 

over the plane: 

i 

S A(E) = v{(s,q)| (h(S)i W(Q))e E}, 
& 

V. 
4 y 

4.for'any Borel subset 2 of the piéne."mwg7i 

low the two weight~falloff definitions above apply just 

as well to A as to v (the plane befgg furnished with its usual 

topology and Borel field, and with h and w each replaced by 

the identity map, X + X, on the real line). Hence we have 

apparently four\different concepts. But our next result shows 

that three of these conditions are logically equivalent. 

fllflfi;_ Theorem: Let v be a measure on (s xQ, & o X I ), let h:S + reals 

y*ri , and w:Q -+ reals be Measurable, and let A be the measure on the 

= ‘i plane induced from v by4h_andig: Then each of the following 

.conditions implj%s the other two: 

[I(i) v satisfies the measurable weight-falloff conditionl 
i 

(ii) A satisfies the measurable weight=-falloff condition; 
¥ 

i (iii) A satisfies the topological weight-falloff condition. 

Proof: (i) implies (ii): Let Ey» E, be two measurable subsets 

of the plane, with El southwest of E, Their inverse images,
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{(s,9) | (h(s), w(q)) ¢ Ei}fi .(—7‘) 

(i =1, 2), retain this southwest-northeast relation. Hence at 

least one of them has v-measure zero, which implies l(Ei) = 0 

for at least one Ei’ Thus A satisfies measurable weight-falloff. e 

q“;{ (ii) implies (1ii)s Let Zys 2, be two points ofi*the plane, with ,,c implies : 
| z, southwesc of Zge There-are open discs El,'Eziabout Zye 2, 

& ffi respectively such that E, is southwest of E,. “Ei and E, cannot 
§;f5 both have positive A-measure, hence z, and z, cannot both 

support A. Thus )\ satisfies topological weight~falloff. 

?@ (i;i) implies Lij: Let El' E2 be two measurable subsets of /2~ 
- 8 x 0, with E, southwest of Ez, and consider their images in 

the plane: 

= {(n(s), w(q}?fl(stq) € Bl 

i=1, 2. F, is southwest of F,. Hence at least one of these e _ 
two sets?& say Fj:— cannot own any points of support for ). 

Thus each point (x,yf € FJ has a measurable neighborhood of 

A=-measure zero, st the usual topology of the plane has the 

strong Lindel8f property, 80 that FJ is contained in the union 

of a countable number of these neighborhoods. Call this union 

G; G is measunable, and A(G) = 0, It follows that 

# 
4 

The equalgty in (8) arises from the fact that ) is induced 

from v;fthe inequality arises from the fact that §j is cone 
7 

§
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tained in the inverse image of,Fj;which in turn is contained 

in the inverse image of G. Thus at least one of Eyr B, has 

v—measure zero: v satisfies measurable weight-falloff. 

[ We now have a closed circle of implications. L#%”””"ii/éf 

ez s 

We shall speak simply of v (or 1) satisfying the weight—~ 

falloff condition in the event that any (hence all) of the 

above three conditions obtains. ) 
e e 

._*What about the fourth condition, which is topological 
- 

weight~-falloff for v? This depends on/ the topologies T and 
v 

Tq, which do not enter the definition of the other three con- 
   

   

| | ceptsg 

gépnawiTheoremz Let v be a measure on {é X Q, Zs x I ), let h:S + reals 

! and wiQ + reals be measurable, and let A be the measure on 

the plane induced from v hy h and w; also let T and T be 

a=Mtopologies on 8 and Q, respectively, then 

/;(li) if v (or 1) satisfiies the weight-falloff conditionz and h 

and w are continuous functions, then v satisfies the topologi- 

\cal weight—falloff condition, 

(ii); if v satisfies the topological weight-falloff condition, 
™ 

and f X fé has the strong Lindeldf property, then v (or 1) 

% satisfies the weight-falloff condition. Poag e il 

43 Proof: (inI If (s,q) is a point of support for v, then (h(s),v{(z)) 

wigr)r is, ‘a point of support for A. To show this, let (h(s),w(q)) 

/:2;; E, € E,, where,El is open and E, measurable. The inverse 

L' images (7) are open for E1 and measurable for EZ' since h, w



815 

are continuous and measurable. Hence the inverse image of,E2 

has positive v measure, implying A(E,) > 0. Thus (h(s):w(gii 

supports A. 

Now let (s i qi), i= 1,2, be two points of support for v, 

Since (h(si), w(qi)), i =1, 2 are both points of support for 

A, they cannot stand in a southwest-northeast nelation. Hence 

neither can (si, gl),ri = 1, 2, so that v sg&isfies topological 

weight—falloff 

  

\/é (ii) Let gl, E2 be two measurable subeets of 8 x Q, With El 

southwest of Ez At least one of these two sets O nay EJ e 
r}; 

| ./ cannot own any poflnts of support gér Ve Utilizing the strong 

/¢Mflgfi Lindeldf property as in the preseding proof ((iii) implies (L)), 

it follows that Ej is containpd in a v=null set. Thus at 
; 

-y g 
- 

& least one of El,‘hz has v-mgasure zero: v satisfies weight~ 
i & 

falloff. W 7w 

4 
A 

Sk 
F 

W § 

These results imply that, if h and w are both continuous,. 

and T X T has the Strong Lindelof property, then any of these 

weight-falloff conditions implies the other three. The next 

result establishes a connection between weight-falloff and 

allotment—assighment. 

Tneorem.y Let fS Zs,d) and (Q, ,3) be segma-finite measure 

spaces. Let T ¢ Ig and Té s Xq be topologies on S and Q, 

respectively. ILet h S »+ reals, w:Q =+ reals and f£: reals2 - 

reals be functions such that the composite function 

  

£(a(+),w()):8 x Q + reals is measurable, and continuous with 

P 
ec
cn
sm
rn
e



e 
c 

st 
v 

——
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respect to f; X ;é. Finally, let‘f have positive)&rosss’ 

differences. pfifi 

Then,lif measure v2 is unsurpassed for thefallotment; 

assignment problem of minimizing (4) (reverse standard order) 

subject to the constraints (5) and (6), itnfollows that v® 

satisfies the topological weight-falloff condition (with 

respect to h and w). 

el %¢4:Proof- The premises imply that ve satisfies the circulation 

  

   

(7-5.10)o~(1.5.11) : 
condition ((16)- or—(i1)-of 7. 5}. Thus& if (sl, ql) and (sz, qz) 

are two points of support for v“, we have 

( €5 fl) 

Lo * Bt = £10 = Ly 2 00 t9) 21 

where fij abbreviates f(h(si), w(gg)), i, j =1, 2, We cannot /uqf 

have both h(sl) < h(s } and w(ql) < w(qz), because in this 

case (9) would contrfidict the positive cross-differences 

condition (2). That is, (§l' q,) cannot be southwest of 

(sz, d4,). Thus utfsatisfies topological weight-falloff, #LLHQ 78 

j Our next result is similar to this one. Though its proof 

is more complicated, it is also more interesting because it 

makes no continuity assumptions; indeed, it uses no topological 

concepts yhetever. Recall that a function is half-bounded iff 

/L ’74g4} it is bgunded below or bounded above (or both, i.e., bounded). 

< 

-} Theorem: Let (S,I ,a) and (Q, X +B) be sigma-finite measure 

spaces. Let h: S + reals, w .Q + reals, f:reals + reals be
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functions such that f has positive cross-differences, and the 
composite function f(h(*), w(*)):8 x Q + reals-isimeasurable. ~ be . I 

Let measure vfifEeAfor the allotment—assignment,problem of 

minimizing (4) (reverse standard order) subjéct to constraints 
(5) and (6). | 

Then v satisfies the (measurable} weight~falloff condif 

tion (with respect to h, w), 5 

- If v& is merely unsurpassed, the same conclusion follows 
¢ provided ome adds the premise that‘?Thf*%v—w4*++ is half- 

bounded/ on any Boum(u( subsef ol the p'eme Gnd ‘1 w are "‘e"s""‘ue- 

  

ifi Proof- Assume that vtfviolates measurable weight-falloff, so 

  

A
T
 

J 

that there—are sets Fl, F € I, x Zq of positive V&-measure, 
with Fl southwest offFZ. Either of‘these may in fact have 

infinite measure, hflt in any case they will contain subsets 

G S Fi' i=1], z, of positive finite measure, since Ve is 

segma finite. fiefine the measures Vir V5 on (8 x Q, Zs x Eq) 

by K 
(B, se:) 

/vy (H) = veH n G )/ vele), o (26) 

i=1, Z,ffi € Zs X Eq, and define the signed measure v by 

*’j = $ " e - . v .(vl x v3) + (vé x vy) V3 = v, flid 

(Herefivi, v{ are the left;)and right;;arginals, respectively, 

of,fii). v is wellidefined)since both v, and vV, are bounded 

measures. Finally, consider the (signed) measure
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( g'éfi / D«) 

VWt zy, © X2y 

\/ , 
| /& | where z =7% min[v®(G,), v®(G,)}),> 0. One easily verifies that 
1 ' i\ ? ."}:’is' 

% (lZ)(remains feasible for the allotment-assignment problem® 
S ,20) ”fi”"‘.’g 

{¢£f, (20)“of~4“8) Hps 

Now, taking the case where vfl is best, we shae&mreach a 
- 

contradiction. Since (12) is feasible, we must have 

,mf' (?f‘/ij 

Ifl?(h(s)l W(g) V(d?léfi) > 0. 'gfi ¢x3) 
£ 

& 
E 

g.J:’ v i 

(The integral in (13) is a pseudomeasureépVer S x Q, and “>” 

refers to standard ordering( cf. 6&4}; 

  

The integral 

in (13) can be written as the sum of four indefinite integrals, 

corresponding to the splitting of v into its four components 

(11). We fiow show that 
2 % ¢ i X 

’ : gh =y , , 
21 \ ] | » # ] D / 

A “ ‘L \ ‘ ¢ ‘ > q *l { \ { ~ 

e £ d(v! x v?) + ! £ iV' x vi) -.I ISXQ 1l 2 SXQ N 2 1 1 

! D\ \ LSl Y) 

V£ dv 'J \ £ dv, (I3) 
gxg A 1 st » 

.fi %o 3 i 
is a well-defined expression. ‘iflere "f" abbreviates 

£(h(e), w(=))). That is, each of the four definite integrals 

in (14) is well-defined, and their sum is not of the form 

  

flffi To see this, note that there are numbers x, y such that 

(g.5.15) 
h(sl) < x < h(s,) (15) 

wigy)sy S wilgy), 

for all (sl, ql) € Gy (sz, qz)é G2' where one of the ing 

_equality signs in (15), and one in (16), can be replaced by - \
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;“<*. ‘This follows from G, being southwest oflgz.lz(lsi 
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73 

/% 
A 

determines a partition of 8 into two pieces, one set satisfyf 

ing the left{ the other the right, ineguality, Similarly (16) 

splits Q into two pieces. Together these split S x Q into 
L iz, 

four pieces.4 G1 is contained in the "southwest ‘quadrant" of 

low h, w values; Gz is contained in the "no#theast quadrant" of 

high h, w values. It follows that the complement of the (south: 

west, northeast) guadrant has vl-, uzemeasure zexo, respectively. 

And from this it follows that thefcomplement of the (southeast, 

northwest) quadrant has vé X vififuvi X vg-measure zerofixrespecs 

tively. Thus the four components of v are mutually singular in 

pairs. The indefinite integral (13) can therefore be expressed 

as a direct sum of four integrals over these quadrants., Being 

comparable to 0, the integral (13) must be a signed measure, so 

that (14) is indeed wellldefined In fact, the relation (13) 

implies that the exPression (14) is non—negative, by the 

standard integral theorem. 

Now consider the "four-dimensional" product-measure space i 7 

(84 x;fil, I, X Eq, vy) x (S2 X Qyp I X Zq, V,y). 

Here Sl and 82 are replicas of S‘)and Ql and Q2 are replicas of 

Qs the subscripts are added for clarity. We have 

iy “ ®.51) 

xelxszxuz 

i=1, 2, and



iessexample that vi x v is the measure induced from v 
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o\"‘n ‘i\ ] / v’: " ; :; Ef L’ ,g 

f ' "y - 
. [sxolf gl = w3 f 1j‘\d(" X gl e S lexsszz 
- 

e 

   where (l,]) =(1, 2) o, and (i,3) = (2,1). 

  

,f?; 

In (17) and (18), _mf“ on the left again abbreviates 

£f(h(-), w(e)), while £, ij stands for f(h(s )i w(qj)), i and j 

ranging over 1, 2 (four cases). The four equations in (17) gnd 

(18) all arise from the induced integrals theorem, resulting 

from four different projections from thejspace 8y X9 x 8, X Q, 

to S x Q. Thus (17) for i = 1 arises from the projection 

(830 a3/ 85, qy) =+ (84, ql);_for i e;fi it arises from 

(54, dyv Sgr Q) *> (52' qz).“fliisip%or (i,3) = (1,2) arises 

from (84, dy0 S50 9y) * (sl, qz); for (i,3) = (2 1) it arises 

from (sl, dis 850 qz) + (52' ql) The only difficulty in 

demonstrating all this arises in (18) , where it must be shown, 

g% 
by the projection (sl, ql“ Sqs qz) + (sl, qz) This follows 

from direct substitution in the definition of product-measure. 

The well-definedness of the left integrals in (17) and (18) 

implies the well-definedness of the right integrals and the 

stated equalities..d 

(i!),.(ld), and the nonfinegativity of (14), then yield 
i { 

\ !1 

; e+ 65, - £, - £22),40v; % v,) 2 0. 
: S lexsfixQZ 

g
;
fi
 

=



i 
- 
S L € 4\ ok l,oomdcd sels ‘fiiNow take the case where £trt)—wtr) isehalf-boundeannd_' 

g\first two, ° 
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But this is a contradiction. Pirst odeali vi(js. x Qi)\Gi]“O 
i=1, 2, so that the complement of Gy* 1 G, has V) X v,-measure 
zero. Second, (v X vy )(G X G)) = v (Gfi- 2(62) =1 >0, L 
Finally, the integrand in (19) is negative on Gl x Gz, since f 

has positive cross=-differences. Hence the integral in (19) 

must be negative, a contradiction. This proves thepfirst half 

& of the theorem. & 

v¥ is merely unsurpassed, and again assume»that V¢ violates 

measurable weight-falloff. Proceeding as above, we find a set 

G, southwest of a set Gz, both with positive finite v°-measure. 

Each of these contains a subset of poSitive measure on which ffl thf as well as h and W fl\ew\sdves re, Y £({), w( )) &8 bounded, e measurable sets A ;. v 

Gy N {(s,q) ‘m< f(h(s), w(q)) <m+ 1 G N <L(S)<h+l p<v(3)<p+l} 

qr / ' i# =0, #1, +2,00., countably partition Gi' hence one of these 

has positive measure. Fer simpliéity, we designate these sub"‘ 

sets by the same symbols, G, and G 
1 2’ 

Now- define 21 and Vo, as in (10) and consider the expres= 

sion (14). The four{measures appearing in these integrals are 

bounded. The complement of Gi has vi—measure zero Low 1, 2. 

and £(h(<), w(- )) is bounded on G; U Gy; hence the last two 

integrals in (14) are well-=defined and finite. .As'for the 
Vv, \(11" are batl, zero off some set on. whicl, L and w ape       

bounded, and The mlegrends are halé - -bounded on this set. It €ollows that they, too, are well-defined, and not infinite of opposite 

sign.f.Hence the whole expression (14) is wellldefined.
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It follows that the indefinite integral (13) is a sigfied 

measure, not a proper pseudomeasure, and is therefore gooparg 

able to 0 under standard ordering. Now Just as above we conz 

struct the new feasible solution (12), e;d the uneuopassedness 

of v® together with comparability then yields reiation (13). 

Hence (14) is nofi;negative. The argument above then again 

yields a contradictlon, and the last part of the theorem is 

ol g proved. M 
- ne lmmuh\q\'c a\mrdlufl"m\ The _PremHu oh € n hold 

ke —"gowly For £ resteicted o range of (h,w he proof obove sTl kolo\ ¢ 
"1” These theorems have a very simpig 1ntu1tive meaning:‘ § Vr%dTM, 

  
A5 )/// Suppose v fails to satisfy, say, topological weight-falloff, 

,_/ 
> 

so that there are points of support (el, gl), (ez, d,), the 

first southwest of the second. Then shift a mass of activities 

Sy * o in the neighborhood“ of qy from the neighborhood& of loca< 
\ 

tion Sy to the neighborhood"of location So¢ and shift a mass 

of activities in the neighborhood“ “of d, in the opposite 

direction. This reshuffling does not affect the feasibility 

conditions (5) andjkfi), and the positive cross-—difference 

condition on f implies that the total transport cost (4) has 

been reduced. Hence the original assignment v has been 

surpassed. Tfie proofs above are merely a rigorization of this 

informal aréument. 

If we‘are looking for optimal sclutions to the allotment- 

assignmeht problem under the mild conditions stated above, 

these theorems sayg-that we might as well confine our attention 

to assignments v satisfying some weight-falloff congiition. But
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note—that there is as yet no guarantee that such solutiqns will 

be best, Or even unsurpassed. We do not know at thie;stage 

  

whether thsfie even ex1st such feasible assignments,* And even 

if they exist they may not be optimal, since the possibility 

rermains that there are no optimal solutions, / 

We shall attack these difficulties by ttansforming the 

original aglotment-asslgnment problem 1nto a simpler one, 

Specifically, we "induce" the original ptoblem, which is set 

in the product space S X Q, into the piane by means of the 

functions h and w.\ a on (S I ) is induced by h into a measure 

on the real line. Similarly, 8 on (Q z ) is induced by w into 

a measure on the real line. Finally,~we«haveme&readymmeeteoned 

that v induces a measure )\ on the plane via the combined 

function (s,q) + (h(s), W(q)} 

We shall retain the nofatlon ¢, B for the ‘measures on the 

real line induced by theee respective original measures, and - 

rely on context to distinguish them. The transformed allotment=" 

assignment problem now reade-o R 

Find a measurefk on the plane Mhich satisfies the con~ 
& 

& 
straints £ 

A (E) = a(E) “t20) 

7 A"(E) = B(E) (21 
for all Bo&el sets E on the real lineruhup and minimizes 

\ { ¢ A 'Lf‘ ) 

:5 da. 22) 
Lreals



i 

U 
824 

i 
Hete A', A" are the left;hand righe%iarginals of A respec— 

tively, and are of-course measures on the real line. " (20) and 

(21) are the analogues of the areal-capacity and allotment 

constraints{l(S) and (6),)respect1ve1y. The ;ntegrand f in the 

objective function (22) is the same as the_fiyappearing in (4), 

and so has positive (or nofl%negative) creée~differences. 

The transformed measures o and B An (20) and (21) must be 

sigma-finite. This is not implied py the e&gma-flniteness of 

the original o, B measures in (5)ggnd (6), and must be 

explicitly postulated. In facg;%e shall make an even stronger 

assumption below. "3 

This transformed prob;gg has been placed on the. plane. 

More generally, it could ?é placed on a rectangle X x Y (with 

interval sides) provide@fonly that the ranges of h and w are 

contained in X, Yr%reifiectively. &§ xmgyisvxhen the domain of 

f and the universe se% of A; X and Y are the universe sets of 

transformed o and B, respectively. 

The objective function (22) is written as a definite 

integral. Buth gust as with (4), if it is not well~defined or 

finite for cer@aln feasible measures A, it is to be inters 

preted as an ;ndeflnite integral pseudomeasure; and "minimiza+ 

tion" is to g; understood in the sense of (reverse) standard 

ordering. éf 

The first thing to notice about this transformed problem 

is that,fformally, it is just a special case of the allotment=
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assignment problem: Both (fi,ts) and (Q,zq) are the real line wffb? 

gET:EQ‘With its Borel field, and both h and w are the identity funcfilon. 

v\é  T The preceding theorems then apply and take a very simple formc 

fi = Let measurable £ reale + reals have f"gositive erossar 

differences, and let A¥ be hest for the problem of 

minimizing (22) subject to (20) and (21); then AL 

satisfies the weight-falloff c:t:»nd:!.i:.:!.c:m.,~ ikhe same 

conclusion holds if A% is merely unsuggasaed, provided 

f is eisher—eontinmuous—or half-bom;ded on bounded se’kg, 

Lfi;we shall now investigate the fe;eibility and optimality 

relations between the original and;;fie transformed allotment- 

assignment problems. The follow@fié property of induced 

pseudomeasures is needed, 

  

‘?gwfi:nemma: Let (B,Z') and (C,LI") be measurable spaces, and g:B + C 

a measurable function. Let-js=¥§ be two measures on (B,L'), 
o o~ 

P I Yy ! 

Vs 

and A, A2 the measures on (C,L") induced by g from v, v 

respectively, all four of these measures being ségna-tinite. 

Then (A2,)) is the pseudomeasure induced by g fxom 

pseudomeasure (v2,v). 

\ Proof: Recall (page occ ) that the pseudomeasure induced by g 

  

\ ~ from Yy on (B,L') is (ul,uz), where Uys M, are the measures 

{fi)é induced by w*, W"fikrespectively; this is defined iff Bye Uy 

are both7ui§ma—finite. Now Sor‘w = (v®,v) we have 

| . . (9.5,23 
i vVeve=vT e e 

E 
f
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s
 

q(equivalence theorem). This implies 

  e s 

by the equivalence theorem againg 
e, 

#,vaégjfmmheoremz Let (s, I ,0) and (Q, ,B) be measure spfices, and ‘el 
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* 

Uy + A= U, + A, 

To show this, let E ¢ I", and apply (23) to blgm) € E}. 
The four terms in (23) are respectively equal to the four terms 

in (24) applied to E. Hence (24) is true. 

Now w < veand ¥ <€ v (minimizing property of the Jordan 

form). Hence My < A2 and My, < A, so that ul and u, are se;ma~ 

finite and the induced pseudomeasure ex1sts. From (24) we 

obtain . 

(ulluz) e (Aggk)leffi 

  

h:S + reals, wsQ -+ reals, f reals * reals measurable functions. 

Let a and B, as well as their nameeakes induced on the real 

line by h and W, respectively, be segma finite., ILet v be a 

measure on (S x Q, ES x/ % ) m&éeh is'feaeible for the original 

allotment~assignment problem, (@)yw+5+e‘(f), and let A% be the 

measure on the plane induced from v by the mapping (s,q) - 

(h(s), w(qg)). Then 
X% 

[A27is feaeible for the transformed problem, ( szizlk, 

(ii)f if A2 4s unsurpassed for the transformed problem, then T 

2~ is unsurpassed for the original problem.
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e o 

¢£fi:?roof: (i) The feasibility condition on v® is that its lefg/b 

. % and rightfmarginals coincide with o and B respectively. For 

any Borel set E on the real line we have 

Yl 

f (iSas) 

\ \'V\) (25) 

é= vi{{elh(s) € E} x Q} = a{[s|h(s) ¢ E}. 

  

k"(E)'= AS(E x reals) 

N 

The right~hand texm in (25), however, is simply a(E) for the 

induced measure o; this proves (20) for A%{ A similar argument 

establishes (21)., Thus M2 is feasible for the transformed 

i problem. 

i 
r& \ 

9 z(ll) Assuming that v& is surpassed, we shall prove that A%~ 

13 surpassed. Abbreviate the compoeite function f(h(-), w(-))=:> 

S x Q + reals by k. Then by hypothesis eheee’eQIEts a feasible 

N w& v/such that y 
X { Y'S 1L ,' 

A~ [ (=k) dv& f -k) dve 426) 

0 (These are indefinite inte§rals over S x Q, and "»" is the 

) 

e 
& 

& 

- 

"greater than" relationjfor standard ordering of pseudomeasures. 

The minus sign is introduced to convert the objective from 

minimization to maximization ) | 

| W:z'“ 
{ e | (26) is equivalent to 

a [ k dy > 0 £27) 
1 AT N N 

X where ¥ is,fhe pseudomeasure (v®,v). From the definition of 

standerd"order, (27) is the same as



\ E '/P ffil ’ “? = \% [ "‘?? \ C O , 

-\ | k dy + j k dy >\ [ k dw + | [ k dw o B (23_’_ 
| fé\;/) st A SxQ N §xQ' N Sxé‘ 

where these are four ordinary definite integrals. fi, 

Now 1et Hjs H, be the measures induced on the plefie from 

¢ s ,\respectlvely, by the mapping (s,q) -+ (h(s), w(q)) 
b 

{ “(28) implies _gg 

; =g I P ‘43) ta" \ o »Y lC b Y v ;‘q fjfl 24) ! i \ 4t ' { | e 2D [ didu, + [ fguz > j \Edu, + [ £Zay, , (29) 
o reals?) reals reals2 reals®) 

1 since by the ordinarvy induced 1ntegralsftheorem, the four 

integrals in (29) are equal to the integrals in (28) , respect 

;?_ tively from left to right. 3 : 

   e 

  

   

We have w+ < v&'by the mini@i;ing property of the Jordan 

firm. Hence their induced measfires stand in the same relation: 

Y < A27 A similar argument,ylelds Uy £ A, where A is the 

| measure on the plane inducefi from v, Part (i) established 

that A2 and A were feasibk% for the transformed problem. Hence 

they, and therefore ul end Wy, are sigma finite. §29)chen 

implies : 
; 

;rT 
f‘{ 4:‘32 30 

f" Il\-f ::i (g ouy) > 0, s 
in terms of pseudofieasure (ul,uz). This latter is the pseudo? 

{ measure induced from ¥ = (ve,v), and we now invoke the pre3 

ceding lemma to7establish the pseudomeasure gquallty- 

efz-"?‘x'& 

(ulr uz) = (A2,0). 31) 

J Snrsnne
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Py 
" /Pinally, (30) and (31) yield N 

e 

S IA(—f),dx > [ =0 are. 

But gfl-f)AdA'isLjust the (negated) objective functlgfi“(zz) for 

Mjww»—fifl‘”the transformed problem, eamnd so A¥ is surpassed}p§?k. JA{éafié 

fmw (Note—that if (4) is a well-defined, anite, definite 

integral for all feasible v, “then part (1;5 of this theorem 

can be proved in a few linesj Per~thenw(2’), for the A 

induced from v, is equal to (4) by the induced integrals 

theorem. &lso, in this simple caeg,_the distinction between 

"unsurpassed" and "best" disappeege.) 

In general, these resultefcannot_be strengtheneds One 

cannot infer the feasibilityfof ve- from that of A°; nor the 

optimality (in any sense) cf A® from that of v®. This latter 

inference, for example, is blocked by the following difficulty. 

To establish the optimality of AY one must consider ell other 

feasible measures Af‘ But it is not necessarily the case that 

every such A is tne.induced measure from some feasible v. (In 

fact there may not be any such v, feasible or not.) The 

optimality of-fififtells nothing about such ”uninduced“ feasible 

measures A, eo that the optimality of A% cannot be inferred. 

We-ehfi%& now make a fairly detailed study of the trans- 

formed groblem,wand then use the preceding theorems to draw 

concluelons about the original problem, 

5éonsider the following conditions on the original measures 

o and B
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A R 
s SE 
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- 

{?%ui'Definition: Given measure o on (S,Zs), and measurable 

  

h:S8 + reals, o is finite from below iff 
  

70 a{s|h(s) < x} is finite,— & L32lk 

k_,fj 

for all real numbers x. Similarly, given 8 on (ngé) and 

  

measurable w:Q » reals, B is finite from above 4iff 

B{glw(q) > x}| is finitergi (33) + 

for all real x. 

d,nawwfifi&Léjiflfifi‘fhe interpretation of (32) is thet the ideal area of the 

region within ideal distance x of thevnucleus is finite, for 

any real x. This is not implausiblen\and does not preclude 

the possibility that the ideal area of Space as a whole is 

infinite. Similarly, (33) states that the allotment to the 

set of land uses of weight exceeding x is finite, for any 

real x. ”' 

These properties can be stated in logically equivalent 

form in terms of the transformed measures o and B8, Namely, 

(32) and (33) are tne same as 
A 

i “ ¥ 

alyly <,x})‘and\ B{yvly > x} | are finite, 434) 

for all real x,\respectively. That is, the a-measure of any 

left half-line, and the B-measure of any right half-line, are 

finite. Note that (34) implies the etgma-flniteness of o and 8. 

@hemreaeonwicrmimposing these conditlons iewehat they 

insure the existence of a unique measure A on the plane 

/ / 
S 

A



Q~ \ 

f"’\ 
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satisfying the weight-falloff condition with marginals a and 

B As a preliminary,eletuas establish a connection between 

the weight-falloff and northwest corner conditions.fl We have 

already encountered the latter condition for a.measure A on a 
g 

product space A x B, where A and B are both countable (in i 2) 

The general idea is that, given its merginals, A ha}e as much 

mass as possible concentrated intofi”corner“ sets, these being 

defined in terms of certain complete orderings on A and B. In 

the present case, both A and B are the real line, which has a 

natural order. A is| then |to concentrate its mass in the 

"corner" with low A—values and high B-values. The following 

definition makee this precise. 

Definition. Let A be a measure on the plane; with-leftjband 

right+marginals A', A",)respectivelz}efl satisfies the north- 

D) 
Y- U 

== 
pe——— o ' 

}{(x,y)lx <X,y >_y1} is the quadrant of the plane "northo 

e 

west corner condition iff s EfE }F”ff’ 
) 

e .;9‘ 

- 

A (x,y) |x < X0 Y > ¥ = min(l {x]|x < xl} AN {y|y>y1 ) ‘135# 

for all pairs of real numbers (xl, yl). 

7 
f 

~ 

west" of the point (g{, yl). It;is;es5§ftéisee«thatfi_for any ‘ 
& 5‘: . Z:a-r‘ 

measure, the left eide of (35) never exceeds the right. Hence 

(35) is indeed tne condition that the mass on these northwest 

sets be as 1arge as possible. 

¥
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§$¢”;“Theorem: Let A be a measure on the plane whose 1eft}2arginal 

A' = o is finite from below, and whose right marginal A" = B 

g/fib is finite from above??that~is, (34) holds). Then A satiefies 

the weight-falloff condition iff it satisfies the norghwest 
._('!: 

corner condition. 

  

g& Proof: For any point (xl,yl) define the three se;s 

%tg = {(x,y) |x < Xy, ¥ > y1{5{ 

  

A & (%83 

iy PF o= {(x,y) |x < x5, ¥ 9}, 36) 

¢ = {(x,y)]|x > xl,;yf> Yl}' \/ 

Then b £ 
7 { £ ( / ) 

ME) + A(F) = A'{x|x < x 1}, (37) 

B ‘dfi ' 

ME) + A(6) = Miyly > v}, 438) - 

‘ { 42 l f 

so that (35) takes the.:form y 

A® = niala@ +A@, @ + 2@). < “39) 

Now let A satisfyflweight—falloff. Then either A(F) = 0 or 

A(G) = 0, sincefiF is southwest of G. Either of these cases 

- yields (39), %o that A satisfies northwest corner. 
e 

//COnverSely, let (39) be true for all (xl,yl) By (34),   
all terms/in (37) and (38) are finite. r"‘(?‘9”71:hen implies that 

either A(F) = 0 or A(G) = 0. Now let (x 'YZ) and (x3,y3) be 

“\i 

any two points, the first southwest of/the second, and choose  
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Xy and Y, such that Xy < Xy < Xar ¥y < ¥y < ¥Y3+.| Then F and 

G of (36) are measurable neighborhoods of (xz,yz) and (x3,y3), 

respectively, so these points cannot both support A. This. 

proves that A satisfies weight-falloff. |[HE(/@ 
R nasc s, 

      

  

Our next result is based on the theory of dietributicn 

functions. Owing to the fact that we are deawing with "northg 
west"” rather than "southwest" sets, the stendard theorem 

(ppgs 00O ) must be rephrased in a slightiy different formg 

uw"’"'""fit—""‘"m 
;; 

~ I . Lemma: ILet g:reals2 + reals satisfy Efie following three condiZ 

   

P tions: 

( L}% e S 
7 (i) for all real numbe#s %ap o) [ b & 
Y1 < iz;we have 

   
   Yyr ¥, with Xy < X, and 

  

("75 "";{;,.L? 0, 

g(xl.yl) + g(x,y,y,) < gfikl.yz) # g(xz.yl). 99 

; ¥ (1:) g is continuous fgom the “northwestfj for any (xl,yl) | , 
[ and any € > 0, there is a § > 0 such that 

:& 
;fgf | 

,{"‘j“, ;', a 3 

1 Fla,y) = glx,y,)]| < ¢ L) 

K ‘for any (x,y) sfiiisfyingi X -8 <x< Xy and y; + 6§ >y > Yqi 
..\ \ 

7} (rii)for fixefi Y 9(x,y) + 0 as x + -w, and, for fixed x, 

g(x,y) 5 qwes Y + 4o, 
o 

/V Then there is efiactly one measure A on the plane satisfying 
.? 

R
 

i
 

S 
T 

My [x < 20 ¥ > v} = glxy,y,) ) 
; i for eil points (xlpyl)-



RN heas 834 

Note the opposite sign orientations of X and y in parts 

‘ }fl (ii) and giig).{°?235{;§ates that g has nont+positive cross-— 

[JL;21UH‘jidifferences (cf£. (2)), whereas the;nsual distribution functions 

ijfi§? have the opposite property. This,lemna follows from the 

usual statement by "reflecting" the plane through the X-axis: 

(x,y) + (x,~y). We are now ready for the main result. 

M—Ei—-w» 
LA 

Cfi%«{Theorem: Let(a and B be two measures on the real line L 

satisfying F%%,5 o is finite from below and B finite from above. 

1311 Also let a(L) = g(L). Then;there is exactly one measure A on 

the plane having o and B8 asfits lefti’and rightx&arginals, and 
) 

satisfying the weight—falloff condition., 

o ,,,rww F 

X ‘Proof. Define g:reals2 + reals by( 

    

gl(x;,v,) = min(c{xlx 2 x,}, Blyly > yl}).wne 43) 

k \ / F”\lre) 

2/ This is indeed .real-valeede\by (34). We now show that g 

+ satisfies (i), (ii), and-(lli) of the preceding lemma. 

j _As—=for (i)& choose real numbers x; < X, and Yy € ¥Yye We 
)2%) e 

clearly havelg(xl,&l) < g(xz,yl) and g(x,,¥,) < g(x,,y;). If 
" 

/fbflf a{x|x < Xy } < 8{y|y > yz}, then also g(xl,yl) = g(xl,yz). It 

a{xlx < x by B{yly > yz}, then also g(x,,y,) = g(x;,¥,). 1In 

either case, the equality, combined/with one of the inequalities, 

yields (493). 

7 . 
jy’es~fer (ii)?,note that a{x|x < xl}, as a function of Xq0 

e A U 

is continuous from below, and B{yly > yl}, as a function of Yyr
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is continuous from above. (This follows from the basic 

continuity property of measures, pfige o0 é§) ») That is, given 

(xl,yl), for any € > 0 there is a § >/ 0 such that 

f (8.3.444) 
A44L) la{x|x < X 1= alx|x < xxil < g 

|etyly > y,}- B{yly s yl}! < gy 459 

-zror all Xor Yo satisfying: “1 -8 X, < %, and yy + § >y, 

o _.Y;W[ (24) and (45) together vield (41). 

4 ¢ As—for (iii)} the limit of a{x]x < %3} is zero as xq 

and the limit ofzijly >§y1} is zero as Yy, * +». Hence the 

lJimit of g(xl, yl) is zero inzboth cases, which is (ill) 

§ Applying the lemme, we conclude that there-ewists a e 
measure satisfying @4“) 

& required properties. ; 

- —w, 

    
We now show that this )\ has the 

   
Let Y1 g0 to —c0 in (42), The left side has the value 

AMix|x < x,} as limit, where A' is the left marginal of A. 

Biv|y > y,} has thezvalue B(L) = a(L) as limit, which is at 
:‘ i 

least as large as afx|x < xl} forzeny Xq 

This proves that 

Hence g(xl.yl) 

R 

approaches of{x|x <§xl} as limit. 

’ l;{xlx <%} = alx|x < %} 

A' and & have the same |[distribution function,?™ 
for all real 13 

and must therefore{coincide. 

Letting Xy 90 to +w in (42), a similar argument shows 

that A" = 8. ‘Thus o and B are indeed the left and right 

marginals of )\, respectively. Suodums ot 

2 
S 
R
N
 

./ \
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a‘EE-This being the case, (42) is the same as (35), so that 

A satisfies the northwest corner condition. By the preceding 

theorem, it therefore satisfies weight=-falloff. 

3 : Jgihe existence of A has?now been established. To prove 

| uniqueness, let ) satisfy weight-falloff and have marginals 

o and B. By the preceding theoren,l satisfies northwest 

corner. Hence ) satisfies the relation (42), where g is $   given by (43), But there is just one measure satisfying this 

relation, so A is unique. 'LLLJ& & 

» We now show thet this result, establishing the existence 

e    
and uniqueness of & weight-falloff measure on the plane, 

extends in part tgfthe original problem on S x Q. 

¢f¥~Theorem- (uniquenesa theorem) Let (S,Zs,c) and (Q,Zq,s) be 

measure spaces, end h 8 + reals, w:Q + reals measurable funcg 

tions such that*a is finite from below and B finite from above 

(with respect tp h w, respectively). Let a{s|h(s) = x} = 0 

for all real nnmbers X, and let E be the class of all sets of 

{4
 

i 
L
)
 

the fo {qlw(q§ € E}, E ranging over the Borel field on the 

real line. i 

flef’fime. Then thene is at most one measure v on (§ x Q, Es x I ), 

with marginals o, B,)satisfying the (measurable) weight< 

falloff condition. 

  

;%iProof: Conside& the class, R, of sets of the form : 
: ¢ Q@vgflifi} 

z Fx {q|x <w(q) <y}, 46)- 7 ) ! 

?CEZ; where F ¢ Iy ?nd X, Yy are real numbers. 

| ~ 4 

J
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7 
(Y oac \/'/. 

XR generates the"sigha-field Es x Eq. To show this, it 

suffices to prove that all measurable rectangles belong to I, 
> 

thereiéma—field with universe set S x Q generated by év ConZ< 

sider the class of Borel sets E on the real line having the 

property that {g|w(g) ¢ E} belongs to the sigma—field on Q 

generated by the sets {g|x < w(q) £y}, %X, y real. This 

class is closed under counteble unions and complements; it 

also includes all half—open intervals {z|x < z < y}, X, v 

real. But the laéer generate the Borel field;l‘ence the sets 

{alx < w(q) & y} generate the si;ma~field of sets {qlwl(g) ¢ E}Mz‘ 

-lh ranging over all real Borel sets. By assumption, this s&gma— 

field is Zq. Hence Zgowns all measurable rectangles, so that 

L= I, x Zq. 4 ; 

Next, R is a sem1~sigme-ring (paw= 0CC), 1Indeed, @ ¢ R, 

the intersection of;two R-sets is an R-set, and/’ the differ= 

ence of two éesets ean be expressed as the union of three dis< 

joint é—sets.; Qingfact, R is a semiéringp)fi 

“Now- let Vqs vg be two measures with marginals &y By~ 

satisfying (measurable) weight~-falloff. We will prove that 

v, and v, must coincide on fi, and that there exist a countable 

number of R-setsiwhose union is S x Q, such that v, and v, 

are finite on eachi The basic extension theorem (gggerm““) 

then guarantees thet vy and vV, are equal, and we are through. 

First, the R-sets 8 x {g|n <w(g) <n + 1}, n = o0, +1, 

+2,..., cover § x Q; and vy and vy must be finite on each,
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since their common right marginalfl\fi,‘ie;finite from above, 

This proves half f the statement in the paragraph above. 

/ It remains to show that Vye Yy ceincide on R Since they 

satisfy measurable weight-falloff, the measures, Al' lz, 

induced from them on the plane by the mapping (s,q) + (h(s), 

w(g)) must satisfy weightwfalloffq&and must have as marginals 

the measures on the real line induced from o and B. These 

marginals are finite from below ana ahove,3 respectively, so 

that there exists exactly one weightufalloff measure, A whaving 

them as marginals, Thus A = AlTQZ' l is, in fact, the gggggf 

west corner measure with these fiarginals. It follows that 

hi® vy {(s,q)'h(s) < x', wig) > i} = min[;{slh(S) < x° },) {feqé 

b2 {gg | ; Ceiglwig) > x} 

Fi i 
e # o ff’ 

is true for all real numbers, x,‘?', for i = 1,2, For this is q/;:;fi 

g 
merely the northwest corner cohditicn (35) expressed in terms 

of Vir @ and B. ;147) also holds for infinite x or x', as may 

be verified by direct substitetion. 

Next, for any number k be%ween 0 and X(S), inclusive, 

a{slh(s) e ol mike . \48) 

To see this, take the supremum§pf the numbers y' for which the 

left side of (48) does not exceed k. For this value we have 
g ‘.“' 7 ‘ o ,/,i 

a{s|h(s) < y'} <k < als|n(s) < y'}, ° “49)



; & g—?flfor i=1,2. The coflmon value in (52) is finite,>because x is 
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u w " ; 
from the continpity of measures. But, by assumption, the left 

and right terms in (49) are equal,;hence (48) follows, 
v & 

Now choose any member of R. .  Given the numbers x and y in 

(46) choose x' and y' to satisfy 
98" A (¢4 S0) 

a{s|h(s) < x'}*s &{qlw(q) » %}, (50) 

(8.6-¢! 
a{s|h(s) < y'} = gig|w(q) > vi. +51) 

; x' and y' exist, by (48),?eince the rightAterms in (50) and (51) 

lie between 0 and B(Q) = v (8 x Q) = a(s). 

From (47) and (30) ‘we obtain 

vi{(s.q) In(s) < =, W(q) > x} (¢.4.82) 

52) 
Y= a{slh(s) < x'}_«-53f== B{qIW(q) > x}, 

» ) 

finite and B finite from above. It follows that 

W 
vi{_(s,q) Ih(s) > x', ?f(q) » X} 

S =0 = vi{(s,q)lh(s) < x', w(q) < x}, 

“2,; = 1,2. To see this, note that the sum of the left-hand terms 

»ifl (52) and?(ssiris yi{(s,q)[w(q) > x} = B{g|w(g) > x}, and the 

first equality in (gz;}follows by subtraction. The second 

equality is proved similarly. The same argument applies with 

y,_y' substituted for,x, x‘,zrespectively, and we conclude that 
3 

{53) remains true with these substitutions. Thus we have four 

equalities (53).
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Now let G = F n {s|y' < h(s) < x'}. We then have 

7 & 
X1 f viE‘ X {qlx < wlq) < yfl = \)iES x {qlix <wl(q) < Yj], (54) 

fi foxr i = 1,2, For, the set of points (s,q) belonging to the | 
f leftZ, but not the rightnhund set) in (54) is contained in the -‘ 

union of two of the four sets ofgmeasure zero of (53), as One 

verifies. Finally, one has 

  

vi[§ x {g|x < w(q) < g@ = v; (G x Q) = a(g), £55) 

“ i=1,2, PFor the set of points (s ,q) belonging to the middle, 

but not to the left-—hand set in (55) is contained in the union 

easure zero of (53), as one vVerifies, 

e 

{ of the other two sets of fi 
{ o - 
i CZe 
i N (St) ‘and (55) show Ehat vy and vy coincide on all R-sets. 7 

Hence they are identica g’LL#’,QQQ 

Note that the assumptions imposed on the two component 

spaces are quite diffenpnt, unlike all the other theorems of 

i 
. 

this section. The con@ition that a{s|h(s) = x} = 0 states that 

the measure on the reag line induced by h from a is nonzatomic, 

while the condition tm?t Zq is all sets of the form 

i?t Zq is the s&gma—field inversely 
[ {alw(q) € E} states th     

induced by w from the real Borel field. From the symmetry 

of the allotment—assignment problem in S and Q, it is clear 

that these conditions %ould have been interchanged (making 

induced B8 noniatomic, and Z inversely induced — without 1nva11- 
'f 

dating the conclusion.; But the form in which the theorem is 

) stated is the one-whieh applies neatly to realistic Thiinen systems.
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= Neither of these assunptions can be dropped without 

invalidating the conclusicn. This will be illustrated later 

with counterexamples fro@lsimple.;hfinen systems. 

Next we have an existence theorem for the original 

allotment-assignment pfoblem similar to the one proved above 

for the transformed pfoblem. A function is said to be semis 

continuous iff it is either upper or lower semicontinuous for 

both, i.e., continuons). 
:S »1’1 2 

iL#”}theorem: Let (S,Zs,e) and (Q,Zq,B) be measure spaces, with 

a(S) = B(Q) < e, ‘;et I, and Ly be the Borel fields of 

topologies Tsandqut%respecti;ely, these making S and Q Borel 

subsets of topoloéically complete and separable spaces., Let 

the functionsfihzéfe reals and wiQ + reals be semifcontinuous. 

Then therxe éxists a measure v2 on (S8 x Q, ES x Zq) with 

marginals o and é, which satisfies the (measurable) weight~ 

falloff condition§ (with respect to h, w). 

gij Proof: First, let h and w be lower semitcontinuous. Let 

  

;:reals2 
g . | SN 

+ reals be a function whieh has positive cross= 

differences, and%wh&eh is bounded, continuous, and increasing 

a e 
in egch argument; An example is 

fx,y) = L+ e B+ B 1569 

We now show that the composite function £(h(-),w(-)):S x Q + 

reals is lower semfjcontinuous. Let (s ) belong to the set 
0’9
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{(s,q) |£(n(s), w(q)) > z}, (5T 
demct  ag z being a real number., f being continuous, the set 

A 

L) |£0a,y) > 2 NEF 
\ 

-t 
7 

\xw\/s open in the plane.L7(h(s ), w(q )) belongs to (58), hence 
| 

there is atpOint (x Yo ) southwest of (h(s ), w(qo)) which 

belongs to (58). Ccnszderlthe following subset of S x Q: 

(<4 

fSIhfs) > xo} x {q|w(q) > yo}- : (53) 

A%r; 
(5}) is open, by the lower semiecontinuity of h and w.‘“K o'qo) 

belongs to (53) by censtruction. Finally, ) 1smconta1ned 

in (57), since £ is:increasing in its arguments. Hence (57) 

is an open set for any 2, so that £(h(-), w(*)) is indeed lower 

semi*continuous. 

It is also a bbunded function, and these properties, 

together with the cther premise » imply that the allotment- 

aSSLgnment problem - (4),—%fiiee(6) has a best solution v°® (7.4). Since f has positive cross- di fferenices, thls Ve satisfies 1& the measurable welqht-falloff condition. 
;;For ;he remaining thr%? cases, replace f by f', where 

%&f'(x,y) f(—x,~y)f;f h, W are koth upper semijcontinuous; 

  

A
T
 

AN
 

£f'(x,y) = -f(-x,y);if h is lower and“?gupper semi-continuous; 

£f'(x,y) = -f(x,-y)'if h is upper and gilower semi-continuous, 

f being given by (36) 

In all cases f’ remains boundedL continuous, with 

positive cross-differences (hecause the number of sign changes 
38 

is even). And in all caseész(h('), w(e)) remains lower semiE
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continuous. This is clear for £(-h(<),| =w(*)), since negation 

converts upper to lower semitcontinuity. For -£(~h(-), w(e)) 

and -f(h(*), =w(*)), the two argumentifunctions oél; are now 

upper semiscontinuous. In'this case, reasoning similar to 

that above shows that the composite function ;@(...) is_upper 

semizfontinuous. (Reversefihe inequality signs in (57)*}(58), 

-and-—-{53)., and take (xo,yoggnortheast rather than southwesqflg 

Hence f'(...) = -f(..:) g% indeed lower semifcontinuous. ‘ 

As above, a measura%le weight-falloff measure v then 

exists in all cases. J,,,H"‘: O@ 

Unlike the situation in the transformed problem, the v° 

of this theorem need épt be unique. A trivial example of this 

is where h or w is a gonstant and there are at least two 

feasible measures. épr here every feasible measure v satisfies 

both weight~falloff éonditions ;acuously. 

We have obtaineé conditions under which an optimal solution 

must satisfy a weig@?-falloff condition, "Our next result is a 

converse, indicatinéiconditions under which a weight-falloff 
% 

measure is optimal. ! 
5 

————— i 

L Theorem: Let (§,£s,cfi and (Q,Zq,s) be bounded measure spaces. 
= ¢ & 

Let the functions hég + reals and w:Q =+ reals be measurable, 

and let f:reals2 +> r%als be bounded?blower semi-continuous, 

with non+negative cross-differences. Let measure v® on 

(s x Q, ZS X Eq) have marginals o and B and satisfy the   
(measurable) weight-falloff condition. 

i 3
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Then v2 is best for the allotment-assignmentfproblem of 

minimizing : 

@ T8 g 227y S } 1372 iB ( $:8,60) 

j ¥ (h (5) oW (g) v (ds ldq) & i (’60:)- 

5xQ & 

over measures v with marginals o and B.f 

W 
: 

;;fl/¢<¢?’froof= First let-us assume that f has5éositiva cross-differences. 

e Consider the allotment-assignment problem on the plane induced 

;iE;E from the given problem. Since f is bounded lower semi- 

-;v.:l"‘ 

continuous, o and 8§ are bounded, and a(S) = v¥(S x Q) = B(Q), 
AN 

there-exists a best solution A%° to this transformed problem 

ct. (Ot 
Q?M¥¥'74').:fikgfi nmust satisfy'the weight=falloff condition, 

since f has positive cross-differences. 

Since v? satisfies weiéht—falloff, the measure A2 on the 

A
 

A
 
A
 

i 
A B
k
 

e 
2 

plane induced from it by the mapping (s,q) + (h(s),w(q)) must 

; satisfy weight-falloff. A% is also feasible for the transformed 

problem. But there is only one weight-falloff measure feasible gf 

N
 for the transformed problem, since a and B are bounded. Hence rfifiu 

o S RN AT —— o 

i s r 

AL = )e°, 3l£.is.gherefore;unsurpassed for the itransformed 

problem, implying that v&.is unsurpassed for theloriginal. 

But (60) is well-defined and finite for all feasible v, so 

   

  

   

"unsurpassed” coincides with "best". This proves' the theorem 

for the special case of positive cross-differences. 

Choose a function g: reals2 -+ reals whieh»is bounded, lower 

semi~continuous, and has positive cross-differences (such as 

~
 

o
 

s
 

.



R
 

= 
.
 

¥ 

: 
¢ 
¢ 
i 
& 
i 
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(56)). ‘Then, for any positive real number €, the function 

£ + eg has the same properties as g. Consider the perturbed 

allotment-assignment problem in which £ in (60) is replaced 

by.f + €g. By the results just proved, v® is best for this 

problem. Hence 

30 20% 

] (f + eg) (h(s).W(g)k‘(dS.dql 
SxQ : 

, 7D & i ; 
< [ (£ + eg)(h(SX,W(q)yy(ds,dq) 

SxQ . ,} 

for'any other feasible measn}e v and any real € > 0. Now let 

€ go to zero., By the dominated convergence theorem, the limit . 

of the integral on each side is the integral of the limit. 

Hence v remains best when & = 0. Fhis-eompletes—the—proot, |~ 1/ 
S P 

We.shall later shou}thet this theorem can be strengthened 

to some extent. wfigéeiy" the premise that f is lower semi+ 

continuous can#be dropped.;fBut the method of proof just used 

is quite instructive,,and dompletely different from the method 

to be used below, which invplves the construction of a 

potential. i 

The resulting theory is a fairly satisfactory eme, and the 

conditions under which it holds are, for—the most-part, not 

too onerous. The boundednees of £, however, is a nnisance,x'a, 
3 S 7 

For-example, the product fun%tion, £(x,y) = gynfiwyhich is the 

original form in which transéort cost presented itselé 2 iz 

not bounded on the plane. Th%s limitation is easily remedied 

if the ideal distance and weight functions, h and w, have 
\



e
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bounded ranges. For then we can take the domain of the transs 

formed problem to be;l-not the entire planebl-but a rectangle 

with bounded intervals as sides. On such a set the product 

function (and most other functions of interest) will be 

bounded, and the preceding theorem can be applied. 

0 
Insight into the distinction between ppgitive and non+ 

negative cross—diffeiences can be gained by contemplating the 

case where f has zero cross-differences, tfiet;is, where 

G _% ( ‘/. . f‘ {1 

L f(xl'yl) + f(leyz) " f(xl'yz) + f(xzryl) 'S 61) 

1 b A g 
3 iy &1 {x,,,].fl!..-fl’,,flrx 

for all numbers X109 X590 Yy0 yzgigiéli holds iff £ can be 

writtemtgs the sum of separate#x— and y-functions: 

: (.52 
£(x,y) = £,(x) + £,(y). 62) 

(Proof: If (52) holds, then,(él) is verified by substitution. 

Conversely,lchoose an arbitrary Yo and define f,, f, bys" 

fl(x) = f(x,yg), £,(y) ;1f(#;Y) - f(x,y@). For the definition 

of f2 to be sound, the expreSSion £(x,y) - f(x,yb) must not 

depend on x. But this is géaranteed by (61)) ilfiié;follows at 

once.) But if (62) holds (and £, a, B arelall boundgd), then 

the objective function (59)%18 equal to _ 
‘d < \ 

" ‘;J | (£y°h)do + I (£)ow) a8, b 
Ligl "IN 8 2L } 

| 

by the induced integrals theOremfl ("o“'signifies the composif? 

tion of functions). Thus transport cost depends only on the 

marginals, o and 8, of v. Since all feasible v have the same
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marginals, they are all best solutions. Thus, while positive 

cross-differences restrict best solutions to the weight-falloff 

measures, non-tnegative cross-differences may allow others. 

Potentials 

We now turn out attention to the construction of potentials. 

This is of interest not only for the further insights it 

furnishes concerning the optimality properties of weights< 

falloff measures, but because potentials have direct intuitive 

inte::‘pretations:‘3\a as land values and as "gross profits" on 

land uses. 1f 

Let measure v& on (8 x Q, ZS x Z ) have left;%and right}g 

marginals a and 8, so that it is feasible for the allotment- 

assignment problem., Recall that a pair of measurable functions\v/ 

  

pP:S + reals and k:Q + reals is a measure potential for v (in 

the wide sense) iff 

7/k(q) - p(s) < £(n(s), wig)) @3 

for all s ¢ 8, g ¢ Q, and 
Jo v P iAs @.<ed) 

«{(s.q) lk(q) = p(s) < £(h(s), w(q))} = 0:3, t64) 

Now ¢ 
New furnish 8 and Q. with topologies T and T " respectively. 

The pair of measurable f@ncticns (p,k) is said to be a __g_f 

logical potential for v&éjin the wide sense) iff (53) holds for 

all s € S, q € Q, and, i%fi(s,q) is a point of support for v¥, 

then (63) holds with eguaiitx}h 
e ——r 5 
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J 

{/‘ We shall make essential use of the transformatlon of the 

allotment-assignment problem into the plane. The transformed 

problem is itself a special case of the allotment~assignment 

problem, and we may therefore contemplate potentials for its 

feasible sclutions ) Our first task will be the following. 

Let v be feasible for the origrhal problem, and A the measure 

induced from v; ) is feasible‘for the transformed problem. 

What relations then hold between the prOperties of there being 

potentials (measure- or topological—) for A and for v? 

First one preliminary. We shall take the transformed 

problem to be defined, not necessarily on the whole plane, but 

on a rectangular subset of the plane, X x Y. The exact defif 

nition will be given later;.asd for the present we need merely 

assume that X and Y cohtain the ranges of h and-w,%respectively. 

A potential for the trensformed problem is then a pair of 

measurable functions, p X + reals, k:Y -+ reals,\satisfying one 
\JI 

ox the other of the definitions above.fl X x ¥ is the domain of 

\‘““““J¢~n£§~:jd the universe set of feasible measures A. 

%;iw3Theorem: Let v be a measure on (8 x Q, ES X.Zq) with leftffiand 

right;marginals o and B. Let X and Y be measurable subsets of 

the real line; and:hzsfe X, w:Q + ¥, £:X x Y + reals, 

p:X + reals, and k:Y -+ reals;measurable functions. Let AY be 

7\ the measure on X x Y induced from v® bl the mapping (s,q) -» 

(h(s), w(g)), and consider the following three conditions:
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3 g 

fgvfisfif z%}i); (p,k) is a topological potential for Ae; 

L‘y/‘ (ii) ] (p,k) is a measure potential for A®°; s 

5“ : Tt (1ii)] (peh, kew) is a measure potential forlzflalgfz {)/3> 
é f;iitzrihen condition (1) implies condition (11), which in turn ok 

% Wimm“implies condition (1i1). r 

4 7¥.;Proof: The usual topology on the plane, or any subset of the 

plane, has the strong Lindeldf property. This insures that any 

gw’ topological potential is a measure potential (7 5). Thus (i) 
e f=} 

i 
: ixi implies (ii). Y p (1) 

Let condition (ii) be valid. Then - 

»  kly) - p(x) _5 £(x,y) 

\"for all x € X, y € Y. Lettiné’g = h(s), y = w(q), we verify 

(63) for the pair of function? (peh, kew). Also we have ‘ ff‘" 

vs{(s.q)lk(w(qn - p(h(s)) < £(n(s), W(g))}' A e i) 
: v T | & &) . A“{(:g.y),k(y) -';‘io(x) < f(x.y)} 2Ot ] 

fact that the argument of v%/is the inverse image of the argu=- 
A ,‘..«;"lf rgw’.. 

ment of A% under the mapping (s,q) =+ (h(s), w(g)). A(SS) yields 

T
R
 

(64) for the pair of functiqhs (peh, kow). Thus (iii) is 

valid. | 17 

l@d = ’Z/ghis theorem is silent ébout topological potentials for 
/ 

T
R
 T
 
e
 

T
 

e
 
A
T
 

L
Y
 

V2. Indeed this concept is not even defined, since nothing is 

said about any topologies on_é or Q.
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Our plan of action is to construct a topological potential 

for the weight-falloff measure AX?. If A2 is induced from a 

measure v feasible for the original allotment-assignment 

problem, the preceding theorem yields a measure potential for 

v®, From this e;e can make inferences concerning the optimality 

of v2. 

In constructing a potential;for ) we could make use of 

the theory developed for the trensportation problem. Instead, 

however, we use a special procedure éhiéh utilizes the 

distinctive properties of weight—falloff and noéinegative 

cross-differences. This not 6nly allows us to weaken the 

assumptions needed, but the érocedure is of interest in itself 

and has intuitive appeal. f 

We begin with an obseréation. A measure A on the plane 

has all its mass concentrat;d on its support. That is, if E 

is the support of A, then tée complement of E has measure zero., 

(E and its complement are nprel sets, since E is closed). The 

proof of this rests on-thefstrong Lindeldf property of the usual 

topology of the plane) Foépievery point of the complement of 

E has a measurable neighboéhood of measure zero. A countable 

subcollection of these neighborhoods covers the complement of E, 

which therefore has measure zero. 

Given measure A on théEplane, we shall restrict it to a 

rectangle X x Y‘as follows.é X consists of all numbers x 

having the propertyf}'eithe% there is a number y such that 

(x,y) supports l\ or x is b%tween two such numbers, Xy and X,
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Y is defined analogously, the fgles of x andfy being inter: 

changed; X is an interval, which may be the entire real line,. 

or may be bounded below, or above, or botn. If bounded, the 

endp01nt\may or may not be included in X. The same remarks 

apply to Y. The support E of A is contained in X x ¥. Henceq 

by the preceding argument, we are throwing away a set of : 

measure zero. Finally, note that X and Y are empty iff A has 

empty support. By the preceding argument this occurs iff 

A =0, We exclude this trivxal case by assumption. Call X x Y 

the support rectangle.lg?é 

Now let A% be a megsure on X x ¥ satisfying the weight= 

falloff oondition. With the point of support (x,y) associate 

the wvalue rfly No two points of support have the same value, 

for if this were true of (xi,yi) i= 1,2, we would have 

X =Xy =y - ¥, f 0; the points would thus stand in a southf) 

west-northeast reiation, contradicting weight-falloff. The 

valuation thus determines a complete antiwsymmetric ordering of 

the points of suppcrt. We have, in fact, a "Maginot line" of 

points of suppert strung across the plane, running from north= 

west to southeast (possibly including vertical, north-to—south,J 

stretches, and/or horizontal, west-to-east, stretches). § 

This line may have gaps in itgy A gap is defined as a 

pair of distinct points of support, (xl,yl), (xz,yz), with no 

other p01nts of support "hetween" them in the ordering. Wherg 

ever such afgap exists, connect the two points constituting it 

by a straight lineesegment. The union of the original support
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and all these line-segments is called the line of support, L, 

of A2, It is easy to prove the following facts about the line 

of support. No two points of it stand in a southwest—northg 

east relation. For every x € X, -there pkistsfia y € rvsuch 

that (r,y) € L. For given x € X, there is either a unique 

Y € Y such that (x,y) € L, or a closed interval (possibly 

unbounded) of such y's. Similar statements apply with x and 

Yy interchanged. The line of support is contained in the 

rectangle of support. 

Having furnished the line of support, the measure A° has 

completed its’rgle in the eonstruction of a topological 

potential for itself, andjattention now passes to the cost 

function f£:X x Y -+ realsn? From f we shall construct a function 

p:X - reals)which turns ;ut to be (under certain conditions) 

the left half of a topological potential for A°. 
fl;gfifi "“p(x) is defined as follows. Choose a fixed point X, € X, 

A & 

and define p(xo) = 0, For x # Xge take a seqguence gxi,yi), 

4 Q0o {of points;on the line of support, with x = x. 

This sequence is to be;monotone,-thfitiisqveither strictly 

increasing in the value X - ¥y (for x > xo),bor strictly 

decreasing in X - yi;(for ® < xo); n is any positive integer. 

With this sequence associate the real number 

(_gfw S .l if/t 

where we use the abbreviationJéfy“lfor £(x,y) here and below. 

[p(x) is)then)defined &s the infimum of (66) over all such 

monotone Sequences from x, to X.
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X x Y -+ reals have non+negative cross-— 
h%iw{;Lemmaz Let measurable £: 

7 differences. Then p is &, Measurable, and (7T = i (o 

o P(x') + £(x',y') < p(x) + £(x,y") 64 

for any x,x' € X, y' € Y such that (x',¥') € L, the line of 

support. 

f; \ Proof: Let (xi,y ), i = 0,...,n, be a monotone sequence of L- 

1’» 
Faly 

w N ] A 
N ol \ 

i 

VP (% 1Y - 

% differences and the monotéhicity of the sequence. 

point for x = X . Then 

*1¥0) S(%i-1¥y = By¥y) S(Xga¥y - Xy¥pp 

This followsfat once from nonénegative cross= 
é. = l'.oo'n- 

Adding these 

| inequalities over i, we ohtain 
g 

¢ i 

5 (%o¥9 - n¥0)< 2 < ([Bo¥y - XYy, - 
| 
: where z is of the form (§6). Ffiom this we obtain § - 7 

Lo L 7587 ¥ 

{ % e/ j X0¥0 fignyo < pix) < XY —= XY, (69)- 

f where iy and y are any two numbers such that (x ) € L and X | 0 9?0 (OJfiJ 
j The right 1nequality in (69) follows from the right @ (x,vy) € L. 

of (68) by taking the i@fimum of z over all permissible 

sequences with fixed (géy) = (gn,yn) € L (n any positive integer) 

The left inequality in §69) follows from the left of (65) by 

taking the infimum of zfover all permissible sequences with 

o
 

R 
O
 

s
 

fixed_yo, on noting that this does not restrict the range of 
Einte values (66).‘\(u ) shows that p is indeed
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/ % A (67) follows at once for two special cases hesides the 

obvious x = x'g /For x' = xofi from the left of (69), and for 

X = x, from the right of (69). This 1eaves the case where 
G Sub? Xoys X, And x' are all distinct. There are threefldéses, 

A depending on which of these numbers is between the other two. 
3 

\fl“~£) If x, is between x and x', we have 
Y. 

’Afix 7 (g.£70) 
é¥g~t ; p(x') < XOY};' A (709 

i 

[, : ’b * 

_ p(x) > XY xyo D R = Ey'a A t%ti 

7;4 @ ‘,‘é( ¢ 0 {' "":‘l 

(70) and the left inequality in (71) arise from (69); the right 

of (7l) arises from nonTnegative cross-differences.,a.iu) and 

  

=A§ (71) | together yield (67). 

’f‘fi'&d If x 1s between x0 and %', we consider monotone sequences 

(x.,yi), i = 0ys40,n, of L-points, with (% ye) = (x',yY), 

éflew which include x\emong the xi)si\ say x = xj Separate the 

corresponding expression (66) into two sums: the first Zj 
¥ 3 

/Y 
‘},'f terms (ending with —xjyj), and the last 2n-2j terms (beginning 

with xjyj+1). This latter sum does not exceed ijn - X ¥ . 

(The argument for this is the same as that leading to the right- 

inequality of (68), except that we begin with xJ, not xopJ 

Hence we have 
S 
&1y 

p(x') < (xpy, = xlyl)+...+(x Lyfl{xjyj) oy, -y o @) 
AN 

7
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éfpa firi/’“/ 
Now (72) holds for all monotone sequences (XO'YO)"'_”X"yj 

of L-points for which =i Taking the infimum over the 
- 

corresponding sums (66), we obtain - 

Yn = ¥n¥ne 
e ,n,,r,m,.»-«/‘ 

p(x') < p(x) + X3Y 

which is the same as (67). 

,£@T Qj[)Finally, if x' is between X, and x, we note first that 

L///removing a point (rj,yj) L (where 0 < § < n) £ does not decrease 

she corresponding sum (66). Forilthe change in (66) is 
74 e 

i 

£y N Eja¥ g - ¥j+1¥j+1fi'f¥j-1yj 3 dfixjifijyj+l " Eg4a¥gea) e S e e . ; # 

#fwhich is > 0, by nontnegative cross-differences.and the mono@ /4‘ 
i f‘. 

¥ - 

tonicity of the sequence (xi,yfl, i=20,...,n, of L=points. 

Now, for any € > 0, we cah find a sequence of L-points 

such that the sum (66) does nét exceed p(x) + €. If (x',y') 

is not among these points, sfip ifi into the sequence so as to 

preserve monotonicity: say (x Y') = (xj,yj) after relabeling. 

By the observation just made, this insertion cannot increase 

(66), so that it remains < g(g) + €. Now separate (66) into 

two sums as above. The firét sam (which ends with the term 

-xjy .) is at least as large as p(x ). fhe second sum (which 
X' 

begins with xjyj+l) is at least as large as X, yj - xnyj. 
‘4]\', B - 

($ame argument as leads to the left inequality of (68)) 
ng 

.} Hencex& 

{ with ) m place of O | 
p(x) + € Zép(x') * XYy - Xy ¢ 
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That is, 

Sp(x) + €2 p(x') + x'y' - xy, 

Since € > 0 is arbitrary, we again obtain (67). 
Ly 7’ 

! T if It remains only to prove that P is measurable. We show 
= 

7 that p restricted to the bounded interval from Xy to x2 is 
measurable.x// Since x° is arbitrary, this implies that 

itself is measurable. e
 

—
—
—
—
 

For each m = 1,2,..., let (x mllymi)l i = 0,.-.,nm 

| (g,' monotone %equence of L-pointe, with Xng = ¥g and x 
: —'m for all m, such that ; B 

M :; 6.5, 73) 
| p(x2) +(20> (x .y i el g 2O ,Ai m0<ml ~ mlgml Jm,n lxmnfi\,mnmgmnmn 

| How let (x,,y,), i,e 0yec.,n be a monotone sequence of 
; L-points, with B, = xfl.f In terms of this sequence, we define 

the function pY on the(x be@)interval as follows. First, i 
i for each number x in the interval, choose a v(x) for which 

' (%, y(x)) € L. Then ' 
% s 

; : LY 74 

1N = - z E p'(x) (xgy, xlyl__)+---+(xj_lyj\-&xjyj)+(x-y(x)ny(x)). 
f 

E Here j is such that (x, y(x)) lies bhetween (xj,Y .) and % 

2 (x j+l'y]+1) (possibly coinciding with the latter) in the 

o 4 
; 

i 
¥ 
8 
i 
B 

§ 
i 
i 
i 
i § 

natural ordering of L=points, 

p isfig;me;surable functionj For, jy(x) = f(x ¢ V(X)) 

and xy(x) = £(x, y(x)) are ooth measurable, since f itself is 

measurable,)and y(x), ;eing monotone, is measurable. Thus P Q u 
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is measurable on the interval from xj to x3+l’ hence on the 

mdemefl& jq 

Now let Pn be the p'-functicn definedtin terms of the 

mi’ Ymi m 
sequence (x ), i=0,...,n_. We claim that, for all x 

in the interval (xo J;z xg, 

pm(x) > p(x) > p,(x) 

  

The left inequality in (74) is immediate. To prove the right 

inequality, insert the point (x, y(xi) in the sequence 

(x ’“ml' le)l l = 0,...,!1 Do and make- the corresponding change on 

the right side of (73). Since this side does not increase>(73) 

remains valid. On the right sidep;the sum of terms up to 
A 

-xy(x) is p_(x), so we have ;o 

1 (7:.5:.75) 
p (x°) +/h-; (§) + Z. (75) 

Here z is the sum of the remaining terms; it begins withg;ymj 

for some j. Now let (xéyi), i " 0,...,n,be a monotone 

sequence of L-points, with X, &.fi' We have 
s 

p(x°) < (x5y, - xlyl)+...+(xn_1y - + z, < 
n Xn¥p) * 2 

‘E waking the infimum over all such sequences, we obtain 

p(x°) < p(x) + z. 176) 
i s e 

[ (75) and (70) together yield the right inequality of (74). 

  

© But (74) implies that p(x) is the limit of Pp (x) as 

m =+ o, for all x in the interval(x }Px@L{NAs the limit of a 
J - o
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sequence of measurable functions, p itself (restricted to 

e 2‘x°)) is measurable. The-proof-i 

  

s 

oI g { This lemma implies that p)%as defined by (66) Ps a left 

half-potential for A° (see{¥§}~eem¥véo.z For if (x',y'") 

supports A°, then (x',y') € L, and (67) is then the half-+ 

    potential condition for p. 

X, Y,%respectively, and let measurable frxfx Y + reals have 

_4}; nonfnegative cross~differences. Let Aigsatisfy the weight= 

falloff condition and be feasible for;the allotment-assignment 

problem of minimizing f f dl, subject?to the constraints 

A' = o, \" = 8, Let X x Y be the rectangle of support for A%, 

Then there ex1stsfa (p,k)Swhieh is both a topological and 

measure potential for AL (wide sense). 

  

= o 

.»c“ga{f’;;oofz Any topological potentialiis a measure potential here, 

hence we need only construct the former. Construct L, the 

line of support for A2, and then construct p:X + reals 

J£i§> according to (66). Now define the function k:Y + reals by 

k(y) = i&f{p(x) + f(x,y)}. ~+9§i 
; l‘mna 3,, h ; "hlrfl)’ 

the infimum taken over all x ¢ x.‘ k is indeed ' 

i 

for, by (67), the infimum is attained at any x such that 

(x,y) € L, and such an x exists for each y. 
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It follows at once from (77) that,f 

?”f, f (£.5,7%) 
| Y k(y) - p(x) < £(x,y) {78} 
el £ 

5 for all x€ X, y € Y. Furthermore, (78) is satisfied with 

g equality if (x,y) supports A2, for in this case (x,y) € L, 

§ and the infimum of (77) is attained at this x. 5 

f Next we show that k is measurable. For each y g Y, (E) 

% choose an x(y) such that (x(y), y) ; L. Then 

(79) k(y) = p(xé(y)) + £(x(y), ¥) o 

éf(y) is fihmonotone function, hence measurable, £ and p are 

also measureble, and (79) then shows that k is measurable. 

Wt 

The properties offp and k, other than measurability, are i 
unspecified. 

Thus the pair (p,k3 is a topological potential for A2 

However, if one makes further assumptions about 

f one can say more. 

  

?E‘f%Thecrem' Assume the premises of the preceding theorem, and 

construct the potential (p,k) according to its proof. Thens' \ W o 

W zlflngi) If £ is bounded, p and k are bounded. 

(ll)/ Consider £ as a family of functions f(o,y) X + reals 

s [ indexed by vy € Y. If these functions are all strictly 
¥ ~ (increasing, decreasing), then p is strictly 

\\fdecreasing, increasing), respectively. 

s
 
\
%
 
\
@
 

) :
} 

i oy 

T (lll)l Consider_f as a family of functions f(x,¢):Y + reals 

If these functions are all strictly 

  

e 
| indexed by x € X. 

(increasing, decreasing), them k is strictly (increasing, 
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decreasing) , respectively. 
N 

iu(iv) If the functions f(-,y), y G Y, are all concave, then P 

fis convex, if the functions f(x,-), X € X, are all concave, 

xrnn tncn k is concave. 

continuous, then p is lower semi<continuous; if the functions 

f(x,*), x € X, are all upper semi=continuous, then k is upper 

semifcontinuous. 

. 
¢ 

%u(vl) ‘If the family infflii) is equicontinuous at xfifie X, then 

p is continuous at nzi if the family in (111) is equicontinuous 

at y)"e Y, then k is continuous at yy? 

    

T (vii) If the family :m ((ii), (iii)) is uniformly equif 
Hrmngsn 

\ continuous, then (p,g) is uniformly continuous, respectively. 
v 

  

=T} Broof: (i) Boundedness of p follows from (62),"and boundedness 

o cf k from that of p'and $. 

f:;g;; fiiwnfr For 
qi} ll Let £(-,y) be strictly increasing f£gr all Y € ¥, and let 

CEah e Xlatxszi x < x'. Choosing y' ¢ Y so that (x',y') € L, [V U4 \ 3 1/ ¥ we obtain from (67)% Y 
i __"%fir 

NG 

) 
Ny p(x) - p(x ) > £(x',y') - f(x,y y» 0, s 

é : - 80 p is strictly dedreasing?liIf f(*,y) is strictly decreasing, 

ally € ¥, let x > x', The same argument yields p(x) > p(x') 

again, so p is strictly increasing.
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‘fi%v‘iii) Since the infimum in (77) is attained at any x such that 

e “//}X.Y) € L, we have 

S 1o) 
—+£84) Al Regh = aly) 2 G0, = stk 

;#”f" L¢P 4 
LYalld for all x' ¢ X, y,y € Y such that (x',y') ¢ L. Ifflnow 

\ & f(x,+) is/strictly increasing, all x € X, choose y' > v. (80) 

then implies thatZk(y ) > k(y), so k is strictly increasing. 

If f(x,*) is strictly decreasing,[choose gt e (80) again 

yihlds k(y') > k(y), so k is strictly decreasing. 

8 (iv) For each x € %fthere is a y € Y such that (x,y) € L. 

b— 
/ Since (77} is satisfied with equality at such a point (x,v), 

we cobtain 

T.<,81) 
p(x) = suplk(y) - £(x,¥)}, 839 

the supremum takenfcver all y ¢ ¥, Neow, for fixed y, 

k(y) = £(°,y) is convex. Hence p, as the supremum of a family 

of convex functions, is convex. Similarly, from (77), k is 

i G 
the infimum of a family of concave functions, hence i itself 

concave. 

T (v) For fixed y € ¥, k(y) - £(-,y) is lower semiicontinuous. 

ifi/IKFrom (81), p isrthe supremum of a family of such functions, 

hence is itself lower semi}continuous. Similarly, from (77b 

k is the infimum}of a family of upper semijcontinuous functions, 

hence is itself upper semi-continuous.
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ér§(vi) and (vii)i Treating p, k again as the supremum, 

/ 

infimum of a certain family of functions, repeat the arguments 

alveady given in 7.5, phges swoic. W (78 

1 
line integrals along the line of support. These are defined as 

nder certain conditions, p and k can be expressed as 

follows. Let g be a bounded;measurable function whose domain 

is a subset of the plane containing the line of support, and 

let xl < xz, where Xq0 X, éqz. Then we define _ 5 ; 

2\ 30 2 \j,O _":t QN S 2N vf” }52 s\ :_;‘ © { 85‘ "U») 

gdx = | / glx,y(x))dx. 482 

Xy fxl,xz) 

On the right of (82), é(x) is any function such that 

(x, v(x)) ¢ L for all x € X. The integral is then over the 

open interval (xl, Xy I with respect to Lebesgue measure. For 

this to be a bona Eigg definition, the value of the integral 
— =3 

must not depend on the particular function y(x) chosen. That 

this is so may be segn as follows. For given x ¢ X, the set 

of numbers y such that (x,y) € L is either a singleton or an 

entire interval, the interiors of two such intervals being 

dis:oint. Since each such interval has a rational number in 

its interior, there are at most a countable number onthem. 

Hence, except for a eountable number of x—values, y(x) is 

uniquely determined.% But the Lebesgue measure of a countable 

set is zero, so that thanges in y(x) on this set do not affect 

(82)., Hence the definition is sound. This is called the 

!
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integrallofjg along the line of support with respect to Xy 

from %y tO\KZ' / 
e & 

‘*f_'- 

It is also convenient to define this in the case when 

  

Xy > X, by the rule 

o > ot 
.:'f'\t?\'” 

o G 
s ggdx - g dx. 

o The line inteéral of g with respect to y, from Yy to Yoy 

(yl <y,) is defined analogously, with g(x(y), y) replacing 

g(x, y(x)) on the right of (82). 

In the folltwing theorem recall that D f(x,y) represents 

the partial derivative of £ at the point (x,y) with respect to 

its 1+th argumeht (i = 1,2y, 

«fl ‘Theorem: Let ali the premises of the theorem above (paqe P00 ) 

  

   

g be satisfied, sand let the potential (p,k) be defined by (66) 

Let G be an open subset of the plane containing 
</ and (77). 

Then 
X X Y, and 1et £':G + reals coincide with f on X x Y. 

18 B f §x,y) exists and is continuous on G, we Lq\/e = | | 2D 
0 g ipee &1 8 ( 2.£,93) 

Plx,) - p(x;) = D, £ (x,y)dx ¢83) e
 
e
 
e
 

\ 

for all xl,%x2 € X; and 

if D f'(x,y) exists and is gontinuous on G, we hqv@ 
o (id), ‘, 

— 2 8 = 

" ! L) 92 ed (@528 i sz(x,y)dy/x (8t 
Yy 

R
 

1 !
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for all Yyir ¥y € Y. 

  

?{#, Proof: (i) Note first that the integrands D;f in (83) and (84) 

exist and coincide with Dif"}i = 1,2, respectively) To 
Lo 

t\D; prove (83), we needfidemonstrete only the special case where 
o’ f 

Xy = Ko, Xg being the speci@i number used in the definition of 

p; for then (83) follows ififgeneral by subtraction. Thus we 

must show that 20 ,£5¢ 

i x® (4,585 

-p (x2) = § le (x ,y)'\dx g '(-'-8-5-)x 

*o 4 
for all x° ¢ X. | 

T
S
P
 

S
R
S
 

T
 

A 

Takeynumbers Yoo 9!, such that (xo,yo) € L and 

wkm Ell 2 { Yo), and (%p,¥°) «s . 
szo . having the points (xo,y )—va~,y corners. By 

assumption, D;f' is cqntifikeus on F; hence it is in—faet 

/ (xfl,y°) e L,\and consider the c}osed, bounded rectangle F 

bounded and uniformly'centinuous on F, Boundedness insures 

that the integral (85) is well-defined. By uniform continuity, 

for all m = 1,2,... there is a § > 0 such that, if |y' - Vol   < 6m’ then 
¢ 2 . f ¢ & € 3 

£ &’é & Sr&€- 

lle(le') = le(x'Y")l 5./%/: 486) 

A
 

S 
T
R
 

TS 

for all x between Xq and x2, all y', y" betweeng0 and_zl. 

Now take a sequence of points along the line of support 

% from (xo,yoflleo (x ,v,) = (x&,y?)fikeuch that lyi-l - yil % de 

for i =1,...,n. Then:lfor each 1 = 1,...,n,   

S
R
S
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30 (LS &7 o = 
&\ J 3%-1 ; Xjel s \%i? i 

Dy £ (x,y;)dx - Dy f(x,y)dx| < & |x; - %30 
1 ™ b 

! from (8s6), since, for each x between X1 and(xi, the y(x) 

[ such that (x,y(x)) € L differs from Yy by ‘less than Sm' Now 
SN ; L Xoo] £ e (RAT o e 4..27) 
Y | D Bx/yy)@x = £(%y_1,¥5) 7 £024053)n (87 

x : I\ A 
ot 
?}515 ZThe right of (87) is a typical pair of texms in the sumgetion 

I\ 
| (66) for the sequence (xi, yi}, i=20,...,n, It follows that 

the sum (66) differs from the line integral 

; %0 (9.5.8%) 
gt 1% i D, £ (x,y)dx {38) 
! :{-»/.__/ P‘l‘ / xz /\ 

| a" MOSf v! 
? by %Jx° - xoy} if the differences between successive 

y;'s are all less than 6 . 

% Now take a sequence, the meth member of which is itself 

| a sequence of points along L whose corresponding sum (66) is 

within/%/of p(x2). ;Add to this m+th sequencef if necessary, 

sufficient extra pdints 80 that successive yi’s differ by less 

than § . These additions do not increase (66), so that it 

remains within/%’l-/?f p(x2); it is also within»firfxfl - x0V§5'of (88) . 

Letting m + =, we conclude that (88) equals p(x2). This is the 

same as (85), which implies (83). ;XJ 

cfl ’g(ii) To prove Kfléi’we need yet another expression for k, one 

similar to (66). Specifically, we now show that I



.')«b 

Z)&\V 

LS 

866 

k(y2) = i&f[‘xn-lyn %‘n-léfn-l’*' °°*§?51¥2\'E‘1Y1’}*k‘01’1] ' ua AR * ; AT AN 

for all y2 € Y kay" abbreviates;f(x,y)). Here the infimum is 

to be taken over all monotone sequences of 901nts, (xi,yi), 

i=20,...,n, along the line of support such that Yy ™ y_. (n 

can be any positive integer). 5 

To prove (89), note that ‘the bracketed expression in—(89) 

is simply z + x nYn’ Zyfie;e z is the sum (66). Since k(y2) = 

P(X)) +xy <z+x Yo thiéZ?roves (89) with the sign "<" 

substituted for ™=%, To prove the opposite inequality, choose 

a number x° for which (x-,y“) € L, =and then a sequence of 

L-points such that (66) comes within € of p(x?®): 

f ; (%S 9) 
p(x2) + ¢ > (%7 = x1?1)+...+(xn_lyn -xv). (99 

Here X, = X2, We may also~§ssume that ¥ 2: foxr if not, 

insert the point (x°,y°) in the sequence. This does not 

disturb the validity of (90) 2put does make (xn l Vo = Bal ) =0, 

since -l = X, = x2, Hence Wezgan keep or delete the 1ast 

parenthetical term in (90),§allow1ng us to make -x°y° the last 

. term. Adding x°y° to both éides,;and letting € + 0, we obtain 

(89) with the opposite ingquallty. This proves (89), 

Nofi%choose a number Yo such that (xo,yo) € L. Note that 

k(yy) =7x0yo, since p(x,)) = 9. Hence 

:k(y ) - k(yo) = inf[(x ¥ \};n_lyn_l)h..+(x0y1§~{coy0)]
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| ) & 

ét this point we repeatnche argument of the first half of this 

proof, interchanging thefélee of X and y, to conclude that 

g 
k(y2) - k(yo) = § D, £ (x,y)dy. 

Yo 

Letting y: = Yz' and theg ye = yl,band subtracting, we obtain 

(84).  LH© : | 

¥ Note,yhyethe~wey, that in (83) Xy is on top, while in 

(84) Yo is on top. Fdr theZprdhuct function £(x,y) = xy, we 

  
have D f(x,z) = vy, 2i(x,y) = x,Leo that the linezictegrals 

(83), (84) take on a%,especially simple form in this case. 

ieeefla~now retu%n to the problem of showing that weight— 

falloff measures aregoptimal for allotment-assignment. 

c?éfi} Theorem: Let (S,Es,ag‘and (Q.Equ) be bounded measure spaces, 

  

let h:S + reals and?w:Q + reals be measurable, and let v2 be a 

measure on (8 x Q, gs 
1 

g x I ), with marginals o and 8, 

\ satisfying the (meaeurable) wexght—falloff condition (with 
S 

,ijDE , respect to h, w). Let bounded measurable f:reals® + reals have 

ot l nofiEnegative cross-differences. 

Then v is best;for the allotment-assignment problem of 

2 minimizing 

£(h(s), wig))v(ds,dq) 49 
\«L%’ I 

sxQ | 
) 

\ over measures v with marginals o and 8. 
% ; 

i 

/ 
W
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.,'\’ 

¥é~j“Proof. Let A° be the measure on the 

A
V
 

—
 

plane induced from v2 by 

the mapping (s,q) =+ (h(s), w(g)). Since v satisfies 

measurable weight-falloff, so does A2. Let X X Y be the 

rectangle of support for A°., If X x Y = @, then v& = 0, so 

o =B = 0 and the theorem is trivial. We may, therefore, 

assume that X x Y is not empty. ILet §; = {s|h(s) ¢ X} and 

Q; = {g|w(a) € Y}. The complement of X x Y on the plane has 
: 

A\2-measure |zero; hence ve((S x Q)\ (S, 
G 

X Q1)) = 0, a(8\s;) = 0, 

and B8(Q\Q,) = 0. 

Now consider the modified allctment-assignment problem in 

which o and h are restricted to §i, B and w are restricted to 

Ql' feasible measures v have universe set S X Ql' and the 

integral (91) is over S, x Ql' Any measure feasible for the 

original problem has the form v ® 0, where v is feasible for JMAL}T 

the modified problem, and 0 is the zero measure odi}-s X Q)\ 

(8, x Ql)f b}This establishes a l-1 correspondence between the 

feasible solutions to tbese two problems, and the values of 

the objective functioqf(Ql) for corresponding solutions are 

equal. Hence we needfiprove only that the restriction of v® 

to §, x Q; is bestvfcr the modified problem, 

New let oy, Bi, h,, w,,and vy denote the.appropriate 

» Also restrictions of these functions for the modified problem. 

let £,, A{ be the restrictions of £ and A° to X x Y. Since Ay 1' 

satisfies weight-falloff and £, has nonfnegative cross= 

differences,fiehexe;eiiets~a measurefpotential, (p,k){jfor AL, 
e 

\
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; 9V | 3613 

; Q& Hencek}pohl, k°w1£ is a measure?iotential for vi, since vf 
3 i 

induces ki. ' 

‘fl is/ also |bounded, eogthat p and k, and therefore p°h1 
= 

and k°w1 are]boun ed, It follcws that the integrals 

  

    " are willidefined end finite. Hence (pohl ,k.ewl) is a measure} 

potential for|v} in the narrow sense.lpThis implies that v§- 

is best for the modified allotmentgaesignment problem, and so 

ve is best for the originel. fk¥f}£fi' 

d”“‘_“__;i——ezzg_ 

\  This strengthens a previous result tpage— ). Finally, 

  
ifi we conclude with a theorem on the existence of optimal solutions. 

%flf\&’rheorem: Let (S,Zj,0) an:d (Q,Z,,8) be measure spaces with 

a(8) = B(Q) < =, Let Z and Zq be the Borel fields of 

topologies T and Tqfikrespectively, these being topologically 

complete and separable. ILet h:8-+ reals and w:Q -+ reals be P s > 

fil>} semi-/contlnuous,,andmf.reals2 + reals bounded measurable with 

’1ij nonrnegative cross-differences. 

Then thegé{ékféfie(a best solution|to the allotment- 
i \ — 

assignment problem of minimizing (91) over measures v with 

marginals ¢ and B. 

;vwfiflfiflqlf;:;0f3 

ng v2 with marginals o and p which satisfies measurable weight=" 

falloff. By the theorem above, ve is best. Wy 

\
 Byla preceding theorem (page—~—"), thete'egieée a measure 

= e
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\\w128.6. Applications of Allotment-Assignment 

The preceding section has been written at a rather abstract 

level, and the hurried reader may have trouble interpreting the 

Lold bace 

Q 
J 

F 
/ 

/ 

. The allotment measure B over (Q,E ) is also characterized as 

results for the allotment-assignment problem in*terms of a 

concrete Thiinen system. We shall now give several illustra- 

tions, and show in-fact that the allotment~essignment problem 

has applications wellybeyond the range of models contemplated 

in sections @*& to B4 

Let»as begin with the original Thiinen model. Here Space 

is a circular disc of finite radius r, its center being the 

nucleus. (S,%,a) is ordinary two-dimensional Lebesgue measure 

on theuglane, restricted to S;‘so that the area of the entire 

system, a(S), is wrz. The ideal distance of location s, h(s), 

is simply the ordinary Euclidean distance of s from the nucleus, 

The set of land uses @, is finite — . say {ql,...,q }. It is 

natural in this case to 1et Eq be the class of all subsets of 

Q. The ideal weight function.y is now simply an n-tuple, 

(wl,...,wn), wy being the weight of land use Qv i‘e_l,...,n. 

We shall- assume to begin with that all o%f. these wiis are e 

positive and dietinct, and we may suppose that land uses are 

g’ 

numbered in order of decreasing weight: ) 

N > g ok > 0. 
w1 Ya wn 

e
 - 

=N
 

DA 

an n-tuple (Bl,...,Bn), Bi being the allotbent of the singleton 

set {qi}. We assume that iz 

.
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7 (5:61) 
B(g) = Bl+...+8n = ngz = a(S). ; (D 

  

That is, the acreage allotted to all activities together just 

uses up the area of the system.A (1) is a necessary condition 

for the existence of a feasible solution to the allotment~< 

assignment problem with marginals o, 8. | 

Now consider assignments v on (S x Q,’Zs X Zq). Geometri;, 

   

   

cally, S x Q consists of n replicas of the circular disc S, one 

¢ =f x{zl. 

thk VG‘ 

Mq7 udcn‘f, 

sy | 

      

  

for each dye Label these replicas sl,...,s . /v is then the 

direct sum of n measureq,\vl,...,vn, v being over. S .9 v is, 

  

     in fact, the areal distiibutionycf land use q; over Space. 

  

For feasibility one must have . 

Vi(si) = Bi' 2) 

i=1,...,n, and 

) Aot v (F) = a(F). (3) 
f{f«r«':‘& 

for all F ¢ Es. (2) states that the acreage occupied by each 

land use meets its allotment, while (3) states that the area 

of any region iekjust exhausted by its assignment to the various 

land uses. ;ihe sets F on the left of (3) are replicas of 

the region F g 8, and should, strictly speaking, be distinZ 

guished b§ subscripts i)% 

~sek;9mong these feasible v's, consider one very special 

assignmentz the Thiinen assignment, v2., This is characterized 
N\ 

by .an n-tuple (rl,...,r ), where
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fl?i = Sl dy0at Bi'w_ 1y “(4% 

i=1,...,n. v{ is then defined to be two~dimenaional 

Lebesgue measure truncated to the circular ring 

{s|r;_, 2 h(s) g'rg}, _ —5) 

i=1,0e0/n. (Pori=1, r,= 0). flhe feasibility of v2 is 

easily checked; Eeruexemple the area of region (5) is 

flri - wri 5 " Bi, which establishe» (2). 

It is customary to represent v® by collapsing the replicas 

Sl,...,s onto the disc S.w’v{,...,v~ are mutually singular, 

and one can say, roughly, that land use q4 occupies the ring- 

shaped region (5). This gives the familiar picture of Thiinen 

systems with concentric rings of land uses. 

The Thunen assignment ve satisfies the measurable weight= 

falloff condition. Tnis is almost obvious, since weights fall 

as one moves outwardrfrom ring to ring. To prove it, let 

31'.E2 be two sets;Bf positive ve®-measure, with El southwest 

of Ey. This implies that - 

V‘S(El n s >0, v2(E, NSy >0 

for some i, 3 with i > j (since wy < wj). Hence there must be 

points (sl,ql) € El' ‘5 %j) € E2' such that ’ (S-,_)ZJ/)/ 

(Lot ) 

h(s)) 215 5 214 > h(s,). +6) 

(6) contradicts the assumption that E, is southwest of E,, 

? and the proof is complete.
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/ f Furthermore, v is the only feasible assignment satisfying 

the measurable weight=falloff condition. This follows from 

  

the unigueness theorem (page- ) , whose premises are 

satisfied: Bq is the sééma-field inversely induced by w from 

the real Borel field, and 

4 ($.6.7) 
a{s|h(s) = x} = 0 F H 
oKt 

for all real 5..;2;) states that the area of thefset of loca- 

tions exactly at distance x from the nucleus_ie zero. 

It follows (gagef-f-) that the Thiinen aesignment is the 

unique feasible assignmentlgkéeh minimizeefitotal transportation 

costs, given by 

7 (769 

I h(s)w (q)iv (ds,dq). (8) 

Sxq : f 

(Exercise: evaluate (8) expliciti& in terms of Bl,...,Bn,:for 
= vo) : ; 

Furthermore, we can calculate the potentialfh (Pek) o 

explicitly for the Thiinen aeSignment. (8) is the sPecial case 

of the allotment-assignment;problem for which f£(x,y) is the 

product function xy. This is continuously differentiable, 
J:J ’;( 

hence we may use the line—integral formulas, éfi%% and 48%9 of 

—saetion-5, to calculate p and k. 

£€§£5>’”Ene line of suppcrt, L, along which the integrals are to 

be taken, isA“staircase“ polygon in the rectangle of support 

X x !@\ going horiZOntally from (O,Wl) to (rl,wl), then down
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vertically to (rl,wz), then over to (rz,wz), etc,, ending at 
T 

(r oy ) }” Applying (83} c£~sectien 5, we find that p 5-@hosegl_ 

domain is X = {xlo £x < r} ae is a decreasingj convex, 

polygonal function, whose slope is -w; on the segment from 

r;_; to ri\}i = 1,...,m); p is unique up to an additive cons 

stant.?? | ‘fi 

The composition peh determines a real-valued function on 

Space;=8; which is a left half-potential for’the allotment= 

assignment problem. This may be interpreted as land value)u\x 

or, more precisely, as land-value densité, taken per unit of 

ideal area ("dollars per acre"). 'Digferences in land values 

at different sites reflect differences in locational advantages. 

In particular, the decline in land;value density at a rate of 

W, per unit distance as one moy@e outward from the nucleus 

matches exactly the increasefin transport cost incurred per 

unit ideal distance per unit ideal area. 

ApplyingQLSA) of sectionafi, we find that k S~-<whuse domain 

is ¥ = {ylw <Yy Sw }9 + is an 1ncreasing, concave, polygonal 

function, whcfe slcpe is r; on the segment from Viel to wi 4 
- ’ 2 

\(i = 1,000 A, Actually, only the valuves of k at the points 

Wyseeo,W, are relevant, since the composite function kew,zl n 

which determines a right half-potential onhgl,takes on only 

these values. The interpretation of k is also less clear 

than thatfof P, since k corresponds to the "artificial" 

allotment constraint, while p corresponds to the "natural”
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areal capacity constraint. k(w.) may be thought of as the 

gross cost density associated with land use d;+ the sum of 

transport cost and land value per unit area;)ffie have spelled‘—_qi~ 

out the application of the allotment~assignment analysis to 

this simple Thiinen model in considerable éetail. For the 

models whach follow weeeae%i~be briefer, leaving the task of 

filling in the details of the argument to the reader, 

Suppose the preceding Thiinen system is modified by having 

a total allotment whieh is less than the total areal capacity 

(change the middle equality sign of (l) to “<“). This is no 

longer in allotment-assignment form, but can be brought into 

this form by the device of adding an artificial "vacancy" land 

use, g .4, to the setigé fén+l has an ideal weight, LAY of 

zero,fland is given an allotmegt, Bn+l' which just exhausts: 

the surplus areal capacity. ;fi 

The above analysis nowgapplies verbatim to this modified 

systen, and we find that qn+l occupies the outermost ring of 

the system, 51n¢e it lS the lightest land use. In other words, 

the occupied land is crowded in as closely as possible to the 

nucleus, the surplusfracant land being on the outskirts. The 

only other difference is that land-value density, poh, is 

constant in the vacant ring beyond radius r, (since the slope 

of p is “Wo41 = 0 there). 

Concerning the meaning of "vacancy", it should be stressed 

that it refers to permanent vacancyfii-thatwis, over the entire
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time horizon of the system. Suppose for example, thatfikTimei 

is a certain 100-year interval, and that a given site is uns 

occupied for 99 yearsfiLbut that—it-does trade with the nucleus 

in the final year. The land use assigned to this site %5«925 

the vacancy land use. —Fhe-reason is that ideal weight involves 

an integration over all Time{'and will therefore be poeitive 

in this case, whereas it must be zero for ”vacancyfl 

Going a step further, onza can allow some (or all) of the 

weights w; to be negative. Formally this creates no diffis 

culties, and the unique minimizer of (8) is again the Thiinen 

assignment: Concentric rings are occupied by land uses in 

order of decreasing weight, the outermost zone being occupied 

by the land use whose weight is moStfnegative, The half- 

potential pqfl is still convex but;no longer decreasing; rather, 

it decreases at distances occupied by land uses of positive 

weight and‘increases at distances occupied by land uses of 

negativeefieight. : 

How does one intergret negative weights? One possibility 

is to think of thesefiland uses as being repelled from the 

nucleus“&Qeay b; pollution, crime)or other aspects of the 

urban eyndromezeirather than as being attracted by transportal 

tion linkage.l:The land use of highest negative weight is the 

one most repelled, and it will naturally settle in the outerS 

most ring," 

?fYTnere is also a purely formal use for negative weights. 

Suppose the problem given is to maximize, rather than minimize,
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-(8). This is equivalent to negating the weights and mininizing, 

which is again in allotment-assignment form. invfaet,fit 

follows that the solution to maximizing (8) is the anti—Thfinen 

assignment, obtained by reversmng ‘the distanceeordering of 

land uses: the lightest one in the closest ring, the heaviest 

in the outermost ring, etc.) 

We now drop the assumption that'Spacevis'a circular disc, 

and instead let it be any bounded measurable subset of the 
‘NN( ,!.. 

plane. c is still ewo-dimensional Lebesgue measure restricted 

;fi S, end we still assume that BQQ) = c(S)3\ h(s) is still the 

Euclidean distance from the nucleus to location s. 

With these weaker assumpticns, it-stillturns-out-that 

there is‘; unique feasible assignment satisfying the measurable 

weight-falloff condition. This assignment has virtually the 

same form as the Thiinen ageignment vi. ~§zn;1§ land use 1 

will occupy part of a ring—shaped zone (centered on the 

nucleus) of the formfiig), the q; ranging outward in order of 

decreasing weight. f%he novelty is that not all the points of 

the plane satisfying (5) are available, but only those which 

-are in S. %(4) will also be false, in general, Instead)we have 

f'f‘ / Z 55 : "!‘ / 
{ O 

/ als n {slh(s) < £}l = By +ouut By, i) 

i= l,...nfi. Here r,, the distance of the borderline between 

the landfuse zones for ay and Aipy e will generally be larger 

than tnégri of (4)s One must go further out to get the same 

areaffisince pieces of the plane are missing.
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The existence of a weight-falloff measure follows from 

n 
s 

the existence of Tireeerk satisfving (%L 4and this in turn can 

be proved using the argument of (+gi.4494 Ofiwfififlfit@flws -Also 

the uniqueness theorem still applies. This measure still 

minimizes (8). The potential (p,k) is the sgée as before. 1In 

short, removing an arbitrary piece of land;%rom the system 

makes no qualitative difference in the solution. 

The foregoing generalization applies to cases where a 

portion of the region is unavailable for occupancy. For 

example, this may be due to bodies of water, poor drainage, 

irregular terrain, or other natural adversitiesfgfi/ Or, some 

land may be-prefemptied for public use or lie outside the legal 

jurisdiction of thesystem.; For another application, suppose 

the system is subject to a7soning ordinance. This invalidates 

the allotment-assignment;formulation, because some land uses 

can be assigned to somé zones but not%others. However, if we 

confine attention tohany one zonesthen the formulation becomes 

revalidated, the set of land uses Q being replaced bytg:,_the 

subset of uses allowed in'that particular zone, Wevmay there- 

fore expect that the Thiinen ring pattern will be present'within 

any particular zone, but that land uses, and the radii of the 

borderline between them, will vary from zone to zone. 

fi§é¥e§ now drop the assumption that o is two-dimensional 

Lebesguegneasure. Instead, we let it be any measure such that 

a(s) =/8(g) is finite, where S is still a bounded subset of 

the planeg\ (#his could represent differential "fertility" of
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land, or the fact that land in some places has been augmented 

by the building of multiple-stof?& structures).  It-turns—out 

—tirat—there still ex1st3 a feaSible assignment satisfying the 
- e 

measurable weight-falloff condition, and thnt it has virtually 

the same Thiinen form as above. The only‘novelty that can arise 

would be if # 

als|h(s) = :_si} >0fi 10) 

for some i = 1,...,n~1, r, being the radius of the borderline 

between land uses qi and g, i+1° ”?or suppose x acres of this 

borderline are to be assigned to activity q + Where x is 

positive but less than (10 ) f Then, provided o on {s|h(s) = ri} 

is not simply*concentrated, there will be more than one way to 

apportion the land of (103 between d; and qi+l without 

violating weightwfalloff. Thus uniquenessg_;z.break down with 

this more general areal capacity measure o4z Any of these 

weight-~falloff measures is best for the allotment-assignment 

problem. The potential (p,k) is unchanged. 

   
fi}i%'. ' A slight modification of the procedure outlined above 

; enables us to censtruct one of these Thiinen assignments. There 

may not exist an x satisfying (9). Instead, we let ri be the 

smallest number for which the right side of (2) does not 

exceed the left. If (10) obtains for Jfihé r., assign to q 

that proportion of o on the borderline which just fills out its 

allotment, and the rest to qi+l' (If the allotment of 9441 is 

also exhausted, assign the rest to q +27 etc. )~
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W.L e 
Let-us continue to generalize.—We now abandon the 

assumption that h(s) is the Euclidean distance from s to the 

nucleus, Instead we let it be any bounded measurable function 

on 8.  h(s)), of course, is interpreted as ideal distance, and 

our present generalization amounts to breaking the identifica- 

tion between geographical and economic distance. Thus we can 

incorporate irregularities of terrain, ef the transportation 

grid, tariffs not proportional to distance, zonal tariffs, etc. 

Formally this generalization makes}little difference,. 

because the theory of.the allotment-assignment problem makes no 

assumption that h(s) has any relation to a metric on S. We 

cannot assume that there is a unique feasible weight-falloff 

measure, because the (10) phenomenon invalidates the uniqueness 

theorem. We can still assert the existence of such a measure, 

- constructing it by the procedure outlined above. This measure 

still minimizes (8), and tne potential (p,k) retains its pro- 

perties. ’4fl 

But despite all tnis formal similarity, the geographical 

appearance of the resulting Thilnen system can be radically 

altered. Thewpeinsmis that the land-use zones lie between 

contours of h(s), as in (5). If h(s) is Euclidean distance from 

the nucleus, tnese contours are concentric circles, and the 

familiar pattern emerges, With general h(s), however, the 

zones can necome quite'irregular. 

Let_‘_;{;slh(s) = ri} be the "borderline" between zones 

occupied by7land uses q; and A441° Then Qyreee sy OCCUPY the
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3w . 
open disc {s|h(s) < ;i}.szhe borderline itself, if it has 

positive area, may befloccupied by dg 0 or 94410 ©OF shared by 

them, etc.) The geographical shapes of the Thfinen:“rings“ can 

then be gauged by examining the shapes of these open discs. 

This returns us to the discussion of sectionfi3. For the city- 

block metric ;-generated perhaps by a rectangular road grid}—“ 

the open discs will be concentric diamonds;, and the "rings” 

will be the regions between two diamonds at ideal distances 

Ty and ri'(i = l,...,n). For the distance function deterS 

mined by a system of high-speed radial arteries converging on 

the nucleus, the open discs will/yave an amoeboid shape, 

projecting outward along the arfieries. We would then expect 

high-intensity land uses to isprawl“ along the arteries, while 

sites away from the arteriesi at similar geographical distances 

from the nucleus, would ha%e lower-intensity, more "rural"uses. 

Limited~access transportation gsystems lead to ideal 

distances with disconnected open discs, and a corresponding 

fragmentation of thefThfinen rings. The resulting geographical 

pattern is intrig;ing. Consider, for example, a plane~eh£eh is 

uniform except:for a high-speed commuter railway connecting the 

nucleus with afseries of isolated Stops, S8,/ S,s S3e.. in order 

of increasing distance. Away from the railwaygland uses will 

be arranged in concentric circulgr rings in order of decreasing 

land~use7&eight,rql, Tgrese o Suppose the first stop, Sy 

satisfiesi Iy < n(sl) < Xig¢ so?tnat points off the railway at 

thatfdistance are ‘in the zone of 930 (sl itself is geographically
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far beyond that zone, but the railway shrinks the economic 

distance). The weight-falloff condition then calls:for a 

secondary sequence of concentric rings, centered on_gl, and 

beginning with land use qlo rather than qifQ The second stpp, 

Sy will be farther out, say at ideal distance between Ti6 and 

Ty9e Then another secondary sequence will spring up around S, 

starting Q370 Dygeecer and so on for 83 54,... . 

The resulting pattern is a simple flurban hierarchy"” 

organized in the form of a “metropolitan region”n The "central" 

city is—the one that grows up about gfié nucleus. "Satellite" 

cities grow up about the points of access to the transportation 

network. 'These cities lack,_howeger, the full range of land 

usesf The heaviest, most intensive, most "urban" uses are 

missing. The further out the;s;tellite is, the more uses will 

be missing. The incidence matrix, indicating which land uses 

are present in which citiesfiis of the "central place" type, 

in thatflxif a given 1and£fise occurs in a givfin city, all lower 

type land uses are alsquresent (in this case, "lower" means 

“lighter“). _ . 

could make the transportation system itself hierarchical, 

which would lead to the satellite cities themselves spawning 

satellites, etc; The central place pattern would still obtain. 

The interesting point is that this rather complicated scheme 

follows frem simple and plausible assumptions concerning the 

transportation system, coupled with the weight-falloff condition, 

which itself follows from the minimization of transport costs,C&l
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B 
To round off the discussion of%}non—Euclideas; ideal 

distances, it should be mentioned that the "borderlines“ 

{s|n(s) = ri} can themselves be broad geographic zones. That 

is, changes in geographic distance lnad to no change in trans- 

port cost over a certain range. This can occur in a 

thorougéggoing regime of freight absorption, or uniform charges 

over broad zones. This is quite common,in postal and telephone 

rates, utility charges, retail deliveries, etec.. Conversely, 

ideal distance can jump discontinuously, as at a tolling point 

or pofitical border. 

In all this, the pattern ofiland-value densities depends 

on ideal distanceh and will tnerefore behave irregularly with 

respect to geographical distances. Thus land values will reach 

local peaks at points of access to the transportation system 

(highway interchanges, railway stops, etc.), will have ridges 

along radial arteries,-and-so-en. 

We have devotedzalmost all our attention so far to modifi- 

cations in Space;;ssfand its associates, a and\n. Let us now 

turn tovg: This nas been assumed finite with unequal weights,. 

Wyreoo oWy with I being all subsets of Qe 
q 

- Let wus now suppose that two different land uses have the 

same weight®. say Wy = v, Then unigqueness of a feasible 

weight—falloff assignment can, in general,;no longer be 

guaranteedgg Either g, or g, may occupy the innermost Thiinen 

ring; more generally, any mixture of these over the innermost
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two zones wnich satisfies their allotments will do. (CorZ 

respondingly, -of course, some premise of the uniqueness theorem 

must fail. In this case it is the premise that 2 is the 

sQ;ma field inversely induced by w* iséneesnfor“example1 the 

singleton {gl} is not the inverse image of any real Borel set.) 

Let us now assume thatm is infinite.¢ This encompasses 

the case, for example, where continuous Variation in the 

intensity of a land use is possible.. f(Recall that intensity 

variations in "one" land use are to oe formally considered as 

different land usesb@ We have an allotment measure B on (Q, ) 

and a measurable weight function wig * reals, and we shail 

assume as usual that B(g) = ags) < », We .shall also assume 

that different land uses have different weights. It is then 

natural to assume that 2 is the segma-field inversely induced 

by w from the real Borel~field Also assume that {w(q)|q € Q} 

is a real Borel set. Einallvf——tommake~things—simple,u-assume 

that s, Iys o .and h take the classical form, h(s) being 

Euclidean distance tg the nucleus(‘which is the center of 

circular disc S) and o being two-dimensional Lebesgue measure. 

Underx thesefconditions, mhore‘existsfiexactly one feasible 

assignment'u?zsatisfying the measurable weight-falloff condic 
A/ 

tion. Uniqueness follows at once from the uniqueness theorem. 
rd 

To prove existence epage l, we construct topologies, Ts' 
/ — 

Tq, on S and Q, respectively, making S andba Borel subsets of < A a | 

separable’and topologically complete spaces, with respective 

Borel fields.zs and Zq, and making h and w semiicontinuous.
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For T we choose the usual topology on the plane, restricted 

to S. For Té we take all sets of the form {g|w(q) ¢ E}, E 

ranging over all’_p__ subsets of the real line with its usual 

topology. This collection is a topology over Q, the topology 

inversely induced by w. One verifies that all the stated 

conditions are satisfied. : 

This unique Thiinen assignment is,iintuitively,ga limiting 

case of the classical pattern. We still Qaie circular 

symmetry of land-use assignments, but dofnot necessarily have 

broad rings devoted to a single land nse. Instead, there may 

be continuous variation of land uses ‘as one moves outward = 

always going from heavier to lighter uses, of course. The 

potential (p,k) nay still be constructed by the line-integral 

formulas éss) and ése);ef seetion 5.,Ap is still convex (and 

decreasing, if w is positive); k is still concave and increasing. 

If p is differentiable at«any given distance %, its slope' is 

given by =-w, where w isfthe weight of the land use located "at" 

distance x. The only;novelty is that p and k need not have 

polygonal graphs, but may have continuously turning tangents 

over certain ranges. 

As a final generalization, we can relax the factorabilitz 

  

[\* assumption (transport cost = ideal weight iénes ideal distance), 

 which underlies the objective function (8). Recall that the 

allotment-assignment problem, in its general form, calls for 

the minimization of
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where £ has positive (or nonfnegative) cross-differences.f;kdi X 

is merely the special case in which f(x,y) == xy.jfiNow the 

measurable weight-falloff condition characterises the optimal 

solutions to (ll)fi\in general. Hence all thefgualitative 

features of the Thiinen system carry over the more general 

situation of minimizing (11). The one neVelty is that the 

potential (p,k) may lose its convexityaor concavity. 

This concludes our discussion ofi the application of the 

allotment-assignment problem to the classical Thiinen model and 

its generalizations. The variety of situations covered is 

already considerable. We now generalize still further, depart=- 

ing more or less radically from the classical interpretation. 

o . 

AllocationZifZ;ffortggs a Thilnen Problem 

Me have taken up in this book two broad types of c;timi- 

zation problems: the allocation-of—effort problem of chapter 5 

and the transportation problem of ghapter 7 (of which the 
f 

allotment-aSSignment problem is a special case), These problems 

are gquite diffefent in construction; but there is one kind of 

situation to which they both apply, each in its own way. 

Consider the following search problem., One is prospec— 

ting an unexplored region for minerals and one—is—to distributc 7’ 
; 

searchimg effort over Space so as to maximize expected return. 
# 
¥ 

% 
g 

J 
L ¥ 

7 

7ok



887 

There—is a single location which is the\dbase of operationsf - 

say,\the railhead‘wnieh connects one with civilisation. Now, 

even if the prospect of finding minerals is uniform over the 

region, it seems reasonable that énefshould search more 

intensively in the vicinity of the base than far away from it. 

For greater transport costs are incurred at distant pointsi 

fhe process of exploration itself is more costly, and so is 

the shipment of any minerals theh are:discovered. 

‘Now this search problem is of*the allocation-of-effort 

type of chapter 5. Yet the optimal solution appears to be a 

pattern - which is symmetric about the base of operations, such 

that intensity falls off with increasing distancezfrgm the 

base., This certainly mimios the Thiinen pattern. The question 

then arises& Can we assOciate an allotment-assignment problem 

witgkoriginal allocation—of-effort problem, such that their 

optimal solutions correspond in some way. This would provide 

insight into the phenomenon of the Thiinen pattern arising in 

an apparently v?sy different type of problem, 

Before going into this, let—us give a few more examples. 

Consider a garmer faced with the problem of distributing 

fertilizerfgver his fields. The farmhouse provides the "base 

of operations". If there are no geographic irregularities, the 

distributionvwkieh maximizes total return would again appear 

to conform to the Thiinen pattern, with more intensive 

fertilizer use on the nearer fields.



¢ 

888 

Again;'consider a discriminating monopolist, with a single 

factory located at:so. We suppose that consumers are uniformly 

distributed over Space, and that all have identical demand 

functions for the commodity produced at,sO.F Assume that the 
" b 

J%nopolist pays for transportation, and that he can freely vary 

delivered price from one location to another —-or, what is the 

same thing, that he can freely choose the density pattern of 

deliveries over Space, §: S » realsfig (§ is measured in units of, 

say, tons per year per acre). The profit-maximizing density 

would then appear to have the Thunen pattern, in the sense that 

- 
§ should decrease with increasing distance from So° 

As a simple generalization of this case, drop the assump€ 

tion that consumers are uniformly distributed. Then we still 

reach the same conclusion, provided §(s) is interpreted as 

the density of deliveries per person, rather than per acre. 

xf}Z non%rigflrous argument for the "intensity-falloff”Zof § goes 

as follows. Suppose there were sites, Sy Sy with Sy further 

from the factory;thanysl,rbut with §(s,) > S(sl). Then inter? 

change these defisities between one person at S5 and one person 

at s,. This leaVes gross revenue intactfikbut reduces transport 

costse\hence;the original distribution was nongpptimal. 

As a lést example, let some public-service facility — such 

as a polise or postal stationi— be 'located at so. This is to 

serve a certain hinterland and the question isp How shall the 

services be spatially distributed over this region? (Intensity 

of service oould be measured, say, b; frequency of police
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patrols or mail pickups.) With uniformly distributed popula- 

tion,#and with uniform benefits as a function;éf service 
Q ; 

intensity, it again seems reasonable that intensity of service 

should decline with distance from Sq0 to‘maximize total 

benefits net of transportation costs. 

We now proceed to the analySis.y'The allocation-of-effort 
~ 

problem is determined by a segma finite measure space, 

(S,Es,u), three measurable functions, u:sS % reals = reals, and 
\ 

b,c:S + extended reals, and twc-extended real numbers, L, and 
= 

L%, The problem is to chooseaa measurable function §:S+ reals 

to maximize ,fi 

ufs, §(s))a(ds) 2) 

subject to the constraigis 

v £ (G 6:l3) 
oY < I § da < L {13) 

& S 0 

—and A 
' g0t/ 

/ besce. ) 
Here (12) fg an indefinite integral over S, and "maximi- 

zation" is to te understood in the sense of standard oxrdering 

of pseudomeasures. (If (12) is well~defined and finite as a 

definite integral for all feasible §, this ef-eeurse reduces 

8 

to the ordinary Sizegcomparison of definite integralfl) It is 
f QU B 250 

alsoirequired that | 3 dc be finite,xeven if L, or L2 is 

infinite. (For convsnience\we have changed notation somewhat 

from that of chapter 5).)
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We now identify a special subslass of the problems (12) -, 

(14), one whicn embraces all the examples cited, and for which 

the Thiinen pattern emerges. The first special assumption is 

..... 

second special assumption is that 

u(s,x) =-£(n(s), x), = sy 

for all s € S, x real, for some measurable functions 

reafs™ h:s » reals,fif:rea!‘§/+ reals, where\f{has positive cross=" 

: differences. There are a few morekminor technical assumptions, 

but these are the two major ones.;ffetwus interpret them, 

The first states that the limits on the range of permisc 

sible densities do not vary from point to point. This is 

plausible for all of our examples. In fact it is reasonable 

to take b = 0, since negative densities are meaningless for 

them, and there-'is no pegitive minimal density‘required. 

(Exception: in the case of public services, there may be an 

institutional requirement to reach some social minimum for all 

regions or personség In this case, b > 05 but still constant) 

As for the upper 1imit ¢, there may be either no such limit 

(c = “)flu°§v5°@£ uniform aaturation level" of intensity, for 

regions or pefsons. 

As forfthe second assumption, the special form (15) is 

clearly reminiscent of the integrand in the allotment~ 

assignment problem, (11). (The minus sign is inserted because 

the ohfiective in (12) is to maximize, whereas one minimizes in e —eRANLERY 
P S i ™
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allotment—assignmenq)i set—us show that (15) is a"plausible 

form for the objective in each of our examples. jfn evaluating 

a density pattern there are two factors to consider: the 

ggggg_returniover Space-whireh aconuf’ vem tnat‘pattern,vand 

the transportation cost whieh—is incurred n& that pattern. 

In the exploration example, gross returnjwould be the expected 

payoff from mineral$ discoveries (lessfiéearching costs other 

than transportation). For the farme%f gross return is hfis” 

profit on crops grown, less'cost offifertilizer. For the mono= 

polist, it is his revenue from sales. And, for the public 

service facility, it is the social benefit from the service 

rendered. ; 

4New in all these cases the gross return at a point will 

depend only on the intenSity at that point, not on the locaZ 

tion of the point pg_ se.y This results from our uniformity 

assumptions. The gross return is represented by a measurable 

function‘g:reals + reals. As for transportation cost, let-us, 

+tobégin-with, make tfie simplest factorability assumption: 

7&ansport cost incurred at point s is the product of intensity 

at s and the distance, h(s), of s from the base of operations. 

We Ehen have 
¢ 

@l 
\ ! u(s,x) = g(x) - his)x 

| 
The critical observation to make is that (16) is of the 

form (lS)‘@fwith\f having positive cross-difference@ % regardsS 

less of wnat the function g_is. This follows at once from the
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fact that g éoes not depend on s, We may also discard the 

special transport cost assumptionfi%and assume more generally 

that transport cost is of the formifl(h(s), x),ufor some 

measurable function £, with positive cross-diff;;encee. 

Throwing in g(x) does not alter this property,Aan& (15) is 

still valid. Thus all the examples given flefieeem to be 

encompassed by our special assumptions. p y o 

We now want to translate from the }éhguage of the 

allocation-of~effort problem to the 1§fi§uege of the allotments 

assignment problem. The latter speefi; of‘§land uses®. We 

now let each possible intensity l;figl be a land use. The set 

of land usesgflg:fimay be fermally;ifientified with the real line@ 

(Actually, the interval [b,c] wgfild suffice)\| This is a 
radically stripped-down versié% of the full-blown land-use 

concept. For the latter, tfig answer to the question, "what's 

going on here?@;'would reqfiire at least the specification of 

two measures over R x 2&{ production and consumption. —Fexr_us 

‘here, it requires jus?gfihe specification of a real number, 

indicating intensityf%(éntensity of search,™sr of sales, ex 

fertilizer use, etélw The weight=function w is simply taken 

to be the ident%tf,mand ghy be ignored. 

Choice in the eilotment—assignment problem is over 

measures v on (S xy@{ Eg x Zq); in the allocation problem, 

choice is over measurabie fuections §:8 + reals. To translate 

from the latter to the former, use the formula
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V(@) = als|(s,8(s)) ¢ 6}, - lan 
for all G ¢ g qu (z is the Borel field on the real line 

\&). Here a is the measure of (12)- (13), and has the inter-~ 

pretation of acreage, ox populatlon, etc. That is, given an 

intensity distribution represented by §, (17) efiows how to 

express it as an assignment measure v. For ex;mple,’}et G 

be the rectangle E X F, and let a be areal measure.:JGffi X F) 
is the area in region E~wh§ehnie:aseigned {5 intensities 

among the numbers F, and this is just what the right side of 

(17) equals. ‘ 

To see that v defined by (17) is indeed a measure, note 

that s > (s,8(s)) is a measurggle mapping from S to S x'gv. 

(17) states that v is the measure on S x Q induced by this 

mapplng from o on S. (There is one fine point here: fihe 

solutions to the allocationfproblem are not really the 

densities 6, but the indefiieite integrals /[ 6 do they represent. 

Two densitiee, 1 and 62, represent the same indefinrre o 

integral iff they are ‘identical a—almost»everywhere. (17) & 

would hardly be satisfactory if two equivalent §'s yielded 

different v's, 3ut-&nmfieet they yield the same v, as one may 
,@ 

verify.) / 

In thefillotment—assignment problem, v is feasible iff it 

has the prescribed marglnals, o and 3. As our notation 

1ndicates, we are taking over the measure space (S,ZI ,a) of the 

alloeation-of-effort problem bodily to be the left marginal
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space of the allotment-assignment problem., We now show that 

any assignment v defined by (17) automatically satisfies the 

left;marginal allotment-assignment constraint. Ih fact, for 

any E ¢ zs.“""""\\ 
\ 

;\gb'vl (E) = \)(E X Q) = G{E), 

'\.—'-‘—v' P — i xv-(,._.__,.,...-» 

\\ from (17), so that o is the left margina; of V. We have not 

yet defined the allotment measure 8 oq,(g,zq); this will be 
v 4 en . 

o3 - later. & 

#¥< Theorem: Let (S,Zs,u) be a noé}atgfiic sigma-finite measure 

space; let h:S + reals and f-regls2 + reals be measurable, with 

\ f having positive cross-differences{ and f(y,*) being upper 

semiTcontinuous for each real yi let b, ¢, Lo, and L’ be four 
1 

extended real numbers. 

Let 62 be unsurpaséed_for the problem of minimizing 

fxw~¥i 7 

' 9 ;P; (%.6.193) 

I‘fflf(h(?')rfi(s))a(ds) 
(i:8) 

over the set of mg%surable functions 6:S =+ reals satisfving 

B 

Ysl},ie‘ : ;‘\‘, b1 G )w 

i Lo < I § da < L "('}9') 

7   \ “\the integralfin (19) being well-defined and finite), and 

: ' £ (7,6.20 

¢ bkd <@, +20) 
-(t" 

Then v , defined by (17) for § = §°2, satisfies the 

R
S
 

3
 

(meaeurable) weight-falloff condition (with respect to h and w, 

o
 
e
 

: the lapter being the identity function). 

z ! L f
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- — 

,}% Proof: The premises imply thatrtneremexéeeeian extended real 

number, Po' and a setZE € I g A such that a(E ) =0, a,nd, for 

each s ¢ S\E ¢ 62(s) minflmizes 3 
r & 7 ' 

& (¥il,i21) 
£(h(s), x) + pgx £ t21y /P.,x 

over the real numbers x in the closed intervgfi [b,cl] (page 

A
 

") Suppose first that p_ is finite, qfih let 85, 8, € S\E 3 

Using the abbreviation fij for f(h(si). ég(sj)), i=1,2, 

  

,:" 

j = 1,2, we then have & 

A
R
S
I
 

S e
 

i 

' i 
£11 + PoS2(8)) < £ + pydliey) 

e
 

—
—
—
—
 

-and . 
& 

faz + PofolBglZ fay * Roiiny)- 

These yield § 

,f : 5?~(4:4,,;3-‘ 

£11 + £55/2 £15 + £5,. 422) 

New 1t is impossible that both h(sl) < h(sz) and 
;%?‘ 5 { ‘o 

62 (sl) < 6°(sz) be true, 'for in this case (22) would violate 
" 

the positive cross-dffferences condition. Hence 

: 
( / Q /, 

h(s,) <é§(sz) implies 6°(sy) > 8°(s,). 23) > 
%z 

Now suppose thegepo 40, Minimization of (21) then meanskby 

convention) thgt X is to be as small as possible, so that 

§2(s) = b fom all s € S\E *(73) then holds automatically. 

g A similar c@nclusxon follows for po -o, We conclude that 

(23) is true for any Sys 8, € S\E . 
: ,fir 

f' 
i



896 

W2 
e et—us now go to the product space, (S x Q. ZS x Z ), 

/ Let Gl' Gz be two measurable sets, with Gl southwest of G2. 
/ Teeequ if (s;,q;) € Gy L»a 1,2, then h(sy) < h(sg), and /é§%§ 

9y < dy. (Remember that Q is the real line). Deiine two new Pon, L g 
sets, Hl, HZ,\by X 

=4, ==-9i\(Eo X;Q)'if f;  
e £’ 

> i=1,2. At least one of the sets Hl' H must own no point of 

the form (s, 6°(s)), for otherwise (23) would be violated.   
Hence, from (17), _ ;? 

V°(H ) = ml¢) -0 
T > e e 

must be true for at least one index 1= 1 /2. We also have - 

    ve (E, xQ)aa(E)=O- : 
& AN 

i G 2 At | ¢ so that % 3 

/i - § 
J" 

v:(G_) < v:(H.) o v°(E X Q) = () ZL 
\ 

-~ must be true for atL/east one index i = 1,2, Thus V° satisfies 

| =} measurable weight~fallofs. LI [ /¥ 

  

This resulé ratifies our intuition concerning the nature 

of optimal solutions to the allocation problems discussedfi 

They do indeed yield a Thiinen system when translated by the 

natural formula (17) into the proper language. The assump~ 

tions made, in addition to the two already discussed, are that 

o be noé}atomic and that £(y,+), as a function of its second 
argument alone, be upper semifcontinuous for each real y.
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We mention a few generalizations. As discussed in' 

wghfifiiéi 5 the nonfiatomicity assumption on a could be dropped,h 

at the cost of assuming f(h(s), °) to be convex for all s in 

the atomic part of S. (If a is population measureq;the atomic 

part may be thought of as the "cities"; if o is agéal measure, 

it may safely be assumed to bevnonratomic)g For éhe objective 

function of type (16), convexity of £ is the same as concavitz 

of g (= diminishing marginal returns to intensity of effort), 

which is not implausible but somewhat restricttve. Upper 

semi?continuity of £ is the same as lower semi§continuity of 

g, which is so weak as to amount to no assumpéion at all f£rom 

the practical point of view. | 

The assumption that b and c are constangs can also be 

weakened td?fhe'following@ gbr any $;, S, efs, if h(sl) < 

h(s,), then b(s,;) Z‘b(sszand c(s;) > c(sz); The preceding 

proof still goes through,b;ith some minor cemplications whose 

discussion we omit. { 

It remains for us to complete the cons{truction of the 

allotment-assignment problem to be derived : from the allocation= 

of-effort problem (18);(20). We make the additional assumption 

at this point that a is finite%‘and definegthe allotment 

measure B on the real line (Q,Eq) by 
WA 

f 2 4 } 

B(F) = a{s|s2(s) € F}, o ey 

for all Borel sets F, This is the measureéinduced on the real 

line from o by the function 62, (If o weré infinite, one could
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not guarantee the*eiéma-finiteness of B; in peréicular, B 

would not be sigma-finite if §° were constant? 
% 

e e 

%g,. Theorem: Assume all the premises of the preceding theorem, and 

in addition assume that f and o are boundedi Consider the 

following allotment-assignment problem on the space (S x Q. 

{5 ) Ig X I ) Minimize : 

= é (8 G.85) 
IS I f£(h(s), q)v(ds, dq) (25) 

S*Q . 

over the set of measures vV on S XQQ!weieh have left and right 

marginals o and B,Nrespectively‘j B is;given by (24), where 

62 is unsurpassed for the problem (18)1Q20) 

Then the assignment v°, defined bf (17) for 6 = 82, is 

best for this problem. 

] AR emm— 1 
Proof: First, one immediately verifies ihat v2 has o and 8 for 

7 

  

its left and right marginals,‘respectively, so that it is 

AE feasible. By the preceding theorem v satisfies measurable 
)} 

\géfifi weight-falloff, and this fact, togethe; with the boundedness 

of £ and a (hence B), implies that vi‘is best (page v0o ), |[HW& /& 

  

This artificially constructed allétment-assignment 

problem has the following intuitive meéning. Start with the 

density pattern §° which is unsurpaesed for the allocation-of- 

.effort problem. Now consider any "resfigffling' of the pattern 

»whieh nreserves the distribution of deneity aggregated over 

all-ef s, (Fereexampiec if als|so(s) < 20} = 100, +hen the J
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reshuffled pattern will also have 100 acres with deneity 

under 20, though ef~eeurse the actual region of 19w density 

may be different). These reshufflings remain feeeible for 

the allocation-of-effort problem, hence none~o£;them can 

surpass 6°, Now in the associated allotment~aeeignment 

problem, the allotment measure 8 is precisely this density 

distribution, and the corresponding constraint assures that, 

in a sense, the feasible assignments v erec\}‘reshuffling;h of 

ve, | 

The boundedness of £ and o insures thatj(lfl) is well=- 

defined and finite as a definite integral. ;In fact, it is 

equal to (25) if v is derived from § by (173. Hence the 

objective functions of the two problems coincide. The allotg 

ment~assignment problem is in a sense a sufiproblem of the 

original allocation—of-effort problem,bin ihat it imposes the 

extra allotment constraint wheeh restrlcts comparison to rez 

shufflings. efie~prevzouelywdmeeueeed,S hie ig the general rSle 

of the "artificial" allotment constraint.?s 

Thiinen Systems without a Nucleus 
1 

Bp“to"tfiiereietq the nucleus, or "bese of operations"/ 

has played a crucial role in the interpretation of the allotg 

ment-assignment problem, since the idealédistance-h(s) has 

been taken to be h(s, s ) » the distance between location s and 

the nucleus Sye We now show that 2a considerably more general 

interpretation is possible, one pheeh need not single out any
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particular location forfiépecial treatment. 

fgé;\v>’The idea is this. We have assumed that any’point S must 

trade exclusively with nucleus Sy+ Suppose instead that the 

pattern of trade of a point is given by a distribution, P, 

over Space: p(s) =1 ;-@afiic~is, p is formallgga probability 

measurejf3fnd p(F) is taken to be the fraction of total trade 

(exports plus imports, measured by ideal wei&ht) of gjwhich 

terminates in region F, for all measurable ?. The "nuclear" 

case is precisely that in which p degenerates to a measure 

simply-concentrated at s 
N*® ! \ 

For example, there may be several miclei -{say, Sna’c e Sy | ’{S \ 

P 
& ! \ kbj < l; / 

i I i WY 

and trade is to be divided among them in/ the given proportions & \,}/ 

. ; N 
PprecerPye Ortfip may be non-<atomic, proportional perhaps to the \x : 

distribution of population over Space. Eln any case, p is given 

as a condition of the problem. 5 \?' 

fiLetéus now generalize still furtherfi)by allowing the 

spatial distribution of trade to depen% onfilocation. ' To 

represent this, we take p to be a conéitional probabiiity 

measure, with domain S x 253 énat»isé for any s ¢ S,'p(e,-) 

is a measure over S, with p(s,S) = 1,§and,jfor any F ¢ Zs, 

p(*,F) is a measurable function. Theiinterpretation~is: 

p(s,F) is the fraction of total tradelof location g which 

terminates in region F. 

This allows a good deal of flexifiility and realism to be 

incorporated into the conditions of tne problem. We expect in
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a general way, for example, that locations tend to trade 

heavily with regions near themselves. One restriction is 

essential, however, for the analysis~nh£eh follows. Thouqh 

distribution may depend on location, it must not depend on the 

land use whose exports and imports are being distrifiuted. 

It remains to show the conditions under whicfi“this more 

general scheme still leads to an allotment-assignnent problem. 

Feasibility conditions are the sames There isfen areal measure 

o on (S,ES)CRand an allotment measure 8 on (gfiq{)which are the 

marginals of any feasible‘assignment vV on (S~§tgj I X)), A= 
8 q 

As for the objective, we still postulate a weightxfiunction 

wiQ reals, But the distance function h:sf* reals seem;ZESL 

be missing, since there is no nucleus. 'In%tead, we go back e 

steph\and assume that unit transport cost getween any two 

locations can be expressed by a measurabléffunction 

g:S1 X 8y * reals.v,ifl(s1 and §, are both iéentical to S; the 

subscripts are inserted for clarity).jlé‘éeed notlopey any of 

the postulates for a metric,%except for %%mmetry: é(sl,sz) = 

9(85:84). . j 
The total transport cost incurred bé an assignment v is 

then 3‘5’ 
GV Gy 20 \\.3% 

v (ds, ,dq) J p(sl,dsz)fiW(q)igsl,sz). (26) 

g g8 : 

Integrating from right to left in (26), tfie integration over 

§2 yields the transport cost (per ideal acre) incurred in the
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process of distributing the exports and imports of land use g 

at»sl, according to the spatial pattern p(sl,-). But if we 

now define the function h:S + reals by 

e ‘ : (8.6.37) 
- \ J 

e h(s) = J g(s,s,)p(s,ds,), 27) 
Bt f 

then h is measurable, and (26) is equal to 

'S B v / (Z.6.58) 
I h(s)w(a)vids,dq), (28) 
SxQ i 

WA 

which is in allotment—assignment fdrm:%9/ 

Thus our generalized interpretation has the same formal 

structure as before, provided we define "ideal distance" by 

the special rule (27). Lei us check to see what happens when 

there is a nucleusfi\sN. ;in this case we have p(s,F) =1 if 

sy € Fy and = 0 ifdeN G;E\F, all s¢ 8, Feg Zs. The integral 

(27) then reduces towéfe,eN), and this is indeed'our definis 

tion of h(s) in the "nuclear“ case. 

The optimal solutions to the allotment=-assignment problem 

with the objective ef minimizing (28) must of course satisfy 

the measurable weignt—falloff condition with respect to (h,w). 

Thus the heavy la@d uses will be assigned to regions of low 

h-values. In the?\nuclear‘flcese this has the geometric inter= 

pretation that tfie heavy land uses crofid in about the nucleus. 

What interpretafiion offers itself in the general, non= 

nuclear, case? - 
\
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ffi_fl,%‘—XVWe shrall discuss this under the assumption that p is 

i independent of s. T&t««i‘s, there-is a fixed measure P over 

Space determining the distribution of exporte and imports 

from any location with any land use. Also assume that g is a 

metric on S. -New in the nuclear case,;the nucleus can be 

characterized as the site for which_h:is minimal (h(sy) = 0, 

and h is otherwise positive). m“ij suggests looking for a 

site Sq whieh»minimizes h(s) of (27) Indeed, the weight-= 

falloff condition requires that heavy land uses crowd in 

about o just as they do about;the nucleus when the latter 

exists. 

New the problem of finding a location 8, that minimizes 

(27) is a basic one in Spatial economics. This is the Weber 

problem ~(to be discussed?in detail in chapter 9)— and an 

optimal location is a Weber point or median of the distribu= 

tion p. (Remember that p is independent of s; hence it may 

be thought of as simply a measure, not a conditional measure). 

Thus land uses will tend to arrange themselves in a pattern 

"Qflieh mimics the nuclear case, the median of p playing the 

role of "pseudoTnucleus“ The difference is that the median 

may be otherwise just like any other point, Jhieh ARO tendency 

for transportation flows to concentrate on it. Also, the 

points on a borderline between successive land uses will not 

generally be equidistant from the median, as they would be 

from the nucleus.zj
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Quality Complementarity 

It is a matter of everyday observation that rich people 

tend to live in better housing than poor peOple,:that good 

students tend to go to good schools, that abler»nanagers 

hold more responsible positions, and that "desirable" husbands 

tend to marry "desirable" wives., Do these cases have anything 

in common? j 

In—the girst;pieces they refer to associations of two 

kinds of entities: people and housing, stedents and schools, 

workers and jobs, husbands and wives. 1n*the-secondfiplsce, 

each of these two kinds of entities are ordered on e*‘quality‘ ik 

scale of some sort %flfihethersby wealth, py ability, hy'@sthetic 

appeal, etc. And thirdlyy out of all the possible ways 

entities of various gqualities could asspciate with each other, 

those of "high" quality on one scale tsha to associate with 

those of "high" quality on the other, end similarly the "lows" 

associate with the "lows" ;) » f 

These characteristics establish a formal link with Thiinen 

systems. Here the two kinds of entities are locations and 

land useszLasfiet_is, the points of S éndmgrlrespectively. The 

scaling of these entities is accompli%hed bp the distance and 

weight functions, h and w, respectiveiy.?l(For vividness, 

think of heavy land uses as being of “high" quality, and 

similarly for "close", low-h, locationsi Note—that site 

quality varies inversely with h; this inversion is needed to
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conform to the above usage% sAsd_the high=high, low~low 

quality association is represehted precisely by the weight=- 

falloff condition~whieh charabterizes optimal land—use assign- 

ments v. ;' ; 

(Ekt-us illustrate this last point by the housing example. 

Interpret S as the set of housing types, and Q as the set of 

family types. 2An assignment of families to houSing is repre- 

sented by a measure v over S X 9,1(E x F) is,qsagr the number 

of square*feet of housing of types E occupied by families of 

types F. “Now let w(gq) be the wealth of family type q, and let 

h(sTZhe an index of quality oE'housing type, low h correspond- 

ing to high quality ("h" stands for "humbleness“). Then the 

fact that wealthy families occupy highpquality housing is 

expressed by the measurable weight-falloff. ondition on Vv: 

if Gl is southwest of Gzfi*{so that (Si'qi)fe Gi' is= 1,2:1_ 

implies Sy is of higher quality and d; of lower wealth, than 

So0 qz,_respectivelf>x then either v(G,) = 0 or v(G,) = 0. 

This all suggests that the analytical apparatus we have 

developed in this chapter may serve as an explanation of these 

rather diverse phenomena. 'NEW,this apparatus so far has run 

exclusively in terms of optimizationfiiwspecifically, the 

minimization of cost in the allotment-assignment problen? 

Some of the situations we=heve mentioned may be interpreted 

directly as optimization problems. For exanple, a firm has 

an executive staff of varying ability, and a set of positions
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of varying responsibility, and-it:ismto fililthe latter with 

the former se-as to maximize profits. But more often we are 

talking about social equilibrium situations. where no single 

grii decides the final outcome. Even;here, it is often / 

enlightening to express the equilibrium as the solution;to an 

optimization problem, though no onefi;zconsciously tg§ing to 

solve this problem. (In thewfellewiag‘gectiOEflfégizfne‘swati 

connect the "classical" Thiinen eguilibrium with‘the allotmentf‘ 

assignment problem in this way). _; 

Let»us examine both of- these approaches for the situations 

we=have mentioned. For the optimization apprcach, 1t is con- 

venient to choose a slightly altered form of the allotment- 

assignment problem, in which one maXimizes:rather than 

minimizes., Specifically, one is to maximiée 

I‘g(-h(S). w(@))Yds,dg) 2t 

over feasible assignments v. Here w(q)fis the quality index 

of g G\QJ and -h(s);the quality indextef s € S.??The minus 

sign is used to facilitate comparisonfwith the original form 

of the problem), : 

If we define the function fireals® + reals by s 
{ qf‘i.fi , 4) A\ 

£(x,y) = -g(=x,y), (30) 

one~easily seeq that the preference ordering determined by (29) 

is the same as that determined by minimizin t:zr_._si
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Lf(h(S), w(a))v(ds,dq), Vet 

which is the original allotment-assignment:objective function. 

Now the critical feature of the allotment-a581gnment 

problem is that f in (31) h;;e positive cross—differences. By 

(30), this is true iff the function g has positive cross= 

differences. ; 

What is the concrete significance pf this property? One 

may speak of positive cross-differenceé of g in (29) as 

expressing complementarity between theftwo quality indexes, . 

w and =h. —-Indeed, an older generation‘of economists were in 

the habit of defining complementarityfbetween two commodities 

by the sign of their cross-derivative in someone's utility 

function: X and Y are complementary iff 

(4 ¢ 
Dy (D19 x,¥)1 2 6 G2) 

for all x,y. Now one may. show, Erov1ded Dz[Dlg] exists and is 

finite, that ¢ has non-+negative cross—differences 1f€ «(32) 

holds.28 (When utility came to be interpreted as merely an 

indicator of preference, the definition (232) had to be 

abandoned. For the same preference ordering might have two 

utility indicators, one satisfying (32) and the other not.29 

This objection does not apply to g of (29)5; 

Consider the job-assignment example. A firm has a 

managerial staff( graded by ability) and positions to be 

filled(igraded by responsibilitg} Suppose that g(x,y) is the
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profit generated by ;<man~of ability x placed in a position of 

responsibility]z, total profit generated by an assignment v 

being given by (29). MNew it is plausible that ability:differg 

entials show up more strongly, the more responsible ifilthe 

position to be filled. Thus brilliant A might outshine 

mediocre B in a 1§adership position, but not do much better as 

as@flmm,MWmememuumemnmwnfiaflmdmm 

scope for A‘s talents. Letting x; < x, be two ahility levels, 

and ¥y ¢ y2 two job responsibility levels, the assumption just 

{a 
sfjfited is that 

/ 71 -,'r 3 2) 

B g(xy,y,) - g(x,,y,) > g(xy,¥4) 1fg(x1,yl). Eis) 

But this is precisely the positive crossfdifferences condition 

on gl d 

Again, to take the school_assignment example, let g(x,y), 

measured in dollars, be the "social benefit" from having a 

student of ability level x attend a School of guality level y. 

Condition (7@1 then states that the; differential benefit in 

favor of the mere-ablevstudent is greater at the higher quality 

school. This again is a not;implatsible assumption. If we 

now imagine a coordinated school policy aimed at assigning 

students -so-as to maximize overail social benefit, it will have 

an allotment-assignment problem to solve. The optimal solution 

will then be, under rather general conditions, a weight-falloff 

measure%h which means that the better students go to better 

schools.
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To illustrate how a "weight-falloff" assignment might be 

a social equilibrium, consider the housing example. Again 

we make the unrealistic assumption that there is a single 
o 

» quality‘fdimension along which housing types can be arrayed. 

Let 8, and So be two housing types, Sy having the higher 

qualityé say s; has a scenic view‘shieh S, lacks,,or sl'has 

central air conditioning, etcys,A given family is willing to 

; ?}pay a premium to occup§lhousing type sy rather than Sqye We 

now assume that,(the wealthier the family, the greater the 

premium it is willing to pay for the quality differential. 

This highly plausible assumption leads to thef\weight—falloff"% 

equilibrium..fiThe basic argument can be illustrated in the 

case where there are just two wealth levelssw “rifih" and 

"poor&?) Supposew“rich“’families are willing to pay $100 to 

occupy S, with its scenic view rather than Sy while "poor"™ © 

families are willing to pay just $10 forfthis privilfige. It 

cannot then happen that in equilibrium ghere are both rich 

families liging in the lower quality h%ising s, and poor 

families living in the higher quality}fiousing 8,. For if the 

rent differential exceeds $10, the poér families in S do 

better to switch to 52: while if thefrent differential is less 

than $100, rich fiamilies in S, do better to switch to Sqe 

Since one of these cases must occur; somebody is out‘of equiS 

librium. 'We conclude that the rich occupy highéand the poor 

low-quality housing in equilibrium.
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—Furthermore., ghis situation is associated in a natural 

way with the following "artificial" allotment-assignment 

2 
problem. ILet X; > x,, and choose a function g:reals + reals 

such that ; 

| i\x.f_{ce 3ub) 

g(x,.,¥) = 9(x,,y) , —t34) 

fiquals the premium whieh families of wealth;y are willing to 

pay to occupy housing of quality index X, rather than Xy. The 

assumption we made above is that the difference (34) increases 

with y for fixed x,, X,; this is the same?as saying that g 

has positive cross-differences. 

dow let measure#}a on the set of housing types S, and B 

on the set of family types gybe given by: o(E) = squareefeet 

of housing of types Efifé(F) = squareifeet of housing occupied 

by family tyeps F in the above social equilibrium, vi.‘buz 

will then be the optimal solution to the problem of maximizing 

(29)E%r§he integrand g satisfying (34£?§ over assignments with 

marginals o and B. Furthermore, the prices associated with 

the various housing qualities turn oet to be a left half- 

potential for this problem. 

Note that (34) does not determine g uniquely. Indeed, 

adding to g an arbitrary function skieh depends only on y will 

not affect (34). But this transformation does not alter the 

preference order determined by (29),ihence}yields essentially 

the same allotment-assignment problem. One should be cautious 

in drawing normative conclusions from the fact that v°
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optimizes the problem just constructed: The market implicitly 

weights the preferences of different families, and this 

weighting need not coincide with that derived from some 

ethical principle. 

We have run through the foregoing analysis rather rapidlyrha& 

because the»nextflgection, 8.7, will cover the same ground more ; 

elaborately in the context of Thiinen systems proper. 

A Combinatorial Application 

Given 2n real numbers, Xy < X <eos< xn,{?nd y1<...< Y 

consider the problem of minimizing the sum 

X ¥p1) ¥ F2¥p(2)t e 0V (n) +35) 

t 
over all permufations w of {1,...,n}. According to a theorem 

of Chebishev, the unique minimum cccurs when the y's are 

taken in reverse order, matching;&n with Xy etc., This is 

easily proved@ For any other permutation 7, there is an index 

j such that Yw(j) < y“(j+l). But then 

" (F.6.>C) 

SN xy¥y gy * Fyar¥a(gen) *a(s+) T F2Vn(d) el 

so switching these two y's reduces the sum (35). A finite 

number of these transpoiitions?leads to the reversing permutaZ 

tion, which therefore minimizes. 

This same argument yields the following generalization. 

Instead of (35) we minimize
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%627) 
f(x1f¥w(19 L f(xn,yn(n)l. ‘(37, 

Then,’if f has non-rnegative cross-differences, the reversing 

permutation minimizes (37). If £ has positive cross< 

differences, this minimizer is unlque.g_?QSé{';s replaced by 

the cross~difference 1nequality. Note that (35) is the 

special case of (37) where f is the product functioni 

£(x,y) = xy). 

—Z,AS one suspects:’there is an allotment-assignment problem 

lurking about. Indeed, 1et S = 9 (i, mnianibs Iy ™ Zq = all 

subsets, o ='B = enameratien-measure, h(i) = Ry and w(j) = 

Yy for i,j=1,...,n, and/f be as in (37). The resulting 

allotment~-assignment problem reads as followsy 

Minimize the sum of the n? terms 

f(xi,yj)\)ij/b (38) 

(i,j ranging independently over {1,...,n}), over all non< 

negative (n,n) matrices (vij) whose rows and columns all sum 

to 1 ("bi+stochastic matrices"). 

The values (37) are embedded among the values (38). 

Specifically, for feasible matrices consisting of just 0's 

and 1's ("permutation matrices"), (38) reduces to (37). If f 

has positive cross-differences, the unique optimal solution is 

the "weight-falloff" measure, given by: vij =1 if i + 3§ = 

n+1, vij = 0 otherwise. This solution corresponds to the 

reversing permutation above.
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The allotment-assignment problem just constructed is a 

special case of the assignment problem of ordinary linear 

programming. »Aswis*weii;keowns%this in turn is a special 

case of the transportation problem. The positive;crossi 

differences property of the objective function enables us to 

read off the optimal solution at sight. 

7 1N 

/i}‘é 8.7. The Thunen System as a Social Equilibriums Formal Theory 
e 

A social equilibrium is a system involving several agents/7 

(with possibly conflicting preferences) such that no agent can 

take any action wheeh improves the situation according to his 

own preferences. An example is the real-eatate market of 

ghapter 6, in which agents acquire regions of;Space (or Space=- 

Time). Here each agent has a preference ordering over pairs 

consisting of the region acquired and the cost of acquiring it, 

Equilibrium consists of a pattern of realaestate values 

(represented by a measure over S or S x T) end a partition of 

S (or S x T) among the agents,;such that no‘?gent can improve 

his position by switching to another region‘bnder the existing 

pattern of prices. i 

The equilibrium of this section is similar to that of the 

real-estate market, but goes a step deeper. gNamelv, we assume 

that people acquire land in-order to operate land uses on it. 

The decision problem facing each agent is accordingly more 

complicateds He must decide not only what land to acquire but 

what to do with it - that~is, what the land- use assignment is
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to be. The separate decisions of the various agents then 
result in a pattern of land uses over the whole system. We 
will show that, under certain mild assumptions, this overall 
land-use assignment is a Thilnen system, in thst it satisfies 
the measurable weight-falloff condition, ; 

Nowifor éhé formal model. We are given the measure space 
(S,Xa,c), where S is physical Space,hand qfis the areal measure 
on its sé;ma-field Xs. The measurable function h:S + reals 
gives the distance of locations from thefnucleus. Also given 
is the measurable space of 1and uses, ggszq),-tegether with the 
measurable weight function w:gfi+ realsfl Area, distancegand 
weight are all "ideal" and ma§~be considerably distorted from 
the corresponding physical magnitudes (recall section 2). 

‘Specifically, they have the following pfiOperties. Iet v be a 

measure on (S x Q, Es X 3 ) representing a certain land-use 

aisignment. v(E X F) is the (1dea1) acreage in region E 

devoted to land uses of types F. »Then ¢ measures the capacity 
of regions to accommodate land uses, in the sense that any 

feasible v must satisfy 

(9.1, 

V(E x q) < a{E) (1) 
for all regions E,. Also, the ttanSportation cost incurred in 

region E by assignment V is 

R ; A 
Wy ] f(h(s),W(q)) (ds,dq) . +42) ExqQ-



/915 

y 
ifi Heref:reals2 * realsfiis a given measurable function; one case 

we have mentioned often is the product function, f(x,y) = xfi. 

E%?DQVVT.“th now introduce a countable (possibly finite) number of 

agents, labeled n = 1,2,... . At time zero,bwhen the system 

starts up, there is a big real-estate auction‘wbich leads to a 

measurable partition of Space, S, among the agents3 sn;is the 

region falling under the control of agent n. Upon acquiring 

Sn’ agent n chooses an assignment Voo which is a measure over 

s, X Q. The only constraint on v  is that it satisfy (1) for ] : 

all subregions E of S . ~(Agent n will also have a budget con= 

straint, but we suppose that this is reflected indirectly 'in 

hisrpreference ordering to be discussed below,'andftherefOre 

need not be taken into account explicitly)ly The several 

assignments v on 8 % Q, n = 1,2,..., then yield by direct 
WA 

summation an overall assignment v on 8 X Q. 
W A 

-Phere are two kinds of costs, incurred by agent n, The 

first is transportation cost, which is given by (2) with 

E ='Sn, v = v . The second is land cost. We suppose-tkat the 
n 

¢ e ‘ 
real-estate market leads to a system of land values which is 

represented by a measure (or perhaps a signedfmeasure) U over 

Space. The net cost of land to agent n is 

(€.1.,3) 

u(s,). ‘ 3 

(u(sn) is/ actually|the opportunity cost of land, in the sense 

1 

that, even if agent n uses his own land, and therefore pays no 

rent, he still loses the opportunity to rent or sell to someone



916 

else.) Total cost incurred by him is the sum of land:cost and 

transportation cost. 

We now come to the structure of agents' preferences. The 

idea is to make assumptions which are very weak, yet whieh lead 
Bt 

to substantive conclusions. [ Let B be the right marginal of 

assignment v_. That-is, 
D 

= Bn(F) 5 Vn(§n A FQL g 

for all T ¢ Ty It is natural to call’B ie allotment corresZ 

ponding to assignment v,. We now assume that the preference 

ordering of agent n satisfies the following condition: If two 

different actions yield the same allotment, the first is at 

least as preferred as the second iff thefcost incurred under 

the first does not exceed the cost incunied under the second. 

Symbolically this may be written 

E 3 /g{ 1. LL 

(B, Cl) By (B, cz) lff l i Cye fififl 

“"
—=
~ 

‘!
‘1

 

Here cy is the cost incurred under actgon i, i=1,2, 8 being 

the common allotment. No assumption is made concerning prefi 

ferences among actions leading to different B's; these need 

not even be comparable. Also preferenées may vary in an 

arbitrary way from agent to agent, except that they all 

satisfy (4). 1 

The rationale for (4) is woxth examining in some detail. 

At first glance (4) appears to be S0 weak as to border on 

  

sacommarhe o 

tautology. It states that, other~things~being*eqaal more
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money is preferred to less. This condition would appear to be 

universally satisfied, except possibly for the small minority 

for whom poverty is a virtue; and even these have the option 

of throwing excess money away. In particular, (4) should be 

distinguished from the much stronger condition of profit maxif: 

mization (or rather cost minimization in this case). Cost 

minimization entails indifference between two actions yvielding 

the same cost, whereas (4) states nothing concerning actions 

‘whrch yield different allotments., 
an : 

(4) does however,)carry sene implicit substantive assump, 
  

     else does) since he 

  

    

near kis own land. Secondlyk Agent n is indifferent to all 

aspects of his own land-use assrgnment other than allotment and 

cost. These other aspects include layout, shape of parcel, 

whether his land is in one piece or féagmented, etc. From one 

point of view this assumption is not implausible. Consider, 

for example, an agent contemplating two actions, both of which 

yieldmidentical allotment of one acre devoted to a certain 

residential land use, three acres deveted to his various 

business activities, two acres for recreation, and-so-on. The 

agent's life-style will be the same im both fases, andmhis '
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4 4 

income-expenditure pattexrn witl~berth§fsamefiin~both cases 

(except for transportation and land costsl;; The only differ< 

ence lies in the spatial distribution ofxéhese activities, and 

why should this concern him? The only n%ason is that transportmi 

tion plus land costs may vary with the;spatial arrangement, and 

this factor is already taken into account in (4). | 

§—thus the argument for (4) reduces, roughly, to the 

following: .;f one can do the same thing in region,A or region 

B, one should be indifferent to 1ocation,Jexcept;for cost. This 

is fine except for one difficulty, and that is to make sure that 

all spatiall&lvarying costs are counted in, Now the transport 

cost formula (2) embodies the basic Thiinen assumption that all 

trips involve the nucleus either as origin or destination (ox 

are two=leg trip;lpassing through the nucleus).f In reality 

there are also “local“ trips ». Such as walking from room to room 

in one's house. The cost of these local trips nill be higher 

in narrow or fragmented parcels than in "chunky" parcels. The 

postulated preference orders are unrealistic to the extent 

that these cost components are omitted. (A related omission is 

that of possible neighborhood effects among an agent's own land 

uses)’s 

Given the preference order of agent n on land-use assigna 

ments and regions, this induces an indirect preference order 

on regions alone, n3§§1§w\nl » E2 by agent n iff for any land- 

use assignment on region E2 there is an assignment on El at 

least as preferred. This invites comparison with the preference
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orderings in the real-estate market of chapter 6, which are 

also over regions. In general the approach of this gsection 

does not lead to an additive utility function of the type 

discussed in chapter 6. 

%gtuus now gather up the strands of this discussion in 

\ the following definition. 
R 

  

“r= _ Definition: A social equilibrium for the system (S,Zs,a), 
N 

;f:DE (@,zq), h, w, £, and preference orders ;n' n=1,2,..., con~ 

<~ = sists of 

/{ (i) a signed measure u on (S,I;) ("land values"); 

(ii) a measurable partition g§n), n= 1,2,...,of S; -and 

TH(iii) measures v, on S X @, n = 1,2,.0.5 
——— 

)fi\>~~"-—" such that the capacity constraint (1) is satisfied 

by the vn,nand such-that,. for each agent n, total cost is 

finite, and the pair 

)90 
| (9. 150 

f(h(S).W(q)%yn(ds,dq) + u(sn) £5)   

  

o 
Che G glrrr™ 

cannot be surpassed in his preference order by substitution of 

any other feasible region and assignment for Sn and Vi 

| | Here the orderingsJ:n, the pdrtition elements Sn, and the 

measures v all have the same countable index set,f nwY,2,068 s 

v; = Bn is the right marginal of v,. In short, each agent / 

finds that his choice (Sn,vn) yields an allotment-cost pair (5) 

‘;gieh is unsurpassed in the set of options available to—him.
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Note that, unlike the situation in the allotment-" 

assignment problem, the allotments Bn are not given in advance,l\ 

but are to be chosen by the agents. “Note also‘that u is*sigma;‘y 

finite, since 1%5& cost to each agent is finite, 

Before launching into details, let—us mention an alternae 

tive (less realistic) way of defining social equilibrium for 

the system above. The definition just given requires exclusive 

control of 1and,;in the sense that Space isrpartitioned, and 

agent n alone decides on the land-use assignment'in the region 

Sn~stish he acquires. Suppose we now drop this requirement, 

and allow joint control of land. Agent’n has to choose merely 

a land~use assignment Voo which is nos'a measure on S x‘%. 

Note~tharr§he universe set for Vo is the entire product space 

for each agents “there is no longer a need for agents to 

partition Space among themselves into proprietary regions. 

To spell out this alternative gbdel we must specify con= 

straints and costs. Let v be the sum of all individual 

assignments: 3 
(§.706) 

VoE oV b v, + vyt ~{6) 

Then the areal capacity constraint (1) remains wvalid, with v 

given by (6). That is, the area required by all agents tog 

gether must not exceed the area available, so there is one 

global constraint. Transportation cost incurred by agent n is 

simply (2)}with E=8S8 and v = Vi
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7 Land cost is a bit more complicated.;fJust as above, a 

land-value (signed) measure u over Spacégarises in the real- 

estate market. This cost is then prorated among the agents in 

proportion to the area they requirefin various regions. To be 

¥ 

_precise, we have, for each n,  / 
N { 

\ j 

>v! s v¥<a 
i 

R — iy - - § 

~ from (6) and (1), where;primegdenotes the left marginal. 

  

Hence v! is absolutely continuous with respect to v', and, . 

since af hence v'} is sigma-finite, the Radon-Nikodym theorem 

asserts the existence of a fiunction gn:S + reals such that 

i : (§.11) 
vi = | g av ) 

n AR 
{ 
¥ 

0 i gn(s) < 1 for v'—a1m§st-a11 locations s, and-gn represents 

the pro rata share of land of agent n. The land (opportunity) 

i 
cost for agent n is then 7 

{0 ok 

§ ] g, ,du. 689 
i us e 

  

Everything else is the same as in the "exclusive control" 

modelsy Preferences still satisfy (4), where B, is the right 

marginal of Ve Social equilibrium is given 5§ a land-value 

signed measure u, and assignments (vn),fn = 1,2,..., such that 

the capacity constraint (1) is satisfied,;and sueh—thrat the
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allotment-cost combination yielded by Vh is unsurpassed in 

the preference order of agent n, for all n. 

There is a simple relation between the "exclusive" and 

“noniexclusive“ concepts of social equilibrium. Namelv, the 

former may be thought of as the special case of the latter in 

which the additional requirement is imposed that the assigns 

ments of any two agents be mutually singular in the following 

strong sense: There is a measurable partition, (Sl, 52"") of 

S such that v [(S\s) *RQJ = 0, for all n. To be precise, we 

identify these measuresrvn (which all have universe set S x EQ 

with their restrictions to Sn xlg, n=1,2,... . These 

restricted measures are of the form used in the "exclusive 

control” model. It is now easy to check that the “non< 

exclusive"” versions of areal constraints, transportation, and 

land costs reduce to the "exclusive" versions. 

Given the land-use assignments Vir Vgreeey the overall 

pattern of land uses v in them“nonfEéblusive control® model is 

given by summation (6). If the mutual singularity condition 

just mentioned obtains, and we re+interpret v, to refer to the 

restriction of agent n’s assignment to Sn x yé, then the same 

v is obtained by direct summation: <~ 

(¢, 7:.9) 

vV=v, &v, 8., . ) 

—~As-mentioned-above, the "non-exclusive controlu model is 

in most respects less realistic than the&mexclusive control"" 

model. Joint control of land is relatively rare. Even rarer 

is a free market in partial shares of land: Generally,véné
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has—te buy (or rent) a parcel completely or not at all, 

Finally, where such "fractional" markets do exist, it is unZ 

reasonable to ignore neighborhood effects from one agent's 

activities to another, since these activities are ngt merely 

"adjacent" but thoroughly "mixed" with each other. There are, 

however, some situations in which something resembling joint 

control is in effect: ' easements, joint usage of public 

facilities such as roads or parks, and perhaps land control by 

organizations. ' 

In the following we ‘shall restrict attention to the 
e~ N 

"exclusive control® model. For the record, however, we state 

that the }nonfexclusive control"”equilibrium can also be shown 

. 

to have an overall land-use pattern satisfying the weight- 

falloff condition. The argument for this is similar to the one 

given below; it is even a bit simplerfikand does not need the 

"non%atomic“ assumption (10). (For notational convenience we 
replace boldface Q by ordinary Q in the following formal 

discussion.) s ' 
¢ Theorems °~ Given sigma-finite measure space (S,zs,c), measurable 

space (Q,Zq), measurable functions h:S + reals, w:Q +‘rea1s, 

f:reals2 + reals, with f having positive cross-differences, and 

(%:1:10) 
a{s|h(s) = x} =0 43109 

for all real x. Let (}n), n=1,2,..., be a countable family 

of partial orders each satisfying (4).
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Let there be a social equilibrium for this system conZ 

sisting of signed measure p on S, measurable partition (Sn), 

{ n=1, 2,..9 of S, and feasible measures v, on s X Q, n=1,2,... @ 

(¥ 2 | Let £(h(e), w(e)) bg ggundedlon each set S_ x Q. 

Then the overall assignment v Bgiven by 59)) satisfies 

the (measurable) weight-falloff condition (with respect to h, 

w) . 

q&r, roof: First we show that each individual Vo considered in 

> isolation as a measure on Sn x Q, must satisfy measurable 
7 

j m1> weight—falloff. Indeed, consider any other measure fi on 

  

n x Q whieh has the same left and right marginals as v . 

Since vn satisfies the areal capacity constraint (1), it is 

feasible for agent n, and therefore cannot surpass Vi in his 

preference ordering. Now v and fin have the same allotment; 

they also occupy the same region, S_, hence incur the same land 
n 

cost. It follows that the transportation cost (2) incurred   
i under Ya cannot exceed the transportation cost incurred under 

V.. n 

S
T
 

rIn~otheruwords, v, is unsurpassed for the allotment- 

assignment problem on Sn x Q defined by its marginals and by 

A
 

AT
 

I
 

aiv- s 

f, h and w. Since £(h(+), w(+)) isflbounded on this set, and 

f has positive cross-differences, it follows (page'f' ) that 

Vi does indeed satisfy measurable weight-falloff. 

Now suppose the overall assignment v violates measurable 

weight-falloff, so that there are measurable sets, Gys Gy
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\ 8§ x 0, of positive V=measure, with Gl southwest of Gz. This 

F means that S and Q can each be split into two measurable sets, 

Sl, 52, and Q R Q » respectively, such that 

; 

| 
g 

(7 .11 | h(s;) < h(s,), ) 
5 ~and- 
f 

(N 12) i w(g,) < w(qg,) (12) | Widy HiGa7 

for all s; € Si, q; € Qi, is= 1,2, and such that 

. y\f{% 13 
= | 13) Gissl"Q: 

- 4wl o8 

Pelatlesy 
, (13) implies that S 

§ . ! 

Since the number of agents is countable, there must 

1ox Ql and 52 x Q2 both have positive 

i v-measure. 
S 

| be some bgent, n,, such that v[(s n S ) x Q ] is positive. i < o L T 
sigma~finite, there=is a region E; ¢ 

Furthermore, 51nce{3' < a is 

n S ) x Q 14 is positive and finite. 

.
 

such that v[(E A S, 
21 

Similarly, there is an agent n, and region Ez such that g 

§ v[(E f Sn n S ) X Q ]l is positive and finite. { 2 
i The two agents, n, and n,, must be distinct, for if not . | h v —_——C 
i the measurable weight-falloff condition would he violated withs 

in one individual realm, contrary to our finding' above, 

Now consider the two functions g;:reals + reals, i = 1,2, F#@' 

' A # ) ¢ given by 

% (x,) = v|[|[{s]|h(s)>x,} n,fi ns nst x ol La 

? and == (Iflg 

| 2. g,(x,) = vH{SIh(S)Qg} nE;,n Snz ns ] x Q]- 2 

g,
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| / These functions are nonfnegative but not identically zero, 
Gpproach zero qszmg‘fahqflz 5 

monotone (noneincreasing for 91 and nonrdecreasing for 95)% 
| Gre 

S and - because of (lG) - continuous. Hence -there—exist numbers 
/itp W 
} xl s xz ,such that 

i 

yo4 > 49 3% s (3.945) 
0 < gl(xl ) = gz(x °) < minPim gl(xl)l :l{j;‘:‘n:m gz(xz)]- (‘1‘5') uce 

21 

2 ' - 
f» Now define the regions Hl, H by | 4f 
¥ 9 / 

f 3} ‘L J 

| = {s|h(s) > x,°} n E; n s n st, 
! l (%0216, 

{ {16). 

B2 = {alhis) < & MiBsih 8. N g2 b ] 
2-» J2 nz o i 

;‘“”;From (15) we then have 

(%.7.11) 
» > vl x ol) = v(a2 x 02) > o. (7) 

Let ¢ be the common value of v(Hl x oY), 

? Next, define region gt by 

t J- = {s|h(s) < %2} N E; NS nS. 413) 
=1 

| From the right~hand inequality in (15), it follows that | 

'\)(Jl x ol) is positive. Now the two sets,‘ql x o' and gl x gz,_ 

stand in a southwest-northeast relation, by (12), (16) and (18). 

Furthermore, bhoth Hl and Jl are subsets of Sn . It follows 
1 

that . 
(¥ 7.49) 

flfifif i//‘ vt x 0%) = o0, 19) 
o



927 

2 eise the measurable weight-falloff condition would be violated 

within the individual realm of agent n,. A similar argument 

for agent n, shows that 

1 (8. 20) 
v(H2 X Q") = 0. «(20) 

”“}(173,\(19) and (20) are what is needed for the rest of this 

f proof. 

Ifl what follows, the notation Ve stands for the truncation 

of v to the set G; that“is, for G, K ¢ I, x I_, we have 

' : (€. 51) 
vG(K) = v(G N K). (21) 

|7 Now consider the following policy changes. Agent n,, 

instead of takin%‘sn as his region of control, chooses 
1 & 

(Sn \Hl) U Hz. That is, he relinpuishes control of region Hl 1 
and acquires region Hz. Agent n, makes just the opposite 

switch, so that his region of control becomes (Sn \Hz) U g, 

Also, the original pattern of land uses on Hl U H® is altered. 

Specifically, the following signed measure is added to the 

  

A
 
N
 

R
 

R
 

S 
R
 

  

 



  

B
 
A
 S
 

2 
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fi;;/fg | 

(To explain: The fourth temm in (22), for~esample, is the 

product measure of the lefffmarginal of v , 4 by the right 

=7 
- H XQ 

marginal of v/, ,, divided by c, the common value in (17).) 

On Hl, becausgyng(l9), the first term of (22) knocks out the 

original assignment; the fourth term is what replaces it; 

similarly, on H%,because of (20), the second term knocks out 

the original assignment, and the third term is what replaces 

it. | 

Let us first check this new assignment for feasibility. 

All measures in (22) are finite, and it is clear that v + Av 

is nontnegative. Using (17), one verifiés that the left 

marginal of Av is identically zero. Hence the areal capacity 

constraint (1) remains satisfied for v + Av., This establishes 

feasibility. 

Next, one verifies that the right marginal of the first 

plus thigd‘tgrm of (22) is identically zero. ¥Now these two 

terms give precisely the change from the original assignment 

of agent n,. Thus the allotment attained by agent n, is 

exactly the same as with his original assignment. Since the 

original assignment of agentfnl is unsurpassed in his preference 

ordering, it follows from (4) that the change ia total cost 

must be nonfnegative. Thus
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e o 8% 
) ' ) ] 

[ Y202 * gt <ol 
f(h(e) ,w(e))a 

| @) - b > 0. 

|m
l—
-"
90
’ 

\i oS 7 2 ;{) 

| 423) 
j 5x%Q Tfllqu‘ 

The integral in (23) is the change in the transport cost 

| incurred by agent ny- The other two terms yield the change in 

his land cost, incurred by acquiring region H2 and relinquish~ 
o (FiniTeness of cosls i e social equilibviian, Fosether wil”™ 

ing . ~ukybs—that-aii~terms—in—+23+—arl_boaaded9—ée-idn> 
e l«q\l--boum\«u\nt‘os ond o, sure thet &W @) s 

well“debined)) 
The same argument applied to agent n, yields (23) with 

the superscripts "1" and "2" interchanged. Adding (23) to the 

corresponding inequality for n;, the land-value terms drop out, 

and we obtain 

2 
c“{ e 1“4) 

>y [  £(ne) (e ))d(Av) > 0. (24) 
SXQ i 

g“' But (24) is false. To whow this we use the argument 
{ " &()3;‘/ /‘n O 

AMS 

already employed enapage—_~m-abeve, 17) through {19) of 

-section 5« The applicability_of this argument follows £from 

the observations that_f has positive cross-differences, that 

l X Ql is southwest of Hz vaz {(from (11) and (12)), and that 

all measures in (22) have the same value on S ®x Q, neme%y o 

| Av of (22) thenfhas the same form as v in (l&fl nfpeection 5, 

except for the inessential factor cs Just let G Gy in 4;5§1¢s 

-section 5 be H; X Qi of the:present argument, i = 1,2, It 

follows that the integral in (24) must be negative. This con= 

tradiction gshows that v cannot violatermeasurable weight= 

L 3 falloff, W€ [7W 
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Hote that, while this theorem severely constrains the 

pattern of land uses, it says nothing about land users. The 

individual regions Sn controlled by the various agents might 

have any irregular shapes, be fragmented, intermixed, etc. 

But the kinds of land uses running at a site will depend &' 

%o far as their ideal weights are concerned)¥ only on the ideal 

distance of that site:/ggt on the agent who controls that~site. 

Smith will run a land use on:one of his plots similar in 

weight to that run by Jones on an adjacent plot, and dissimilar 

to the land use run by Smith on another of his plots at a“’ 

different ideal distance from the nucleus. 

Before going on, let-us mention t:G-generali;ationf of the 

preceding theorem, of theoretical but little practical interest, 

““'q‘~8irst*'fhe premise that land value, W, must be bounded on each 

region S, can be dropped from the definition of social equiZ 

librium. Instead, p can be any siéma-finite signed measure on 

S (or even a pseudomeasure) without invalidating the conclusion 

that assignment v satisfies the measurable weight-falloff 

condition.éz/—Seeond7—the—premise—that—£+h4*¥eui444—be—boundcd' 

  

A2 

'Let—us now turn from the study of land uses to land 

values. Our aim is to show that land-value density is 

essentially a (left) half-potential for the allotment-assignment
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problem associated with the foregoing social equilibrium. But 

before doing 50 we must face up to certain conceptual giffi- 

culties mnien we managed to evade in the preceding proof. 

The first difficulty concerns the assumption of perfect 

competition embodied in our definition of social eguilibrium. 

To be precise, we assume that agents can freely acquire or 

dispose of land at the fixed prices given by the signed 

measure u, In reality, search and bargaining problems arise 

between the transacting agents which are unlikely to be 

captured by an additive set function such as u. (Transfer of 

land involves the displacement of one pattern of land uses by 

another on this land, hence changes in the allotments of the 

several agents; in general, the monetary compensations for 

these changes will not take a form which is additive over 

regions.) > 

ifiins a rule, the more’agents there are, the more satis- 

factory the competitive assumption becomes. But even with a 

countably infinite number of agents the difficulty does not 

vanish, since these agents will still hold positive acreagesjggf 

The second difficulty involves a slightly paradoxical 

strengthening of the social equilibrium concept. We start 

with an analogy. Suppose one has a divisionalized firm, the 

various divisions trading both with the outside world and with 
each other., A possible rule of operation is that each division 

offer the same prices both to outsiders and sister~divisions,
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and that each accepts the best offer, ignoring the affiliation 

status of trading partners. In short, the divisions act as if 

they were independent firms. HNow consider agent‘n holding 

region Sn' Partitioning this region into Snlfl"'snk' we may 

think of the land uses on each piece Sni as being run by a 

"division" of agent n. We now make the "independent firms" 

assumption about the behavior of these divisions., To be 

precise, the "custodian" of region Sni'has the option of buying 

a piece of the territory of his alter&ego, the "custodian" of 

S (j # 1), at the going market price,‘and displacing the nj 
latter's land uses on the transferred region. The change in 

costs resulting from this transaction is to be computed just 

as if Snj were controlled by an agent other than n L that is, 

one takes account neither of_the land uses ousted from Snjrfi_ 

nor of the compensation received by the custodian of this 

region, _ 

This rule is rather awkward to justify if taken literally, 

and the correct interpretation seems to be as follows. The 

land-value measure udplays a double réle@ Externally, between 

agents,. it functions as a market price; internally, within an 

agent's territory,}it functions as a “"shadow"price, equi< 

librium under the above rule being a necessary condition for 

the optimal assignment of land uses. If there is just one 

agent in the efitire system, u plays exclusively a}\shadowfia‘ 

role. As the number of agents rises, the “shadow" rble shrinks



933 

and the "market" r8le expands, but the former does not dis- 

appear even for a countable infinity of agents. (It would 

disappear in the "measure space of agents" model.) - 

- In the preceding proof we avoided these conceptual diffi- 

  

culties by centering the argument around a swap of territories 

»nhieh reduced combined transportation costs. 1In the following 

proof we are not so lucky. The special findependent firms" 

rule shows up in the proof below by allowing the argument to 

go through even if the agent "acquires" some of his own-land. 

':pow for the details. The assignment v on § x Q induces a 

measure A on the plane via the mapping (s,q) + (h(s),w(qg)). 

Let A and the function f:reals2 + reals be given. 

  

tgfifipefinitionz The measurable function p:reals + extended reals is 

a left half-potential for Xfialmostieverywhere (with respect to 
bt 

:M;D } f) iff there is a real Borel set F with A'(F) = 0 such that 

| p(x) is finite for x ¢ F and 

L 
for all real numbers X,, X,, y, such that x,, x, ¢ F and 2 4w 

(x,,y,) is a pointZSf support for A. 

e, : 

Here A' is the left marginal of A. If F = @, this re?ug%? to 

the ordinary definition of left half-potential, as in e&%%safi 

-section -5+ 

In (27) below, a - v' is the areal excess capacity 

measure. Since both v' (the left marginal of v) and a may be
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infinite measures, subtraction 

of -ehapter-3, section 1, 

i 

must be understood in the sense 

4 s i;gm; Theorem: Let overall agsignment measure v on S X Q, land value 

\,
Nf
 

T
 

P= 

signed mfiasure U on S, and regions Sn,—n =1,2,..., constitute 

a social equilibrium for the system defined by (S8,I 

(Q,Eq), h:S + reals, w:Q -+ reals, f:reals2 + reals, nt 

s;a)r 

n=1,2,..., as in the preceding theorem. 

Here a is sigma-finite; h, 

as always, v satisfies (1), S 

agents have finite costs. 

w, and f are measurable; and, 

n*satisfies (4) , all n, and all 

'In addition, assume that h and o 
satisfy (10), that f is continuous with positive cross= 

differences, cnd-that,f(xyy) is strictly increasing in x for 

all numbers y in the range of wJ Qno\ that FU}(') w(- )) s ‘\fo* bounded oh eady cet §, 
Y et 3% g 

here is a. nofi}negative, nondincreasing function 

p: reals -+ extended reals, wbieh is a left half-potential for 

lealmostseverywhere (with respect to £) — (here A is the plane 

measure induced from v by (s,q) 

H = f (pOh%FG. 

‘(Hence u>0), 
e 

-+  (ii)" There is an e}tended real 

   
(a—v'i:{s[h(s) 

v'rislh(s) 
(4 

N7 
N 

) 

u {s|h(s) 
(% 

+ (h(s) ,w(q))) — and for which 

26) 

number, xo, such that 

\: z (7 &7 

< X} =00, t27) 
2. xg} = o' N (“N«) 

> x,} =0, “29) 
&) 

vrf T 44.)
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kQ?‘"2£292= (i) First we show that u > 0. Suppose u(E) were 

negative for some region E. Since u is sigma-finite, there 

  

is a subregion F g E for which p(F) is negative and finite. 

Choose any agent n, and let him acquire regionvF and leave it 

vacant. Then his land cost falls, while his transport cost 

and his allotment remain the same; this contradicts the fact 

that he was in equilibrium to begin with. Hence u > 0. (Note 

that the agent may be "acquiring" land from himself, in 

i accordance with our discussion above.) 

Next let-us show that 1 is absolutely continuous with 

respect to v'. Let u(E) > 0 for some region E, ' Then 

u(E N Sn) > 0 for some n, since the sets Sn countably partition 

S. If v'(EnN §,) = 0, agent n could simply divest himself of 

E N Sn' reducing his land cost while leaving his transport 

cost and allotment unchanged. This contradicts the un< 

surpassedness of his initial position. Hence v'(E N Sn) > 9, 

so that v'(E) > 0. Thus B << V', ~ | 
N & 

AV' < ais segmaffinite. By the Radon-Nikodym theorem, it   
(now follows that there exists a function p:S - reals such that A 

5 
f
u
d
 

O
 

e 

\3.1.%0 
[‘ B dv'. Sk 

a 

0 

Since u is a measure, P may be chosen to be non;negative. 

Now consider the mapping from S to the plane given by 
. 

% s + kh(s), P(s)). This induces a measure, p, on the plane from 
: | > ¥ Y 

the measure v' on S.é,We now show that p satisfies the weight= 

falloff condition. Suppose, on the contrary, that there are
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two measurable sets,,).F1 and Fz,_in the plane, of positive 

p-measure, with Fl southwest of F2. The inverse images of 

these sets are regions, G1 and Gz, respectively, of positive 

v'—measure,‘such that there exist numbexs xo, z“, satisfying 

/ (%7 30 
h(s)) < %, < his,), . (31) 

Bs;) <z, < Bls,), “32) 
e 

for all 8y € Gy, 8, € G,. Furthermore, at least one of the 

inequalities 1fii(31), and at least one in (32), can be chosen 

strict. (This follows from the defintgion of southweet“‘) 

Now (10) holde with v' in place of a. Using an argument 

similar to }l4)”threugh (17), we can find two subregions) Hy 

and Hz, ofgg1 and Gz, respectively, such that H, is contained 

in the realm of some one agent: HZ < S,, say, such that-f-and- 

15 
U a¥e bounded on Hl U Hz, and such-that 

® > V() = V' (Hy) > 0. (33) 
29 

Let ¢ be the common value in (33). 

Consider now the following changes in the action of agent 

n. He relinguishes region_g2 and acquires_gl. The corre- 

sponding change in his assignment is 

Av = -\)H/ xQ -é- (\/’H XQ) ' x (\’,H xQ) i } o —£34) 
2 i /2 t# 

The notation is as in (21) and (22). The first term in (34) 

knocks out his original assignment on H,; the second term is 

the assignment he places on the newly acquired region, Hl.
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(Displacement of the original assignment on Hl does not appear 
in (34), since it does not appertain to agent n. As discussed 
above, this displacement is to be ignored even if Hl n S is 

nonjemptth 

‘ Let us test this for feasibility. It suffices to take 
'lregions E g Hl and to check that —. 

S Av(E x Q) = -fiw(E X QVIE, x 0= v* (B) 

does not exceed a(E), as indeed it does not, since the original 

assignment was feasible. 

The right marginal of Av is identically zero, so that the 

allotment of agent n is unchanged 

> The change in land cost is given by 
:hfl»‘,\ s j‘fi‘én. £ c:‘\ r;) i j ? 7 

C2/ \ ’.:% ~ oy & 9 SVY ) uEy) - u(a,) =JHI Pdv [Hz B av', 
S 

£rom (30). But 

from (32) and (33). Furthermore, one of the inequalities in 

(32) , hence in (35), is strict. It follows that land cost 

has been reduced. 

The change in transport cost is given by ‘” 
su;r*..)v(,?« 

%]J} f(h(s).W(q))Av(ds dq) . ~436) ) D “3 s%Q
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Bak, = g 
i 

). EBE) @ v, o(d@s,dq) > ] £ (x Vg xolds,d ISXG 4 H,xQ \©2¢ a2 sxg- g,w(q) Hz"Q( s,dq) 

i 

Y 

" 2\ | | JQE'f‘(x_‘?'W(q)HUHsz) ,(dq) 37y 

\ - 

-\ 
WOl N\ 

{ “.:,«‘37%.\}’ A s % ! i : 1 Y 
i (c\'{ § :}?{."y{ i ,?: 1‘ i I F(h (S) 'w (q) ) E(\’HIXQ) .(ds) X (szxQ) :\(dq) e 
/ ?&*«\:‘j” sxQ’ 

Akl " L3 = 
=k The /u'vd’ fif(hjf{.fl = l}')), ‘:efi\g wilhin 1he OY'Jlnrl I"QQIM.\ ol 

agent n, 1s Linte . Hance <l te l’uTe,fz.Ig i, (37) are well*debined 
The first inequality in (37) arises from the right side of (31) 

and the fact that f(-,y) is increasing for y in the range of 

w; the equality arises from the induced integrals*theorem, 

using the projection (s,q) =+ .: The measure (VH xQ)" is the 

right marginal of both measures in (34). Hence, passing over 

to the second measure in (34),Rand using the left side of (31) 

and the increasingness of f(+,y) once again, we obtain the 

last inequality of (37). Furthermore, at least one of the 

inequalities in (31), hence in (37), is strict, 

But (36) equals the last integral of (37) minus the first 

integral of (37). Thus transport cost is also reduced. The 

change in total cost is then negative. This improvement 

contradicts the fact that agent n is in equilibrium. 

Thus the measure p does indeed satisfy the weight-falloff 

condition. Expressing this in topological form, no two points
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. of support for p stand in a southwest=northeast relation. 

1 //’Now let X be the set of real numbers x with the property: 
There is exactlx one number y such that (x,y) is a point of 

support fo4 .E Define the function p:X + reals by letting 

pP(x) be the unique number for which (x, p(x)) supports p. 

X is a Borel set, -F&r—x—*di-fixi—,—whe-sea'ro SL\ow ’“«\'s) ‘d‘ 

& 
X, = {x|(x,y)|supports p for at least i.distinct numbers. vy}, 

i=1,2, . X1 is the left projection of the support of p. The 

support is a closed set, hence a countable union of bounded 

closed sets;_xl itself is therefore a countable union of closed 

sets, hence Borel. 182 is also a Borel set, since it is 

countable. To see this, associate with each x ¢ XZ a rational 

number between y' and y", where (x,v'), (x,v") are distinct 

points of support for p., These rationals are distinct, by 

weight-falloff. Since the rationals are countable,.so is X 

We now show that X includes "almost all" the real numbers 

2. 

in the following sense. Let p' be the left marginal of p. 

Note that p' is also the measure on the real line induced by 

h from v' on S. For, letting E be a Borel set, we have 

(g 9.5¢) 
P'(E) = p(E x reals) = v'{s|h(s) ¢ E}. (38) 

We now assert that 

p' (reals\X) = 0. +39)



A 

  

-=J 
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//f 
First of=all, p' (reals\xl) = 0, since p is zero on the - 

complement of its support. Secondly, o' (xz) = 0, since X, 

is countable and p' is zero on each singleton, by (10) and 

(38). This proves (39). 

Now extend p from domain X to the entire real line as 

follows: For—zre—1nn;fx-—tet—p4xi_=cQe——&knrnreefgug—x——&ee_ 
v o and, 

p(x) be the supremum of the values p(z) for z ¢ X, z 2 x. This 

extended function will agso be denoted by P. The original P s 

non+negative and non+increasing,.and one easily verifies that 

the extended p retains these properties. 

Next ‘we show that the composite function peh is equal to 

P v'-almost everywhere on S. Indeed, consider the region H 

given by 
- (40 

{s|h(s) ¢ X} n {s|fh(s), B(s)) supports p}. 140) 

For any site s € H, there is exactly one number y such that 

(h(s),y) supports P, SO that plh(s)) = y = p(s). Thus P and 

Poh coincide on H. The,complement of the first region in (40) 
A 

has v'-measure zero, by (38) and (39). The complement of the 

second region in (40) also has v° -measure zero, since p is zero 

on the complement of its support. Thus § = Poh almost every= 

where., : 

1€ follows from (30) that 

/? @ bt ) 
1 w ) L O 

U= J&(?°hl9“" -{qeg.
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/§ Now consider the mapping from S X Q to the plane given 

b§/?qu) + (h(s),w(g)). This induces a measure, A, on the 

plane from the measure v on S x Q. Since v is a social equie 

librium, the preceding theorem implies-igag it, hence also A, 

satisfies weight-falloff. Expressed in topological form, this 

means that no two points of support for A stand in a southwest= 

northeast relation. » v 

Let Z be the set of real numbers z with the:propertyg 

There is exactly one number y such that (z,y) supports A. 

Using the same arguments for Z and A that we used above for 

X and p, we conclude that 2 is;a‘Borel set, and that 

A (zeals\z) = 0, (42 

where A' is the left marginal of A. We also have A' = p', 

since, for Borel ‘sets E, - 

‘l'(E) = A(E x reals) = v{(s,q) |h(s) ¢ E} = v'{s|h(s) ¢ E}. 

(cE. (38)). 
' @ 

We now verify that the function p is a left half-potential 

for A almost everywhere. Specifically, we show that (25) holds 

for all X 0 Xg € XN %Z, and all real Yo such that (xz, y2) 

supports A, Note that, from (39) and (42), the complement of 

X N 2 has A'-measure zero, so the "almost everywhere" condition 

is met.
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Suppose (25) were false, so that there exist numbers 

X0 X5 € X N %, and Yo real for which (xz, yz) supports A, and 

(¥ 
p(xz) + f(xz,yz) > p(xl) + f(xl,yz). t43) 

Suppose (which may not be the 2ase) there were an 
increasing sequence of numbers, xl.<"xz <.eey belonging to X n 

Z, with limit X5+ For each n,llet yn be the number such that 

(xn, yn) supports A. Then y%“i y2 2+++, and these numbers 

are bounded below by Yoo ,Hence lim y" exists as n -+ ©, and 

is finite. Since the support of A is closed, it follows that 
(xz, lim yn) belongs to it. Hence 

5 lim yo = Yo {44) 

since there is exactly one point of the form (xz, v) 

supporting A. A similar argument establishes (44) in the 

case of a decreasing sequence, x1 > x2 >+.., belonging to s, 

X{E 2, with limit Xye 

~ Furthermore, the same argument, applied to the support of 
p instead of ), yields 

2 = 
Lim [p (x") = plxy) s/ | 
n-e | / 

¢ % 

difor any monotone sequence (x") belonging to X n 2 with limit 

rxz. This argument applies also to any number x ¢ X n Z, in 

particular to x = Xq. Thus p, restricted to X n Z, is 

continuous. 

2.4
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Now let b > 0 .be the difference between the left and 

right ‘hand sides of (43). Choose € > 0 so that all the 

o 
fgllowing relations are satisfied for i = 1 and i = 23 

lp(x) - p(xi)l < b/4, for all xe€ X n 2 such that 

  

:”‘*a\ : lx 5 xil $ e 

«— , : 

|£(x,y) - f(xi,yz)l < b/4, for all x, y such that N 

| = x,| < efand]|y - y,] < e. 

The existence of such an € follows from the continuity of p 

at points Xy and Xo 0 and the continuitv‘of £ at points (xl,yz) 

and (xz,yz). Next, choose a § > 0 so that ] i;fi‘f 

l{lx,y)llx -%5] <8 |y -y, 2 {} -0, 47) 

The existence of such a § follows from (44). For 8§ can be 

chosen so small that for any x € X N Z such that |x - le < 8, 

the y such that (x,y) supports ).is within ¢ of Yoo The set 

in (47) will therefore figzg»no points of support, hence has 

measure zero. 

Having chosen €, then §, consider the two regions Gy 

given by 

e ( \’?f’? 
{s| Inte) - x| <mine, 0}, | 

i =1,2, Both these regions have positive v'-measure, since 

there are numbers Yy Yy such that (xi,yi) supports A, 

i=1,2. (The {’o"oum:j qrjuMehT does '\oT V‘C"zmre et 

G, G, T%r H,, Hy for thal msflervs;- Le d\sJomf)
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Just as above, we can now find'two subregions, Hy and 

HZ, with Hi < Gi' i= 1,2, such that H2 is contained in the 

realm of some one-agentim'yfi2 S S, and sueh-that (33) holds. 

Continuing just as above, we contemplate the policy 

change for agent n in which he relinquishes region HZ and 

acquires Hl. The corresponding change in his assignment is 

again given by Av of (34). ; , ‘ 

> ag above, this change is feasible and leaves his allotment 

unchanged. The reduction in his land cost arising from the 

relinquishing of region H, is given by 

=\ .3‘ 

I (peh)dv' = J p(h(s))v(ds.dq). 148) 
HZ‘. l\ > H2 *Q I‘l 

p 

The left integral in:(48) comes from (41). The equality 

arises from the induced integrals theorem. 

Adding to this the reduction of transport cost on Hz, we 

find the reduction of total cost arising from the relinquishing 

of region Hz to be 
’2'3 \ ’1{, 3‘-v:,gv. \ 

3 2 ' 
',V" ; 

' .I | (?(h(s)) + f(h(s),w(q)))v(ds,dq). (49) 
[ TH,%xQ 

? " We now claim that the integral (49) exceeds cm, where 

¢ is the common value v'(Hl) = v'(Hz), and m is the average 

of the two sides of (43). To see this, split the set’H2 x Q 

into two pieces’ H, x L, and H, x (Q\L), where
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ke (q‘ lwia) - y,| < e} 

Now v(H, x (Q\L)) = 0, from (47). On the other hand, for all 

points of Hy, x L (except for a v-null set); the integrand in 

1 (49) exceeds m., (The exceptional points (s,q) are among those 

% for which h(s) X n Z. These have measure zero, by (39) and 
| ~ ' 

§ (42)),_ For (45) and (46) imply that the integrand value differs { from the left side of (43) by less than b/2, hence it never 
gets halfway toward the right side of (43). It follows that 

(49) exceeds m'v(H2 X Q) = me. 

   

% Next,:consider the increase in costs arising from the 

% mgfifi acquisition of region Hl‘ For land cost this is L ARE ; i : VY ;77! 13 ( 3 53 ig o T t“'ef‘“k" e e | % Iy &, $1 g |(poh)av? = | (h(s)) [Ev,, - )" (s (ol (aq) (59) t H.| ;‘\ { H X‘ c Hle Q 

1 | L@y 7/ F| | - % | ] | ; fin_lg 

The left integral in (50) comes from (41). The equality 

arises from the induced integrals theorem, on noting that the 

left marginal of the bracketed measure in (50) coincides with 

V' truncated to Hl. 

7 {g;es““ Adding to this the increase in transport cost, we find 

ygwfgf th&#increase in total cost arising from this acquisition to be 
!gfi Tfir 

; 31 15§ 

»\ [ Up(h(s))+£(h(s) ,wia)) ] |E(v 
XQE / 

  

)'(ds) (v ’xé)(dq{]. s T84 
\ el 

\ 

The bracketed measure in (51) has value Zero on Hl x (Q\L), 

from (47). On- the other hand, for all points of Hl x L 

(except for a null set as above), the integrand in (51) is 
N 
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less than m. For (45) and (46) imply that the integrand 

differs from the right side of (43) by less than b/2, hence 

R 
e
 

e 
] 

it never gets halfway toward the left side of=(43). It follows 

   

   

that (51) is less than iQJ 51; 
i1 L AN { : 

q4 lqi et & o L1 \ s 
4....: { ® | " = c—jo > =3 m] évfiaxQ)'(Hl) (vHéxQ) (L{} mfc%cc. me, 

| il 

from (47), since 

(vHZXQ)"(L) = V(H,XL) = V(H,xQ) = c. 

Thus (49) exceeds (51). Hence the net increase in costs, 

which is (51) minus (49), is negative. Since his allotment 

remains the same, this contradicts the premise that agent n 

% was initially in an unsurpassed position. Thus (43) must have 

been false, and we have established that p is an almost everyéf 

where left half-potential for A. | 

This completes part Si) of the theorem, except for the 

fact that v' appears in (41) while o appears in (26). The 

L
 

proof of part (ii) ,~which-we—come—to-new, will justify the 

last step of replacing v' by a. 

fif ¢ (1i) Let Xy be the infimum of all numbers x satisfying 

% 2 v'{s|h(s) > x} = 0, €52) 

and let x, be the supremum of all numbers x satisfying 

  

(a=v'){s|h(s) < x} = 0. _ 53) 

(2183
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Thexre- are three cases: 

If X; < Xo0 let X, be any number satisfying Xy < xo < Xy 

(27) and (28) then follow at once, and (29) follows from (28), 
since, as shown above, u is absolutely continuous with respect 

to v', 

If X = X, let X be their common value. (52) then/ 

holds for x = x_, because the set {s|h(s) > x,} is the limit 
of an increasing sequence of sets of v'-measure zero. 

Similarly, (53) holds for x = X,» Also, a~v' and v' are both 

zero on the set {s|h(s) = xo},wfrom (10). This again 

establishes (27) and (28), hence (29). 

To finish the proof, we need only show that the last 

possibility,i_:_r1 >_r2,,leads to a contradiction. Choose a 

number x  such that Xy 7 X, > Xx,. Then 

(L15¢) 
v!'{s|h(s) > x,} >0, {5%) 

from (52), and x e 

(a-v*'){s|n(s) < x } > o, | (55) 

from (53). From (55)5:there exists an agent n |for which 

S'Mi 8:1.56 
(c—v')[Sn n {s|h(s) < xo}] > 0. £56)- 

For the time beingg we also assume that 

&) 
v'is, n {s|h(s) > x jq > 0. s
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Using an argument similar to (14) through (17) , we can 

find regions El and Hyy contained in the sets of (56) and (57) o 

respectively, such that . 
N 

T
 

—
—
 

o > (c-v')(Hl) > v'(Hé) > 0. 

Now consider the following change in policy of agent n. 

He relinquishes region Hy, and increases his assignment on Hl' 

Specifically, the change in his‘assignmentf Av, is given by 

(a=v'), x (v )" B Loy o THy HyxQ' (&7 

}J/}%ggfiw“ e ng*Q f/tf (a=vT)TH,) 2 | 58) 

The left measure in (58) knocks out the original assignment on 

H,. Note that the original assignment on Hy is not displaced, 

but added to by the right measure in (58). The excess capacity 

on Hl allows the areal constraint (1) to remain inviclate, as 

one verifies. Hence the changed policy is feasible. 

The right marginal of Av is identically zero, so that the 

allotment of agent n remains unchanged. 
» {‘\;‘ e 7 L d 

— The land cost is reduced, if anything, since he devgsts 

himself of Hz.f (There is no change in land cost 'for Hi, since 

he controls this region to begin witfl§4' 
i e 

Transportation cost must fal l, by the argument of (37). 

(There is an obvious change of notation for the last integral 

of (37), and both inequalities there are now stricfif. Hence 

total costs fall, and agent n has improved his positicn. This 

contradicts the fact that he is initially in equilibrium. Thus 

(57) must be false. 

Y
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This same argument proves even more. Start with (56) 

and (57), with any number x substituted for x_ (the same x 
o 

in both (56) and (57)). The same contradicfion arises, so 

(56) and (57) cannot hold simultaneously for any x in place 

of‘xo. 
oy 

It follows from this that a (possibly infinite) number 

X exists such that 00 
(271,549 

v'Is, n{ s|h(s) > x }] =0 59) 

e 
(a=v') (8, N {s|h(s) £ Bt = 0 t69) 

a 
(To see this, apply the argument gt the beginning of part (ii) 

to the region sn' rather than to all of S.) 

From (60) and (56) we obtain 

(a=v') 8, n {SIXQ > h(s) > rpg}] > 0. ffiti 
_— 

a=-v' can be replaced by a in (Gl)@xbecause of (59)2% Also, 

\f 
i3 

uis, n {slx, > h(s) > x} = 0, 62) 

from (59). 

Now, from (54), there exists an agent n* for which 

v'[S e N {s|h(s) > fg}] > 0. (63) 

Arguing in the usual way, we can find regions H and H¥*, 

contained in the sets of (61) and (63), respectively, such that
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T = > ofH) > v'(H*) > 0. 

Consider the following policy changes by agent n*, He 

relinquishes region H* and acquires H, making the change of 

assignment Av given by 

“Vasxg * Sy 

One verifies the feasibility of this change, and the fact that 

the allotment for agent n* remains the same. 

The change in land cost is noanositivekébecause H is 

free, by (62). The change in*transport cost isinegative, by 
H the argument of (37) (with Qgh in place of Q‘}and obvious sla 

changes of notation in the last integral of (37); both in2 H;:§j 
0 

equalities in (37) are strict). Thus agent n* has reduced 

his total costs and improyed his position, contradicting the 

fact that n* is initiallgrequilibrium. 

This shows that X > X, is false,/ where Xy X, are 

defined by (52) and (53). The proof of part (ii) is now 

complete. 

)% Finally, let-us shog}that 
> ol $1=?g\ ks (24 (T17.04) 

!] ‘(poh)fdv' == g(poh)fida ;('5‘4“) 

= - 
for all regions E. In conjunctiong with (41), this will prove 

(26). First, o and v' coincide on all subregions of
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{s|n(s) < %}, from (27). Hence (64) is true for any E 

contained in this set. Second‘f, for E ¢ {s|h(s) >Afgii>wsr 

havetr{B}—=—0y—frem(29) . HonceSthe left side of (64) is 
zero, from ((fi;. 

To prove (65), let x € X. Then (x,y) supports p for some 

number y, which implies that 
-\ ; 

i ety i 
% - o . 

v'is‘ |a(s) - x| < s} > 0, : 

for all ¢ > 0, from (38). If x exceeded Xo o (66) would 

contradict (28). This proves (65). But p(x) = 0 for all 

X > sup X, so that p(h(s)) = 0 for all s ¢ E. 

As for the right side, we first note that 
g ) 

{ ?{H'! Vo < 

(65) 

(66) 

Thus the right 

side of (64) is also zero, and (64) is again true. Finally, 

any region E splite into sets of these two types, so (64) is 

true in general. This completes the proof of (26).”,Lkfiflstfi§ 
Rt e 

These results are worth contemplating. The number X, 

the "natural radius" of the Thiinen system, and corresponds 

the classical "margin of cultivation?g Beyond X, land is 

permanently vacant and free, while land closer than Xq is 

is 

to 

filled to capacity.fi (#ut "filled" with lower and lower density 

uses as one moves outward,-of-ceurse.) Note that x, can equal 

4+, indicating an infinite Thiinen system with no boundary. 

The natural radius is "almost" unique in the following 

sense; X0 is another natural radius iff 

a{s|h(s) is between X, and roo} = 0, (69



M 

(This statement easily follows from (27) and (28).) 1In the 

classical Thiinen situation, for example, where S is the plane, 

h is Euclidean distance from the nucleus, and o is‘égg;;%;un 

area, (€7) implies NS Xy SO the natural radius is indeed 

unique. ' 

The fact that p is an (almost everywhere) left half= 

potential yields aigreatsdeal~o§ information about p (and thus 

about land values, via (26)), for the results of sectionQS 

apply. To see what is involved, define k:reals + extended 

reals by 
: 

k(y) = inflp(x) + £(x,y) |x € X n 3}, (68) 
where X and Z are delined ac i the preceding proof. 

C—This implies that P J g 

p(x) = EEP{k(Y) - £(x,y) |y reall, e6§)> 

for all x e X n zZ. To prove (69), first note that (68) implies 

p(x) > k(y) - £(x,y) 70) 

for all x ¢ X n %2, all real ve Let Xy € XN Z be given, and 

let Yo be the (unique) number such that (xz,yz) supports A. 

From (25) it follows that the infimum in (68) for ¥ =¥, is 

attained at x = X,. Hence (70) is satisfied with equality at 

(xz,yé), so that (SQl is proved for x = Xoe 

The pair (p,k) have most of the characteristics of a 

topological potential for A (relative to f). But k, unlike 

P, has no simple intuitive interpretation. (One may strain 

e a bit and interpret k(y) as the maximum cost per unit area gn
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t . Ko agent operating a land use of weight y would put—up-with), 

(69) may how be applied as in sectionid. For example, 

if f(-,y) is a concave function for each Y, then p, as the 
B 

supremum of convex functions, is convex. More precisely, if 

Xjr X3s X3 € (X 0 2) and x, = Qx, +{" (1-8)x,, where 8 lies 
between 0 and 1, then 

plx,) < op(x;) + (1-8)p(x,). (71) 

(Since (71) may not apply to all triples Xyr Xy, X, the 

stated condition might better be called ”convexity almost 

everywhere"), 

A Simplified Approach 

The foregoing results concerning the structure of a 

Thilnen social equilibrium,fmhile rather striking, are also 

rather complicated to derive. At the same time, the unders 

lying arguments are basically quite simple, though .this fact 

is obscured by the requirements of rigor. It_seems‘worths 

while/then, to present an alternative approach ahich is 

heuristic and informal. The sacrifice of rigor extends not 

only to the reasoning but even to the concepts themselves. 

Thus the notion of "running a land use at a location” is 

b/%nherently vague, and must be translated into measure-theoretic A \ 

lan guage to attain clarigy. But to carry out all the clarifis 

cations needed would simply land us back in the complexities 

of the preceding proofs. Let us therefore plunge ahead 

boldly, 3%
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20 Let there be a social equilibrium, with agent n, running 

land use q; at site Sy i = 1,2, The weight of land use q4 is 

w(qi) = Yy and the distance of site Sy from the nucleus is 

h(s;) = Xip i = 1,2. 

. We assume as usual that the transport cost incurred per 

acre at distance x for weight y is given by f£(x,y), where f 

has positive cross-differences. Also assume that there iz a 

land-value density function p(s). 

‘Now_agent n, has the option of relinquishing an acre of 

land "at" site Sqv acquiring an acre of land "at" site Sy and 

switching his land use q; from s, to S,. This does not change 

his allotment; hence, since he is initially in equilibrium, 

this change cannot reduce his total costs. Thus 

(7.7 %) 

Blsy) + £(x,,y,) 2 Blsy) + £(x,,y,). (r2) } 

The left side of (72) is approximately the total cost incurred 

by agent ny from the running of one acre of land use q, at 

site S;+ The right side is about what his total costs would 

be from running dq instead on an acre at S5, A similar 

argument applies to agent Ny, who has the option of switching 

his land use 9, from site s, to Sy This yields 

B(s,) + £(x,,v,) < B(sy) + £(xy,¥,) (73) 

(which is just (72) with subscripts interchanged),
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These are the key relations. Adding (72) and (73), p 

drops out and we obtain 

afiu ' (€7 
f‘xl'yl) + f(xzryz) £ f(XIIY2) + f(xzayl)o (74) 

Now if Xy < X,, we cannot have y; < yz, for otherwise (74) 

would contradict the fact that £ has positive cross< 

differences. Thatuis, it cannot happen that a lighter land 

use is "at" a nearer site while a heavier use is "at" a more 

distant site. This may be taken as a heuristi? characteriza- 

tion of the weight-falloff condition. 

Next, take the special case where X =X, v572) and (73) 

"ehen yield}é}sl) < 5(52) §,§(s1), so that p(sl) = p(sz). Fhat 

is, whenever two sites have?the same ideal distance, they 
L 

have the same land-value density. It follows that P may be 
- 

written as a composite function, poh. - (73) then| reduces to/ 
e 

Plx,) + £(x,,y,) < plx;) + £(x,,v,). {75) 

This is a heuristic form of the condition (25) that p be a 

left half-potential for A, the plane measure induced by the 

mapping (s,q) + (h(s),w(q)) from the assignment v. 

From (75) one can derive several properties of p from 

corresponding properties of f. The two most interesting are 

monotonicity and convexitys 

Eor 
let £(-,y) be strictly increasing fgo each y, and choose 
  

Xy < X, Assume there is a location S, at distance X, from 

the nucleus, with a land use d, in operation "at" S,i let Yo
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\j) be the weight of qqy- Then (75) is satisfied for this 

~ 
N\ 

Y 

Xyr X5 Yoo Hence. 

p(xy) = p(x,) > £(x,,y,) = £(x,,v,) > 0, 

so fthat p is strictly decreasing. ' 

: Let £(°,y) be a concave function for each y, and let L concave 
& | 

Xy1 Xyy Xg satisfy?fi‘xz = 6x1v+ (1~e)x3, where 0 is a number 

etween 0 and 1. Assume as above that there is a location 8y 

at distance xz)with a land use q, of weightZy2 operating "at" 
it 

%é@ s5. |(75) isythen{satisfied for this x;, X,, y,, and we also 
2 
/( 

N 

have , 
2.7 

plxy) + £(x),y,) < plx;) + £(x5,7,), 76> 

upon substituting Xq for Xy in (75). Now multiply (75) by 0, 

(76) by (1-6), and add. After rearrangement we obtain 

& 

  

But the right side of (77) is nonrnegative, since £(e,y,) is 

concave. Hence p is a convex function. (This argument can 

be spruced up to provide an alternative rigorous derivation of 

the "almost everywhere convexity" property (71))@} 

    

  

~Q«€! Finally, we indicate briefly how one goes from (75) to 
(57 £3) :fi k \ 

= / the important line integral representation of pf\ (cf. {(83)of 

J 
sec =52 

i / } 

0P () )+ (1-0)p (x3) = () [> £ (x5,¥,)-0F () ,¥,) = (1-0) £ xy,7,) o 63) 
1] 
]
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20 

X | ZZL a0 J 
P(zl) - P(zz) = § ’?1f(x,y%dx: +78) 

' | AN 
1 

Here le(x,y) is the partial derivative of £ with respect to 

its first argument, and the integral is taken along the line 

of support in the plane, connecting the points of support for 

A, {see—pages——above)l. We may assume that 2y < Z,. Choose 

“Zyw} a sequence x_ < Xy Selaa® X with x_ = Zy0 X, = 2,0 and let e e n e 
yi be a number such that (xi,yi) is on the line of support, 

o 
|} i=0,...,n. We then obtain LLJ fe ) 

(f(Xi'Yi) f(Xi—l'Yi)) i(p (xi-l) g (Xi)) | «;_‘,- %’{‘ e | 0y / LR \4 

< (Elxgoyy ) {EA A ¢ 
08 L = 1,400 : k\lf' 

The left inequality in (79) arises from substituting the 

é | triple of numbers (xi 17 %50 ¥y ) for (xl, Xy yz) in (75); the 

right inequality inZ}79) arises from substituting the triple 

(xi, Xy .10 Yi-l) for (xl, Xo 0 yz) in (75). 

Now add the inequalities (79) over i = l1,...,n. The p ey 
flcV&, terms in the middle add to p(xg) - p(x ), which is the left 

S0 assuw\u\j (‘hT\hk\r oé Dflf} side of (78). -6n~the~etherchand, with—the~properacdntiee¥ef 

assumptions, both the left and right hand f-differences in N 4 & 
(79) can be appf%ximated by (x - xi_l)le(xi,yi). Adding 

this over i yields essentiallila Riemann sunm for the line 

integral in (78). _Under—the proper—assumptiens, A limit 

argument then establishes (78),
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8.8, The Thunen System as a Social Equilibrium: Discussion 

One striking fact about the model just developed is its 

great generality, or — what is the same thing — the weakness of 

the assumptions from which we start. ¥g»recapitulate the main 

ideass First, area, distance)and weight are all dideal?@ which 

allows great flexibility in incorporating geographic and 

institutional irregularities. Second, no assumption is made 

concerning the region controlled by any one agent. It may 

consist of many scattered parcels, near and far, of irregular 

shapes. Third, the only assumption concerning preferences is 

lnbxc&nsectionm?, which may be roughly stated as: gther things 

being equal, lower costs are preferred to higher.” 

This generality of preferences is especially important for 

the real-estate market, such as we are-dealing-with here. 1In 

industry analysis one deals with businessmen engaged in similar 

activitiesfixand ¢ne has some basis for assuming similar motiva= 

tions (typicallysene assumes they all maximize income). But in 

the real-estate market we have religious, commercial, governg 

mental, residential, etc., land users all participating. Thus 

philanthropists and robber barons, bureaucrats and businessmen, 

are all competing cheek-by-jowl in the same market, and one can 

hardly assume uniformity of preferences among these agents. 

(These remarks assume there are no zoning restrictions. With 

a zoning law the market splits to some extent into "non- 

competing groupsfibgbut still with considerable diversity within
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these groups). 

The two other main assumptions,-it-is—true, are rather 

more restrictive. These arei the absence of any constraint 

on land«use assignments other than the areal capacity constraint, 

{1)—of sjee-tienw?*, and the characteristic form) for transportas 

tion costs, (2)-of section 7 (with £ having positive cross= 

differences). In the mext sectionéae»shail argue that these 

assumptions apply to a broader range of cases than might be 

expected at first glance. 

zLetxus now examine the foregoing Thiinen system from the 

point of view of social welfares 1Is the social equilibrium at 

which the market arrives optimal in some sense? We know that 

the equilibrium assignment v satisfies the measurable weight= 

falloff condition, and that it is therefore optimal for the 

allotment-assignment problem defined by its marginals and the 
L 

  

(assuming certain 

other weak premises);see-page——above). That is, v minimizes 

total transport costs over the set of all measures on S x @ 
WA 

This 

transport cost integral,. - 

having left;band right;%arginals v' and v", respectively. 

has been vaguely recognized (but never really proved or stated 

clearly) by several writers who claim that land uses arrange 

themselves to minimize the "friction of space?.f 

But does this property imply social optimality? According 

to Alonso it does not,wbecause the reduction of transport cost 
N 

is just one desideratum, which must be balanced against others,
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such as freedom from congestion and the quality of life.§§/ 

This statement is of-course correct; however, it is also 

irrelevant for the question under discussion. The~reasonaisv 

that v minimizes transport cost over a set of,measures with 

the game right marginalg v", and this constraint has the effect 

of holding constant all the other desiderata. 

To spell this out, let v, on universe set Sn xxgkbe the 

¥ ' 
assignment of agentln, n=1,2,... « We then have 

\W V"=\)1"+\)" +coo' 
2 

where v " is thelright marginal of v . Consider now any 

alternative system of assignments, V n=1,2,..., vyielding nl 

overall assignment V by direct summation, such'that these 

satisfy 
| @< 1) 

-Gn' = \)n“fw~ 1) 

for all n = 1,2,..., and ’ 

F o= v “2) 

Adding (1) over all n, we obtain- 

I m v ‘ d%) 

' (2) and (3) then)imply that transport cost under ¥ is at least 

as large as under v. At the same time, (1) indicates that the 

mode of life of all agents is the same under these two situa- 

tions@fseewpages*wM« abovVe ..



961 

Since all other desiderata are held constant, it would 

seem that minimization of transport cost is a necessary condi- 

tion for social optimality. As in so many other contexts, it 

appears that here too the competitive market solution has 

socially desirable features. 

cdf\gflfowever, the same inefficiencies that crop up in competi- 

wwvtive solutions also arise here. Transport cost here is the sum 

of all individual costs, as personally assessed by each 

separate agent, Now in transportation particularly there are 

all sorts of costs imposed on other agents which are not 

assessed against the travelgor shipper, and would not bhe 

counted in his private costs. These “external” costs include 

delays and crowding for other travelers, increased risks of 

accident for them, pollution and noise, etc.39/ Second, the 

market implicitly weights the preferences of different agents 

by treating all dollars equally, no matter who spends them; 

one may decide to reject this weighting on ethical grounds. 

In either of these cases, the fact that the market minimizes 

"total transport costs" loses its normative significancefiiy 

Let-us now turn to the structural implications of the 

model., Since the Thiinen social equilibrium turns out to be an 

optimal solution to the allotment-assignment problem, the 

extensive discussion of section 6 applies to it. Thus we get 

Thilnen "rings" of land uses of decreasing weight as we go 

outward from the nucleus, The "rings" tend to be elongated
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along major transport arteriesj% leading to "urban sprawl; #? 

and to form disconnected subcenters around points of access 

to limited-access transportation systems (highway interchanges, 

airports, railway stations;metea)3 This latter process yields 

a "central place" hierarchy of centers and land uses;igfthe 

"higher-order" activities being those stéh are heavier, 

Now consider the weight-falloff property more closely. 

First)let~ss note what it does%ggt state. It says nothing 

about how much land is to be allotted to various uses, or even 

whether a given land use will appear in the system at all.;g/ 

It only states that if two land uses do appear, the heavier 

will be closer to the nucleus (or, at worst, equidistant from 

it). HNow cities exhibit certain broad regularities in the 

oxrdering of their land uses by distance, and it is enlightening 

to compare these regularities with the predictions of the 

weight-falloff property. 

Consider multiple-story structures. 

  

PAGE. Ehere is a general (but not perfect) tendency for 

land uses invblving many stories to be heavier than land uses 

involving few stories. We wouldlexpect, then, the skyline of 

a city to get lower as one moves away from the nucleus (is.hey 

the CBD) — as of conrse it does. 

The exceptions to this rule are no less enlightening than 

the uses:&fi%ch conform to}it.: The exceptions are there for 

most part thanks to political intervention whiech consciously
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sets itself against the natural tendency of the market fi-either 

by direct public ownership, in the case of streets, parks, etc., 

or by laws forcing private owners to limit the coverage of 

their lots and the size and bulk of their buildings. The case 

of the transportation system is particularly interesting. 

There is some tendency for transportation to conform to the 

general pattern, with elevated highways, subways, etc., in 

downtown areas: but clearly the stacking of transportation 

surfaces is carried laes far than the stacking of other kinds 

of land uses. Actually, transportation is not a land use in 

the sense in which we are using the term in the Thiinen modelpg 

Here "land use" is b; definition sedentary. Thus there is no 

strong reason to expect that transportation would conform to 

the general weight-falloff pattern. 
"« 

O 

The analysis just given identifiesXmSpace* mith the 

surface of the 7hrth and considers vertically stacked floors 

to be parts of one land use. There—is an alternative view 

werd-eR identifiesfi“Space" with horizontal surfaces of support, 

5nciudin? thegszfarate floors of a multiple-story structure 

“{see—page———above)., On this view, each story supports a 

separate land use. This alternative view yields some additional 

predictions. The ideal distance of a site from the nucleus now 

includes not only the cost of surface transportation,fibut also 

vertical transportation costs if the site is not at ground 

level. Thus ideal distance rises with each successively higher
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story (successively lower in the case of subterranean struc- 

tures). 

Applying the model to this situation, one expects a pro- 

gressive lightening of land uses as one moves vertically away 

from ground level, together with a fall in the value of floor 

space — just as if one had moved horizontally further from the 

nucleus. (A rough analogy would be the climatic zones on a 

mountain at the equator; the zones -ene passeg through going 

upward approximate those -one passes’through going poleward.) 

Are these predictions borne out? In general, rental value 
| UL 

falls as one goes from the ground, to the second or third floors, 

2 
7 

and this pattern conforms to expectations. But (if there is an 

elevator) it levels out and perhaps rises for higher floors.figf 

To put these facts in perspective, ene—sheuld note the follow- 

ing points. First, successive floors are not perfect substitutes 

for each other)iieither technically{ in terms of the weight of 
(2 

machinery, vibration, etc., they can sustain} or psychologically: 

(fiigher floors have cleaner air, less street noise, commanding 

views, and the general quality of "upmanship”fishich leads 

people to climb mountains, sit on raised filatforms, and wear 

elevator shoe%; This lack of homogeneity violates one of the 

conditions of the model, and helps explain the rise in rentals 

on upper floors. 7 

Second, the "ideal" height of even the tallest existing 

skyscraper is rather small%& just a few minutes of travel time. 

If it took, say,;halfean—hour to get to the top we would begin 

N
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to find some palpable differentiation among stories. -Nete also 

that much of the incremental cost is incurred in the first 

floor or two (in the form of waiting time or stairiclimbing), 

which helps explain the rapid initial fall of rent. ¢ (The well=" 

known specialization of ground floors in retail trade seems to 

be due to their high visibility from the street, a factor 

7w§ich again vioclates one of the conditions of the model. This 

also contributes to the initial fall in rent.)’ 

Let us now turn to land speculationf%-thét;is;”the policy 

of delaying the onset of a land’use to some point in the future. 

As discussedkabeveempage' *":;\this delayed activity is a land 

use in its own right, the forward timeldiSPlacement of the 

original activity. It-was-noted-that, in general, a forward 

time=displaced land use is 1ighter than the original. Eence, 

if use g and its displacement/g' both appear in a Thiinen system, 

g' will locate further from the nucleus than q, by the weight=" 

falloff condition. 

We would expect, then, a general tendency for land uses to 

become more delayed in onset as -one moves outward from he 

nucleussy The initial fallow period, before any impofts?gr 

exports arise from the site, should become longer with distance. 

This is observed, and is in—fact the phenomenon of suburbanizag 

tion. 

Ag the same time, there -are certain exceptions to this 

rule waich are also implied by the weight-falloff conditionf.\\\\ 

=13
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Let d; be a land use and ql' a forward timejdisplacement of qqe 

While g;' is lighter than 4y, it may well be heavier than 

another land use g, whose onset occurs before that of gq;'. 1In 

this case, if ql' and ds both appear in the system, ql' will 

locate closer to the nucleus than will dge There will then be 

an interval of }ime during which a nearer region (that 

occupied by qi') will remain vacant while a further region 

(occupied by gz) will be busily importing and exporting. This 

is the phenomenon of leapfrogging, which has been widely 

observed and commented on. The-point-to note is that it'does 

not constitute an "intensity-reversal" contradicting the 

weight-falloff condition, if "intensity" is correctly measured 

as an integral over the entire time-horizon of the system, and 

not as a short-run indicator.fi} 

The typical land uses of the central business district — 

sneh—asgfront-office and professional activities, advertising, 

finance, geverament department stores, theaters, night clubs, 

and hotels>1 should be the heaviest in the system, since they 

are the most central. Their weight arises from their eminent 

"stackability" into multiple stories and the high densities of 

people with relatively high-cost time involved in themfea/ 

At the other extreme, typically suburban land uses, such 

as golf courses and cemeteries, shade off finally into agri- 

culture, These are all very light compared with most urban 

e 
land uses, and the pattern again conforms to wgight-falloff,
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Manufacturing is found at all distances, and this reflects 

the heterogeneous character of this class of land uses. Sub= 

urban manufacturing is typically a one~story affair, with 

large areas devoted to parking, storage ,and landscaped grounds, 

while central manufacturing tends to occuriin lofts with a 

densely;crowded 1abor force. Note7“by~themway,sthatfithe 

typical designation of certain manufacturing activities as 

"light" or "heavy" has nothing to do with their ideal weights. 

The "heavy" activity of steelmaking, for example, is much 

lighter in ideal weight than the "light" activity of apparel 

manufacture, -and the much more centralized location of the 

latter activity bears this out. 
\ 

S WgflIn general, the higher the average population density 

associated with a given land use, the heavier the weight of 

that land use, so that one expects a gradual diminution of 

crowding as one moves outward. (The cenfiralmbusinessmdistrict 

itself generally has a lower residential density than its 

environs. But in terms of the’actual location of people ;{at 

work, shopping, etc.)— it would probably have the highest 

density of all) | 

There-are, however, certain exceptions which are implied 

by the weight-falloff condition. Ideal weight depends not only 

on density,lbut on trip-taking propensities and the cost of 

moving the people involved. The weight of a retirement colony, 

for example, would be reduced for both these reasons:, Retired 

people tend to be%“light*‘because their incomes are low, and
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their earned incomes are very low; furthermore, their trips to 

the center of town will be relatively infrequent. Thus we 

would expect retirement colonies to locate farther out than 

most other land uses having their population density. 

Again, consider the influence of‘family size on location 

of residence. Extra children generate more local trips i{to 

schools, playgrounds, etc§ — but probably few if any extra 

trips to the center of town. At the same timejthey increase 

the family's demand for floor space. Since local trips do not 

add to activity weight, the net result would seem to be that 

larger families tend to choose lower weight residential uses 

than smaller families. As a result, larger families should 

generally live farther from the center‘of town than smaller 

families. (This argument assumes thatwhother things“fibesides 

family size are equal — in particular, tastes and standard of 

living, as measured, say, by total income, or per-capita income, 

or something in betweem)fi 

fiet“us now turn to the relation of family income and 

residential distance from the nucleus. The question of 

whether the rich or the poor live closer to the nucleus reduces, 

by the weight-falloff principle, to the guestion of whether 

the rich or the poor choose the heavier residential land use. 

Income will affect residential weight in two ways: via the 

density at which people live, and via the travel costs incurred 

per person.
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The effect on density is well known. Low-income housing 

involves on the average more people per acre, for several 

reasons: There are fewer square feet of floor space per person; 

‘a-greater proportion of housing is in the form of multiple- 

story dwellings; and there is less open space per person in the 

form of lawns, playgrounds, parking facilities, etc. (There 

are, to be sure, high-rise luxury apartments, but these are 

exceptionafl: The residential land uses of the poor thus tend 

to be heavier than those of the rich, hence closer to the 

nucleus. 

The effect of income on travel cost is less clear., Travel 

cost resolves itself into the frequency with which one takes 

trips to the nucleus, and the cost per unit distance of a trip. 

Trip frequency in turn depends on steadiness of employment, 

tastes in recreation and shopping, etc.; the influence of 

income on these factors is unclear. A As—diseussed-above, vage 

;;fighe cost of travel time rises with income, especially 

earned income. onmtheiotherwhand, the rich are more likely to 

drive cars, ride taxis, etc., which compensate for these costs., 

While the overall effect is thus unclear, it may well be large, 

possibly large enough to overb;lance the density effect. 1In 

this case the rich would live closer to the nucleus than the 

poor.43 

This ambiguous conclusion is matched by ambiguous evidence. 

In developed countries the poor generally live closer to the 

center of town, but this is often reversed in the underdeveloped
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world and in past civilizations.%d” 

The tendency for the poor to live closer to the center 

is abetted by the fact that cities grow outward, so that the 

older, more dilapidatedfi buildings tend to be located toward 

the center., The poor will gravitate toward the lower gquality 

housing stock (see page————abeve) and thus inadvertently 

settle close to the nucleus.&EfVThis factor, however, escapes 

the confines of the formal model of this section,Dbecause it 

involves a change in control of land over times ;he original 

occupants of central-city housing hand it over to pooger suc- 

cessors as it deteriorates. The formal model, on-theother 

hand, contemplates a single real-estate auction at "time zerof., 

In the above discussion, it has been difficult to avoid 

making statements of one-way causality among.variables.. This 

is misleading, since one is really dealing with the simultaneous 

determination of equilibrium values. For example, the housing 

choices of rich vs. poor families —(evenZassuming identical 

tastes) —~ will depend on the structure of rental-prices for the 

various qualities of housing, and these prices in turn depend 

on the actions of all land users in the system. For that 

matter, the level of family income itself is in part subject to 

choice, to be decided on jointly with the choice of housing 

quality, location, trip-frequencies, etc. 

Similarly, take the relation of car ownership to location. 

An automobile acts as a general “levitator?,;so that one expects 

car owners to make lighter residential choices and therefore
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locate farther out. This makes car ownership appear to be the 

exogenous,- causal variable. But one can also argue that 

families who decide to locate farther out find car ownership 

relatively advantageous,_and are therefore more likely to buy 

cars. Actually, the probiem for each family is one of choosing 

the most preferred configuration of several variables jointly, 

and it is in general not correct to argue that the choice of 

one variable causes the choice of another. We do find a 

positive correlation between car ownership and distance from 

the center of town, as expected, but no clear-cut causal rela2 

tion has so far emerged, which again is to be expected in view 

of the abovy comments. s 

wi;t;us now turn from the structure of land uses to land 

values. As usual, f(x,y) is the transport cost per acre 

incurred by a land use of weight y at distance x from the 

nucleus, and p(x) is the land value per acre at distance x}\ 

(area, weight)and distance all being "ideal" quantities). We 

concluded above that if, for each Y+ the function f£(-,y) is 

increasing and concave, then the function p will be decreasing 

and convex. Is this premise realistic, and,’if so, is the con2 

clusion borne out in real cities? k 

One difficulty that arises in trying to answer this guestion 

is that transport costs and land values are given in terms of 

physical, not ideal, acres and miles, so that a translation 

problem arises. For most urban land uses, one flat, well-
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drained parcel is about as suitable as anothe:; and for these 

%hé.may identify real and ideal area. For the sake of argument 

Iatgus also identify real and ideal distances. (One way to 

judge the realism of this assumption is to see how well the 

isochrones)fi-the loci of points of equalztravelfiime from the 

nucleus)éfapproximate to concentric circleé}} For fixed 

weight y, transport cost certainly incfigases with distance. 

Increasing congestion as;éfié approachéggthe center of town 

tends to make it concave as well. Thét is, the closer one is 

to the nucleus, the more costly it is (in terms of time, mental 

strain, etc.) to travel a given physical distance; This makes 

f concave in distance. As for the conclusion, the most striking 

manifestations of the decreasing convexity of p are the extreme 

heights to which land values per acre rise in the central 

business districts of large cities. 

These results must be interpreted with some care. "Land 

value" refers to time zero, where all land is assumed to be 

uniform (except for varying distances from the nucleus, of 

course). To be concrete, think of the original state as a 

vacant lot, with no capital improvements on it (except perhaps 

for drainage and leveling). Indeed, the formal model envisions 

just one omnibus real-estate auction at time zero, so that land 

values at other times are not even meaningful. In reality, of 

course, the real-estate market endures, with control of the 

same parcel passing from agent to agent. The gquestion then 

arise35 Must the cross-sectional distribution of land values
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at any future time conform to the Thiinen pattern? 

The answer is no. To take a no£¥unrealistic example, 

suppose someone invests heavily in a suburban plot, while an 

"inner city" plot is allowed to become "blighted". The former 

can easily become more valuable than the latter, reversing the 

original order. Only if one can isolate a "pu:é site value" 

might the original Thiinen pattern be retained. (Note that the 

"improvement value" of a site can be negativé; so that 

clearance of the site é-which restores its original vacant 

condition L improves its market value). 

Let us, finally, indicate some ways in which the assump- 

tions of the Thiinen mbdel might be weakened in a realistic 

direction without invalidating its conclusions. We begin by 

introducing real-estate taxation. Suppose there is a tax 

function t:S X Q + reals, where t(s,q) is the tax liability 

incurred per acie by an agent running land use g at site 3. 

More precisely, if agent n controls region Sn and chooses 

assignment v, over S x MW then his total tax liability is 

Ll . e 
I t(s,q)vn(ds,dq). 4) 

S x 
n WA 

\. 

Cy.\é’zghis tax liability must be reflected in the preferences of 

e 
the agents participating in the system. The natural way to 

do this is by a simple reinterpretation of preference condition gyivjf 

«444m9£msee%éea~4+waaEely;.of two actions leading to the same 

allotment, the agent'prefers the one incurring lower total
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costs:z?here costs include not only land costsfi_€3+mofwsectien 

. and firansport costs}(zi-of seetion-7, but g;ég tax costs, - 

(4) abeve. . 3 

Wé»eha&i not attempt a fully fitgorous discussion of the 

influence of thlglpew factor, but 1nstead follow the informal 

simplified approach of (?34 té (75), sac#&eami- Let there be 

a social equilibrium, with agent ng running land use a4 at 

site S50 i=1,2. The weight of a4 is Xy and the distance of 

sy from the nucleus is Xy i =1,2, Then 

P 9 

t(sl:ql) C is(sl) + f(xllyl) < t("szlql) + fi(sz) + f(leyl)p T§'3 

where p is the land-value density function. s 
/d/‘ 

A The argument for (5) is essentially the same as for (72) of 

~section—7. -Namely, agent ny has the option of switching one 

acre of land use q; from site 8, to s,. This leaves his allots 

ment unchanged; hence, since he is initially in equilibrium, 

this switch cannot decrease his costs., Thus the left side of 

(5), which is the tax plus land plui transport cost incurred 

from running an acre of q, at s,, does not exceed the right 

side of (5), which is the total cost he incurs from running ay 

at s,. 

. Reversing the roles of agents ny and n,, we find that (5) 

remains true if the subscripts "1" and:“zfi are igterchanged 

throughout. 

We now make the assumption that the tax function t is 

separated. That-is, we assume there-exist functions 
A 
0
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NI 
g:S + reals and u:Q + reals such that 

t(s,q) = g(s) i u(q)' 
w J 

for ;11 s\e S, gée€ Q- How realistic is this assumption? 

First, consider a Henry Georgeitype tax on unimproved site 

value. This depends only on s, not on g, hence is of the form 

(6)j(with u identically zero). Next, consider a tax on 

improvements only. It is not implausible that the improvement 

value of a given land use q will not vary much from site to 

site; in this case the tax function will be moréiorzless 

independent of s, and again be in the form (G)zYwith g 

identically zero). (The principle of “fireating equals equally" 

would tend to make such a tax independent of site in any case)w 

Actual real-estate taxes are generallylin the form of a sum 

of the two types just mentioned, hence again in the form (6). 

There are a number of circumstafices, however, in which 

(6) is not realistic. One example i; when different land 

uses are taxed at different rates J&say when industrial land 

uses are taxed more heavily than residential. For in this 

case the rate of taxation of site value depends on the land 

use occupying the site, and there is interaction between s and 

d. Another such case arises when Space is partitioned into 

several different political jurisdictions, each ggth its own 

tax structure. Thus,‘one jurisdiction may grant tax conE 

cessions to industry, while another may not; this leads to
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interaction between s and g. Even when the tax structures of 

different jurisdictions are similar, and they differ only in 

"l tax levels, (6) is{violated; for in this case g and g would 

combine multiplicatively rather than additively. Very roughly, 

then, (6) seems a good approximation within a single politicalrm 

jurisdiction, but not between them. 

re it now trace the implications of (6). Substituting 

in (5), we obtain 

(7. 9:1) 

T lg(sy) + B(sy)] + £(xy,y;) < [g(sy) + Bls,)] + £(x,,y,). % 

Furthermore, if we first interchange subscripts in (5) and 

then substitute, we obtain (7) with its subscript§—}§t§r§ 

changed. Now (7) and its intexchange differ from{ 61;)) and 

(éédfgf«sactien~1, respectively, only in the fact that the 

function P in (72)-(73) is replaéed by g + P in (7). The 

argument following {?&Thofi;eéfiion 7 may now be repeated 

verbatim,“except for replacing P by g + p. We conclude,-then, 

that the equilibrium assignment still satisfies the weight= 

falloff condition, even with the tax. Also, g + p depends 

only on ideal distance h, so that thexre exists a function 

p:reals + reals/satisfying 

g(s) + p(s) = p(h(s)), 

for all s € S. The function p has the properties thati if 

£(°,v) is increasing for all y, then p is decreasing, and, if 

£(°,y) is concave for all y, then p is convex.
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These results must be interpreted with care. The fact 

that weight-falloff is preserved does not mean that the tax 

has no behavioral effects. On the contrary, heavily taxed 

land uses (high u-values) will tend to occupy fewer acres,;;nd 

may disappear entirely, to be replaced by lightly taxed fises. 

But the order in which land uses are ranged, by increasing 

distance from the nucleus, will not changey Heavyweight uses 

will still be closer than lightweight uses. 

‘Note—that ;f is no longer 1§nd valuesfiggg}ggfi;éiéh have 

the simple regularity propertiesfof the Thiinen ;Qétem, but 

if one parcel is 
_ o) 

more heavily taxed than its neighbor, its equilibrium'land 

only land values plus pure site taxes. Thus,. 

value will be sufficiently below that of its neighbor so that 

the sum of value plus tax is about the same on both., This is 

essentially the classical conclusion that a pure site tax 

falls completely on the landlord, even if levied on the tenant. 

(Actually, this is a bit inaccurateg The tax has wealth 

_redistribution effects fiiiéh reverberate throughout the systemsyfi 

We conclude the discussion of taxes with an exercisep 

Show that if (6) is alte:ed'by adding the term 6(h(s),w(q)) on 

the right, B:ieals2 + reals being any function having noq% 

negative cross~differences, then all the conclusions above 

remain valid, with the single exception that, in determining 

the properties of p, the function f + 6 should be used in place 

of £ alone.
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The remaining generalizations we-shall discuss involve 

reinterpretations of the concepts "transport cost" and "activity 

weight" used in the formal model. The basic idea of the model, 

after all, is that people try to move their activities closer 

to the nucleus to economize on transport costs; "activity 

weight" measures the strength of this pull. “Now suppose there 

were some other factor (not necessarily having anything to do 

with transportation),}whiéh made it desirable td be closer to 

the nucleus. This factor would then operate as a "pseudo 

transport cost" and could be incorporated formally into the 

model provided 3-and this is a strong assumption - its effects 

could be summarized in the ideal distance function h already 

in use for transportation. The "weights" of the various 

activities would be adjusted upward to refiect this new 

attractive force, the size of the adjustment depending on the 

impact of the factor on the particular activity in question. 

Similarly, there could be a factor whéeh made it desirable to 

be further from the nucleus, and this would lead to a downward 

adjustment of activity weights. (One could even have mixed 

effects, some activities being attracted and others repelled 

from the nucleus because of some factor). We shall briefly 

discuss several examples of such factdré. 

Take danger, for instance. This'comes<in several forms. 

Danger from invasion and raiding parties has been important in 

the past, as the existence of walled cities testifies; it still 

is present today in "unpacified" countries. This danger is
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greatest at the periphery and diminishes as one moves toward 

the center of town. Hence it constitutes an attractive force 

and increases ideal weights. As for the differential effects, 

consider once again residential activities of rich vs. poor 

families. The rich will presumably be willing to pay more for 

a given increment of safety than will the poor. Hence the 

residential activities of the rich gain more weight than those 
creales a t 

of the poor, and this aeeentuates the flendency for the rich to 

live closer to the center of town than the poor.%V 
A 

& gi\'l?nder modern conditions this source of danger is minor. 

Two other sources, however, are quite important: danger from 

criminals and danger from thermonuclear attack. These have 

just the opposite pattern, being least dangerous at the 

periphery and most dangerous toward the center. (For a partial 

explanation of this, see chapfierwfi,_§ectiofiw8M; Hence they 

have a dispersive effect, reducing ideal weights. *Agarfiwrthe 

rich should be more sensitive to these influences than the 

poor, accentuating the tendency for the rich to 1ivq,fa£ther 

from the center than the poor. o 

Most noq{transport factors seem to follow this latter 

pattexn, addi;g a centrifugal rather than centripetal force, 

reducing rather than increasing ideal weights. This applies 

to other aspects of the "urban syndrome“{;such as pollution, 

The fact that pollution decreases as one moves outward makes 

it a dispersive force. The rich, being willing to pay nore 

than the poor for a given physical decrease in pollution-



O 
280 

intensity, will again tend to reside farther from the nucleus 

on this account. 

A different kind of influence may be allowed for by relaxing 

the entrepdt assumption that all (noQilocal) trips must go 

through the nucleus. Suppose instead that there are also 

external trips, in which one travels to the outside world by 

heading directly %ggz from the nucleus. Examples are furnished 

by certain typesf;E:outdoor recreation{ such as pleasure driving 

in the countryside. These trips exert a pull opposed to that of 

the nucleus, hence géé as “1evitatorsé,; The reduction in weight 

will be large for -those people with a strong taste for outdoor 

recreation or other activities involving external trips, and 

rfiésé~peaple will tend to reside at the periphery. 

As a final example, suppose some factor of production can 

be obtained on terms that vary systematically by distance from 

the nucleus. Specifically, suppose that wages decline as one 

moves away from the nucleus.4§/'Then any land use with positive 

labor cost can reduce it by moving outward, The wage gradient 

therefore acts as a levitator. The land uses most affected 

will be those which are most labor<intensive; to be pracise, 

the reduction in weight among land uses is proportional to their 

labor/land ratios.
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8.9. Thiinen Systems and the Real World 

The purpose of this section is, first of-all, to make a 

brief survey of some real-world Thiinen systems, and, secondly, 

to discuss briefly the origin and function of such systems, and 
- 

1 

how they fit together in a hierarchy. 

Whether a given real situation does indeed exemplify some 

theoretical concept is, in generalé a matter of judgement. 

une rarely finds a pure case in which the assumptions of the 

theory are realized exactlyp Instead there is generally more 

or less "noise" wh&ah-distorts the ideal conditions of the 

theory. If the "noise" is intense, the distortion may-be so 

severe that%he theory is useless for understanding what is going 

on. The question, then, is not whether the theory as interE 

preted is true or false, but whether it is a good or poor 

approximation to the situation in hand. 

In the present case we shald consider a real-world pattern 

to be a Thiilnen system if it satisfies tfio conditions. First, 

there should be some indicatiot of the concentric ring strucs 

ture predicted by the weight-falloff condition. Second, there 

should be some indication that this structure arises via the 

central mechanism of the theory, nume&y the attraction of the 

nucleus on the various land uses in operation. 

It would be highly éesirable to develop a series of indices 

of "goodness of fit" to ascertain in quantitative terms just 

how closely the followifig patterns gg_approximate to the ideal
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Thilnen pattern. To do this, however, would takélus far off 

course., In the absénce of such indices the folioWing comments 

may be helpful. The approximation to the ideal should be best 

at lntermedlate dlstances from the nucleus, but poor when very 

close to the nucleus and at the periphery og‘the system, 

There are several reasons why the fitiéhould be poor at 

the periphery. The pull of the nucleus is;very weak here, so 

that this systematic effect is more easilg overshadowed by 

random “hoise!,, Furthermore, the pattern; tends to be disrupted 

by external forces l{such as the pull offnuclei of neighboring 

Thiinen systems — which are strongest at;ihe periphery. Near 

the nucleus, on the other hand, the fitgis poor because of a 

scale leffect. The nucleus, after all,;is not really a geos 

metrical point as the model demands, bfit a region“wiééh is 

small compared with the system as a whple (fier«éxample, the 

inner central business district of a éity). As distances become 

sufficiently small to be comparable ié size to the nucleus itS 

self, the direction of pull becomes u;certain and its strength 

attenuated, j:St as the pull of graviéy weakens as one goes 

below the surface of theifiarth. l 

The distinction between local and non-local movement is 

important here. The latter refers to trips to and from the 

nucleus while the former refers to shtrt-distance trips-wh&eh 

do not affect the weight of land uses; Whether a trip is local 

or-not depends on the particular Thiinen system one-is investif 

gating. Thus a trip to a neighborhood shopping center would be
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local in the context of the city as a whole, but non+local 

when the neighpgrhood itself is thought of as a miniature 

Thiinen syste@f The distinction allows a great deal of flexi- 

bility in Qfiplying the apparently rigid requirements of the / 

S "y entrepdt model, that all trips must go to or come from the 

  

   

fi nucleusgf The totality of local movements may far overshadow 

;uangf;qégl:mpvementSBf?they undoubtedly do so for the larger 

Thiinen [systems. But non-slocal movements are focused on the 

nucleus, while local movements are diffuse in direction. This 

allows the former to exercise a systématic influence and lead 

to Thunen ring formation. ‘ 

Let—us now turn to real-world applications. (The following 

references are just a selectlon;from a much larger number that 

could have been cited.) The bqik of our illustrations have 

been at the city level, with tte centrél business district 

playing the role of nucleus.fiThe applicability of the Thiinen 

model to cities was noted bf Walter Isard (the germ of the idea 

can be traced back to Thfinén himself).%?f Independently, the 

"concentric-circle"” theor§ of city structure was promulgated by 

Ernest Burgess.%pf This Qts essentially an idealized descrip- 

tion, stressing the (poSitive) correlation between distance 

from the center of townfand socioreconomic status of residents. 

No satisfactory explanétion of this pattern was given, but,}as 

we have seen, this relation can be incorporated into a 

modernized Thiinen analysis.
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We pass over the plethora of other studies of internal 

city structure ;(ty sociologists, geographers, econonmists afid 

others )= and turn to the question of the existence of the:huclear 

attraction mechanism underlying the Thiinen model. There are 

several possible approaches here. The most straightforwérd is 

to take a census of traffic flows. Many studies confirm the 

fact that a large fraction of all trips have the CBD‘;S one 

terminusé?;J (Fhe fraction appears to be declining, however, as 

suburbanization continues). A related approach exa@ines the 

structure of the transportation grid, noting the egtent to which 

it is "radial“(:focusing on the nucleué} vs. "perffiheral"i by~ 

passing the nucleuét The predominance of a radi&i transporta= 

tion grid is both a symptom of strong nuclear attractlonA\ 

since transport arteries tend to get built along routes of 

heavy traffic flow lfiand a further influence strengthenlng that 

attraction. The same can be said about scheduied common-carrier 

routes., For-example, bus routes in Queens, New York, run pre- 

dominantly east-west, indicating that they serve as feeder 

lines for Manhattan commuter traff1c.§2 Raigroads in particular 

exhibit a strong radial pattern about largegtities, extending 

like spokes of a wheel from the c1t§&hub 1nto the hlnterland.53 

Furthermore, the city itself, especially ifi large, tends to be 

situated at a point of high natural nodal%tyvt)having good 

access to navigable rivers, mountain passeé, the ocean, etc.sfif 

(An explanation for this will be given in chapter—9; sectionqfixfi 
! Ny 

™~
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This tends to make regional traffic go through the city, 5 

making it a natural entrepfit, and underpinning the assumftions 

of the Thinen model. : i 

From the city level one can travel both upward anquowng 

ward in scale, Lét*us first go downward. The Thiinen éodel may 

be applied to communities within a city. Fraaklin Frazier 

found that Harlem in New York City exhibited a ring structure 

— that reproduced in miniature the Burgess concentricmzone modeli%gf 

At this level, the attraction of the nucleus is likeiy to stem 

from the availability there of shopping and recreational 

faCLlltleS, and the fact that the nucleus provides § transporta< 

‘thn gateway between the community and the rest of the city. 

,flgylwrarm villages serve as nuclei for the surrounding fields, 

The nearer fields tend to be cultivated more intensively thau 

the more distant, as befits a Thiinen system. Here the attrtc% 

tion of the nucleus stems from its residences and associated 

local facilities; it may also serve as a collection point for 

farm products. An individual farm with uniform terraiuvwill 

tend to have a similar structure, the nucleus being the farmz 

house. The problem of laying out the farm efficientiy, in fact, 

can be formulated as an allotment-assignment probléh (if the 

farmer makes a few simplifying assumptions), and{the solution 

to this satisfies the weight-falloff conditiona§§/ 

The Thiinen model applies roughly to theatgrs, arenas, and 

other facilities for public exhibitions. Hergsthe nucleus is 

the center of attention -~(stage, boxing ring(zetcfi - and
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"transport cost" is incurred in the form of deteriorating 

quality of the view as one moves farther from the center. 

"Land values" are the prices of seats, and these tend to rise 

as one moves closer to the center. "Land uses" are persons 

occupying seats, and their "weights" are given by their 

w1lllngness to pay for a given 1mprovement in quality of view, 

The "neavy” people will then gravitate to ringside, while the 

"light" people become groundlings. 

On eneie desk or workbench, a rational layout would find 

the more frequently used items c;eser to hand. One can give 

many more examples of such micrgacopic Thinen systems, called 

into existence by nuclear attraction. »%etéus now, however, 

drop these small=-scale systems and direct attention upward from 

the city level. I; iy 

First of-all, the inf;uence of a city generally extends 

far beyond its political boundaries. This influence is 

reflected in the correlations that exist between distance from 

the city and such variafiles as population density, land values, 

intensity of farming,_income, etc. This "metropolitan" system 

is merely the continuation outward of the city system; the 

latterzl-@o which we;have been devoting most attentiou;~@“ 

constitutes the inner rings of the complete system. When 

taking the ijjmetropélitan" point of view, it is often convenient 

to think of the entire city as being the nucleus. This is the 

approach of Thiinen himself and is implicit in some of the 

citations given above.
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Above the city-metropolitan level lies what might be 

called the sub+continental level. The system may be meetly 

contained in one country, as in the United States, or may 

embrace several countries, as in Western Europe. The nucleus 

is the "industrial heartland" of the region, which has the 

greatest concentration of population and capital goods and 

provides the major market of the system. In the United States 

this is the "#ortheastern industrial belt’?zy In Europe it is 

the Rhine-Ruhr complex. Land values, population density, and 

the "weight" of land uses all tend to decline as one moves 

away from the heartland. Also)perfeapita incomes tend to 

decline. This last fact establishes a link between sub- 

continental Thiinen systems and the tendency for developing 

economics to develop a "dual" structure, with a high-income 

sector utilizing modern technology and a lagging low-income 

sector using traditional methods. Very roughly, the "modern” 

sector will occupy the inner rings of the sgetem, while the 

"traditional" sector occupies the peripheryg For example, a 

United Nations study points up a very general tendency for the 

low-income sector within each Western Euroéean country to be 

that part of-it farthest from the Rhine—Rutr complex;§§/ 

One very suggestive aid for delineatfng Thilnen systems at 

this macrot+level ii John Q. Stewart's coneept of "potential" 

(not to be confused with the potentials ia the measure= 

theoretic transportation pretleéé;wvéer the most general 

definition, start with a measure space (S;Z,u) on which is
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defined a metric, h:S x S + reals, h(s,°*) being measurable for 

each s € S. Then the (Stewart) potential for u and h is the 

function p with domain S given by 

i 25 W €.9.1) 

S h(le) 7 
¢ 

where k = 1. S is usually a portion of the surfaCe of the 

fiarth, and h is usually Euclidean distance (pertaps great-circle 

distance if the curvature of the $arth over S ie significant). 

¥ is usually population or income measure (in;uhich case p is 

called population or income potential, respeétively), but other 

measures, such as employment or retail sa1e§; are also used. 

The potential p is, in effect,ha spatial moving average 

of measure y, and may be thought of as angindex of "generalized 

closeness" to u. In ;éing p to delineategThfinen systems, one 

takes p to index "closeness" to the nucléus, so that the isqi 

potential contour lines are taken to be_fioci of equal ideal 

distance. The justification for doing éhis is empiricalps 

Potential has a high correlation with Q§ny variables one 

expects to be related to ideal dista;cé in a Thiinen systenm, 

and the contour maps of potential lookgreasonable in terms of 

where the Thiinen rings saguld lie. Un%ortunately, no good 

theoretical reason has gg;n given as t; why a function of the 

form (1) should have these properties.é 

(There is a very crude argument fer setting the exponent 

A i 
k in (1) equal to 1, as in almost always done. Setting k equal
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to 0 obviously makes p a constant, a clear case of over— 

smoothing. - cn“thengtner—hand L,assuming S is the Earth' 

surface, and that u has a continuous density function with 

respect to Euclidean area - one can show that, as k approaches 

2 from below, p becomes proportional to the density function 

of u; thus one is,“in effect, reproducing ", a clear case of 

gngggamoothing. The;reasonable values for k thus;lie between 

0 and 2, and 1 seeme:a good compromise. This argument is weak, 

and it would be interesting to determine whether modifications 

of (1) give better fits) 

Taking S to be the United States (excluding Alaska and 

Hawaii) one finds that the maps of income and population 

potential are similar. The national peak is in the New York 

City area, and the contours are roughly concentric about this 

point clear out to the Rocky Mountains. West of the Rockies, 

a much lower secondary system éas emerged, centerfid on California. 

The primary system has persisted in main cutline for more than 

a century.sg' This may be taken as an estimate of the subt 

continental Thiinen structure for the UnitedEStates. 

At the highest level of all, one treata the entire world 

as a Thilnen system. Here the nucleus is tne "North Atlantic 

Heartland" of Northeastern United States anddwestern Europe. 

One way of assessing the structure of theéeyetem is by examin= 

ing international trade and travel, the bélk of which originates 

or terminates in this region. (At the woéld level, it is 

reasonable to assume that most "non¥local§ trips cross national
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_:B ;ltorders, and are picked up in the international transaction 

accounts). Another approach uses potentials. William Warntz 

has constructed a world income-potential map (using great- 

60 circle distances). This shows twin peaks, on the two sides 

of the Noxrth Atiantic, the world peak being in the New York 

City area. The contours are,’gor the most part, roughly conZ 

centric about the Heartland, with a much lower secondary 

system beginning to emerge, centered on Japan. 

This picture of a world Thiinen system evokes some familiar 

echoes. The period of high colonialism (say 1880-1914) has 

often been thought of in similar terms, especially by Marxian 

analysts. Here the mother countries of fiestern Europe struggle 

for colonies nhich function as sources of raw materials, and 

as outlets for manufactured goods and investments; the mother 

countries are the centers of managerial ané financial control. 

As a result, trade becomes strongly polarized into the radial 

Thiinen pattern. f 

-Of course, this system transcendsgihe Thiinen model we have 

been discussing, since it involves miritary and political 

factors operating outside the market éystem. Nonetheless, 

there is reason to believe that a similar pattern would have 

evolved even under a single world free-market system. "Colonial" 

relations did arise in the U. S. sub+continental Thiinen system, 

between #astern merchants and }Wall Street" on the one hand, 

and‘yEStern farmers and/southern planters on the other. 2nd on 

the metropolitan level one finds sifiilar relations between city 

banks and hinterland farmers mortgaged to them.
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In this same vein ene recalls Marshall Lin Piao's;analogy 

in which the Western world corresponds to the “citiee" and the 

underdeveloped world to the ”countryside@,sl In egéect,)he is 

comparing the world Thiinen system with the Chinese sub+ | 

continental Thiinen system, with the thought that the laws (of 

political struggle) which operate on one level’ should operate 

on another, ‘ 

Consider the concept of ideal distance in the context of 

economic distance, based on unit transport cost, is the proper 

concept to use in Thilnen models; this 1ed5us to expect certain 

characteristic distortions in the Thfinengtings, such as 

elongations along major transport arteriés and isolated pieces 

around points of access to the transportation grid., These same 

arguments apply to Thiinen systems at an? level, 

At the world level, -thexre still renain considerable dif§ 

ferencesibetween ideal and physical (i;e., great-circle) 

distances, although the advent of air;;nd automotive transZ 

portation, as well as radio communication, has tended to make 

ideal distances conform more closely to physical distances than 

used to be the case. The ideal/physrcal distance ratio tends 

to be relatively low across bodies of water,’ and relatively 

high across mountains, deserts, and regions characterized by 

very cold climates, endemic diseasesé and unsettled political 

conditions (pirates, bandits, guerriilas,jetc~). Ideal distance 

takes a discontinuous jump across national boundariesc\because
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of tariff and customs barriers, exchange controls, travel 

restrictions, etc. 

"Of “these, let us concentratejon the implications of land 

vs. water travel. The advantage 6f water was very great in the 

pre*railroad i9th fientury, when the shortest route from New York 

to California lay around Cape %orn. As a result the oceans of 

the world played a role in the;world Thilnen system similar to 

that which high-speed radialgiighways play in a city- 

metropolitan system. One consequence was that the interiors of 

continents tended to be fartner from the North Atlantic Heartc 

land,‘in ideal distance; than their coastal regions. The coast 

of Australia was closer to London than the interior of Africa 

was., . 

One would then expect the interiors of continents to have 

lighter land uses than their coastal regions, by the weight= 

falloff condition. A rough index of land-use weight is populas 

tion density. And, indeed; an estimated 2/3 of the human 

population live within SOOimiles of the sea; 56% of the populaf 

tion live at altitudes belew 200 meters, on just 28% of the 

world's land area.sz“ (Tnereaare other factors besides mere 

distance from the sea wheen keep continental interiors relatively 

empty, however, e.g., dryness, rough terrain, and cold)n 

N 
T ;,lwfurthermore, continents are internally differentiated in & 

terms of seaiaccess. In particular, land along navigable 

rivers will be relatively close to the worldInuclens in ideal 

terms, and should carry heavier uses than less acéessible landg,
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a sort of continental "urban sprawl" functionally similar to 

that which spreads along intercity highways. 

The varifius potentials (1) should presumably be calculated 

in terms of ideal distances h rather than physical distances, 

since this will yield a more accurate index of "generalized 

accessibility. Using ideal distancea would strengthen the 

impression that we are dealing w1tn a single world center rather 

than an Americanéfiest European bigole, since the North Atlantic 

Ocean gap would shrink. _5 

This compleies our brief ?érvey of real-world Thiinen 

systems, *fleealessntc_say,hthggdiscussion has been impressionS 

istic, intended to establish;% framework around which more 
] 

substantial quantitative wonk can be organized. 
3 

S ———— 3 T 

19 We now turn to the discussion of Thiinen systems over time 
[e— 

rather than over Space. We describe a number of idealized 

historical patterns, into one or more of which most real-world 

Thiinen systems should|fit, approximately/ 

Our basic model does have dynamic features, since the 

concept of "land use" allows for non}stationary import-export 

patterns over Time. -Indeed, certain dynamic phenomenaf; such 

as land speculation and suburbanization?f-have already been 

discussed and partially explained in terms of the model., NoneS 

theless, many aspects of the development of real-world Thiinen 

systems fit into the model poorly or not at all. These include 

transportation construction, the origin and changing functions 

of the nucleus,‘population movements and the consequent transfer 

of control over land,
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Actually, many aspects of population r%éZistribution can 

be incorporated into our model without undue strain. Births, 

deaths, aging)and other changes of state are accounted forrin 

the capital structure of the various land uses in operation. 

(We have been concentrating almost exclusively on the export= 

import component of land uses in this chapter, and ignoring 

the capital component, because the latter makes no direct 

contribution to land-use weight.) Commuting has aiready been 

discussed at length. This leaves migration to-be-discussed. 

Firstfga point of definition. There is no sharp distincg 

tion between migration and commuting. The ultimate data 35&* 

48 dealing with here are contained in a person's itinerary, 

the function giving his location at each moment of his existence. 

If this function is roughly periodic over a certain interval, 

one'speaks of “ccmmuting"a If it changes more-or~less 

permanently, one speaks of "migration". There are various 

intermediate cases.63 

In any case, both migration and commuting are accounted 

for by examining a person's trips. We distinguish, as above, 

between local and nonflocal tripsgglocal trips being relatively 

short distance and not touching the nucleus, non-local trips 

being those going to, from, or through the nucleus. As already 

diacnssedsjghe distinction depends on the system of reference. 

Thus,Qa rural-to~urban migration trip would be considered non- 

local in the context of the distination city Thiinen system, but 

local in the context of the world Thiinen system. Nonslocal
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trips contribute to the weight of the land use at which they 

originate or terminate; local trips do not. Butpeven for noni; 

local trips, migration —|as the temm is commonly understood — 

probably makes just a minoxr contribution to weight; for it is 

nonirepetitive, and the cumulative impact ofkcommuting trips 

‘ and goods shipments will tend to swamp itis 

The significance of migration for tne evolution of Thiinen 

systems lies, rather, in its influenceton the capitalistructure 

of land uses. (This influence is,eofdccurse, the net result of 

migration, births, deaths, aging, etc. Construction and 

mining — {including improvements, maintenance, scrappage, and 

demolitions )— play a similarvrale in the capitalfistructure of 

nonshuman resources)) When a land use enters into a more 

intensive phase of exporting and importing, this will in 

general be accompanied by a rise in resource density on the 

site: more people, plant, egquipment, inventories per acre. We 

may expect net in-migration at the beginning of this phase. 

Similarly, a phase of reduced intensity should be accompanied 

by net out-migration. 

Gf\\L ~?~consider suburbanization, for example. This was explained 

= in terms of the tendency for lighter land uses to have longer 

initial periods of yacancy. B;'the weight-falloff condition, 

this implies a general tendency for land more distant from the 

nucleus to remain vacant longer than land close in. Ié@igra€ 

tion should occur about the time when this initial idle period 

comes to an end. Thus we may expect a ring of intensive in=
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migration/the ring itself expanding away from the nucleus over 

*ime. The migrants themselves may originate from points 

closer to the nucleus, from points farther out, 3r as "immi§ 

grants" from outside the Thiinen system. 

The predominant direction of flow of migration provides an 

important principle for classifying Thiinen systems. Condensa? 

tion systems are those in which the main flow of migration is 

inward, toward the nucleus. Dispersion systems are character<g 

ized by outward migration, away from thevnucleus. One rarely 

deals with a "pure" caseg Ferwexampie, at the city level, subf 

urbanization is mainly a dispersion process, the old urbanites 

moving out; but at the same time,’the condensation process of 

rural to urban migration still goes on. Furthermore, the same 

system might be dispersive during one epoch of its history and 

condensive during another. Nonetheless, the distinction is 

useful, and we now discuss‘the conditions that can be expected 

to yield one or the other of these processes. 

A dispersion system is likely to arise when the surround€ 

ing countryside is vacant,zor occupied by a sparse aboriginal 

population living at avlow technological level. The United 

States subcontinental Thiinen system furnishes one example; 

this was peopled by'5 estward expansio&“i;which is also “out? 

ward dispersion" from the Rastern nucleus. A second example 

is the eastward expansion of Russia into Siberia (this may 

perhaps be thought of as dispersion into the eastern periphery 

of the West,fiurOPean subcontinental system.). In the U.S.
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case, an additional force making for dispersion was the great 

tide of migration from Europe nkieh entered at the nucleus 

(so that, in a sense, this was dispersion into the western 

periphery of the WesfifgurOPean system).fifij 

A condensation system is likely to arise, enutne.other 

nand, when the surrounding countryside is occupied by a dense 

initial population. (Incidentally, this assumption does not 

invalidate the model used in this chapter. It is required 

only that initial conditions be uniform over Space, not 

necessarily that there be vacancy everywhere.) The major type 

is rural-to-urban migration. Condensation also characterizes 

"dual" economies, with people in the traditional sector 

migrating into the small modern sector. 

The spatial distribution of income will, in general,J 

differ in these two kinds of Thiinen system. There is a qenegal 

tendency for migrants to move fron regions of'lowflto regions 

of high per&capita incomes. Hence a condensation system should 

be characterized by higher incomes toward the center, and a 

dispersion system by higher‘incomes toward the periphery. These 

expectations — (especially the latter;— are by no means certain. 

For migration is selective, and it is entirely possible that 

the migrants improve their position even if average income 

(including income of nonrmigrants) is lower at destination than 

at origin. In particular, the "pioneers" who migrate in a 

dispersion system must do without the amenities of civilization, 

and tend to be drawn from the lower income stratafgé/’Thus'even
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a dispersion system might have declining income with increasing 

distance from the nucleus. 

These two kinds of Thiinen systems appear to be exemplified 

in two well-known economic development models. The model of 

W. Arthur Lewis}eé‘leads to a condensation systén. Here labor 

in the traditional sector of an underdeveloped economy is 

available in completely elastic supply to the modern sector, 

which creates a ceiling on wages in the latter sector. Expang 

gsion of the modern sector pulls in surplus labor from the 

67 on the countryside. The model of Frederick Jackson Turner, 

other hand, leads to a dispersion system. This is the mirror- 

image of the Lewis model, for Turner postulates an unlimited 

supply of land at the frontier of settlement; this creates a 

floor ("safetyeyalve") on wages at the center, for any tendency 

\_ of wages to fall will lead to out-migration to the periphery. 

\{“ 

= 
P 

: E Note;by-the-way,—that neither condensation nor dispersion 

requires long-distance migration. The same population re= 

distribution can be accomplished by a series of short-distance 

moves (short in comparison to the radius of the Thiinen system). 

This\*step—by-step{finovement is in fact very commons, People 

move, leaving a vacancy into which people behind them eventually 

move, who in turn leave a vacancy, etc. (Example:zthe “filterj 

ing" process by which housing gets handed down from higher to 

lower income families, accompanying movement into the suburbs).) 

Or, instead of a series of "pulls" there may be "pusheagf“ 

People move, which leads to crowding and conflict at their
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destination, and the driving out of people ahead of them; 

these in turn push out others, etc. (The Europeanv_‘ 

Vélkerwanderung w&s partly of this typ@{j | 

~i;t;us now turn briefly to the question of origins of 

Thilnen systems. In the condensation case, there appear to be 

(at least) two ways in which these systems originate. One is 

the passing of a certain threshold of concentrationg This is 

a compound of density of population, size of pericapita income, 

and mutual accessibility. (The peak regional income potential 

provides a rough index of concentration.) At the threshold,; 

the market is just wide enough to make certain centrally-> § 

located enterprises economically viable. These come into 

existence and start a snowballing process, involving the 

founding of linked enterprises; deepening division of labor; 

construction of plant, utilities, transportation arteries)and 

communication links, in-movement of population, innovations, 

etc.s»a The second way is for some a%tonomous localized innovae 

tion to occur, such as the discovery of a mineral deposit or 

the opening of tEade relations with the outside world. The 

center itself tends to be founded at a point of high general 

accessibility, either by virtue of natural "nodality" (river 

confluence, good harbor, etc.) or because of previous transg 

portation construction. And the very act of founding the 

center leads to further radial transportation construction 

whi:ch artificially increases the advantages of the site.
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Dispersion systems typically originate through an incurg 

sion from the outside world —(say first by explorers, mission? 

aries or soldiers, then tradefs, then settlers. The nucleus 

is then apt'to be near the original port of entry into the 

region. ' 

Once the snowballing process begins, the nucleus exerts 

an attractive force on the entire regioanhich tends to pull 

land uses into the Thiinen ring pattern..fThe nucleus acts as 

trade center, gateway to the outer world, source of specialized 

goods and services, and major employment center, 

As the system matures, a number‘of forces arise to retard 

growth at the center, perhaps‘even;to halt and ieverse it. 

Vacant land becomes scarce; traffic congestion grows. The 

capital plant becomes aged and obsolescent; pollution rises 

with density of population. As the world develops, the original 

location of the center may become less advantageous; mineral 

deposits are played out,'harhors become silted. At the same 

time, concentration in various parts of the hinterland reaches 

a threshold of its own, and new competing centers arise. (These 

are ept'to be located near points of access to the transportas 

tion grid feeding the original center,,;n;htas railway stations, 

s highway interchanges, and airports?i 

fl'——h_”_’;;~5hese processes go on simultaneously in Thiinen systems of 

all/levels. -Let;us now change our point of view,yand study the 

interrelations among these systems. The following idealized 

model appears to be a fair approximation to many real-world
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situations. Thiinen systems form a hierarchy, in the sense 

that, for each system there exists a higher-level system to 

which it stands in a certain subordinate relation. (The 

exception, -of.course, is the world Thiinen system, which stands 

at the apex of the hierarchy). Let the system occupying region 

Sl' with nucleus Sqs be subordinate to‘the system occupying 

region Sz,\with nucleus S,. This means, first of-all, that Sy 

is a suh}region of 52; secondhg, trips bhetween points of S1 and 

nucleus 8, go through nucleus Sq- That is, Sy functions as a 

gateway between its own hinterland and the superior nucleus Sy 

"This““gateway"function comes in several diverse forms. 

Nucleus s, may be the site of a major railway station or highway 

intake point, so that long-range traffic funnels through it. 

Out-of-region telephone calls may go through a local exchange 

at 8y Wholesalers or manufacturers at s, may ship to retailers 

at Sys who in turn sell to customers in the hinterland 8. 

Conversely, $; may serve as an assembly point for goods pro> 

duced in Sl' these goods then being shipped in bulk to Sqe 

Mail addressed to points in S1 may be shipped from S, to a 

local post office at s,, and thence distributed by letterS 

carriers; outgoing mail follows the opposite route. Businesses 

and government agencies may have regional offices at Sq and 

local_offices at s,; complaints, information, orders, merchanf 

dise, tax forms, etc., which flow between hinterland residents 

and these organizations)may then be channeled through these 

local offices.,
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Now let the superior Thiinen system (82, 32) itself be 

subordinate to the higher level system (SB’ Sa). Trips, ships 

ments, messages between points in the hinterland S, and 

nucleus 83 will then go through both intermefliate centers, 8y 

and 83 The picture that emerges is that of a‘“chain of ‘ 

command“:'in which messages from one unit to another go first 

up the chain to the lowest unit superior to both of them, then 

down the chain to the receiving unit. Approximations to this 

structure are found in the circulation of mail through the 

postal system, of messages through the telephone system, of . 

checks through the bank clearing system, as well as in the 

administrative structure of complen organizations. 

Trips between two sites in S1 are to be considered local 

when analyzing the system (SZ' sz),_because such trips are 

short~circuited through the nucleus Syn and nucleus sé exerts 

no extra pull on the land uses generating them. Similarly, for 

the system (83, s3),xthe much wider collection of trips\between 

sites in S, are to be considered local. The same land use thus 

gets lighter and lighter as it is referred to higher and higher 

level systems. 

The general conclusions of Thiinen analysis - the veight— 

falloff condition, the declining convex structure of land 

values, etc. — apply at each level of the hierarchy. As one 

goes up the chain of systems)a broader picture emerges, but more 

detail is lost, because more trips are relegated to the "local" 

category and ignored. Thus an analysis at several levels is
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needed to get the full picture. 

What cannot be explained by Thiinen analysis alone is the 

hierarchical structure itself. We dJust list a few of the 

factors involved. There are, first of-all, bulk economies in 

transportation and communication. Thus one builds a small 

number of channels which—are used collectively, rather than a 

separate channel between every possible pair of sites. This 

. creates &rtificial nodes around which centers can grow. A 

distributional apparatus arises for collecting, storing, 

assembling, shipping in bulk, and disassembling into retail 

lots. Secondly, various enterprises exhibit scale economies 

which, when combined with distributional costs, lead to a 

diversity of preferred spacings for different industries. 

(This will be discussed further in chapter-9, section 6). 

The preceding discussion of hierarchy touches central- 

place theory at many pointsfé/’ Indeed, the central-place and 

Thiilnen approaches are complementary,lin‘that the latter conZ 

centrates on the structure of land uses in the field, while the 

former concentrates on the activities at the various nuclei. 

One major theme in central-place theory is that there—exists a 

total ordering Q“O“““qndifference) of both activities and 

centersfl'such that nth—level activities are present only in 

nth and higher level centers. We make just two hurrted comments 

about the relations between these approaches. First, while the 

Th§nen analysis is a social equilibrium, based on the inter% 

actions of agents choosing most preferred actions, the central~—
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place analysis does not rest on this foundation. Instead, it 

is an idealized description, and it is not at all clear, for 

the most part, how the patterns it postulates arise from the 

interactions of rational agents. Second, one of the few 

exceptions to this last generalization arises from the Thiinen 

analysis itself., We have seen -(page—_above) that with a 

limited-access transportation grid, the weight-falloff condiZ 

tion leads to the above-mentioned ‘central-place" pattern of 
¥ 

activities and‘centers. (The;centers form at the access points; 

the higher order centers arewthose closer to the nucleus in 

ideal distance; the higher order activities are the heavier 

ones.) While this modgizis inad&quate, it suggests that a 

modified Thiinen framework, incorporating such hierarchy~- 

producing assumptions as bulk economies in transportation, 

might prove to be an adequate theoretical underpinning for the 

central-place model, . 

Finally, a word about the dynamics of the Thiinen hierarchy. 

Cne index of the "importance" of a particular Thiinen level is 

the ratio of non+local to local trips, for this measures the 

degree to which the nucleus participates in the overall funcZ 

tioning of the system. The data for this index are generally 

not available, but one can often make do with a cruder index 

whiech—is presumably correlated with the original. For example, 

the "importance" of the world Thiinen system can be estimated by 
§rosg 

the ratio of the value of total international trade to te+al
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produ .t brom, say .03 15 1800 t00.3% 1 19172 
world imeeme., This ratio rose grestdy—in—the-Nineteenth “(but dedh somewhat therecétiv)o 
C « A This illustrates one very long-term trend: the 

rise in importance of the higher level centers at the expense 

of the lower level. This trend has certainly not been steady, 

but if one examines human history in texrms of millenia rather 

than centuries it is palpable enough.7;‘ It is associated with 

other trends w%;é; have been much commented on, such as the 

deepening division of labor, the rise of national states and 

incipient world organizations, and the shift from agricultural 

to blue collar to white collar work, especially of the informa- 

tion-processing variety. One.basic causal factor in all this 

is doubtless the reduction of the real cost of transportation 

and communication, especially for long distances, but the 

detailed causal interrelations are still obscure.ggf
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FOOTNOTES - CHAPTER 8 

1... . 
/ 

X 1V’on Thunen's Isolated State, P. Hall, editer,.\. M. 

Wartenberg,fltraneiater (Pexrgamon Press, New York, 1966). The 

German original was first published in Hamburg, 1826. 

  

v 2 : ‘jgik These phenomena are sometimes referred to as the "shrink% 

ing globe"., We find it more convenient to leave the globe 

unshrunk and to represent them by a reduction in the other cost 

component, ideal weight. Thus one might speak of "levitating 

resources' as resources in general get "lighter" over time. 

  

i %psfhe notions of "ideal distance" and "ideal weight" (the 

latter not depending on Timé) stem from Alfred Weber (1909). 

While the\“ideal weight“qconcept has been widely accepted, 

location theorésts have severely criticized%}ideal distances‘. 

See E. M, Hoover, Location Theory and the Shoe and Leather 

Industries (Harvard Univexed#y- Press, Cambridge, 1937), page'40 

nete 10; W. Isard, Location and Space-Economy (MIT Press, 

Cambridge, 1956), page 109; and- espeeially T. Palander, 

Beitr&fle zur Standortstheerie (Almgvist och Wiksell, Uppsala, 

1935), pagee 195-199 This is curious. It iz true that "ideal 

distances" will generally be non-Euclidean, so that special 

constructions based on the Euclidean metric cannot be used. 

But it should be clear that the "ideal" concepts of weight and 

distance are entirely on a par, and in fact only defined cong: 

jointly. 
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e '4We ave taking certain notational liberties in re- 

arranging the order of the component spaces. No confusion 

should result from this, since there are no repetitions among 

these components. 

  

isAn "allotment" constraint will be added later, but this 

constraint is "artificial™ in a sense to be discussed below. 

  

fizf we are investigating the neighborhood Thiinen system 

centered on the cluster of local facilities, rather than the 

structure of the city as a whole, then these local movements 

should be counted. 

fl7If the roof is utilized, there are N + 1 surfaces, the 

topmost being unsheltered. "Open space” may be thought of as a 

zero-story structure whose "roof" is the surface of the Earth. 

  

8This refers to "voluntary" travel. For “"involuntary" 

travel — as by children, prisoners, and military personnel - 

the relevant valuation is not done by the traveler himself. 

  

9This self-assessment feature of transportation cost 

raises certain questions concerning the welfare implications of 

the entrepSt model. We -shadi comment on this later. 

  2 :[\:\ 

‘ 0. 19 g G. S. Becker, ™A fTheory of the Allocation of/Time”,“ 

Economie Journal, 75:493-517,September, 1965 
-—-—————-——--—-——q-—-———,.a' l\ 4 @;‘\ \,> ? 
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loof 

Ilw Alonso, ILocation and Land Use (Harvard Universitv 

Press, Cambridge, 1964), chapter 1 and paées 101-305. The term 

"friction of space" dates from R. M, Haig, 1926; it is some2 

times taken to include total land value as well as total 

transportation cost. £ 

  

Note that the f appearing in (4), whose domain is two- 

space, does not have the same form as the unit transport cost 

function £ of“ghapter 7, whose domain is A x B, TheZanalogue 

of the latter is the composite function £(h(+), w(e)), with 

domain S x Q. Howeverf?helow we shall convert this problem 

into another for which the £'s do correspond, 
  

f«fiaB. Ha Stevens:fimLocation ?heory and,?rogramming fiodels: 

The Von Thiinen ¢ase v RegienaL Scieace AssoctatreerPapees, 

21K19*P4 Q968} The model is on paqe 26. The objective here 

is to maximize total bid rent or profitfi}rather than to minimize 

total transport cost, but the formal structure is the same. 

M. Beckmann and T._Marschak,i*An Activity Analysis Approach to 

#ocation ?heofya"Kyklosr\qé125514l,(l955) shan 4o lixie 

envisaged'this model in a remark on page 128, 

  

/ *”1%414Agricu1tural programs often contain acreage allotment 

restrictions, but these typically apply farm=by-farm, not on a 

global basis for all Space as in (6). 
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c»l;?rSSuch as: E. S. Dunn, Jr., The location of Agricultural 

Production (Uniggesity—ei Florida Press, Gainesville, 1954); | 

L A Muth,?“TheASpatial;Structure of thelflousing/fiarket,“' 

Regioeed Science Association Papers, 7 207-270 (iSfifi, L. Wingo, 

Jr., Transportation and Urban Land (Resources for the Future, 

Inc., Washington, D.C., 1961); % 2Alonso, Location and Land Use 

  

oS 5 ; E- S. L{ills' 

Studies in the Structure of the Urban Economy (Johns Hopkins 

Press, Baltimore, 1972), chaptere 5 thrcugh &fi\cha§€efi-4méf 

Mills is a good survey of ‘other nodels. 

  

..lSMeasures on the plane satisfying the northwest (or rather, 

southwest) corner condition have been studied from another point 

of view by M. Fréchet. See W. Feller, An Introduction to 
  

Probability Theory and Its Applications, vol ea (Wiley, New 

. York, 1966),'éaqes 162-163} problen &, 

  

T *fi7We write the potential as the pair (p,k), rather than ae 

(p,qfifinvchapter 7, to avoid confusion with points g € Q. The 

stated definition is for variant I of the transportation 

problem, which we are usingp Other variants add nonfnegativity 

conditions on p or k. Also this is a "wide-sense" defingtion, 

so that there is no requirement that thelintegials }; pida, 
Ve 228 
IQ k d8 be well-defined and finite. The same remarks apply to 

the next [definition. 

  

     



   

      
   

M;p‘;.is th-\conposite funetion 

is p(h(')). Similarly for kow. 
   

   
fi“—}f 14 .”When X and Y are constructed in this manner, the ranges 

ivel contained in them, We shal 
of h and_w may not be respect Yy i 

“ ‘dbal with this minor comal. ation in due aoursak” For~th 
Pl 

on sthe Iant EL 

     

      
) being J:&X:-uc concentrate attention exclusiv_e;i 

and forget about the original al‘lotmen't-assignment probletfi.    

    

distinguish between open, closed, etc., - - = * 

e the value of a function at isolated points 

does not ect 1ts measurability. S ! 
he plane in which the rectangle of support lies should 

‘ M’“‘b& confused with the plane in which 8 lies, e 
an intrinsic feature of any 

   

The former is 

allotment-assignment problem; the 

    

    

    

         
      

    

        

       

latter is an accidental feature of the special allotment- 
assignment problem now under discussion. ey 

k 0 22This ambiguity of the additive constant is characteri 
for variant I transportation problems, of which allotment<" 
assignment is a special case. It has an economic interpretatio 
4s we shall sece, 

5 — 
J 

(210 T 23 #9.77If the allotment-assignment problem were formulated 
an areal capacity inogualitx constraint (variant II or IV rat 
than I), this constant would be zero: 

  

   

Unused land is valueles 
‘33\ 

fl\‘/' Hrhe New York )éetrOpolitan }ogion is fragmented by bodie kel of water.    Yet population density maps indicate fairly close 
contornit to a '.l'hflncn ring pattorn icontorod on Hidtown



   
o
Y
 

Q - 
x4
 J 

   
   

1 & " o TL'? ’ 
/ { ~ 

  

  

       

V%A more careful discussion would note that the construc 

allotment-assignment problem introduces extraneous solutions. 

Wp\a 50-50 mixture of densities lOand 30 is not the 

same as a density of 20. (Mixtures are meaningless for the 

allocation problem.) Hence the last theorem is stronger than 

it looks, since v2? is optimal not only against assignments v 

of type (l?)q%hut against “mixtures“ as well. 

We have implicitly assumed that all éunztiens—iflfif 

Evile 
wmeasures discussed are-boundeéy to avoid pseudomeasure 

  

complications. 

  

\Z?A borderline is a locus of constant h-value. These are 

"isodapanes" or "isovectures" of the Weber problem, 

  

B Alse j 
o) 28 der these conditions, g has positive cross-differences ¢ 

  

   

  

    
iff (32) holds, and the inequality is strict on a set of points 

(x,y)~#h£eh is dense in the plane. (To prove these statements, 
     

  

use the mean-value theorenfi.; Incidentally, the existence of      

  

7 gt i, 

Dz[nlgl‘does not imply;the diffigrentiability&\or even the    
 



lo)y 

36- 

“frbwfgcn in (7) is unique only up to a region of v'-measure 
=) 

zexo., For (8) to be well-defined, it must give the same 

value for any function I satisfying (7). It #urns out that 

equilibrium u must be absolutely continuous with respect to 

v', which guarantees uniqueness in (8). 
Do 

phm— (:‘%'e’ 

fi" Recall that ordinary summation of measures, as.in (6), 

is defined iff all summands are over the same measurable space, 
.,,..,C;\u-————- 

while direc$ summation, as in (9),vis defined iff the universe 

sets of the summands are disjointgfrom each other. 
T 

Or no X ep 

. The _condition (4) on preference orders must be corre- 

  

— \ 

? k spondingly modified, since "cost" may no longer be representable 

as a real number. The natural generalization is to interpret 

"cl °2" as referring to standard ordering of pseudomeasures. 

Cf. the real-estate market of chapter 6. We omit detailed 

< 

discussion of this point. 
P 
N 
  

33 
7 4 These difficulties motivate the "measure space of 

agents" approach, the number of agents being now uncountable, _ 

and each literally having zero influence. But this creates 

new conceptual difficulties of its own. See 6.7, 

  — 
e
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H— 3*The following development is essentially that of my 
—————— 

Essays in Spatial Economics, pagesl10 l%k . 
A% 4 

DM,,(‘ ; 

  

  

  

S ACTS ,mig /6 7 
< ..4 $ sl 

«w»,.afifis Alonso, Location and Land Use tflarvardflflneve’u&ty i 
o 

1o 
-Press,-Cambridge,-1964), 7ges 101-X05, fs*puge&?wd““abflve Ve Mfi»//o . : 
  

36See, for-exampile, D, M., Winch, The Economics of Highway 

Planning (University-of Toronto Press, Toronto, 1963). 

  

aiincidentaiiy, the fact that total transport cost as : 

given by (é} of-section-7- is a linear function of assignment 
= 

v, hence of resource flows, indicates the absence of external 

effects. Thus the introduction of external effects would 

vitiate not only the ethical conCIusions from the model, bhut 
“\ 

\ 

the model itself. 

  

—,5383. J. L. Berry and A. Pred, Central Place Studies - 7/ .../ 
) { 

(Regi»en-al Science Researeh Institute, Philadelphia, -seecend 

peiating 1965) /See Pqfits «»»*‘Ahsss. 

  

'39To answer these gquestions, one needs the more elaborate 

models of Mills, Wingo, Alonso, Muth, Dunn, and others., See 

note 15 abewe. 

  

  

oo 40 
W R. Turvey, Ehe Economics of Real Property (Gee. Rllen 
  

& Unwin, London, 1957), pages 16-18. The "Sheridan-Karkow 

formula™ for the rental value of office space shows rent 

increasing with height; fiee Buildingsfi(necgmber 1959;’ Ly i, 

 



o 

e by %‘2’ 

1014 

S %léicf R. Sinclair, “Von Thiinen and Prban Sprawl®, Annats 

of-the Associeteen~e£ American Geograpeeusn 57:72- 87, March,. | 

1967, and E. M. Hoover, The Location of Economic Activ1ty 

(McGraw-Hill, New York, 1948), pages 170- 171, for examples. 

An alternative explanation of leapfrogging is based on the 

presence of imperfect information in the real-estate market: 

see W. R. Thompson, A Preface to Urban Economics (Johns Hopkins 

Press, Baltimore, 1965), p&ges 326-327. 

  

Another centralizing factor is that these land uses are 

”communication-oriented;Eand generate heavy information flows 

among themselves. See E., M. Hoover and R. Vernon, Anatomy of a 

Metropolis (Doubleday Anchor, Garden City, N.Y., 1962), pages 

22f£. But this factor lies outside the Thiinen framework of 

this chapter. 

  

Bror further discussron, see _ggézgflégggggggfil 

. pages 1791182 

  

  

“44See G. Sjoberg, The Preindustrial City (Free Press, 

Glencoe, Ill1,, 1960), pages 97~100- L. F, Schnore,"”On the 

Spatial Structure of Cities in the Two Americas“,senapterrt& 

of The Study of Urbanization, P. M. Hauser and L. F. Schnore, ¢/ 

editors (Wiley, New York, 1965) , /v | 

  

'?%Examining urbanized areas in the 1960 U.S. Census, 

Schnore finds that the younger central cities tend to have 

higher status residents than their suburbs, while the older
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central cities have the opposite, more usual, pattern. This 

may reflect a housing quality effect, the younger cities not 

having had time to become too dilapidated toward the center, 

L. F. Schnore,&“The fiociofficonomictfitatus of Cities andifiuburbs,g 

Ameriean Sociologi Review, 28;76(85,‘Feb\ ry 1963 = : : R "R X (gearg, ] 

  

a@?fib. F, Kain,'“Urban Travel Behavior‘flxngfieujfidedfianef 

Urban Research and Policy Planninggxi. F. Schnore and H. Fagin,f,&ad 

-editors (Sage Publications, Beverly Hills, cali, 1967), P 

espeeia%&ympages l73~l75 

X ds?}if} 

  

4fl5joberg mentions external danger as one factor making for 

centralized residences for the rich in the "preindustrial® city. 

G Sjoberg,‘ihe Preindustrial City (FreemfreSSWMGiencoevnxllmL 

1960) - phges 97-100. 

  
— 

Reasons for this decline are given in A, 1dsch, The 

Economics of Location, W. H. Woglom and W, F, Stolper,\? 

—transiators- (Yale University Press, New Haven, 1954), page 43, 
& : 

nete 10, 

  

~ ! r X L%?figw. Isard, Location and Space-Economy (M.I.T. PRess, 

Cambridge, 1956), Appendix-to Chapter 8. A notable pioneering 

effort in this direction, rich in descriptive detail, is that 

of R. M. Hurd, Principles of City Land Values (The Record and 

Guide, New York, lst—edetien, 1903). 
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fifififi. W. Burgess, ”Urban Areas" A?pages“iid“iéfimei Chicago: 

An Experiment in Social Science Research, T. V. Smith and L. b, While, 

“Whrite,—editors (Univereity—ef Chicago Press, Chicago, 1929), 

The theory first appeared in 19235, 

  

Lo Erlor.pols 

fiieagfi Illinois Department of Public Works and Buildings, 

Chicago Area Transportation Study, 3 vols. (Western Engraving 

and Embossing Company, Chicago, 1960:;962). 

  

'“;ffi?b. Rogers, 110 Livingston Street (Random House, New York, 

1968), page 44. 

  

Lyt Sge,g., N. Spulber, The State and Economic Development in 

Eastern Europe (Random House, New York, 1966), E@ggs 17%18 on 

Budapest; &. LOsch, *Fee Economics of Location {¥ale -University 

w-Press;-New-Haven;—1954)., page 129 note 4 on Vienna and Prague. 
Hy, 
  

5774, . Schnore and D. Varley, “Some}fl%ncomitants of 

MetropolitanfSize," Ameriean Sociological Review* 2q<408-4l4, 

Angust, 1955, note the tendency for large Cltles to have water 

access. 

55, Mg, g, Frazier, "Negro Harlem: an Fcological Study”, 

Amereeaa Joucnal of SOClOlUgyg 43: 72—?8, July,. 1932, He even 

pinpointed the nucleusfi\ at the intersection of 7th Avenue and 

135th Strest. 
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T VS%On farms and farm villages as Thiinen systems see 

M. Chisholm, Rural Settlement and Land Use (Hutchinson 

Univg;sety Library, London, 1962), chapter 4, and A, 1dsch, 

TIhe Economics of Locationfitraie~Universitmagress;:NeWMHanen, 

~¥954)., page 62 note 45, = N b 

s 

  

4 5:;'See E. L. Ullman, "Regional Pevelopment and the 

Geography of fioncentration,“ Regeenal Scxtnee Associatien Papers, 

4: 179~198 1958, amd C. D. Harris, ®The Market as a Factor in 

thefLocalization of Industry in the United States"™, Annals-of 

the AssociatieameéfiAmerieea Geographexs., 4{:315;§4a,fbecember,' 

1954, 

  

58Economic Commission for Europe, Economic Survey of Europe 

in 1954 (Geneva, 1955),5§h§pter 6. See also A, Melamid:fi*Some 

Hpplications of Thfinen's,fiodel in Begionaliknalysis of Economic 

fi&owth,‘ Regional Science Association Papers, ltLl:LS,(l955) ® ) , A - 
  

e »gsaFor maps, and correlations with various social phenomena, 

J. Q. Stewart, ®Empirical Mathematical Kules 

  

@oncerning theféistribution and Equilibrium of Population,™ 

Geographical Review, 37:461-485, (July, 1947; J. Q. Stewart, 
*Demographic‘gravitation:Evidence and gpplications“,_Sociometry,) 

l¥f3lfi58fii?eo§naE¥-May, 1948; J. Q. Stewart and W. Warntz, s 

®Macrogeography and Bocial ficience,%‘GeographiealvReview, 48;: 

167-184, Apri}l;—-1958; W, Warntz, Macrogeography and Income 

Fronts (Reg%paed Scienee Research Institute, Philadelphia, 1965). 

G==b. Harris,ficetednabenes also uses various potentials for 

market delineation.
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@-— fim !‘!h 

and pg'. 92. His map of world p_ogulation-ypotontid, 

has peaks in China and India, as one might expect, and 

much more poorly to the world trade and travel pattern. 

  

N T~ @,f&Quoted in Barbara Ward, Spaceship Earth (Columbia 
    

Univgeofity Press, New York, 1966),, page 130. 
\J 

&) 
  

T P ~:§G. T. Trewartha, A Geography of Population: World 

Patterns (Wiley, New York, 1969), pgge 79. 
. 
— 

  . Fr 
Bed Ty %For more detailed discussion of these concepts, see m&- 

‘  Essays amfipm%&aemics,w 20~ 2% %"._ 
  

  

‘h‘“ ( ~614F'or descriptions see H. S. Perloff, E. S. Dunn, Jdx., 
o Al 

E. E. Lampard, R. F. Muth, Regions, Resources, and Economic P \ 

Growth ('!hg, Johns Hopkins Press, Bame‘;‘ 1960) 7 R0 
\ A .:n)» Cha 

B ton , Wes tward Expansiofi\K(Macmi llan, 

       

    
       

  

New York, 3‘!.‘4. = 
s S 

Mifflin, noaton, 1952 

 



  

Glo . "®Economi ¢ fievelopmen/t with y'nlimited /éupplies of 7 

Manchester School 22( 139-192@@1&%)\1959.‘\ For pore recent 

see J. C. H., Fei and G. Ranis, Development of the I.abor S 

Economy (Irwin, Homewood, T1l., 1964). 

  

'.';:‘Lwo?“ wre of For  
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4. 

a LAANARA 
N 

B :E?The Frontier in American History (Holt, New York, 1921). £ o4 

For more recent work, much of it critical, see{The Turner 

Thesis) G. R. Taylor, edi®er, (Heath, Boston, 1956). Webbl, Gredl 
Eromgsgg-i:tmflswe%aypfiu fhis Lesr's 4o the enTive WesTern world. =~ 

3.g¢lsesee~fissas Thompson, @ Preface to Urban Economigs 

'.chaptes 1. 

  

  

'%wfifffigThe pioneering work is W. Christaller, Central Places in 
  

Southern Germany, C. W. Baskin, translater (Prentice-Hall, 

Englewood Cliffs, N.J., 1966), Publistednia 1933. Much of the 

literature is reviewed in Be=Je=l. Berry and & Pred, Central 

Place Studies (Regional-Science-Research Institute, 

‘Philadelphia,~1961). = (The second printing has a supplement 

through 1964). B. J. L. Berry, Geography of Market Centegs and 

Retail Distribution (Prentice-Hall, Englewood Cliffs, N.J., 

19675 is a good recent work in this tradition. An interesting 

verbal synthesis of the ideas of Thiinen and Christaller, 

yielding a hierarchical arrangement similar to the one described 

here, may be found in E. von BSventer, “Towards a Unified 

Theory of Spatial(Economic‘Structure,“ Regional- Science Associa~ 
—_ pA : tion Papers, 10el63-38%, (1962)°at-‘pages 184-186. 
  

0, Tvs. Kuznets,ffiQuantitativelfispects of theflficonomicxfirowth 

of fiations, Xp Level and Structure of Foreign Trade: Long=Term 

Trends ,"® Economie Development-and Cultural Change, “vel. 15, 
. NS X . 

flo. 2, fi:;t,ll, Janyuasy., l961}frfifit§ 35, 
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b 2 § 
~+ ,  The central theme of N. S. B. Gras, An Introduction to 

Economic History (Harper and Brothers, New York, 1922), is the 

successive rise to dominance of larger and larger centers and 

  

associated hinterlands —-that-is, of Thiinen systemsgi-from‘f’ 
] 

villages to world metropolises. 5’ 
3 

rhe kind of dynamic Thiinen analysis we have been ) 

discussing -in-this-seection has much in common with the litei%ture 

on "growth poles" or'“growth centers"., See, fi;e;esemple, 5 

J. Friedmann, Regional Development Policy (MIT Press, 

Cambridge, 1966), and J. R. Bofideville, Problems of Regional 

Economic Planning (Edinburgh University Press, Edinburgh, 1966). 

A very incisive analysis is to be found in A. O. Hirschman, 

The Strategy of Economic Development (Yale University Press, 

New Haven, 1958), chapter 10. \


