) THE TRANSPORTATION AND TRANSHIPMBNﬁ'PROBLEMS
- 7

B\ I ' -
Cmﬁx 7.1. The Transportation Problem: Inﬁroductionl

N/ §
The transportation problem with @m sources and n sinks is:
O #ind mn non%negative numbers x,. (i = 1,...,mp j = l,..l,g))'

satisfying
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over all mn terms of this form. (i = l,...,gﬁgj = 1,...,9);
Here the numbers a., Bj' and fi are given ﬁarameters (ai,
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The most straightforward interpretatiﬁn of this problem
is the following? i is the quantity of;a certain commodity

o

moving from a source i (say a manufacturing plant) to a sink

‘2 (say a market where the good is sold)oﬁlf ij is unit transport
cost incurred by this movement, so thatzyg) is total transport
cost for the source-sink pair (1,j) The problem, then, is to
minimize the grand total of costs over ail such pﬁlrs. Source

i has a caEacitx o and the constralntSS(l) state that the
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total shipments from a source cannot exceed its c;pécity.

There are m such constraints, one for each sourc§i Sink j has

ey

a requirement Bj, and the n constraints (2) stéﬁé that total
shipments into ;ink j must not fall below its éequirement.

Besides this interpretation —-@rom which the transportation
problem gets its namé)«-thera are a remarkable number of others,. %
concerning resource assignments, schedullng, etc.”

Now consider the following problem ihvolving measures.

We are given two measurefspaces, (a, Z',u ) and (B, z",u"). (A,z')

will be called the source space, and (B 8“) the sink space@

u' will be called the capacity measure, and u" the requlrement

measure. We assumélfhraughout this chapter that pu' and u" are

s&gma ~finite. We are alsoc given a c&st function f:A x B -+ reals,

assumed measurable with respect to the product aﬁgma~f1eld,
I' x I" on A x B, V
The problem is to find a measq%e A on the space
(A x B, 3' x I) satisfying |
i {

A(E x B) < u'(E) 7 4)
for all E ¢ L*,

AA x F) > u"(F) 7 57

for all F ¢ I", and minimizing

j &8 | Qle
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Here (6é) is an indefinite integral over space A x B, and
mlnimlzatlon"'ls to be understood in the s#nse of (reverse)
standard-ordering‘of pseudomeasures. FOf ggurse, if the
definite integral ;
o o 37 ) ¢

H 2.0.7)
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is weiiidefined and - finite for all fgésible A, #hen this reduces
to the ordinary'minimization of (7) ; But there is no a griorl
guarantee that (7) w111 be finlte, @r even welfldefinad,’WLth~/
out specigl conditions on f, * and u"’

ALK s

(4), (5), and . (6) reduce to (19, (2) and (3), respectzvely,‘
iff both eagma~f1elds, L' and Z“Qsare finite. To be pre¢ise,

A

let I' be generated by a partitlon {él,...,gm} of A, and I"

by a partition {Bl""'B } of B. Then it is;éimple exercise to

L
verify the preceding statement: p (A ) = oy 1u"(B ) = B .y @te,

This shows that we are dealing with a bona fide generalizatlon
g . Mo

of the ordinary transportation pﬁoblem. (e

The 1nterpretations-wh%eh c&n be given to (4),,+w+7m4§4

include all those for the ordinaﬂy "discrete" problem, and the

greater flexibility whtch one attalnx with measures enables oae

to fit the real situation that muph more closely. For example,

in the transportation interpretation, one may now treat the

case where sources are spread moreLorgless continuously over the
gurface of the #arth : @s in agricmltural productlon) exr where

%
i
i

b
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sinks arei (gs in|the sale of consumer goods to a diffused
pc:apulat;i_«::ﬁ3:?-\L or both. The best the ordinary prohlem é;;i:lzyf
{3) can do is to aggregate these ézstr1butions9‘ ﬁefhuxamp%e
to treat countries as if located at single poiq&s in inter®=

national trade models.

Again, in some interpretations the sourcés and sinks corZ
respond to tlmeilnstants rather than 10catio£s, here the
measure-theoretic formulation allows eae to work with continuous
time, rather than having to lump things into discrete periods.
This has clear theoretical advantages; it'may even be advantageous
in practical applications, since&}contlnuous ‘models are often

i

simpler tha;h“ﬂiscreteﬁ “models. ;

One of the most important non+transport interpretations
of the transportation problem refers tofthe asﬁignment of
resources to activities. Here the “sogrces“ are the various
kinds of resources available, and the ?sinks“ are the various
activities. The measure-theoretic geééralization is especially
welcome in this . lnterpretation, to alxow for the infinite
variety of resources and activities. ?Enwfaet, in the-next

¥ |

chapter we show that Thuﬁen systems can be represented by just

such a model.
q§§
Laﬁuas now examine £i$w14ﬁl4mjﬁi,mora closely: u'(E)

gives the total capacity of the set ofgsources E, while

A(E x B) gives the total outflow from Eﬁese sources. “4) then

is the condition that outflow not excead%capacity for any
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measurable set of sources. A similar relation, {5)h;holds
o

between u"(F), tﬂVZfequlrement for the set of sinks F, and
A(A x F), the total inflow into these sinks. VA

It will be convenient to formulate the congiraints in terms
of marginals. Recall that the left marggnal'ofi(h x B, I' x 1",

A) is the measure A' on (a, Z') which—is glven by=~t

> AT(E) = A(E % B),—,

for all E¢ I'. Similarly:?the right mar@inal is the measure
A" on (§,Z“{>given Y L S

S

N A" (F) wk ) ot

*'all$§ € I". It follows at once that the constraints (4) g, (5)

can be written in the very simple fon@:

i ’ {408
)\. i ]j', ,v m

(:1.1)
N e i £9)

respecﬁivaly. Let us refer to ! a@% A" as the outflow and
inflow,measures,%;espectively, and éo A itself as the flow
measure. » :

Nowlégf é'point gﬁiéi-was gloséed over., For {&) to be
welfldefined as a pseudomeasure, A @ust be sig§a~finite. Is
this guaranteed? We examine the siéuation in some generality,

because it recurs several times in this chapter,

i
%
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Let (2, Z;, ¥;), & = 1,2, be two measure spaces, and

g:A + A, measurableg\such that the following relation obtains:

i) {«‘7‘ lito
p = ;
for all E ¢ 22. That—is, U,y is the measure induced from My

D
by g

uowq if Moy is s&gma-finlte, then “1 is aigma~fin1te. To
show this, let G be a countable measurable partition of A _2 such
that u,(G) is finite for all G ¢ 6. The collection of sets
{al]g(al) € G}, Geg G is then a cougﬁ%§le measurable partition
of Al and by £ . Uy is finite on eaeh of these sets. Hence

By is sigma finite if u, is. This com?letes the proof.

lﬁ»mhe converse of this statement is not necessarily true. As
’,f-ﬂ

an egémple, let 1Y be any infinite a*gma—finlte measure, and let

A, consist of a sing&g.point. Then uiﬁgz) = f)and this is
clearly}gg& sagma-finite.é/ ;

Now consider the transportation pxoblem. The left marginal,~
A'L is the measure induced from )\ by the projection g(a b) = a.
Hence, if A ié?ségma -finite, so is A.i But we are given that f* {/H\
is sigma-finlte, and it follows from é%?} that A' is s&;ma —
finite., We conclude that,-indeed, any %easible flow A is ségmai
finite, and (6) is well-defined. Note,ihcwever, that the right
marginal£ A", is not necessarily stgmarfinlte.

It is common practice in analyzing t@e transportation

problem to replace some of the inequalityisigns in (1) and (2)

by equalities. We shail also consider theﬁponsequences of
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replacing ogéior both of the inequalities (g){y(e) by equalities.
This givesfhltogether four variants of the trangportation
preblem.r*We shall label these types I, II, III, and IV, defined

as folIQWSz vy 5 _

A= 0 III ¥ AN 4

i A
Az ’ .; : ”‘A é ‘;‘ 3 ’[“ 7 ;!.,ri
E { Ar< v /(L/f % Tl e éju

Thus in types I and EE, requirements must §; met exactly, withg
out oversupply. In types‘z and III capac?%y must be fully
utilized. Type IV is our original problém, given by (%) and
(2). In all four variants the objectivéfremains the same: to
minimize (6). gz

— The parallel analysis of these foér types is quite instruct

tive, and they exhibit a surprising dé%ree of individuality.

-
&

7.2. The Transportation Problem: Existence of Feasible

Solutions

A s

The first problem we tackle is ghls. ﬁnder what conditions
does -there /exist a flow measure Al sa&isfying the feasibility

condltlons‘ f\(—i:ﬁs}- ang a-?s-)vx or th(?llf) eguality-constralned counter-
parts? The objective function &) piays no part in this
discuss&on. %

For the ordinary transportatlon problem we have the

(1) (1i2)
following well-known results: ‘%%+ and (2) of-seetion-l have a
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feasible solution iff total capacity is at 1east as large as

total requirementﬁs Ehat—és, iff

(7.8:1)
5

Gy *eoat @ > By kol B :’?V”

Furtharmore, this remains true in the pase where all inequality
signs in Yﬁg of-section-l, or in(éai}ﬁﬁFﬁettionwi (but not both)
are replaced by egualities. Flnally, if all constraints are
equalities, then a solution exists ;ff (1) is satisfied with
equality. -In-other words., (1) is gecessary and sufficient for
the existence of feasible solutioﬁé in variants*;;, EE}Aandr;V;
and {1) with equality in variantgé.ﬁ/

Our main feasibility result;is that these conditions carry
over completely to the measure*theoretlc transportation problem,
The demonstration of this is by : 'no means trivial, especially
when the capacity and requireme@t measures are infinlte{

Our first result establish%s feasibility for the ordinary
transportation problem (varianﬁas) extended to the case where

the number of sources and sinks is countable.

“w@"Lemma: Let Oy s az,...,3and Bl’ 62,... be two sequences of noé}

b
negative real numbers, such that
Cﬁ\*

e}

Lo
(!.l+0£2 +¢¢-"“Bl+82 *ioes b .(-2-)'
Then there exist non+negative numbers xij;satisfying (4
B : \ D LoD

e
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for all Oy 0 and

- . (2@,M}
'§12 + §22 *eoe 5 §§ 1)

£ 11 2
or a B; )

B e

g;(The two sequences may be finite or 1nf1nite, and need not

be equal in length; the common sum in {2) may be finite or

infinite;‘g indexes the sequence (ai), j the sequence (8 )ﬁ@

/(MQ%ﬁALProof: Define mi = al

;'L«\\

+eoat Gi' n. = 81 oot B =n =0

’5; X -and then let (fex&\ﬁu : 1 2,..., j = 1, 2,...%“¢ B
Foaod bl . il ’

‘:‘\’\;’/} \ e xij w3 !F{}E(ini' Ej) Lo min(m 7 1'1-

8] y - - sl
¢ y /

P

1)
;R\J 5 - - min(m_,L 17 nj} + m:.n(m1 1 By 1)‘W% ;f; 5

S

‘vzf

9 Suppose that m ~1_$f< gj 1* Then the last two terms on the

right oflj?) cancel,f%nd the difference of the first two is
clearly nagfnegatlvé (Remember that n

. 5 z_gj 1) A similar
argument obtains 1f my

1 X nj 1 Hence x ij is ncnwnegative.
,//’”'Naxt, we verify thatb for all indices j of the sequence

d

{
:
E
i
|
'

(B ), and all indices i of the sequence (ai), we have

—-‘ “*.

y "{’%3\%7
Eiq *'542 ?a..+ Eij = @ip(m%, Qj) o ﬁiﬁ(§§~1’~9j)§ )

-

Proceed by inductiqﬁ on j. For j = 1, (é) follows immediately

from (%), since ne = 0, Supposigg (6) true for j - 1 in place

3
{

of 3, we add (S) to it, and obtain (6) g se. Hence (6) is

1/5 true in general.
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s
Now in (6} let 3 increase 1ndefin1taiy (if (aj) is an
infinite sequence) or to its maximum valﬂe 415 (& ) is a

finite sequence). In either case we fiﬁd that 11m gj 2 mn
because of (2). But this means that ln,the limlt the rlg;t
side of (6) simplifies to By - By ® Gi‘ Thus (3) is verified. -

" The same argument with i and 3 interchangeﬂ verifies (4)‘Lffﬁﬂﬁjﬁﬁ

Lfijagg glven by ﬁS) has a very simpLe interpretation: ft

is pteglsely the "northwest corner" $Olution for the ordinary
transportation 9r0blem¥w/(Spee1ficallyg one starts by making
Xy @8 1arge as possible without automatlcally violating (3) or
(4) that»&e take x;4 = min (a,, Blﬁ. If %;9 = 0y, then all
the other xlj must be set equal to zéro to satisfy (3) for
1 = 1; similarly, if Xy = Bl' all the other x, 41 = 0, Now go
to the as—yetﬁundetermined xij farvwhich i & j is as small as
possible, and make it as 1argg'as possible, subject to not
automatically violating (3) or (4?. This recursive procedure
yields (5). Whatﬁge have &enem&ﬁ;ta showﬁthat it still yields
a feasible solution even for a céuntable number of sources and
sinks! provided (2) holds. |

The northwest corner salution will play an important féle
in the-next chapteti in fack, for Thilnen systems a certain
(generallzed) northwest corner solution is not only feasible
but ogtimal,xgnd encapsulates %n a striking way the main

structural features of such syﬁtems.
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We now come to the main resulti Essential use is made of

the product measure theorem. Recall thatg\if (A,Z°,u') and‘
(B,Z",u") are measure spaces with u, vsigma-finite, or even
Gr%TTrary
atreont, *heﬁe;ex1stsia megsurengon the product space

(A x B, I' x ") with the property that A(E x F) = p'(E)n" (F)

for all E¢ L', Fe I". ThL§ is called %ﬁé product measure and o)

denoted u' x u". 4

S ——

R —

i#£-ijheorem: Let (A,L',u') and (B I",u") be sigmavfinita measure
spaces“wh;eh are the souxce and sink spaces, raspactively, of
a transportation proble@; let B # #. -Therxe exists a feasmble

£ flow measure ) for thiéfproblem iff
) | \ g

u'(B) = u"(B) | n
in variant I, and iff;

W' (a) > u"(8) @y

in variants II, III, %nd 1v.
”N‘,.,,,,,..; w . . —ay i i A : S

5

| Proof: The "only if" pért is simple to demonstrate. Letting A

be feasible, we find that

> ' (A) > A(A x B) > u"(B) -
£

“*51n variants Ir, III, IV, while the same holds with equalities

. petiemme

in variant I.

/g'Now 5@{ e “'f" part. iﬁﬁﬂyb—eéﬁaé%, any A feasible for
II or III is also feasible for: IV. Hence it suffices to prove

the existence of feasible A fo; types II and III only, under
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assumption (&) (%s well as feasibility for type I undexr (7%%
@___,_mamal..

~We consi&er three cases, depending on the magnitude of

u"{B) .
——=% gase s i)% u"(B) = 0,
/f oy

-z For variant I, (7) implies that/A (A) = 0 also. Hence
the identically zero measure on (A X B, I' x I") is feasible,
A =0 is also feasible for II, since only requirements must be

satisfied with equality. As for III, choose an arbitrary

v o
et

point‘bo € B, and define A a§7f0110ws=3

= MG) = u' {al(ab ) € G}
“for all @ ¢ I' x g", (A is welliégfinad, because "cross-
sections"” of measurable sets,ara measurable. Itjis easily
verified to be a measure, aga A(E x B) = u'(g)ﬁﬁﬁil Ee I,
Hence the conditions for'transportatian variant III are
satisfied. '%h&smeamp%eﬁeswe&sew4i4~

b G 4
Qg}% case_(1): = > u"(B) > °‘>

{
A

~Por variants ggan&'lll, take A proportional to the product

> (u* x u"
R

= We then havek§(§,x B) = u'(E), while A(A x F) (=, >)u"(F) for

measures .

mv'é““ R

variants (I, 111), because of (719 (9, respectively. Hence

s

A is feasible.
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Variant II is slightly more complz.catea. If u'(p) = »,

’t?xen,.% hecause u is si%a-»finite, hence abcont -there exists

a measure | an A such that i £ ut and

] ( ‘”'} ' -4)
@ > fi(a) > u"(B) ey
-

%\(If u'(A) is finite, we simply take i L8 (9) then follows
from (2)Y7 No%efine A by

G 1, A CA) LU X U
i )‘;/1 \)/// . A ﬁ}j—mr—.
§ o ’ o — i
= Then A(A x F) = u"(F), all F ¢ I". Also,
AME x B) = B )§ (B) fi(E)< u'(E) ,——
b & :

all E ¢ Z'D
5

: a
Hence the conditions for variant II are sjtisfied. This-

RS T o S B0 ot 1 5 SO s

ff;Thia is the hard part. “F:h:s-t.—-of—-a-l-l-, from (7) or (8) we
obtain u'(a) = m[also. Hence 11: suffices to find a feasible A
for variant WJ}Z,& because this ) w,:-s.ll also be feasible for Az,
11, and 1v. |
Since u' is afigma-finite_gfhence abcont, it may be written
; as a countable sum|of finite nonTzero measures:
1 - By + ;pé *euois
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Similarly, for u" we may write A
et

Eﬁ'; ﬂu' 0 "
uo= Ul » 3-12 +"'tx

~if e -~ i
all ug finite, nontgero. Define the sequences (mi), L»3, Biisey

(Bj)' j=1, 2,000y by
..... SSEAESE)

s
I

{

: S ey = ui(a), 8y = uy (B).

o

-
These are positive real numbers.

Now invoke the preceding lemma, (2) is satisfied, both sides

-

summing to +o, Hence there exist ncnéuegatxve real x

I e
H—J

i, 3 =1, 2,444, 8atisfying (3) and (4).

Define A as the sum of the product measures .
2

L Ko

A £ N 2/ ! "
: /*—-gl’mi 3 ,(ui X ui) v

thélgummation extending over ali pairs (i, j), Le =21, 25004 &

We show that A is feasible for variant I. Pox E¢ I,

; 2 &
A(g x‘g) is the sum of all te;ms of the form i }
(B) /x, # s A 0B X
M‘;ix’u (Emm —Etiui(m./ Sl e

l 3

Summing first over é,ﬁand uéing (3), we obtain ui(g). Sumngg
this over i, we obtaié u'(g). Hence the capacit; constraint
is satisfied: A(E x B) = é'(E). A similar argument with i
and j interchanged shows that A(A X F) = u"(F), all P ¢ Z".

Hence ) is feasible for variant I hence for II III, and Iv

This completes case (1L3) ‘and the proof, [l*QIj?

e e ————.
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™

éx (i /
‘ (?ctuall* ‘gké seeg tnat this proof is valid even if u!

and u" are not ﬁﬁﬁﬁma finite, but merely abcont. In this case i&gp
Con r/;A/ Kzd o LH,@ Rost ,

S—— A ls also abcont. %;\

{'%;ﬁ 7.3. The Transportation Problem: Duality

Linear programs come in pairs, each being the dual of the
D HCuy)
other. The dual of the orxrdinary transportation problemmé-“‘-‘):hN

¢%#$=i£$~€§—sncz¢nn~l4 is:

- Find m + n non+negative numbers PyreserBys Gyreenedy satisfying

CI 3. 1)
it NS o
(L=1,cc0mp = 1,...,9)} and maximizing
" | (2.3, 20
glgl vent Sggg - alEl ~ens"= 0O -~ “£2Z)

e
This pair of programs has the following properties,

sha%éd by any pair of dual prégrams. If any feasible solutions
are substituted in their respective objective functions, ¥3i
nf~seeeion—l, and (2), then éhe value of the minimizing
objective\%%% of-seetion_1, never falls below the value of the
maximizing objectlveg\(ZQ‘ahege Infact, a pair of feasible
solutions are jointly optlmgl for their respective problems
iff the values they impartlﬁo the objective functions are equal.

~Furthermore, ;his equélity obtains iff these feasible
solutions satisfy ;he folléwing "complementary slackness"
conditions. There is*wfixéé-eé_allq a natural lﬁl corre€

spondence between the constraints of one problem and the
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variables of its dual. For the pair above, the constraints
%raaa§—&ee¥ieﬁw% correspond to the variables pi (1 = 1,...,m),
%;;=eéwse@tieﬁ -1 corresponds to qy W?j = 1,...,n), and (1)

above corresponds to x‘J?Yl = 1,...,mm.j = l,...,n) The
complementary slackness condition then states thatrﬂlf a
variable is gosxtive, its correspondlng constraint is satisfied
with equality.

’Pﬁz t7 The gquestion now arlsesa\ Does . the duality ccnstructlon

Ty

carxry over to the measure~theoret1a transportation problem,

and does the resulting pair have properties analogous to those
just mentioned? The answer is yes, up to a point.
Consider the transportation problem determined by the pair

of s.-ig-ma ~finite measure spaces (A,I',un'), (_B] Z2",u"), with the
Ut'gj {'1 “
constraints A' < u' and A" > uwwte&) and éQ%ﬂoi_sectian~l§ and the

(1)

objective of minimizing ff dl iké%’ef*aea%ran*&} over feasible

. flow measures A\ (£:A x B + reals is measurable).
L. J———

i . We define tha dual of this problem as followsp
> 5

“Find nonitnegative measurable functions p:A -+ reals and

q:B + reals Sah, satisfy

alb) - pla) < £(a,b) 4y

. Coon

for all a¢ A, b € B, -and for which the definite integrals

a5

& ; 5
\ASO’__. ’ B "i:f;‘ﬁ'ig'

[, end] [ 4, @
' = ip
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are both weli\defined and finite,

>
and which maximize :
!5\"3 i g ‘ (7%
" {]
[ ‘%/ 9, du IA Pp,du | <5y

over all pairs (p,q) satisfying (3) and (4).

)6

(2} We have already noted that the measure~theoretic reduces

TnL us first compare this with the ordinary dual, (1) and

to the ordinary transportation problem exactly when the a&%&a
fields,fZ' and I", are both finite. The same is true for the
duals. More precisely, the situation is as follows. Let I',
I" be generated by the partitions {Al,...,A j 9 {Bl,...,B ) PO
raspectlvely. Since p F is measurable, it must be constant on
each set Ai’ let pi be this value on Ai' Similarly, q has a
constant value 9y on Bj’ and £ a constant value £,50n A X Bj‘
Then {(3) and (5) reduce to {l) and £23 a respectivgly. \

Condition (4) haé no explicit coungérpart in the ordinary
dual, but,&since the integrals réduce to finite sums, it is
of -course automatically satisfied in the ordinary dual. ©One
might ask, however, why -eeaditien {4) should be includedp
Would not (3) and (S5) alone be an adequate generalization of
the ordinary dual? '

One difficulty that arises if (4) is dropped is that the
objective function (5) might no longer be welltdefined for all
feasible pairs (g,g). This difficulty is easily surmountedﬁ as

follows., First, assume that A and B are disjoint (this

‘l\



646

involves no real loss of generality, since common points can

be formally distinguished). Next, interpret the expressions
n b ’

in (4) as idefinite integrals, in the sense of pseudomeasures.
S <

Finally, interpref (5) as the direct sums
‘L/ 5 { 3 Mf‘_‘/" : A
84 ¢ _kf — b Pqu e

{. 7 ?‘,"QJ /

I,gh_giu“ ® J.(—g:),\gu'fa"’ —67
i(éi isﬁghgg;a pseudomeasure over A | B, and "maximization" is
to be gnderstood in the sense of standard order. If now (4)
also holds, then everything is finite,‘and the standard
ordering of (&) reduces to the ordinary size ordering of the
definite integrals (5). Thus a perfectly reasonable problem
results even if (4) is dropped.
Our main reason for inserting (4) is that with its aid
we can prove that many ordinary‘duality properties generalize
to the measure-theoretiézgése, whereas without it we can prove
less. We =hall refer to Qﬁ) and {5} alone, without (4), as the

dual in the wide sense.

The entire discussion of duality to this point has been
framed in terms of the inequality-constrained transportation
problem - shat—is, variant}IV. For the other three varianter

() wlis) ~
we define the dual exactly as above — «3) ,(4)—and- ] - but

relax the no@}hegativity constraints on p and/or gq. Specifi-

-

cally, if requirements must be met exactly (variants I anddiz),

e,

then g is allowed to take on negative valuess And if capacity

must be utilized fully (variants I and III), then p is allowed
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to take on negative values. This is completely analogous to
what happens for the corresponding variants of the ordinary
transportation problem, and indeed for dual linear programs
in generals Equality constraint; correspond to dual variables
without sign restrictions. _ |

With these definitions, the following theorems hold for
all four variants of the tranéportation problem, each with its
particular dual. The maasuré~thacretic transportation problem
(in any variant) will be called the primal. This and its dual
are determined by the ségma»finlte source and sink spaces,
(A,Z',u') and (§§"'““)' and by the measurable cost function

f:A x B + reals.

. | Theorem: Let flow measure A be feasible for the primal, and

3(2} 24 ’HL’
funagiens (p,q) fea51h1e for the dual. Then fog 4 dx is

well-defined, and

Lo ) 52 2@ ¢ 5 Lo S (%)
fd’\>]qdu"—jpc‘iu' 1
AXB B el a BAS TR
;Ammmw
Zwiégﬂﬁ Zoof: e havenﬁ “3{ <f -0 90 £33
| ' P .dU' & j )\' < 00— A
D |

To show this, we consider two cases. In problem variants I
and III, p'! = A',jand (8) is trivial; in variants II and IV,
u' > A' and P > 0, so (8) again is valid. (?he right inequality

by (4),)
in (8) follows from the 1ef§J Similarly,
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NhBe Smi o R SR C7.2:9),
quv“‘}qd’\“>-w/}/ ~9y
e e
ii%"cazr:,> p* = A" in variants I and II, while u" < A" and g > 0 in

variants III and IV. The right inequality in (9) again follows
from the left.

N —~From (8) and (9) we obtain
S ey
L: Q)A‘g ‘ 7 ~ 66‘-" 20 g;c! D 5”3 28 ; %‘ (’,7 '?;“ 10)
W [ q du" - f p du' < [ g 8" - I’ P ALY b sl g (xoy
z § -k 5" - - B AT A~ A=
{ ; ‘ e
-1§cw define the functions p,, q,:2 X B » reals by:
| © pylap) = pla),]and g (a,k) = glp), all a€ A, b€ B. We find
| A ¥ s )
| that
L
41 e o7 5 GRS < = s Gr3a1)
% AL Axp "R - Axp~!
i

by the induced integrals theorem. (Verify this separately for

B

P and ?l+' and for‘g' and El—' and subtract; similarly for‘g,
dy). From (10} and (1i) we obtain

GoREa < 21D 5/ g 124 (} % 149.)
,)».l f
B =\ & "N g
- = . e o N
% 2‘»:)\1 2{:5 \ "31
i fyww Since ?i - P ﬁ}i)from (3), it follows that »Axé ghgﬁ
. AXY
is wellkdefinedb for
}\ _33 n“!/
\P ! i -
£ d) <,[ (q=pqy)G) < = N
axp = N 7 /axB = =S ﬁA A )
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from (32). And, in fact, from (3) we obtain

N |

K:D/) i il e 3l e (751 3)
J (gy-py)dr < I £ dhemr— ' 413}
Axg = -4 AxB A :

o

Finally, (1@}, (12), and (13) together yield (7), M@/ﬁ

This theorem generalizes the ordinary duality property
that a feasible value for the maximizing problem never exceeds
a feasible value for the minimizing problem. Note that the

mere existence of a dual-feasible paifljp q) implies a condition
27 jel

on every feasiblg A: that beﬁ f d) be wellwa—k}ned, or, <in

other words, that the indefinite integral [ﬁf‘gk be a signed
measure, not a proper pseudomeasure.

We now introduce a concept g%%éh generalizes the notion of
"complementary slackness."

iy

S—

C;gﬂmf"Definition: Let flow measure ) on (é x B, &' x 2"),kand the pair

of functions p:A -+ reals, q:B + reals be feasible fnr the

77
{ N /; 5’; e
gﬁ transportation problem and its dualgxrespectlvely.a gp,q) is a

/ measure potential for A iff the following th®ee conditions are
JiEEE \
/ \’b .. satisfied: ,
1 L ek C Rl )
(€& A A (a,b) |q(b) - pla) < £(a,p)} = 03 iy
e (7.%.45)
X' and p' coincide on subsets of {a|p(a) > 0}; 435
\ S E (7.3 16
\ i LYA" and u" coincide on subsets of {blq(b) > 0}. 16)
.‘“,.%mﬂ""’"\ i :

i;} A
; (14) states that no flow occurs on the set where (3) is

Xi‘ M T

satisfied with strict inequality. (15) states that capacity
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is fglly utilized on the set of sources where_g is positive.
';?igigﬁgéteé that requirements are met exactly on the set of
sinks where g is positive.
This definition is meant to apply to all four variants of
the transportation problem. Note, hcwevér, that in variants I
and III we have A' = p', so that (15),ié automatically
satisfied and may be dropped withnut_éhanqing the definition.
Similarly, in variants I and II we have A" = u", so that (16)
must be true and may be dropped. g
> As én exercise, thé réé&éiwﬁight verify that this reduces
té the ordinary "complementary slackness" conditions when both
s&%%a»fields,‘z’ and Z“Q are finite.
Note that dual feasibility of (p,q) &iﬁhét;is, satisfac-
tion of conditions (3) and (&ﬁ f{is a requirement for measure
potentiality. If, as suggested above, (4) is dropped as a

dual constraint, this gives rise to a correspondingly weaker

concept here, which may be called measure potentiality in the

wide sense. For the time being, however, we stick with the

X original concept.

o

sl

C?Qg. Theorem: Let A® be feasible for the transportation problem, and

(p®,q°) feasible for its dual (given by (3) and (4)). Then

*j;:} (p%,q9°) is a measure potential for A° iff
x;;?f A ) <7 YO ot 2P, W (2:3:17)
‘ ] £ dre = f g°, du" ~[ P2 du' 7
AxB ° B — R 0N

e
— e e
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.
iy%;'pgggggz Let (g‘,g?) be a measure potential for A°. Reviewing
the preceding proof, we find that at (8), (9), and (13) the
weak inequalities become equalities,ﬁbeeause of (18), (1e), and
(lé)ﬁnrespaetively‘ Hence (7) is saﬁisfied with equality; this

{f , is (175.

{ngzf Conversely, let (17) be true. Then all the integrals
appearing in the preceding proof must be finite, and the weak
inegqualities of (8), (9), and (13) nust all be equalities. But
finite equality in (8) implies condition (15). This is trivial
in variants I and III; in vafiaﬁtsixg and IV it follows from
the facts: p > 0, A®' < y'. Similarly, finite equality in
(9) and (13) implies conditions (16) and (14) , respectively.

Hence (p°,q®) is a measure potential for A°. JJ*ﬁ% e

’mer'v& Theorem: If the pair (p®,q®) is a measure potential for A°,
R then A2 is a best solution for the transportation problem, and
f,}‘ ‘“i\‘ e " 3 i -
‘<E;;;‘ (p?,q9%) is a best solution for its dual ("best" in the sense of

standard order).

“”ﬁ::::::“
@ Proof: Let A and (Q,q)jbe any other solutions feasible for the

transportation problem and its dual, respectively. From the

g@égf two preceding theorems we obtain

/ 3 X W = ~4§}

o 1) [ o 3:] g° du" - ] pe du'| i

“ A éx% \ ' B_i_. fﬁ \ é - A L g; D)
L) B e e TS Y

| g I gaxe > [ gqaw - [ pawto V

i’ éx? = 5-“‘ ’B P G A' | o

1

\
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All integrals in (18), except possibly the leftmost, are finite,
by (4). Wow, when the objective functions are weii;defined as
definite integrals, and finite for at leaﬁt one of the two
solutions being compared, standard ordering reduces to ordinary
size ordering of definite integrals. Recalling that we are
maximizin;rthe dual and minimizing in the primal, it follows at

once from (18) that (p?,q°) and A® are hest for their‘respective

problems. LW /19

TR
All of these results are direct generalizations of duality

relations that hold for the ordinary transportation problem,

Note-that the finiteness condition (4) is essential to the

preceding demonstrations. What happens if it is relaxed? It
turns out that we can still deduce a weakened form of the con-
clusion of the preceding theorem, with "unsurpassed" in place
of "best". Specifically we have the following result, which
has an application in the theory of market regions 4@9~(ﬁ 53

Theorem: Let (p,q) be a measure potential for A° in the wide

sense (i e. without (d)f; but with at least one of the two
definite integrals in (4) well-defined and finite., Then \°

is unsurpassed for the transportation problem (in any variant;

"unsurpassed"” refers to reverse standard ordering of pseudqjl

measures) .
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i$§=; Proof: We argue by contradiction. Suppose the conclusion were

—

) false; then there is another feasible measure A surpassing A2,

t gJ 4 T 1 :

A l\g‘r 'S) (1::19)
; Eoe : j £ di ]h;ﬁ dae —£19)-
i \ W :

(standard order; remember that we are minimizing).

o T TS 5

Define tha#functions Pys 9y on A x B.as_abowe-by the rules

i py (asb) = pla), qy(a,b) = q(b). From (3) we obtain

- d
J{(ch ?1)&«,?‘ < [

N

(“i" refers to narrow order). :{14) bélﬁs for A%, so that

4 gp}k;.i'i' -
?&g)‘ i +20)-

inequality (3) is actually an equality A°2almost everywhere.,

' From this we get the pseudomeasure equality

[ @ -ppare = [ € anee G

Let ¢y be the pseudomeasure (A,A°). Then
' /4% 4%
j(ql - Pylay < J £ay < 0. “22)
A ,\ A v
(The left inequality in (22) arises on subtracting (21) from

(20); the right inequality in (22) is the same as (19)). Since

standard order is an extension of narrow order,

(22) implies
that

[31 an . % j Py b,

The rest of this proof is devoted to showing that (23) is false.

} This contradiction will complete the proof.
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§ One should keep in mind iﬁ what follows that the upper

|

i
1

s ___ variation w* is just an oi&inary measure on A X B; hence it has
'5%Pw<lﬁ?1§ left and right marginals, which we denote by wf%} w+“

¥ o=
M -1

; g respectively. Similarly, the lower variation 9~ has marginals
:cJ‘ bn one - ‘ .

leve] RS

“‘EJ/ . Consider the following indefinite integral with its Jordan

forms

! By e U py 4v" + I,_E’lfé“’??\f L I gf.d‘f] hG

We wiil show that, for the following definite integrals,

Sy - oY W 20 ?;"'g“ W0 ;8\1" 3\
2 i B
f PJM"’ - [ p"'éw"") f,f pa(y ") = j
and

B J JL LA I pa(yty) = I py vt - L8y
If"‘? " S A FA- pin Tt o

P

The outer equalities in (24) and (25) all follow from the
induced integrals theoremn, Fér the middle relations in (24)
and (25) consider two casesp

) gase ££): Variant I or ILlg hewe

LY,

}E,/ , At ”13‘9’ = u', £26)
By the equivalence theorem for pseudomeasures we have
MRS IR R WS QN
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p' being sigma-finite, there is a countable measurable parti=-
‘tion G of A such that p'(G) < », all G ¢ é.

For any such G
and any E ¢ L' we have

‘3’*

"(En G) + A2'(E N G) = VENG + A'(En G,

on taking left marginals in (27).

By (2€) the A', A2' terms
drop out.

Adding over G € G, we obtain

¢+ ':'

(28
Thus the left marginals of w+. Y~ are equal, and the middle
6\ ' xelatians of (24) and (25) are established with equality.

Varlantk£§ erwzy: here p > 0, so p = 0 and (25) is

(//f trivial. Also, since (15) holds foglif, we have
ASME) = ' (B) > A" (E)
An similar To
for any measurable E s {alp(a) > 0},

Ehe amm,(zm
428) now yields,mg

e “"1 {%) f. ‘P-If (E)
for all such E. This establishes the inequality in (24).

(24) and {25) now imply that the following statement is
false.

5 s! & E‘ ‘mt {?‘x‘..
\ - ‘i\‘

29)
For (29) is true iff the sum of the two left~hand integrals-in

(24)—and-—(35) exceed{ the sum of the two right-hand integrals
in {24) and (25).

(7%
{E) = P ME) e ,

1

Z
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Furthermore we have:
il 2° youk k2 1 1.3.30)

B If I P du' is finite, thén I 91 5¢ £ 0. _436)
A — /N wes T

To see this, note that ¢~ < A2 (miniﬁizing property of Jordan
form); hence ¥~ < A®Y, implying

Av o a¥ ne o e 27
. L (¥ e p i : + :
[ p— d(y*) < I p~ d(A2') 5;[ p= au' < o,
A - N’ A 5«‘9&' 4 A N T,

This result shows that all the integrals in (24) and (25) are

finite; (24) and (25) then yiaxa the conclusion of (30).

' We now run through a'simiiar argument with g in place of p.

)b
Only the high points will be mentioned. We-widl show that
29 2l u?x » o\ 50 gL 31 :
| alevt = [y ot awtn 2 | ataw™ = |
AKB —h ] - lﬁ‘, A B Al : %"B
and E
5 2\ 0 “7,! 26 S, : >0 :f.\ e
I R T [ qaw“‘“w[ !
AXB A

-

The outer egualities in {31) and (32) again follow from the
induced integrals thearem; For the middle relations there are
' again two cases to considem@ |
gy casggg Variant I or IIi here we have Lo
e A" = A2 =yt 433)

An argument similar to izé) thiéugh (23) shaws that N

> ;ip+"#¢ﬂ
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which establishes the middle relationé of (31) and (32) with
1 equality. |

o8

& ;
l§;§ﬂ£g4&§ VASKNAL. IE1 v IVZ;Pere g 20, s0q =0 and (32) is
" trivial,

Also, since (16) holds foélig, we have

4
W L
o
JyAe
\

a \ g

LA T

e s e
é“éi

; : : — 7\ (00
WYY ) A L P

for any measurable F g {b|q(b) > 0}. There is one subtlety at
this point, since we cannot assume that A" or A®" is siémaf’

finite, but the argument still goes through as follows. Let G
be a countable measurable paréiticn of B such that u"(G) < =,

all G ¢ é’ Then, for any such F and §,'wa have (noting that
A2"(F n G) is finite),

3
by

\ b

w"“u"‘? n (E) = w?”{F N G) + A" (F N Q, - AL (F n ﬁ)

S gd S8
Adding over G ¢ é, we abtéin

= w"'u(g} [ ‘l’u“(ﬁp

for all measurable F g {b|q(b) > 0}, which establishes the
inequality in (31).

“\kgarallel to the argument above, (31) and (32) now imply
that the following statement is false:

| (2,5 %)
A~=" ™ -
andr\furthermorﬁg
BN
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v :
o) ¥ S -4 hj (7.3.35
(o : gy S
? ~ If IB gAgu" is finite, then [ q; a¥ & 0. 357
?g” .\ 1 (35) follows from the observations{
: Ve Bl 22 ko Shiti 9 - (7.3:36
/ 'y ; ) ;
[ a¥ao™y < [ a¥anen = [ ataw <o 436)
. T B S B . A

(The equality in (36) follows from (33) in variant I or II; it

e’\:’,}“ RS
follows from q > 0 and (16) in variant III or ;Vié) 36), (31),

and (32) then imply that

2\ B c sl i 83

‘\\‘v,,
f 9" @+ J g @t <
AxB "% | AXB *

P o oo
5805 M e

and this fact, together with (Bl)fand {(32), yields the conclu<
sion in (35).
ééiyinally, at least one of the premises in (30) or (35) is

R TP

: true by assumption; hence at least one of the conclusions in
g (30) or (35) is true. Thus,@hembining things with (23), either
| o '
%\\ which contradicts the falsity of (34), or
\ % [@qlhdw % [A?1'§¢*~
| which contradicts the falsity of (29). This contradiction

C TV i
completes the proof. L/ &

a——__

—holds. For example,—is—{17)—=a mecessary condition for solutions-
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; OF can a p ive St betwe

Q ﬁ\ ' 7.4. The Transportation Problem: Existence of thimal Soluﬁions
F (ﬂ:éﬁr Uhio oo i
~This.book is new-fairly -well-along,—and £ i

1@jtopological concepts have scarcely been useq Thi# has been a

matter of deliberate policy;)to underline the’ fact that, <
contrary to popular table=talk — measure thegry is far more
significant than topology as a groundwork fqi social science.

» But for the rest of iﬁia section/»topqiogy is essentiéi.‘
indeed, we know of no general method for péoving existence of
optimal solutions to the measure-theoretie transportation
problem without using topological cencepﬁé. Nor do we know of
any topology-free method for constructiné measurespotentials
from optimal solutions.

: Wa«&hall not go deeply into the subject; but simply list
those concepts and theorems whfah are actually used in the

) sequ51.~

b
/? = Given a fixed set A, let T be a collection of subsets of
.;v/r o

A, T is a topology fver A iff (i) A e T, and the ?mpty set -

g e T; (11) if Gl;}gz € T, then Gl n GZ ¢ T; (111) G = T, then

uG € T. (In words:| T is closed under arbitrary unions and

finite intersections, and owns A and #). The pair (A,T) is a

topological space and the members éf T are called open sets.
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Set F is said to be closed iff A\F is open.

Let G be any class of subsets of A, From this, construct
é;, the class of intersections of finite subclasses of é and
thenfG”, the class of unions of arbitrary $ubclaases of G'
together with A and @#. One can show thatgG" is a topology, the
topology generated by G; G is called a sﬁbbase, andné‘ a base,
for this tepaﬁsgy.?f 2 :

seript 7|

Let (A, #) be a topological space,#nd let E g A. The

relative topelagz on E is the class,of_éll sets of the form
E N G, G ranging over the open sets of A, This collection of
sets makes E a topological space in ité own righﬁ, This is the
construction implicitly referred to bsiow when we speak offbh
e+g., the "usual topology of the ratiénals?, or “tqpological
completeness of a closed subset Of.@'?

Here é;émsemﬁ examplei let A be the real line, and let

G be the class of all qpen intervals. ‘The topology generated by

G is the usual topolagy for the real line, the one implicitly

used in ordinary discussions of centinuity and convergence of
real numbers,
This example has a far~reaching-generalization. Recall

that (A, d) is a metric space iff the function d:A x A + reals

satisfies: d(a, a) = ang(al, az) >0 if a, # 3y, d(al, az) =
d(az, a;), dla;, a,) + d(a,, .53) >\d(la,, §3). Now let G be the

class of all open discs = thgtwés, all sets of the form
J ¢

{gl@(ao, a) < x}, for a, € A, x real;an& positive. The topology
generated by the metric d is the one@generated by this 6.
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Mi”The topology generated by the Euclédean métric in n-space,
(n =1, 2,...) is the usual topology for thisfspaca, and will
be assumed if no contrary assumptions are mahe.

Given a topological space, (A, z;{_ggé can ask: Does
there exist a metric d on A w%%dﬁ gener%tés T as described
above? T is said to be metrizabla 1£f this is the case.

\ ;;;;;
s We need the concept of comgleteness of a metric space.

A sequence a37 8yrees from (é, d) hasithe Cauchy pfoperty iff§\
for all € > 0, there is an integer ﬁ‘such that, for all \
integers m, n >N, d(am, an) < g1 roughly speaking, the points
get indefinitely close to each other. f}A; a) is ¢ omplete iff

any such Cauchy sequence convergés to a point a, e A, @hagmis,
‘ =%

ii?cr all ¢ > 0, -there-is anlﬁfsuéh that, for all n > N,

d(a,, an} < €. For example, tﬁe real numbers are completej’ the
rationals are not, under the usual topology. A space (A, J)
which is not only metrizable,ibut generated by a complete metric

is said to be topalogiaally:éomplete. The real 115;, and n-

space in general, are topologically complete under the usual

\Or_open
topologies, and tha same is true for any closedYsubsets of
these sp#ﬁes {in—%he—ratatIVE-topo&oqr+—

\

(A, T) is s agarable iff there is a countable subset A'
such that any nonjempty ‘open set meets A': G ¢ f and G # ¢
implies G n A' # @, Jn~space is separable for any n | (e.gt)A'
may be chosen to be the set of n-tuples with rational

coordinates). 1Indeed, any subset of n-space is separable,

ropt T

{J( yw-

-



/ "!i' ; 4

N

i d f"i %%4\{ ¥
B

j(% /

N

662

A subset K of a metrizable topological spac@‘is said to be

compact iff every sequence from it contains a ﬁ%baequenae cons

verging to a point of K. Any closed haunded subsat of n=-space,

for example, is compact. nﬁ

We need a few continuity concepts, confining our attention

to real-valued functions. ILet (A. Ty‘be a topological space,

and £ a real-valued function with ﬁumaxn A. ' f is lower semi-

continuous iff every set of the SBrm {alf(a} > x}, % real, is

R ‘@% £ is upper aamiicontxnﬁous iff -f is lower semix

cont;nuaus, or, equivalently; iff all sets of the form
- {&_,1

{alf(a) < x} are open. Finally, £ is continuous iff both lower

and upper sem1+continucuau
Let (A, T') and (34 T") be two topological spaces., On the

cartesian product A xﬁB one defines a product topology, written

f:} ® T, essentmalk& in the same way one defines pro&uct-s%gma
fields. Sgeeifiea&ly, rectangles E x F are called open iff
Eg T‘ and F ¢ T“" Tt x T* is then defined to be the topology
generated by tha open rectangles., One can show, in fact, that
G ¢ T x T* 1£T G is the union of some subclass of open

3

rectangles. ;/

Y

The dyscussion to this point has been purely '%opolagical.
We also néed some concepts that depend both on topological and

measuxe#theeratic ideas. The Borel field of topological space

(A, Ty’is the sigma~field generated by T.%/,th members are

f .
v
o
—
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called Borel sets.

Let (A, T) be a metrizable topclegical space, let I be 5ﬁ’

) bounded
& its Borel field, and let u be a meaaure on Z. u is said ka be

Y
i
§

ak tight iff, for evary positive number €, there is a comgact set
/H(A\KJ / K such that a(AlK) < g. Let N be a callection of maasures on

v
i

that u(A) < N for all p ¢ M, and (ii) for evgﬁy positive
number € there is a aampact K such that u(ﬁ\K) < ¢ for all
T ﬁ‘ (Note—that the gsame K must serv& 'fox all w)

;ith (A, T) and I as above, lat ﬂ be a bhounded measure
on Z, and Ui+ Ugrees @ sequence of suah measures, This

sequence is said to converge weggly to u, iff*‘for every

g:A + reals wh&eh is bounded gnd centinuous we have

,f With these definitions out of the way, we are ready to
ﬁggéeed. The following is an cmhibus theorem, covering the
alternativa variants of the transportation problem under

alternative assumptions. cﬁ;e;ua first briefly contemplate the
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practical import of some of these assumptions. }Anx subset of

t,
2

n~space is separable (in the relative topology), and any subw

set whaeh can be expressed as a countable intersection of open

leKsandrov's theorem; iy,
sets (a so-called gﬁnset) is topologically comp ete,\ﬁ

particular, closégqgﬁggets of n-space are Gs). Hence these
conditions constitute no real restriction when impoae& on
(physical) Space or Time, or other spaces bu¥;t up from these
in a simple manner. It is unclear what re@ﬁ%ictinns they imply
when imposed on topologies on more ccmg;g% spaces, such as
Resources, ex Histories, or Activitiegfc The boundedness of f,
u' and p“'means that these resultsgwill often not apply to
problems involving inginite{§pa§a5§r Time horizons, but /<.
constitute no real rastriationfﬁhen applied to "practical"
problems in the narrow sensef;f the term.
i«r&u~a§so—thatJ;heseJﬁéundeﬂness aasumptioné:iﬁply that
the objective funetién is weliidefined and finite as a
definite integral for»ény feasible flow A. Hence standard
order reduces to the ordinary comparison of definite integrals.
We aw;?igﬁggrérop khe distinction between "best" and "unsurpassed"

: solutions, and simply speak of optimal solutions,
?&;-E Theorem: (omnibus existence theorem)  Let (A,I',u'), (B,I",u")

be the sourée and sink spaces for the transportation problamﬁ

g J : ] - :"}
* : (1) u L and f are all bounded, and u'(a) > u*"(B); and

é
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(ii) /—thexe axlst topologles T'

T on A, B, w&th X‘, L" as

itheir Borel fieldsﬂ respeatively: T', ™ are ba&h topologically

»complete and sepatable, and £ is lower aem@ﬁeantinuous with
Mt ‘”__;gspect to T' X T“-~

——

(a) no extra assumption; or

(b) :’ G’ oxr

} ,
Kc) (B T“) is compact, of

curmiy

(@) iu'zm = u"(®).

|

)10

Then we have 7
]ff | 1»5‘ 3\ 3\

iéiz WA ﬁl;g_
(pta) A v ox Tw

A el
< v | V| V| x
y i) | £ L £}/

My L) s

,ﬁ
‘m

where 7"1ndzcates that there always exists an optimal solution

to the transportatian problem for the given combination of

Tk

variant I, 11, III, or IV, and assumption (a). (b), (e), or (4),

and x indicatas that thexe sometimes daes not exist such a

solution.

i[%,__m.rroof@ There are sixteen things to prove,, and of these twelve

N

’ i A
y
y
el
b 7

e 'A“‘/“

v

can be disposed of rapidly, either directly or as a consequence

,%f the other four.

entries,

First,ﬂthe counterexamples for the "x%

A
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i« (Ia), (Ib), (Ic): Let A and B be singleton sets, with

u(a) > u(B), Then variant I does not have even a feasible,

let alone an optimal, solution.

_ _.(IIIa), (IIIb)y Let A be singleton, with u'(_}%fﬁ 1; let B be

the'integeis {1, 2,004}, with %“ = L = ai%féhbsets of B, and
u" identically zero; finally, let unit t;;géport cost to point
né€ B be l/n \(13, o3, Binnal :

Sinceﬂgtis countable, %"‘is sap§£§ble; it is also

¥

topologically complete, sinaalgenegéﬁaﬁ by the complete metric
d given by d(m, n) = 1 if m #,9.;;§hus the stated problem
satisfies all premises of the ?ﬁéarem, including (a) and (b)
of (iii). ; §
There is no optimal sgﬁ%tion} ,fnr,,en~the~anafhan&; cost
can be reduced below any §f} 0 by ihipping one unit to a
) 'Pve|

sufficiently large n ¢ §§ On the -other-hand, zero cost cannot
be attained, since £ >0, and A(A % B) = u'(a) > 0,

»w__(zgg): Let everything be as in the counterexample just given,

except that unit géansport cost to point n ¢ B is (l-n)/n.
Cost can befteduced below any real number >~1 by shipping

one unit to suﬁfiniently large n ¢ B. en~thew§£5gnmhana, cost

of ~1 cannot be attained. This is clear if A = 0; while if

A(A x B) > 0, then, since £ > ~1, we have
. 3
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3\ A 3l
o |8
;f £ aa w[ ;-1. G: = =A(A x B) > =pu'(A) = ~1y
i=§x§% A AXB
e
Hence again there is no optimal solution. jéf&! f/ﬁ

—-—ﬁ‘_______

L4 (LY, f’I’ﬁis finishes the "x"s and we start on the ‘!-#‘p First,

F

of-all, existence in cases (IIb), (IIc), and (I Id) obviously

follows from existence in case (IIa).

,%( :.f *{,1\,_;,;«;,‘;)(33_) » (I1Id), (Ivd)§ Existence in these ’;:a'ses follows from
l}”/ existence in case (IId). To show this, we prove that any

feasible flow mgasura A must satisfy éhe transportation problem
constraints with equality in (%}_rm variants. Por suppose
there were an E ¢ I' such that u!'(E) > V(E). Adding the inf | X pronee
aquality u' (A\E) > A'(A\E), we; obtain p'(a) > at(a) . (The '
"; stra.c:t inequality carries over because all measures involved

are finite). But A'(a) = A*(.P,_x x B) > u"(B), so u'(a) > u"(B),
contradicting premise (d)f Thus we must have A' = u'; a

similar argument astablishes A" = u", Hence all four variants

have the same set of gaasible solutions. If an optimal solution

exists for any of thém, therefore, it must exist for all, under

premise (d).

/{ This leaves _,é.he four casesy (I1la), (ITIc), {IVg), and

B (IVb) .
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We show that the existence of an optimal salution in
case IIb implies its existence in IVb, Let A be feasigie for

variant IV, so that A" > u". Thus u" is absolutalyﬁgontinuous

—Z
with respect to A", Since all measures are also ;inlte, ‘we may

invoke the Radon~Nikodym theorem and infer theiéxistence of a

function g:B + reals satisfying ; s

vl ,{;Y !{—} H.2)
u" = J.q gﬁ_(_i}\“/f" {2)

)

W

g ‘must take on values in the closed interval [0,1}, except

possibly on a I"=set of A"-measuxe zero, Altering it to zero

on this set)(which does not invalidate (2)f%'we'thus have

0 <g(b) <1, for all b ¢ B. Now define h:A x B + [0,1] by:

h(a,b) = g(b), and then_i1 by

%

(7043
4 }‘1 = !Ex ar .~ ‘(‘3‘)

This is an indefinite integral over A x B, and A, is therefore
another flow measure on (A x B, I' x I"), We now show it is

feasible for varianta};. Fixst)osqak%* Al £ A, since h < 1;

hence ;
| (7:4.4)
A T S utee +4)
Ean (7.4.5)
A; = j g \ék r ) "("5“’

A,?;:;;;fnl g At nal

from (3) by the induced integrals theorem. ; (4), (5)/_ and (2)

show that A; is feasible for variant II. Also, since Xy £ )
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and g 2 0, we obtain

| Efdllfn[ £ A o)
| JaxB N\ AxB

= Thusg\assuming £ > 0, we have shown that far any flow A
feasible in variant IV, -there exists a flow 11 wkich meets the
more shringent conditions of variant IIiﬂanﬁ whose transporta<S
tion cost is ho higher than that of A, by (6). It follows that
any solution optimal for variant 11 wiil also be optimal for

variant 1V, under premise (b) . ﬁf

7
&

%,

(I1a), (IIXc), (Ive) : This is ghe laah, and ¢ost diffieult,}
93:&.,9H The proof goes through several stagesﬁ fhe first :
stage is to show that the sa& of feasible aelutions in these
cases is uniformly ’ugm”

First-of-all, frem ﬁhe fact that T* and T" are both sep=
arable and matrmzable,&it may be shown that I' x I is the
Borel field of T' x T‘ Also it is known that any bounded
measure on the Barek field of a tapolcgically complete and
separable topologinal space is _mgm” (Ulam ;ﬁe~5§iﬁ§§§aie¥qﬁsa
~§agesxﬁaﬁia Henée,&for any € > 0 there are compact sets K',

K" ;fupontainedrﬁnré, B, raspectively;ﬁ-such that

(7:4:7)

WYA\K') < /2, 1" (B\K") < e/2.5— +7)

Now ;éi A be a feasible flow measure. We always have

1’(§\§'Lf§.u‘(éx§'). In variant II we also have

/
Vs

o

=
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ey, 8)
A" (B\K") = u"(B\K"), ~{8)

Furthermore, if premise (c) holds, B itself is compact,, and we
may choose K" = B to satisfy (7) and (8). Hence in all thn
three aasasﬁ (Ixa), (I11Ic), Izvc); K' and K" may be ahaaan 80

that
()w 4)

A'(A\K') + A"(B\K") < s.@« “t9)
for all feasible A. Next, consider the numbar A[}axa)\(x'ux"i}
This does not exceed the left side of gs). since

(A x B)\(K' x k") g (0 ¥ afi U A X (B\E")] o

‘%

Alsa K' x K" is itself compact iﬂ the product topology T' X ™
(Tﬂhﬁnev’s theorem) . Finally, A{A x B) € u'(h) < » for all
feasible A. This shows that*tha set of feasible solutions is
indae@fanitormly tight in a&l three cases, (such

SESY VI ALK ff»«.j

“j;we know there is at;laast one feasible solution, Hence

there is a saquan@a of ﬁhum, xl. 32""' with the property

Ca (AN ;
W{) B (q.tra)

1im/ | £ dA ve,— ;

(4 | 182 = 2 Bt

where V® is the infiﬁm of the attainable values of the
objective funet@én.

Since %‘ ahé T" are both metrizable, the same may be shown
to be true f@r the product tﬁp@log¥¢ We now invoke tha basic

7" theorem of ?r@h@t@?~?&r&d&!&jan*ﬁﬁiﬁlingsls¥yﬂ§agau$§¥# If

11, *2'*'? is a sequence from a uniformly tight set of measures



671

on the Borel field of a metrizable topological space, t en

there is a mb{-saqumm which converges weakly to some measure
A% (not necessarily a member of the set).

Let A2 be this weak limit of a mbgsequenm of the

Pl

Ve § :
Ays Agpee. which satisfies (10)., We shall prove that this A&
is in fact optimal for the transportation pmblm,l\ by showing
that it is feasible, and that

n\ ; 3! (:4.11)

J f dr® < V'r Doer 313
Axxa oa :

3 — e 5

(G U I,m

}‘ixst Tpx (11). PFor eanveniaaw we retain the notation
Aye 2\2,. «+ for the convergent aubfmqmnm of the original
m&u&a&a. Invoking a theorem nf A. D. Aleksandrov, it follows

that Bkt Q—O | G thi2)
A%(6) £ lim inf A_(G) ~3:2)

Wi g
for all open sets {,% g A m’) B. Let us now temporarily make the
27
_ a_ﬂd&tianal + tion hhat f > 0. We then have
&?I t &A" = f i'{(a.b)]ﬁa,b) > t}iﬁt

M% N

\i* wi y 1§e
I Iim :1!::‘3} A {(a;b)lﬂa,b) > t}&t:

g)‘t*’ji)
&Jk'? :

\Sq »}’3 1
im inf .
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{1/ /

v
tho last equality in (13) comes from (10) The atﬁtt two

equalities invoke ‘the Young integral, which is ag atﬁinary

Riemann int@gxaig-§seﬂpugu-~m«* The first in&guality results
from Aleksandrov's theorem, (12), and the faaa that = since £

is lower sami+cantinaeus)ﬁvthe set {(a,b)lf{a,b) > t} is open.
The sacond inequality is from Fatou's 1¢mmai.a““

How drop the assumption that 2 k40¢ Since £ is bounded
below, there-is a real number x aue& that £+ x>0, The

é
&

argument of (13) now yields A
f

i%' ey TG s T ol , aexn
I &£§x)d&2 lia in! (E4x)dA_ > “$14)
Ax I ax N

i

!

|? AxB| - ﬁ
‘I 3 N .;

| : ATl

é‘j

But weak convergence impl&ea that lim k (A x B) = A%(a x B).
(Substitute the aenstanu !una&ian g 1 in definition (1)).

follows that the x‘a ﬁxmp out of (14)., Thus we obtain (11).

//Tha final step £‘ to prove that A2 is feasible. PRirst-of
ﬁ&i,.sinen ll, x2¢m.o converges weakly to A%, it follows that

It

the marginals oonVarga weakly to the respective marginals of

.3~
A% (by the Manndwazﬁ theorem Bitlingsley,pages—36-31):

8§ 34@ 1! - xv; 3.im x“ - X2

c-

where “lim“ atanés for weak convergence. *ﬂau, for all n. the

maxginalu aak&aﬁy the feasibility constraints for the txans~

gartatiﬁn problem: 5 gl
: 3;”) f !ig J
J,.a’j {"‘r “}ll' 11; 1* ("" ’ ”ﬂ D +13)
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the particular signs depending on the variant in question. de,

must show that the marginals of A® satisfy the same aonst;riiines,

wm/g he following result will be used: Let u, v be two
bounded measures on the Borel field of a mtrizahlg t:apologiml

space, C. it l :
o) : -
‘;@\ '2.% '}1 Sl 1“ m,’_:*‘::‘ (j? Y ; j A )
Jasanzf oo +26)
c ._,,/\"" I ‘x:jz-

for al%wboundsd noﬁ?nagative continncutffnnctiona 9 then
M2 vf*i” It follows that,iif Uyo ”z*"'* and Vyr vz,.g. are
two sequences of bounded mausuraa on this Borel field, con=
verging weakly to bounded measugna ¥, v, respectively, and
U, > v, for all n, then u 3_ \g;’f For,

ibg* {go" ST
/

d

S5 EE |20,
. ;
g dlln > 1510 [Cg\ gh\d" - gcgghé"r’?‘“

£ e 1)
| 2 s
] g du - lim [
j c
‘ 1 = ] | ;
if g is bounded nan%qégativ- continuous; thus (16) holds,
yielding u 2 v. |
Now consider the two saquoncnik ' #'seee, and ki, 15....,
The first is a constant sequence, converging weakly to u'; the
second canvoxgéa weakly to A%', Since u' > x'. all n, wve
obtain u' LA xgﬂ(by the above result. Simalax arguments show

that the ralations {15) get reproduced with A°2'; A®" in place

LL

of k 3 l“ﬁxrcapactivcly. Heneu L! is indeed teasible:// by
Sinaa 1:lglse attains the infimum nf tha objective !unc«

tion, by (11), it is optimal., The preef-is-eomplete. lL{gz—[J &
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These results can be generalized in a number of ways.

FlrstNeim&%l, the condition that the unit transport cost func~
3¢
tion f be bounded can be relaxed. |The f&ﬁt that £ is bounded

Ay 3
above was used only to guarantee that FMB 2 dA is finite.

Hence we need assume merely that £ LB bounded below and that

P e
fa;g f dk is finite for at least qhe feasible 2,

i‘

The condition that £ be baﬁhéad below can in turn be
weakened to the following: %her& aexists a m?%%urable function
h:A + reals such that h(a) ;}f(a,b), all a¢ A, b€ B, and

| s i e =
“f h du' is finite. We omit the proof of | this statement.

(2

complete and separable @an be weakened to their being merely

Maxtg%the cenditien that (2,T') and (B T") be topolngically

Borel subsets of such apaaeﬁ‘ ﬂarhkﬁ&;&t~o§%a$&* such subsets

still remain separable metrizable, and, %sn@né}@ ~any bounded
measure on such a s@ace still remains tight f?urthasﬁfathg&
—pages—29=30)., Th& proof then proceeds exactly as abcve.’ Just
about any subsats of n-space with the usual topology whieh arise
in practice wouid fulfill this condition, for example.
Finally,,&ha simple constraints of the transportation
problem can be complicated considerably without invalidating the
preceding ptocf. Suppose, for example, that shipments are not
allowed b%tween certain source=sink pairs (say because a road
does notgéxist,’ar because the resources at the sources are
unsuitgﬁie for the activities at the sinks). More generally,

there;hay be upper limits on the flows between certain pairs
/
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(@ue,~fsrﬂaxampleq to limited road capacity). Or, there may

be lower limits. The following result gives the generaiizaa

tion.

Theorem:
»m

Let a transportation problem satisfy gli the premises
of the preceding theorem for one of the chgdied cases (IIa, etec.).

In addition to the usual constraints, anyﬁfaasible flow A is
required to satisfy the following: -

/ Eopaipi)
A(S?_ré.) f,x;ir” ¥ ~17)-
off 1 ¢ 3, ana
/! | (9414

j € J. *XHere p | aﬂa J are arbitrary sets indexing the con-
'stralnts, the xi and yj are given real numbers, the Gi “and Fj
are given uE““ and closed subsets, respectively, of A X B.)MB

Then, 2rov1ded at least one flow A exists satisfying the

tr&nsportation problem constraints augmented by (17) and (18),

witﬁﬁthese additional oomments. Thg*éet of feasible solutions

here is a subset of the original feasible set, hence it inherits

the uniform tightness of the original. As above, there is a

‘"!

0%
sequence of feasible flows Ayr Agrese conwerging weakly to a
21
bounded flow )A°, and the objective function IA B&f dx Ettains
|

§

its infimum at A°.
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It remains to prove that A° is feasible. It satisfies
the original transportation problem constraints, by the proof

above,; and we must show it satisfies (17) and (18). But

I\ 1i;¥inflx (G;) <
i -1 --xé

¥
]

fex all i ¢ I, since each of Aye Agrees satisfies (17). This,

with Aleksandrov's theorem, (12). proves thq& A2 gatisfies (17).
Similarly, we have 5

?fg“; . \3:\3 ,_;;‘f (;7’ $.l4 )
l”(Fj) > lim sup A (gj) > Yj =(19)

foxr all j € J. The left inequalii} in (19) is a corollary of
(12) .which holds for any closed\set Fj; the right inaqualzty

45 ﬁ( s

arises from the fact that all Al' Az,... satisfy (l&).kw(19)

implies that A® itself sat@,ﬁﬁes_ (18). Hence it is feasible. W w

7.5. The Transportatioanrablemz Existence of Potentials

We have seen thqﬁi:if a pair of functicnslgzg + reals,
q:B + reals is a me§;u¥; potential for flow measure A, then the
latter is Optimalgéor ﬁhe transportation problem. In this
section we tack}é the converse questioﬁg Given an optimal
solution to théftransportation problem, does there exist a pair
of funationS}whieh is a measure potential for A?

Experzenca indicates that questions of this sort are hard
to answer, and this one is no exception. Our procedure will

be to establish the existence of functions with a slightly
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different property, that of being a topological potential for

A. We begin by setting out the various concepts needed, and

ﬁ% investigating the relation between the two "potential" concepts.

Semruin,
5

4juLet (c, T) be a topological space. Set Eg C is a

neighborhood of point ¢ ¢ C iff there is an open set G for which

c€ Gand Gg E. Now let C also be a measure_spaCe, with s%%mai
field I and measure p. (We make no assumptions about the
relation between ;/and )y ©¢ € C is a point of support of the
measure | (with respect to }) iff every measurable neighborhood
of ¢ has positive p-measure. The seﬁ'of all poipts of support
is called simply the support of u,7h
Intuitively, the support ogfé measure is "where it's at'".

As examples, iéééus take scmeffamiliar probability measures on
the real line, with T and zféhe usual topology and Borel field.
For a discr@te.distrihutiqﬁi taking positive mass on at most a
finite number of pcints,fzhe support is simply those points.
For the Poisson distriﬁﬁtion, it is the nogéﬁegative integers,
For the normal distriﬁution, it iz the entire line. It may be
shown that the suppért of a measure is always a closed set.
(Hint: show thatvéha complement is open.)

gx”"‘”ﬁmwj}mcw suppose we are given a transportation problem defined
by the saurcg-and sink spaces (A, Z', u'), (B, ", u"),
respectivelj;\and unit cost function £:A X B + reals. As always,
IR are e%gmawfinite and £ is measurable. Also assume that

A and B are furnished with topologies T', T“, respectively.

The following definition applies to any of the variants - I, 11,
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III, or IV - of the transportation preblem, Recall that all
i F & 23 )

variants have the same dualh (3), {4)y-and—(5) of.- aset&anm3-

except for sign restrictions: P20 in variantsﬁ{%;and 1v,

9 2 0 in variants III and IV.

Definition: ILet flow measure A on (A x B, 2’ x 8 ), and the

pair of functions P:A + reals, q:B + reals, be feasible for the
transportation problem and its dual, respectmvelya‘f(F;Q) is a
topological potential for A iff the failowing three conditions

- t _are satisfied:
(T a8 it i

7'&” #f (a,b) is a point of support for A, then

i 5 q(b) - p(a) # £(a,b) y {g;;z)
(k‘}ﬁf a ¢ A is a point of sg?port for (u' - A'), then s

p(a)f = 0y 4-2; o

!M&J ;f b € B is a point of%support for (A" - u"), then o

: gﬁb) = 0, Zé%"”'

7

&

,m“““"ﬂﬂn,ﬂnﬁuﬂm A few clarifying cbmmants are in order. "Point of support"

in (1) refers 4@ aeayaa to the product space A x B, and it is
relative to the prodpct topology TV x T". In (2) and (3) we
are dealing with maasures on (A, z') and (B, "), relative to

the topalagies T and T", respectively.~

\ /,E‘“
)

u‘ - At is ¢ap¢city minus outflow, and $o is the unused
A TR TP

capacity measure on the source space A, Similarly, A" - u" is
inflow minus x@quiremant, and so is the oversupply measure on
the sink spage B. (Subtraction of measures is defined as in

,eha?&agus%igection;i.)
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~/fésﬂmams$aEeé?_this definition is to apply to all four
variants. Note, however, that for variants I and 11, u' =AY
hence u' - A' = 0 has no points of support. “fifwis“theﬁfﬁ
vacuously true and may be dropped from the conditions.
Similarly, in variants I and II condition (3) is vacuously true
and may be dropped. This is exactly as in the definition of
measure potential. :

There is."indee@f a striking pargliélism between the two
"potential® coﬂéeéts:' (1)#(3) have aé much claim to generalize
the ccmpleme?ta;y slackness eonditicns as do the corresponding
eené&%iana(?34%4¥%é$'ﬁﬁrsnctionha For the special case in
which the sigma-flelds 5! and Z“ are finite (and coincide with
the respective topolagies T' and T“), both potential concepts
reduce to the ordinary aemplementary slackness conditions,

b (a,b) be%ng a point of support for A generalizes the notion
that there- is a gositive flow from source a to sink b. Com=
plementary slackqgss requires that the dual relation for the
pair (a,b) be gnifilled with equality, and this is just what
(1) requires,fJgggin, if there is unused capacity at a source,
the dual vaflable must be zero; this is (2). (2) geﬁaralizes
the analogous condition for oversupplied sinks.

d
Topoloqical potentlals in the wide sense are flefined in

the same way as the correspondlng wide-sense concept for measure
potentials,-aamslg, by dropping the requirement that (p.q) must
satisfy the finiteness condition, €4%~of~suctiunma In the

following discussion of the relaticn between these two
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"potential” concepts, we understand them to be either beth
ordinary or both wide-sense. E '
We are mainly interested in determining when §fgapalegica1
potential will also be a measure potential; for aﬁﬁapclogical
potential is what we get from the theorems to cams, while a

measure potential is what we want. The following concept is

X needed.
i SO, S—

JFQ", Definition: A topological space has thefétrong Lindeldf prcpergx
ﬁig’E iff, for every collection of open sets 65 there is a countnble
"y subcollection 6' ¢ G such that u6' = G,

';f;:;‘;m

" Any subset of n-space with the topology generated by the
Euclidean metric'w(indeed, any separable metrizable 3pace«J

has this property, so that ;t includes many cases of practical

/i

interest.”® The foxlcwingftheoremﬁ apply to all four variants

-

} of the transportation pgéblam.
~ i P &

,@?

?} Theorem: Given a transﬁurtation problem, and given topologies

/ibg T', T" on the source ana sink spaces, A, B, rsspectivaly; if

space (A x B, T' e T“) has the strong Lindal&f property, then
(p,q) is a meaanre Fatential for .

M ; %l)

‘%éf Proof: We show that (1;#‘4a}fmf3% imply- the aorreSponding condi-

; 3 1} t.«"t “-,_;}-

~ tions for measura potentiality, @&49, (15+7W4}&),,fm§e@tian_34
ii}f respectigely. If

L{:\
/
2
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P
-

R
dr

T
E, U
[

g(g) - p(a) < f£(a,b)

for a point (a,b), then (a,b) is not a point of support for A,

by (1). Hence (a,b) has a measurable neighborhood, g a,b) " of
A-measure zero. There is a;/épen set G(a b)g N(a,b) with |
(g b) € Q(§'?). cOnsider the collection, G, 62Lf11 these open
sets, one for each point (a,b) satisfying (4). By the strong
Lindeldf property, there is a countable subcollection é' with

uG' = uG; Let N' be the corrasponding subcollection of neighborg

hoods of measure zero; N' is also countable. Then
((aipd|gMb) - pla) < glabf} o) = (ué'H(uN')/&—“

Hence A{(a,b)|q(b) - p(a) < f(a,b)} does not exceed the sum
of l(g(a b)) over all members of N' This sum being zero, we
' 2,

204

obtain (14) eﬁwsectaonﬁaa
Next we prove z;é)}aﬁrsantxonmém First, it is easily

verified that the cgmponent spaces (A, T ) and (B, T“) inherit
the strong Lindelof property from (A x B, T' x T“) ) £ 4
p(a) > 0 for point a € A, then a is not a point of support for
u' = A', by (2). Arguing as above, we find that {a|p(a) > 0}
is covered by /a countable number of sets of (u' - A')-measure
zero. Henca (u - A'){a|lp(a) > 0}= 0, which implies that

u’ ﬁ A' on ‘subsets of {alp(a) > 0}.) The-eppesite—inequality

This 1 L¥%§ sﬁ

Iﬁ the same way we find that (A" - u"){blg(b) > 0} = 0,

which implies that X“'Bku“ on subsets of {blg(é) > 0}, yielding
i 310 }:

£16) ef-seetion—3. |- //F
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A conditicn for the opposite implication is easiax to

find and to prove: gﬁ

;Jéyrnfheorams Let (p,q) be a measure potential for floﬁ A. Let

T, T* be topologies on the source and sink sgaces A, B

.} O
i/ respectively, such that
{(§p§?)lg(§?) - pla) < £(a,b)}'e T' x T",—— 5)
and (in variants II and 1IV)
{7@‘;;{;’}
{ah?(a) > 0} 6 T'J/,{/-“
and (in variants III and IV) 5;
f v (7.5.7)
{bla(b) >0} T, - £7)

;“"“ Then (p,q) is a topolqéical potential for A.

—o (3.14) *( 316)
%ﬁ'Froof: We show that 4

; . ) -of-section—3 imply the
corresponding conditionsﬂéérgisé;;*{3) for topological

: hﬂt potentiality, respeatively.

| Let (1) be falsa, so that A has a point of support (ao,b )
for whicvl?(b ) - p(a ) < f(a /b,). The set {(a,b) |q(b) =~ p(a)
< £(a,b)} is then gzggﬁsurable neighborhood of (a ,b ), by (5),
hence has positive A-measure. Thus<%§;3}eﬁ eecticn—a is false.
This proves thaé &t:?-ef -seetion—3 implies (1).

In variants I and IIT, (2) is vacuously true, In variants

7&‘ o
II and IV let’(2) be false, so that (u' = A') has a point of
support a, for which p(a ) > 0. By (6), {a]p(a) > 0} is a
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measurable nelghbarheod of 2,+ hence has positive u ~_xf

| measure. Thus 6$§$ of- -section—3 is false{} (15)— wfw&&etinn~a
implies (2) in all cases.

Finally, (3) is vacuously true in varianké I and II. 1In
variants III and IV let (3) be false,land,gnnclude by an

argument similar to that just given that Cﬁﬁ)noﬂwaee&&aawa is

(.p‘iu ik,)
false, Thus 416) eﬁ“meet&anwa-implies (3}. This—-coneludes the
proof, |2 170

:;sﬁ__,____,.

tote that in variant I (5) alane suffices to insure that a
measure potential is a topolog}cal potential, and in variants
11 and III only one extra cogdition is needed,

Potentials have bsen)?efzned in terms of a pair of funce
tions, (p,q). It often mappens, however — as in the-next
:ghapten -that one of ;hese functions arises naturally from the
problem situation andxhas a natural interpretation while the
other does not. Fof‘this reason it is useful to have a concept
involving just onyg}uncticn. Suppose, then, one lw given the °
ingredients of ahtranspartatxon problem: measure spaces
(a,2',u"), (Bgﬁm,n ) » measurable cost function £:A x B + reals,
with topologiés T', T" on A, Bkkrespectively. Let A be a

feagible fl@w. Measurable function P:A *+ reals is a left half-
pctential far A iff

p@o) S f:(.a 1by) < pla) + £(a,b,) 48) g3

or all a,a, € A, b € B such that (a ,bO) is a point of support

e

far a (relative to the topology T x T”). That is, for fixed

§ g& 4,;’-‘1« i T (2 e ’
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ﬂ?o' the function p(*) + f(',b ) attains its infimum at any point
a, €A whi@h, paired with b » Supports A. Similarly, meaaurable
function q:B + reals is a right half-potential for A iff

L Ey
q(b ) - f(ag.b ) 2 g(b) - f(a ,b) {9
for all a, €A, b, b, € B such that (a ,b )»@uppcrts A.
One easily verifies that, if (p,q) is a topological
potential for A, then P and q saparately are left and right
5} &ﬁtxx’
halfmpotﬁntials for 1, respectiva&y. Indead, from +3) -ef

‘“Wﬁﬁ@ﬁ“a and (l) we obtaxn :Jﬁ“
Uk i ““"1 )‘V
?(ao) * f(ao*'}?o)’ = ngo) 2 F(a) +)f(a fbo)

whenever (ae,b ) suppqrts A. This yields (8), and a similar
argument yields (9).‘ Conversely, given a half-potential, -one
can lay down certaln conditions under which the. opposite half-
potantial exists, the two together being a potentlal (p,q).
(Thus, if p is given, q might be defined byt q(b) = inf{p(a)
+ f(a,b)}, the infimum taken over all @ € A). The following
theorem, together with the rest of this section, accomplishes

-1
§ <

o

) .
& another concept of interest.

§ﬁ* I Theorem. Let flow A have a halfupaténtial, and let (ai'hi

thigftask indirectly,xand at the same time relates these to

Q'

- (i = l,...,n) be points of supgﬁrt for th > 2). Then

& J‘
o £

f(al,b ) teaat f(an,h ) £ f(ﬁl,b ) +...+ £(a ~1'b )+f(an'hl)5 610)

,""/—. zf/

A

it
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| Proof: Suppose A has a left half-potential p. Then

(ai) + f(ai'bi) < P(a* 1) * f(a l'bi)

“Seor i=2,.04yn, and also

pla;) + £(a;,b;) pla,) + f(a .bl);

all from (€). Adding these n inequaligies, the p‘s drop out,
and we are left with (10). The pxca£ for a right half-
potent1a1 is similar. [ / Jﬁ

(10) is sufficiently intephsting to merlt a name, JTet-us
e

call it the circulation condztion. Intuitively it says the

following. Suppose we cyclically reassign sources to sinks,
shifting some outflow fr@m a1 away from bl and to b2' etc., and
completing the circle by shifting a, -outflow from b to bl‘
This reassignment -which leaves all total source autflaws and

sink inflows unaltgredn-does not reduce total cost, according

to (10).

For n = 2;52 particular, the circulation condition bears

a striking resemblance to the concept of comparative advantage.

(Think of‘ggvand a, as two countries or workersg‘gi and b, as

alternatiﬁ; activities in which they can engageﬁ. Comparative
advantage is usually expressed as an inequality among products
or xatios, however, while the circulation condition is an

inequality among sums or differences.
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We now come to the demonstration of the existence af
topological potentials. This goes through two main stages,
each rather long. We start with A%, an optimal so;u%ion to the
transportation problem; more precisely, A° is unsurpassed under
(reverse) standard ordering of pseudomaasures,'”Frem this we
deduce five inequalities involving the cost function f. The
crucial one is exactly the circulation a@ndition, {11) belaw.
This is used to establish the existence and major prpertias of
the topological potential. The other inequalities are needed

) for (2), (3), and ncnwnagativity canaitians on p and q.
fZaka} }Q) From now on we use the abbreviation ab for f(a,b).

Lemma: Let (A,Z',u') and (B, z",u“} be s&gma»finite measure
spaces, and £:A x B » reals measurable; let T‘, T" be topologies
on A, B,Lrespectivaly,;such that T' ¢ §', T" ¢ Xﬁig,wgnd £ is

Lcontinuoaé with reagéét to T' x T", 1Ilet A® be unsurpassed

(reverse standard order) for the transportation problem formed

from the above, aﬁd let (ai,bi);fira 1,...,&& be points of

¥ _support for A°, Then
4 (TS 11)

_ [?( % a by +§;‘+ ab, < ab, +...+ a neiPy * a bl 1)
/ ¢
i holdg far ‘all problem variants, I, II, xxx, IV (n = 2,3,..,)]\

> &};;v; (11) If ag € A is a point of support for (' - x°'), tn“n, in

variants II and IV we have

e
g“?; » BB R

\ (n=1,2,...), and in variantwgy we also have

o IS
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J need ba-aiildistinct in any of ehase case#ﬁl

{ /:e3312)
ayby oo+ gpbu = agbl o '3%‘1'7}"‘3:»-t-3./}l7 b o

(n = 0,1,...5. (For n=0 W lebl side of (3) i zero.)

(iiifﬁ If bl € B is a point of support for Ae" - e " anﬁ all%
subseﬁs of B belong to T" (hence to ), then éwﬁ“ﬁ
,,,,, (7S
by +...4 ab < by +..0t a bnd-l} j('i”#:)
1%(3 = 1,2,...b'in variants IIT and IV, and wgfg«
’*j (7.5.4
aby +e.a4 gnbn 2 a3b, oot ﬁg_lh {15)

&OY‘ hs) the qul\‘\' side of Us)ig erb))
(n = 1 2,...yfin variant IV[V’YKeitﬁer the ai‘s nor the bi‘s

e

S . g.f

qﬁﬁ - Proof: PFor each case, (11)”§&5), we construct a new feasible flow;

g

the corresponding inequﬁgity is then deduced from the fact that

this new flow cannotépﬁrpass'kﬂ. 'Only (11) will be proved in
detailh f

Given ¢ > 0 thera are open sets El,...,E < A and

Fl,....F o By Qatiﬁinng ai € Ei; bi & Fi (i L 1,..&,“); andr?
for all a e Ei’ b ¢ Fi'

lgb "aibi' i g/% Ldva il b

(L =1,...,n); and, for all a CEs b GF§+1'

= 5%
PR A |

\13 = 1l,..4yn), (;n (17) for i = n, n+1 and bn+1 are to be

understood as Fyv bl, respectively) For,xthe aentinuity of £
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implies that there are open sets owning ai and bi' reSpectively,
such that (16) is satisfied for all (a,b) in their cartesian
product, and epen sets owning ai and bi £ suﬁh that {(17) is
similarly satisfied. This gives two spen sets for each of the
points (al,...,a v bl,...,b j I Lat Ei be the intersection of
the two open sets for agy and censtruct Fi in the same way for
bi (i = 1,...,n)' With thesa,Aall the relations above are

satisfied simultaneously.‘gf

ug!f. AL (E, x Fi) *» 0) sxnce Ei X Fi is a measurable neighborhood

e ———

of (ai, bi)' a point af support for k° )-“(Ei mFi) may in fact

be infinite,‘but 1£ﬁso there is a measuiable set Gi s Ey x Fy

such that « > A‘(b ) » 0; since A° is n&gmanflnite. Choose"

a set G, satisfying these conditions for each i = 1,...”n. Ai%ggﬂ'
)

("Now define measures vi on (A x B, L' x ") =.s follows.
vi(g) = )g?.(!i n G;)//k! (Gi) ") « % 4
& - & ;
y ; ;

He I' x I", i=1,.04,n Cogéider the signed measure V given

Vi

by ). /
J
=8 / A <
,é%%i (vi X v3) +...4 (vn_l ") 4 (w2 ¥ vl) = Vy mese= Vo (19)
,z"% & N .?‘; = e

(Here vi is the leftﬁﬁarginal of “1i,“§ is the right marginal
of Vyi we are to f@ém the product measure of these, add up n

similar prcduct measures, and then subtract the vi’s of (18).

1 All the summands in (19) have universe set A x B@\eﬁ course).

N

X

~

N,
—
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—  Por each i, v;(A x B) = 1, so that (1L9) is Well;defined'

and in fact bounded. Finally, consider the (signed) measure 5ffi

A given by

/ 2 X
{ f)l s, 29/

We shall prove that this A is a feasibla flow,i First, A is

‘nonfnagatlve. be, yvi(H) < A%(H)/n, all L, from the defini<

tion of y, 80 that

AE) 2 A (H) = yvy (B) #io= gy (H) > 0.

it oo

Hext, for any E ¢ I' we obtain v?éfx B) = 0 by direct substitus
tion in (19). sSimilarly, V(A §5?) = 0 for any F ¢ I", This |
means that A2 and A have the é;me marginals. Hence, in any
variant of the transportat&bn problem, the feasibility of A®
implies the feasibility af A,

It follows that A ﬁannot (downwardly) surpass A°. Now

[ £ ﬁl - I £ dk“ s [ f dven,

But the 1néefiniu@ integral f f dv is actually well»definea and

finite as a deginite integral over A x BO Veif f is bounded on
the set ff

(B) ¥ F1) Ueowu (}T;:‘E * F) u (B} x Fy) yeauy ('g}p x Fy)

P
y,

by (16) and (17), while v is zero off this set. Hence ung,

surpassedness under (reverse) standard ordering reduces to the
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AL

) condition ] 2C [ & i
716 £dv > 0.+ asr |

F j/’?&* B TL T ]

L —

Expanding this by (19), we find that

5 . *7 ‘{l 77 ) ‘,-; (’; L)
-IAKB fadui > (ai R a)vi(a X B) = (aibi o s)- , £22)-

(i = l,4e0,n), since “i is zero off Ei X Fi' and f is boundad

belaw by a, bi -~ eonE; x Fi, according to ilé}. Similarly,

// j'u 27 , ‘1: ; N1 ¥ 3/}
L " 11 ; ¢
j L\xBf s Qe +1“(aibi+1 $ g"’i"‘)"ul‘m = by * 8 O

(i = l,00.4m), since £ < aibi+l +.éqon E% x-Fi+1' by (17),
while vi x vi+1 i& zero off this set. (For i = n, i + 1 should

be read as @1“)

\’m‘é);;

From (21). 22) - aném4%§) we obtain

(] } . S . 1

a.b o st anbl e alhl ess™ anbn 3. "‘2&31 %

8122

But € is an arbitrary gésitive number. Hence (24) implies the
circulation conditioqf(ll). The first inequality has been
obtained. §

2 _
{ f? We now skatqh the proof of (12) and (13). It proceeds as
aﬁg;e with the following differences. In addition to the open
sets E,, Fi (i = l,...,n), we find open sets %9 ¢ A and -
for (13) - F‘ +1 & B, such that ae € Ee, bn+l € F *1, and (17)
holds for 1 = 0,1,..,,n,

(U
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The sets G, = (E x By ¥ (i = 1l,+4.,n) are constructed as
above. 1In a&dition we :Einéi that (u' - }«&‘)@9) > 0,;;ince ge
iai;la measurable neighborhood of —ag’ a point of support for

u‘dy - Xy, (u' - AL (_E}e) may in fact be infinite, but there is
always a measurable set A g _Ee for which o >(u' - xe1) (A') > o,

since these measures are sigma~finite.

The measures 7Y, (i = 1,0044n) ," are defined exactly as in

(18). 1In addition, define the measure ue' on (A,I') by

t : A
@ ué(g) = [(u* = axey (E n _g}'ﬂ/(u' - X2') (_;}9)/ _

all E¢ I'. Also\}"- for (13) < define measure F;;‘*'l on (B,I")
by

>, u§+l(g) - 1 if L] € F; = O if b g+l Q’ F, Y

L

all F € I". Consider the signed measure v on (A x B, L' x I")

given byt °

£ t ] [] "

5 m@ 4 vl) g (Rl 4 \’2) g (0.5 28
; t25)-
This Cormula, : |

+ (V) g X V) -y -, - v [+(v' L P %

{Gpp!ves bar n-1 n 1 n+l > &

2
ﬂ'_’; Roritiz lwhere the bracketed measure is to be included when considering
k/Lu;L qriges | =
ol (" (,s) (13¥ » and omitted when considering (12) Each of the measures
de zw\e v in (25) has the value ene at A x B, so (25) is well-defined and

“5/"0 ’(/4 ) bounded. Finally, censider the (signed) measure A given by

~ m by
*{!t"'u’ Lod

AS 4+ zv ! 26)
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'wherejgyisiécw-the positive real number még@g, (”'“A°')(§f}).
Y being defined as in (Zﬂ)ﬁpbeve.

Nan%ﬁegativity of A is proved as above. Next, substitute
E x B into (25) (inclusive of the bracketed texm), where Ee X',

—-—

The result is ue(E). Hence,
) AT(B) = A2'(E) + 2Ug(E) < XM(E) + (u' - AeY)(B)

the inequality arising from the definition of 2z, Hence A' £ n':

A satisfies the capacity constraints in variants II and IV,

The same result holds a fortiori if the bracketed term in (25)
is omitted, since this leads to a smaller A

Hext, substitute A x F into (25) (omittﬁng the bracketed
term) , where F ¢ ", Everything cancels, héﬁce A" = 22" and
feasibility is preserved for the requiremaﬁt constraints in
any variant. Adding in the bracketed ter@, however, yields
merely A" > A%", so that feasibility is éreserved in variant IV,
To summarize: A\ given by (26) is feésiﬁl& for variants II and
IV if v is defined by (25) omitting thé bracketed term5 and is
feasible for v if v includes the bréégsggﬁ%term.¢  B

Just as above, the feasibility P£ A leads to foB~ dv > 0,
and an argﬁment similar to the one above gives the inequalities
(12) or (13), depending on whether=(25) omits or includes the
bracketed tarm, respectively. These inequalities are then valid

for thghe variants in which A 13 feasible.
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// Finally, the proof for {14)~(15) is very similar to that
::f‘ j
for (12)7{13).

There is no point gg, and consequently no E
A', ox ut.

_..gl
o We choose F; to be the singleton set {b;}, which i
can be done because every subset of B is open by assumption.!

Otherwise proceading exactly as above, we define v by (25),

modified by the omission of the measure ué X “1' The(gracketed
measure v' X Mnel is to be included when considering (14), and
omitted w;en c;nsidering (15). A is agein defined by (28),

where z, however, is now the positive real number

(1.%.21)
min(y, Ae%{by} - w0y ), (27)
being defined as in (20). To show that z is indéed positive,

note that {b,} is itself a measurable neighborhood of b,, hence

has positive (A®" - u")-measure since b, is a point of support
for that measure.

NonTnegatlvity of A is proved as above,

‘ﬁext, substitute

E x B into the modified (25) (inclusive of the bracketed term),
where E ¢ L'.

Everything cancels, hence A' /= A%' and

ap a ,
feasibility is preserved for the_xsqu%rgkeﬁt constraints in
any variant.

omitting the bracketed term j&rields A' £ A
which preserves feasibility in variant 1v.

Hext, substitute A X F into the mo@ified (25) (omitting the
bracketed term), where F ¢ I"

The re§ﬁlt is =v (R x F).

Now 4 ~

since F, = {gl}, we have < Hence, from (18) with

i=1, ve find that v,(a x F) = 1 1f by € F, and v, (A x F) = 0
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if by ¢ F. In this second case we have A"(F) = Xe"(F), while

on {b;} we have .

o -»“"‘/
£

St} = Aex(p, ) ;gz 2 uiby ),

from (27). Hence A" 2 u", and X is feasible for the requirew &
ment constraints in variants III and IV, Adding in the - |
\ bracketed term of (25) can only increase )| henee preserves

this feasibility. Es ‘summarize: if the brgcketed measure in
modified (25) is included, the A thus defined is feasible for

variants III and 1V; if it is omitted, A is 5tilljfeasible for
The argument from unsurpassedness to (14) Qi {15) then

follows the pattern laid down above. ||} éﬁ?”

We now come to the main result. ﬁbeeuthaa we prove the

existence of a topulogical potential in the wide sense A~&hat
CHY Y R

48 the integrals fA P, du el fB g, du“ ne%ESQGt be- finite, or

even wellkdefined As Naﬂtlcnnd below, a, simpla extra premise
removes this qualification., Note alse that the premises for
variants III and IV are somewhat stranger than for variants

I’andmgxﬂ

t%izrk Theorem: Let (A,Z',u') and (BZ",u") befnon*empty sigma-finite
, measure spaces, and f:A x B + reals measurable and bounded.
z>g ¢ Let A% be a measure on (A x B, I' x Z") whieh is unsurpassed
';/f : (reverse standard order) for the trénspartation problem

determined by these.
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Also let T', T" be topologies on_ggfp, respectively, such
that 7' ¢ ', T" ¢ I", and £ is continﬁbus with respect to

| that all subsets of B belong to f“)~

sk T ) T' x T", (In variants III and IV make the additional assumption
I \
Avab) ¢ pyruﬂg\

'@X Then there exist bounded funetions, p-A + reals, q:B -+
Oy ., &
\{}Aﬁg‘f reals, p lower and q upper semi$gontinuous, such that (p,q) is
Qéix‘ a topological potential for A“ﬁin the wide sense.

\ -

Qﬂﬁ, Proof: We shall uss éifferent ﬂefinitiens of p for the different

2>

variants I, II I1I, IV. An4X~saguence is a sequence»of the
i“j}. form a;, by, al""'bn' an in = 0 or 1 or «es), where (ai'bi)
% is a point of support of A$ for i = 1,...,n./ That is, it
i consists of 2n+l points, &1ternating from A and B, beginning

and ending with an A~point (For n = 0 the sequence consists of

S T A

a single‘§—901nt, 9. g B-sequence is an a-sequence with an
extra B-point b +1 tackad on at the end. (Thus the shortest
B-sequence is of the fa;mﬂgo,glgq

The value of an aé (8~) sequence a,, 21,...,§§, (p§+l) is

defined as
*5-0131 + g‘l«l?l ~a1b2 +oeed agbn (~anbn+1) o7 ) 28)

where the parenthetic@l term is included for B-sequences only.
(Heré*§§‘abbreviates %(a,b) as usual. The singleton sequence
a, is taken to have the value zero).!

Now define the fj;unction P, with domain A, in three ways.

b e e
The o-definition sets p(a) gqual to the supremum of the values
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£ is bounded, so |£| < N for some raal number N. Hence

696

of all a-sequences beginning with a, all a ¢ ﬂ: The

B~definition is the same with all B-sequencﬁs beginning with a.

The y=-definition is the maximum of these tWO, inﬂatherﬂwafds

the supremum of the values of all a~- andiﬁnsequences beginning

with a. :
We now prove that, under any of tﬁese definitlons, the

function P is bounded, lower semiwcun&inuaus, and measurable.

I

p(a) > 0 oxr ~ab on the o4 &definitiﬁnt respectively, for any
ag€hr beg B, so that P 2 -N: p i; bounded below.

Nexg, boundedness above, Seguences of length ;t most
four have values which-—-are not gééater than 3N. For sequences
of length five or more we make use of the circulation aondition

1s
(11) , which is wvalid in all var&ants under our premises, A(zs)

may be rewritten as

i"

[a;b; = ajby +.uu- lb + én? = 8yl Zélgjnﬁ;
29)

' +.anbl - Mgy ("aﬁbn+l)

(n = 2,3,...). But (11) states that the bracketed expression
is non+positive. Hence (29) never exceeds 3N. Thus p p is
bounded. ;

Lower semi;bontinuity ié proved as follows. Think of all
points in (28) except a, as Qeing fixed. f(iﬁf”;hep defines a
family of real=valued functiéns with common domain A, each

saquance_gl, ﬁl""'bn' a

n’ ‘b§+1) indexing one such function. Sl

_—“\'
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Each of these functions is continuous, since f is continuous.
tne easily shows that the supremum of a sgt of continuous

functions is lower semi+continuous. But p on any definition

is such a supremum.
The sets {a|p(a) > x}, x real;fare open, by lower semis
continuity. But T = £y hencelﬁgese sets are also measurable,

an upper sem{ipontinuous

Thus p is measurable. (Simila%iy,

function on B is measurable. fact is needed 1ateﬁ§é

With these general resgits in hand, we proceed to each

variant in turn.

‘ qj lVarxant I. Use any of tgé three definiticns of p, and then

y
e il
-

j//’defina q:B + reals by

qcﬁfs) = inf[p(a) + abl, - F(30)

the infimum taken ovqt all points a € A. Since p_and £ are
bounded, g is boundea Think of p(a) + ab as a family of
functions of b, 1nd$xed by a. Each of these functions is
continuous since f is continuous. Then q, as the infimum of a
set of contxnuousﬁfunctions, is upper semifcontinuous, hence
also measurable, §

It remains qb show that (p,q) is a topological potential
for A2 in the wiée sense. For variant I this reduces to the

::‘5

“following: g
&

{4

for all a € A, b € B, with equality if (a,b) supports A‘.’.(3l)
however, is an gmmediate consequence of definition (30). ILet

(gg,go) supporé A%, Then

i
{
|

4 {:..)/ f;’"'?i}
g q(b) = p(a) < ab —€31)



~ proof—-for-variant-I,-
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p(a) > -ab, + agb, + plagy) 329

for any a ¢ A ‘ﬁbr, the right side of (32) is the supremum of
the values of sequences (a; 87 or bath) beginning (a, b 0r ao,.*i)
while the left is the sSupremum ovaz a wider class of such
sequences. It follows that the infimum of p(a) + ab is

attained at a= aye Hence

albg) = p(ay) + aghyr,

so0 that (31)'15 satisfied with equality. This-completes-the.

Varlant I, Use the andeﬁinition of P, and define q again by

,//'{363 All eof the argumeat for variant I applies here, éﬁ@. To

N

complete the proof for ‘ariant II, two additional facts must

be established: P2 0, and p(ag) = 0 for any point a,

supporting u' - )A°', ;

e For any a ¢ A, thm singleton consisting of a alone is an

U~-sequence of value 2&:9: hence P 2 0. Let ao support u' = A°',

Then inequality (12)313 valid,, and states that (28) —(omitting

the parenthetical texm - is never positlve, hence F(ao) = 0.

This— f&ﬂi&h@ﬁﬂV&fﬁ&ﬂ&~l¥n

[\ ;

q}’ Varzant IIIT Use t@e B-definition of P, and define qg(b) by (30)

| if b is not a point“cf support for A2 - u", while q(b) = 0 if

b is a point of sup@art foxr X2~ u®,

g
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’f

k» q is clearly bounded. Since f", hence I", own all subsets
of g,‘g is automatically continuous and measurable. To shov
that (p,q) is a topological potential for A® in the wide séhse
we nust demonstrate (31) Qﬂith equality if (a,b) supports A_)
and also that q > 0, with q(b ) = 0 for all points of support
of N2 - y", This last fact is true by the definipion of 9.

For any a € A, b € B we have p(a) > ~ab, sigée the latter

is the value of the B-sequence a,b; hence q2 0' The same

inequality yields (31) on the support of A" = u", since q = 0

there; (31) follows from (30) off the support.

Finally, let (ao, po) support A2, Iggq(go) satisfies (BOL

the argument of (32) leads to the equali§§ (33). This leaves

the case where b, supports A®" - u". qﬁen inequality (14) is

5
4

valid, in the forms

: "KT (), $TiDH
-agby 2 =aghy + ajby = a;b, +.iu= a bm-x/) 34)

:‘

(n =0 1,...). Here bl' al,...,ae,b +1 are any points such

that (ai, birnsupports 1“ (i = lﬁ...,n). But{;by (28), p(a )

is the supremum of the rzghtshamé-expression in (34) over all
Since the opposite

such sequences. Hence p(ap) 5-'30 20

inequality always holds, p(a ) = -aobo ‘But this is (33),

since q(b,) = 0. Hence (31) holds with equality if (a,b)

supports A2. This- finrshes‘xarianewzii

= Variant I¥ Use the Y-deflnition of Py and define q q as in

A//’variant III. The same arguments as in variant III then show

that g is bounded, eontinﬁbus, measurable, nonvnegative, and
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zero on the support of A2Y = u", and that (31) holds for all
a€ A, be B, Three more facts need to be demonstrated: p > 0,
p = 0 on the support of u' - A%', and (33) holds for (§0,b0)

supporting A%,

e

R
e
NS

_Mﬁgr For any a € A, p(a) is not less than the value of the

singleton sequence an hence P2 0. HNext, let a a, support

‘-\;\,

' = A2's Then inequalities (12) and (13) are validf‘and imply
that (28) never exceeds zero, with or without the parenthetical
term; hence p(a,) = 0, v -

Finally, let (50, po) support A°. As abova,=if.§6 does

not support A2" - u", then q(b,) satisfies (30) and the

argument of (32) yields (32). Suppose b, does support A®" = u".
Then inequalities (14) and (15) are Valid,‘in the form¢

p /: (st )
“af)bc .?l "'&01?1 + albl ~sset a b ( anbn+1)/ {35)

o

A(g{m 0,1,...), with or without the parenthet?dal term. (Note
that for n = 0, (15) in the form (35) is s%ﬁglys ~aghy > o) L)
By (28), p(ao) on definition vy is the supr;mum\of all the
right=hand expressions in (35), for bl' al,...,b - '(bn+1"
where (a.,bi) supports A’ (i = l,...,n). Hence again

S p(ao) < ~aob0, and the same argument as in variant III shows

that (33) is satisfied., This flnlsh@s variant IV and the

proot. L7 )
/‘*«M
As noted above, (p,q) is a tOpological potential in the

wide sense. But if we impose the additional premise that p'
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and u" are bounded, then (p,q) is in—faet a potential in the

strict sense. For, the functi%ps p and g as constructe?}ébove
oot k. H e, :

are also bounded, hence the definite integrals, [, p du' and

L e |

IB?&idu“,éare both well-defined and finite.

\ et

The extra premise that all subsets of B belong to ™
(imposed for variantsvzgg andﬂ@V}# is somewhat restrictive
(although natural in some cases, e.g_,/,) whe;l B is a finite s,ét).

In variant IV it may be replaced by the extra premises thak_f
p P : “ ¢

is positive and Ai"iaigma-finite.

A

Using the Radon-Nikodym theorem as in case (IVb) of tné

We show this as fo;iows@

optimality existence theorem, we show the existence ?f a
measure A, on I' x " gatisfying Kl £ A2 and being_féasible for
variant II, hence for the original variant IV. S%ﬁce A, does
not surpass \°, and £ > 0, we must in fact have ;; = A%, ‘Thus
A2 is feasible for variant II,%aﬁd)in fac?}unsgépassed fox it.
let (p,q) Ea a wide=sense topoiogical patentigi for A% con-
structed as for variant II. To verify that @ﬁis (p,q) is also
a variantﬁiy 3&de~senae potential, we must gémcnstrate two
additional facts: q > 0, and ¢ = 0 on the support of Ae"™ - u".
This last property.is trivial, because the‘support is empty,
since \2" = u", Alsoc q is ﬁefineé by (30), so the non+<negativity
of p and f imply the non-negativity of qe This concludes the

proof.

/ The functions p and g constructed in our main theorem are

semi+continucus. We can strengthen this result by adding some
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extra premises eencerning_ﬁ. First)we need a few continuity

concepts,

let (c, T) be a topological space, and G a set of real~
F
valued functions with common domain c; !G is equiaontinuous at

the point G, € C iff, , for every positive number ¢ there 1s a
neighberhood N of ¢, such that

lgte) = gle )| < e,

for all ¢ ¢ N and all g ¢ G (1¢ 6 consists of just one
function g, this is simply the definition of continuity of 9

at the point Co+ One may then show that g is continucus as
: =S
defined previously iff it is continuous at every point of its

domain as defined by (36).) ﬁext, suppose that T is generated

by a matrlc,d.. G is uniformly equiaontinuous iff, for all
/
€ > 0 there is a § > 0 such that

if dley, c,) < 5,3thenflg(§l) - gf%z)l < €, ié%% :
for all €1+ €3 € C and all g ¢ (. (If G consists of just one
functian g, this is simply the dafin&tion of uniform continuity
of g). . } j
R Now consider the transport cost function £:A x B + reals.
“? f may be thcught of as a family of functions f(*,h).A + reals,
indexed by b € B. Suppose this family wu&e eguicontinuous at
the point a' ¢ A, ~%ha%»is for al& € > 0 there is a neighbor<,

g
hood N of a' such that =

[f(a,b) - f(a',b)l < g
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5? \rw,?%-The proof of this statement rests on the easily—verified
L7
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&
Fa

for all a¢ N, beg B, en we claim that p, constructed under

any of the definitiong o, 8, v, is continuous at a',

fact tha,t,L if the collection of functions [ satisfies (365, and

binite
the supremum of (§ is real-walued, then sup‘ﬁ is continuvus at

C,+ Now consider (28) as a function of a_, the otherf§c%ﬁts

(%) :
byr @yseeesbysa (b ;) being parameters. This function differs

only by a constant from the function «f(',bi). Hqﬁée the
functions (28) are equicontinuous at a', so that.p, which is
the supremum of an appropriate subset of them,;is continuous at
g;. This concludes the proof. N

g

g;WW Thus, if the family £(-,b), b e B, is equicontinuous at

each point a ¢ A, it follows that P is continuous, not merely

léwer semircontinuous.
=
What about q? f may also be thought of as a family of

functions f(a,*) with common domain g, indexed by a € A,

Suppose this family werxe equicontinﬁbus at b" € B. Then we
claim that q, given by (30), is eontinuous at b".

The proof is virtually the same as that for P. on noting
that, if G satisfies (36), -ibﬂ the infimum of ( is also
continuous at co, provided inf G is régiﬂ;é}aeé (This takes
care of variants I and II; in variants III and IV all subsets
of B belong to T", which makes any function q:B reals

continuous).
V

Next, suppose T', the topology of A, is generated by a
metric d', under which the family £(+,b), b ¢ B, is uniformly
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equicontinuous. Then_g_is uniformly conéinuous, under any of
the definitions a, B, Y. ’

The proof is similar to those*gbove, and is based on the
fact — again easily varifiedlmithat if the family G satisfies
(37){_and supﬂg\is reaggggiueé, then sup (3 is unifcrmly canﬂ
tinuous, Reversing the'rS;as of A and B, we get a similar

conditiqn implying that q?§given by (30)) is uniformly continuous.

'Our_final,theorem summarizes many of the preceaing results.,

-Hote—that the boundedness assumptions guarantee that the

objective function for the primal is always a finite definite
integral. Hence we speak merely of an optimal solution, the
distinction between "best" and "unsurpassed" disappearing in

the present instance.

e

— Theorem: Let (A, Z', u') and (B, 2“} u") be bounded measure

spaces, and,f;§ X B + reals be bqﬁnded measurable. Lét AL
be an optimal flow for the trangéortation problem determined by
these. ;

Also let T', T" be tapolqéies'on g,rg,'respectiﬁely, such
that T‘ g2, T"e I" £ is qbntinuous with respect to the
product topology T' x'T“; agé the latter has the strong
Lindeldf property. (In vqéianta III and IV, add the condition
that all subsets of'EAbekgng to Tﬁ%@

Then there-exist fqﬁctions g,‘g + reals, q tB + reals «

such that the pair (p9,fq’) is best for the dual of the trans<

portation problem, and the primal and dual values are equal:



Ed (2 |Iv 48

L

[ £ cu [ g2 au" - f P2 du'v)—
AXB (1B[— A A~

LounJed

' Proof: By the main result of this section there exists apair
, A
(pe, q’)\wh%eh is a topological potential in the wide sense
for A2 — in fact, a potential in the ardinaryséanse, since p°'
" 4lso /. 3
and u" are hounded. The strong Lindeldf prﬁperty than implies
that {p ’ q“) is a measure potential for h’ from whiﬁh the

‘5.\;-

stated result follows (see 18) of seaki@n 3) ., ﬁ}kﬁ’,fﬂ&?
wﬂ"
We conclude our discussion of tha transportation problem

with a brief glance at the pioneering work of Kantorovitchf*s
iwa shall use our notation and texminology to facilitate
axpoaxtionx He formulates a speaial case of the measures
theoretic transportation pxeblemfivariantuz) — special in that
the‘source and sink spaces are gﬂe same: (A,I') = (B,I"), the
cost function f is nonwnagativs; p' and u* are bounded, and a
certain topological structura 1s imposed. Next; he defines a
é ﬁaasible flow A as being Eotential iff there exists a

(measurable) function pia » raals sueh that
Ip@)*ph” < £(a,b) é%w@“%
1y i

fé;r all a,b '3 A (remember that A = B), and

~

= p(b) - pla) = f(aab)

if (a,b) is a point of/ support fcr A. His main assertion is

+then that a flow A is joptimal’

it is potential,
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This is quite instructive, both in its accomplishments
and its errors. The definition °fME is close to our concept
of "topological potential® for A, differing from it in the
minor point that the absolute value appears’on the left of the
inequality, and in the major point that just one one function, Py

appears, insiead of a pair (p,q). . »4$n-e%heauweﬁéa, while the

prohlam formulated is of the transportation form, the "potential"”

concept used is more appropriate for the transhipment problem

considered below. ThiQZQQuld not have happened iffKantorovitch
did not identify the source and sink spaces)._ To place things
into the transportation problem framework, think of these
relations as defining conditions on the E_.~ (p,g) rather than
the single function p.¥i}§,é) is, indeed, a tapological
potential for A if it satisfies these conditiong.

As for Kantorovitch's assertion, the "if" part is correct.
We indicate how this can be aemonstrated within the framework
of our theory. The topological assumptions he makes imply the
strong Lindeldf property, so that_(g,g) is also a measure
potential. The boundedness assumptions then guarantee
optimality of A. '

The "only if" part is erroneous. If A is an optimal flow
one can indeed demonstrate the existenae of a topological

potential (p,q) under his assumptions (by our proof above).

(Here both p and g will have domain A, since source and sink

spaces are the same). But one cannot make the further assertion

that p = g, as the following counterexample demonstrates. Let

/(?/ )
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A= {a, b, ¢}, with all subsets open &gﬂ measurable; u'{a} =
[:"{c} = 1; u'{b,e} = u"{a,b} = 0; f(a c) =1, f = 0 elsevwhere.
This!satisf;es all of Kantoxovitch's premises. The optimal
flow isk A2{(a,c)} = 1, and A';# 0 on all other singletons;
in fact this is the only feas%ﬁie flow. Now suppose this flow
were potential. We would h@?§_§(99v~Ap(§) = 1, since (a,c) is
a point of support for A°r’ But also p(e) - p(b) < 0 and
p(b) = pla) <0 - ccnt:adiction!

& Kt gt
This three~page gapag/ia tha txua locus classicus for the

measure-theoretic txans§ortation problem. The problem itself, ‘
the key réle of "patentials“, and certain basic solution methnds,
are all adumbrated here, even if the exposition is flawed. The
energies of researchers have in the meantime been directed into
other channels —(mainly to the development of "ordinary"
programming‘mﬂthcdé34-so that the work of Kantorovitch appears

to be the direct pradecessor of &h&Fpraaeat chapter, with a

Pors ra“ ~'-=-i’4k

lag of thirty years.,

Ly 7.6. Transhipment: Introduction

{,y

The transhipment problem with n locations isa

Find nz nonﬁnegatxva numbers xij (i,j = 1,...,n} satiafying

()f(ﬁ‘Ai“
‘fél Fenob Xi?) - ‘Fl?__ Fasot 'x.!_aj:k) i “é W

(} = l,-oof!});

and minimizing the sum of
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{:}z leo 20 )

£13 X4y ' i
over all n2 terms of this form, Here the numbers “i and fij
i, j=1,.c0m) [are given parameters.

The simplest interpretation is the following. X4 is the
quantity of a certain commodity moving from location ito
location j. On the left of (1), the first parenthetical sum,
xil toeot X, /h(excluding xii)' is the total qnantity exported
from location 1 to other locations; the second parenthetiaal
sum (again exéiuding xii) is the total quantity mgorted to
location i from other locations. Hence the leﬁt side of (1)

may be thought of as net exports from location i. (The

m £ o iatt :
peaning of x,. is problematical, but this term cancels out
from the leftgof (1) and therefore creates no interpretive

difficultﬂﬁg a; may be thought of as the net capacity of loca-

tion i. If positive, it gives the amount by which exports
from i may exceed imports to i; if neéatiVe, the am?gggﬂ:
by which imports to i must exceed exports from iji?fl) states
that net exports cannot exceed net capacity; we could just as
well have stipulated that net imgorts cannot fall below net

requirements Bi' where 81 is szmply ““i‘

“Let-us compare the constraint system (1) abeveigith the
constraints cf the transportation problem, @13‘;ng{§, of
gaction-k. We can think of those locations i for which ai is
positive as being sources, those for which ai is negative as

being sinks. (If a; = 0, i may be placed in either categoryff\\\\<k

ﬂw-—-...“‘\



709

The transportation problem allows flows only from sources

to sinks, while the transhipment problem allows flows between
any two sites, including source~to-gource, sink-to-sink, and
sink~to=-source. Thus it becomes possible to "tranship" a flow
from a source to a sink through a series of intermediate

locations.

The objective function,. (’)f&bone* has the same form as
f[ )) £
that for the transportation problemk 3) aizﬁec:ianw;@\though

unit transport cost fij must now be defined for all pairs of
locations, nat just for saurce~sink pairs.)

- ,.__,‘_,,_.__“,,/’

» As with the transportation pxoblem, we may distinguish
variants of the transhipment problem. i;; {2) abowe-will be
called the inequality-constrained varzant. The egualitzw
constrained variant simply replaces “4“ in (1) by "=¥,

The transhipment problem was first formulated by Orden,

who also showed that there is a transportation problem Qh&ch L
16

is equivalent to the transhipment problem in a certain sense.
Indeaed, several ways have been suggested for "reducing"” trdns
shipment to the transportation problem (or something resembling
it). We-shall explore one of these below,

Firstp hewevex, it is worthwhile to compare the transporta=
tion and transhipment problems from the point of view of
possible applications. We have already mentioned the inter<
pretation of transhipment points as locations of physical Space.

Specifically, imagine a system of citiesj&-thcught of as points <~
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linked by a system of roads. A road directly links cities i

and j iff it starts at i, ends at j, and passes through no
other city. We then let fi be the transpof% cost incurred
in mcving unit mass of the ccmmodity from i to j over this
direct link, or over the cheapest dzrgct link if there are
several, (If there is no direct liai, set fij = w, Alter=
natively, one may resort to the artifice of making fij finite
but "very large”, so that traffic aveids this "link" if at all
possihle{) |

Note shauiﬁwbamtaka31 hym%h@wway,-aé the heroic/linearity
;ssumptians involved in'ihe objective functicns (2) abeve or
féi)ei seeti@nkaﬁ, r their generalizations to integrals. Con=-
gestion phenomena and scale economias( both very important in
transportation}:éie ignored, and a doubling of traffic is
assumed to douhle cost on any link. The concept of transport
cost itself cnvers a motley collection of categories: fuel
consumptian, vehicle and road wear, travel time, risk of
accident, discomfort, deterioration of cargo, traffic control

costs,“ﬁarhaps vehicle and road construction costs, as well as

pollution, noise,and other disamenities if all social costs are
3 <) |

to bé included.®

"ﬁiﬁshing aside all these éonceptual difficulties, thean, we
postulate a unit cost f;j assaciated with the cheapest direct
link from location i to lacation j‘ ‘bet-us suppose fij is
always finite, and let A be the set of all locations in the

transhipment problem. The domain of~§ is then A x A, which is
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the same as that of a metric on A, Is it reasonable to

assume that £ is a metric? Let—us examine the conditions one
by one. Recall that d:A x A + reals is a metric iff d(a,a) = 0,
dfay, ay) > 0 if a; # a,, d(a,, a,) = d(a,, a;), and

d(ay, a,) + d(a,, a,) > d(a,, a,).

As for the first property, fii = d has no clear empirical
meaning; it dees often %aﬁn»bﬁt tobe mathematically convenient
to make this assumption. As for the second, while fij will
usually be positive for i # 3e it might be negative for some
pairs (e.g., pleasure driving). Again, while fij and fji might
be approximately equal, one ‘can think of several reasons for
inequality: going upfhill, up+stream, upﬁwind, vs. downhill,
downfstream,gacwnﬁwind; one-way streets; asymmetric bus routes;
the ease of getting from little~known i to well~known j because
of direction signs and road convergence,

This leaves the triangle inequalityQ‘ Is it true that
fij + fjk 3-fik? Not necessarily - it may be less costly in
going from i to k to tranship through j rather than take the
direct link. It is almost obvious, in faé;, that if the
triangle inequality holds\there is no rationale for tranship:‘
ment: One does at 1aast as well to ship direetly from sources
to sinks. (See section 10 ha%ew)m

In summary, the unit transport cost function f need not be
a metric., On the other hand, £'s that satisfy some or all of
the metric postulateswda constitute interesting special cases.

Even if £ is a metric, however, it need not have any close

P
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-resemblance to "real" geographic distance. The irregularities
of nature, the construction of roads between some but not all
places, irregular tariffs and institutional barriers — all
these conspire to weaken the relation between geographic
distance and transport cost.

The points of the transhipment problem can also be interZ
preted as points of Time, or Space-Time, rather than points of

18/
fij

Space. then becomes storage cost, or combined transport-

storage cost. i3 ten 7
wy A —eiapsed—time-ia%éevat-frum—t—te—§+(;f j precedes i we set

fij = ®w, or a number high enough to discourage traffic flow in@dy
the past.B

The relative advantages of the transhipment and transporte
ation problem formulations may be summarized as fbliows.
Because it allows connections between all S;irs of points, the
transhipment formulation allows the study of routing éatterns
and intermediate féows which escape the transportation formulaS,
tion. enwthéééeherwhané, the ver& fact that all points are
treated symmetrically‘é?rather than being dichotomized into
sources and sinks - means that a number of important interS
pretations of the transportatioh problem do not carry over to
transhipment. In particular, this applies to the assignment
of resources or land (as sources) to alternative activities
(as sinks). The major applicétion we make of the transportation
problem in—faet has this interpretaticn (see chaptar 8) ; hence

the latter is of much more importanaa'to us than t¢anshipment is.
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Even on its own ground the tx;hshipmeng formulation is
not necessarily more useful than the transpbrﬁation formulation.
We have adready mentioned that the former éan be "reduced" to
the latter in a number of ways. The folldwing considerations, -
while noq,aéﬁfiétiynspaaking‘ constituting a "reduction” -
indicate another reason why the transportation formulation is
often perfectly satisfactory (f is finite in the following
discussion.) Dichotomize the points of a transhipment problem
into “sourées“ and "sinks"™ according to the sign of the net

capacity a;. Suppose that for any pair consisting of a source

i and a sihk j there is a shortest routé% (kl,...,kng, in the
following sense: kl n.i, km = j, and the sum )

! i (:7; le: "% )
VRS~ NG TGRS VAN il

is a minimum over all possible finite seguences of points,
(Kyseoesky) satisfying k, = i, Ky u;j. Choose one such route
for each source-sink pair (i,j). It may then be verified that
the transhipment problemA‘(l)N(h) above, reduces“ to the

QDR TER-) B
transportation prcblemf»+&%w+3}me$vses&ion le of all source~

— T

sink| pairs, with capacities and requiremants given by the
absolute values Iail, and unit transport costs 934 given by

(3) abeve. "Reduction" here means that, if yij is an optimal
flow for this transportation pr@blem, an optimal flow for
transhipment is obtained by sh?pping gij along each link of the
shortest route from i to j, adding over all source=-sink pairs

(‘g' 7 é) *
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“Now, if the shortest routes are easily fnund,:or othefg
wise uninteresting, one might just as well go to the transpartag
tion problem derived above, which gives the optimal origin=
destination flow pattern{\and;is easier to solve than the
eriginai. L i

" Yo round'out the discuséion, we-briefly mention the
problem of finding a shorteét route from_i to j, one that
minimizes (3). As painted out by Orden, this can be formulated
as a special case of the transhipment problemféa ﬁ;;%igm,let
a, = +1, a; = -1, o, =0 for all other points. An optimal
solution to this wiil yiéld one or more sequences»kl,...,km,
with kg = i, k, = j and positive flows between each suc&éssiva
pair. A little thought shows that-each such sequence is a
shortest route, and the minimal total cost for this problem is
precisely gij of (3).

Does a shortest route always exist for any origin i,
destination j? It does iff the following cyclic positivity
condition is gatisfiedz

' (7:6-4)
lfklk'z *eout fkmul' in + f%g_l % Sy 4)
for all finite sequences (kl""'km)' B 2,3,000 .3.(4) states
that the sum of uﬁit costs around a closed circle of éinks is
never negatives For suppose (4) were false for some sequence.
By qoingﬁ%bund the circle sufficiently often one can drive

)
cost below any negative number, hence there cannot be a
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minimum sum (3)., Conversely, if cyclic positivity holds, there
is no cost advantage to routes whéeh include the same point
more than once. But there are just a finite number of routes
without repeated points from ; to j, hence a shortest route
exists. (For the generalized tranéhipment problems discussed
below, where the number of points may be infinite, the situation
is much more complicated. But (4) temains a necessary condition
for the existence of shortest routes?

iCyelic positivity 1s implied by. but weaker than, the
triangle ineguality. Indeed, with the triangle inequality, the
pair (i,j) itself is a shortest route, and gij = fij in (i).

Finally, the measure~theoretic treatment of the trans=
portif%on problem seems to be easier than that for transhipf
ment. r ‘ :

In the following pages we shall study the transhipment
problem in measure~theoretic form, We shall emphasize those
aspects in which tfanshipment is distinctive, where new and
sometimes paradoxical phenomena appear. We shrall also show
how the use of pseudomeasures to formulate constraints arises

4 .J‘“l.z A
naturally for transhipment. (ﬁpwﬁewthis point-in the book,

pseudomeasures have been used only to represent preferences,

with one small exception in 6.9).

7.7. Transhipment: Measure-Theoretic Formulations

We shall give two different measure-theoretic formulations

of the transhipment problem., For the first, the raw materials
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are: @ measurable space, (A,I); a a&gma ~finite signed measurerk
M, on this space, and a function £:A X A » reals, measurable
with respect to the product aigma~field L xZIonaAx A.jfThe
problem isg ‘

*y?ind a_bounded measure A on (a x,ag'z X I) satisfying

A' =R 1y

and minimizing

.
\

; ~ Here A', A" are the left and right marginals of A,

£ ff}espectively; so that (1) could also be written in the

following less abbreviated gorm:

A(E x A) = \(A x E) S U(E),— -3)

et et/

fer all E ¢ I, 4(2) is an indafinite integral over A x A, and
"minimize" is to be understood in the sense of (reverse)

standard ordering of pséudamaasuras. This is the inequality<

constrained variant; 5§§"obtaina the egualitz~éonstrained
variant by snhstltuting g for “<" in (1) and- (3),-above.

The signed measure M is to be interpreted as net capacity,

so that u(E) is tha;émount by which the gross outflow from the

points in set E may exceed the gross inflow to those points.

i

gu(é) méy; of courﬁéj be negative. A is the flow measure, so
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that A(E x F) gives the total mass ;ﬁiéh moves (directly) from
origins in E to destinations in F. 1In particular, A(E x A)
gives the gross outflow from origins in E to all destinations
(including destinations in the set E); similarly, A(A x E)
gives the gross inflow to destinations in E from all origins.
Thus (3) is precisely the relagion between inflow, outflbymand
cap%city mentioned above. f ié unit costs, and (2) gives the
total cost of flow A. : ‘:
Care should be taken tofdistinguish these set functions —

(such as Aj—?vﬁiﬁhaaaa defined on the product space (A x A,

I x I) from those ~(such as A', A", and u)~which—are defined
on (&,5). | e

0 ‘4(1) Eé) ab@ve reduce’%o 65%**%% of’theﬁgiecedmngwaectiea
precisely in the case when I is a finite sigma~field, so that

)

we “de ig@eaﬂ have a generalization of the original transhipment
problgm. :

~ In ordinary transhipment one distinguishes "source" points
from "sink" points by ﬁhe sign of the net capacity. In the

generalization (1) this role is played by the Hahn decomposition

of net capacity u. -&ndae&1 if (», N) is a Hahn decomposition,
-Tt:\l‘-r::\u(ﬁ:) 2 0 for all measurable E ¢ P, u(F) < 0 for all
measurablahg € N, sQ that the points of E may be thought of as
- sources”, the points of N as “sinks".
fmeteﬂthat,goundedneas.is a feasibility condition for A.

Indead, if A were unbounded then (1) would not be wellldefined,
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: \ ‘{;3 O ‘é.‘i»‘;{: ME g .
since we would have A'(A) = A"(A) = =, zenmghéﬂe@hef»ﬁanéﬁ\this

On the endless plane of location theory there will usually be
a flow of infinite mass. The same is true with an unbounded
timeihorizon,lin those cases wheré_%,is a subset of Time, or
Space~Time. In these cases a similar question arises con-
cerning the adequacy of a signed measure to rspresent the
concept of "net capacity". Supgosevtha% A ié split as above
“into two pieces, ;¥\sourcaﬁfsp§ee ?E%and ;N'éink"‘spacemy.
Since u is a signed measure, at 1eas£ one of the two numbers,
u(g), u(N), must be finite. ,ﬁut there are reasonable problems
involving both infinite capacity on P and infinite requirements
on N.
Our second measure-theoretic formulation enables us to

deal with the situations just discussed. As might have been
expected, the key lies in the introduction of pseudomeasures,
(A,I) and f remain as above. The objective is still to

minimize (2), but (1) and the boundedness condition are replaced.

Instead of the signed measure p we have a pseudomeasure Y on

(2,Z), and the constraint isa'

are aé%ma-finite andvsatisfyf“

% G-.d)
A, A% £ Ve )

&

That is, we form the pseudomeasure (A', A") from the

L
marginals of A, and constrain gt to be less than or equal to
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¥ under narrow ordering. Letting (w+. ¥”) be the Jordan form

of §, (4) may be written in less abbreviated form as followsy

£om
/

AE x ) + y7(E) < A(a x B) + v (E) 45)
for all E ¢ I, This is the unbeunﬁéd formulation of the
transhipment problem, (1) giving the bounded formulation.

When A is bounded, and ¥ is ‘a signed measure yu, ene
eastiy seeg that (3) is the same as (3). Thus the constraint
{1) is a special case of (4). yBut it cannot be said that the
bounded formulation is merely;a special case of the unbaunde@!
since the boundedness conditfbn is present in one and absent |

in the other. As above there Ls also an egualitz~canstrained

variant: Jjust substitute T for b in (4) and (5).

QM;} ~The pseudomeasure (1A', A") may be thought of as net out@?

o
o

flow or net exports, and the fact that itmig a pseudomeasure
allows the possibility th§£ gross inflowland outflow for'a
region may both be infiniie. ‘¥ is ggain net capacity. If
(P,N) is a Hahn decompositicn for ¥, we may think of it in the
following way: ¢+ giveé the net outflow capacity on source
space P, while ¢ givesjthe net inflow requirement on sink
space N. »l ¢

The conditions tﬁat A' and A" are sé;ma-finite are needed
to make (A', A") well~defined as a pseudomeasure.' Recall that
either of these implies that A itself is s&gmawfinite, so that

(2) remains wellmdaflned as a pseudomeasure, lﬂe%ew%hat

o~

e B P |

(prafareace among different A’s is exp&essed via {2) by standard
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ordering, while the constraint (4) involves narrow ordering.
This disparity is essential to achieve a bona fide generaliza-
tion of the ordinary transhipment problem.)

We have now set up the two measure-theoretic transhipment
problems,gand shail investigateffeasibility and duality con-
ditions for them. But first we}aha&i finish this introductory

-section-by deriving some resul?s concerning measures A on a
product space of the form (A %gA, 4 § t). The aim is to
achieve a certain insight inté the structural differences
between the transportation aﬁd transhipment constraints. The
following remarks are abstrabtad from any particular problem
context, however. Netewalsémthat&;hey épply to arbitragg

measures A, not merely ta-iiQma~finite measures.

£ S

c;}‘ Definition: Measure A on (g'x A, L x2ZI) is a translocatioﬁ*i
iff there is a measurablefpartition,_{P,N}, of avintq two

Jjj;> pieces such that A[}A x Aé\(p x N{] = 0,
(S _ : : ;

'@hat is, A(P x P) = A(N ? N) = A(N x P) = 0y The only possible
flow is from P to N.)

—— / .
’W‘Nf?ﬁ “Theorem: A is a translocation iff its marginals,}k‘ and A“{ are

) mutually singular.,

”;Qyﬁﬂwfrocfa Let A be a tranélocation,swith P, N as in the definition

m"‘y"‘w

D

above. Then A'(N) = A"(P) = 0, so A', A" are mutually singular.

A
|

Conversely, let A', A" be mutually singular, so that

A'(N) = A"(P) = 0 for some partition {P,N} of A. But this
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) yields A(P x P) = A(N x N) = A(N x P) = 0, so A is a
' _translocation. MW L

~Next, we want a formula giving the transhipment associated
with any flSW measuxé A. Intuitively, the transhipment in a
region is given by the "overlap" bétween;inflew and outflow.
To be precise, lét transhipment be représented by a measure
@ on (A,z). We require that 6 < A' and B < A"l-that~$s,
transhipment in any region does not exceed gross outflow from
that ragionﬁland does not exceed grgss inflow into that region,
resyectively; The "overlap" is théllargest measure meeting
these conéitiohs. But this is precisely the infimum of A*

and A“, as defined in-chapaaz~3, section ‘' Thns we have

AL oL ank o3
S ,

e er v |
9@ Definition: Given measure A on (3 x A, I x I), the transhipment

S is the measure 06 on (A,E) given by

0(E) = inf(A',A")(E) = inf{k'(F) + A"(E\F)‘F < E, Fg¢ z} f-sv)

. all E ¢ I. i - :
‘X thhgl Here A', A" are the left and right marginals of A, respectively.

We have repeated the explicit formula for inf(A',A") for con~
venience,

This definition seems to capture quite well the intuitive
notion of "transhipment". In particular, consider the case

when A is a translocation. Here the marginals are mutually

singulagj Jfhere is no overlap, and transhipment should be zero.

/
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,,,!- e

Furthermore, the converse should be true@ | If transhipment is

zero, them inflow and outflow should be mutually singular, so

that )\ is a translocation. The following result confirms this

expectation. Note that we are actually proving an abstract

,\ 5 ¥
theorem: inf'(u,v) = 0 iff (u,v) ig a mutually singular pair.,

i

if‘#i’ Theorem: A has a zero trpnshipment iff A is a translocation.

="~ " Proof: Let A be a translocation, so that A'(N) = A"(P) = 0 for

s i

/' some partition {P,N} of A, by tha?theoram above. Then |

<~ 25 | , ‘9“3’ 4 l"“?-: s AT () = 0,
" from (6) with F = N. Hence 6 afb;
Conversely, let 6(A) = 0, fThen,afor each n = 1, 2,¢444

~there—is a set F_ € %, such that o

©

s ——————asg
P —

i Av(rg) + A (gxgg)'i 2%

£

“from (6). Let F = lim sup Fn; For each n = 1, 2,... we have

AAF) S AR U B gy Ua.l) € 278 4 27BN, L gm0

Hence A'(F) = 0., Also A\F nf%;g inf (A\F,), so that A" (A\F)

does not exceed the sum of

xn(:(A\En)_'n (A\F, ;) J

But each term (7) equals zero, since it

(17-1)
ey

overxr 9_ = l,ZQ'A- ®
does not exceed k“(A\?k) for arbitrarily high k. Hence
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gﬁi@ A"(A\F) = 0, This with A'(F) = 0 shows that A', A" are

mutually singular, hence A is a translocation, by the pres

- __ceding theorem, L}{zwffTﬁ’
M“ -

-

NE st
A A', A" have been interpreted as the grcss outflow and inZ=

flow, reapectively, associated with A. There are a number of
intuitive net flow concept&« The one we- “have in- m;nd here is
that whiahﬁnets out the "overlap" of A' and A" from each of
them4* Bha%~$s subtracts the transhipment, Ehe~%§9&b&@~i5
tﬁat these measures may all be infinite, so &het subtraction is
not a well-defined operation.

But recall that, in echaptexr=3, section 1, we did define a
subtraction operation whiﬂh is valid for iﬁfinitédigzgures‘
The concepts in that section, ;n fgggf turn out to be admirably
well suited to explicate the intuitivebnetions we are

struggling with here.

/& Befinition: Let A be a measure on (A x A, £ x3I). The net outs

%)

flow and net inflow of )\ are the respective measures Al and xz

N
e

L6y on (A,I) given by _
!

|

Shg ) =30, an,

That is, Al and Az are the upper and lower variations,

respectively, of the Jordan decomposition of the pair fA%, A%,

;z%* That this is a reasonable definition follows from the

basic relation between pairs of measures, their Jordan
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decompositions, and their infima, which in this case is

B .
Ap = A" = dnf (A", A") = 2! - 0,

i

A

" & T " ™
2“7\ -ilgﬁd(}\,l)ﬂk -Q.;

(See pase.~.,) That is, the net outflows and inflows are
indeed obtained by subtracting transhipment from gross outflows
and inflows, respectively. (If 0 is finitg)this reduces to
ordinary subéfactien 1)

Another intuitively appealing property thet one would wish

the net flow measures Al and 12 to posséss is that they be

mutually singular. For in this case one can split A into two
pieces, P and N, which can be unambiguously labeled as the
outflow and inflow sets, respectively. (gere A () = A, (R) = 0.)
An obvious sufficient condition for this is that A be a trans=
location; for then even the gross flows, A' and A", are

matually singular, hence Elfo;tiori the net flows, Al and 12.
(In=faet A; = A' and Ay = A" in this case; since 8 = Oﬁﬂ The
following result shows that,}éven if A is not a translocation,

mutual singularity is guaranteed under guite general conditions.

emma..,

/ yf -/ Theorem: Let measure A on (A X A, I x I) be abcont. Then its
N ,
- net flows, Al and Az, are mutually singular,

. ._WVMMWA“
™

(#4—- Proof: Marginal A' is induced from A by the projection (gl,gzq*ﬁl.

Since A is abcont, so is A'. Hence the pair (A', A") is Hahn

-y
( ), ,
x!ﬁ decopposable, implying that its Jordan ddcomposition, (A;, A,),
($ax Secliom 3.1.) ; _
?k is a mutually sinqular~pairbyL+#r d .
AN
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Finally, let us tie these Qéncepts to the transportation~
transhipment problem diehotomyﬂf We show in-fact that the
transportation problem (variagé.i) is essentially the trans-
shipment problem (equality~co$strainad unbounded formulation)
with an extra constraint thrown ingb:that A be a translocation.

= Start with the transhipment préblem whose feasible set is
detarmined by the pseudomeasure space (A,Z,¥). Measure A is

feasible iff the marginals )A', l“ are s&gmauflnlte and
(A',A") "‘f \ba/,w* ' (8)

’Jﬁ?é) is an equality between pseudémeasures (cf. (4)). Now add
the additional constraint that A must be a translocation. It
follows that X', A" are mutuallf singular, so that (A',)\") is
in—fact the Jordan form of wsgafi = w“'f’;ﬁd A" = ", Let {P,N}

be a partition of A such that @ (N) = ¥~ (P) 3‘0* Then A is

zero when restricted to (A x A)\(P x N). Let A, be A restricted
to P X N, let u' be w restricted to P, and let u” be ¥
restrictedﬂﬁo N; also let I°, 2“ be I restricted to P, N,
respectively. Then i&vmameaﬁymto-see that A isqfeasible for

the (variant I) transportatipn problem, with source and sink

spaces (P,Z',u'), (N,E“,u“), respectively.

*;fg Conversely, given this transportation problem with feasible
Nflcw A o' this entire procedure may be reversed to yield a
translocation A satisfying;(ﬁ). Furthermore, if £:2A x A + reals

determines the transhipmeﬁt objective :Eunctions and £ s £
| \ xi
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restricted to P x N, then C\goféao yields the same ordering
among feasible transport flows Aamas !Afadk does among the
corresponding translocations ). This shows the essential

equivalence between these two problems.

7.8. Transhipment: Feasibility

We now investigate the conditibns under which feasible
solutions exist for the bounded aﬂ& unhounded formulations of
‘the transhipment problem. The bounded case is well=behaved,
and the results are analogous tq'thcse obtained for the
transportation problem. But the results for the nnbounded
case are "wild". .

First "for the bounded formulation, %;;ie;—seetienél

Actually we -shall prove results for a somewhat more general

problem: We-shall let net capacity be a pseudomeasure Y, and

not merely ﬁe ségma ~finite signed net
capacity measure$ p. This yields a problem somewhere in
between the bounded and nngounded formulations , -namelys+

Find a bounded measure A on (A x A, I x I) satisfying
E:Ii '{" i
(1A <4 e

Here the marginals A', A", as well as the pseudomeasure V,

are all defined on the SPace (A,Z) as usual. The left side of
{ Tt ) o

(1) could also be written as A' - A", as in ()= efﬂsee%ionwlﬂ\

but we prefer the pseudomeasure notation,
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)
The reader may wonder why we used censtraint ) of

_section=7 instead of the more general (Y) abeve., The answer

is contained in the following theoram@ If P is a proper

pseudomeasure *-@hakrisq if ¢ and ¢~ axn ‘both infinite .

neasures - then there is no bounded A~satisfying (1) abeve.

Hence pseudomeasures are actually uaeless here, andrene might

just as well use the signed measure formulation 0f<é££d&§

section—7; which is after all muchfcloser to intuition than

(1) abe#a is. But one needg to farmulate the problem (1) abewve

~ to prove this vexy fact.
e o 1\ 1 - -

<¢iwﬁfﬁheoramz Given pseudomeasure space (2,2,9), thase§é§§§t§ a
bounded measure A on (A X A, I x z)ysatiéfyiné (1) iff

o) @' (;A_“) _>. w (A) L : -(%‘)

g

Also, there exists a'bounded;;jsatisfying (1) with equality
iff f e
* P (1 43)
v (a) = ¥ (A) < o, - 43)

/) Broof: Let bounded xrsatisfy (1) , which may also be writteni

(1:%4)

AY T ,i LR MR {4)

Y

/-l}j We have A'(A) = A(A x A) = A"(A) < =, Hence, substituting A
\ into (4);1§ha A terms drop out and we have Y~ (A) < w (n).
ez
Next, let (P,N) be jHahn decomposition for w.;\w (P) = 0, and

v (N) < A" (M) results from substituting N into (4)., Hence
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¥ (A) is fiﬁite. This yields {2?.

‘”‘/'

S1f bounded A aatisfiea (1), hence iﬁ), with eqnality, the
same argument yields (3).

| [z
{ 5

/ Conversely, let (2) obtain, and ﬁbnsidar the transportation

problem with source space (é,ﬁ,w*) amd sink space (2,Z,y”), and
constraints

AT L )

(2.%9.5)

_ h{ﬁ)
Thls is variant II hence a feasmble solution A exxsts by (2).
{a} 1mpk£es {4) , which is (1). rAlsc A"(A) = ¢~ (A), hence A is
bounded, again by {(2).

transhipment problem.

e

Thus A is feasible for the bounded

u"S""’"\‘;

Finally, let (3) obtaingiand consider the same transporta=
tion problemflexcept that (55 has all equalities.
e r

oA %kﬁMn D

' This is
variant I, hence a solution exists by (3)
with equality.

{(5) now yields (1)

A is again bounded, since ¥~ (A) is finite. L+f6-w“ﬁ
| {if)f\
When ¥ is the signed measure o as in*4%§~a§*$ee%ion"%a
this theorem takes on a very simple formp

f%" " Theorem:

\‘l‘ l k)
There exists a bounded measure satisfying »i&wo%
Mjﬁ} section—7 iff u(A) » g, There [exists a bounded measure
satisfying ii? of- ﬁaeﬁien 7 with equality iff u(a) = 0.
) H- Proof:
-

On
xmmediate fﬁom (23 {3) abaue, noting that u(a) =
\ u (A) & u (A)- l'i
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Thus a solution exists iff total net capacity is nonf_

negative or zero, in the inequality- or equality-constrained

problems,‘respeetively. As-mentioned _above, this bears

comparison with the transportation problem result, Here a

feasible solution exists iff total requirement does not exceed

total capacity {in variants II, 1II, IV, which involve

inequality constraints)tmor iff total requirement equals total

capacity (in the all-equality-constraint variant I).

This brings us to the unbounded formulation of tranship<

J.J

ment, f#?wufmsectien 7. The basic result is that thewe always

exists a feasible solution (unless I is finite). This is

highly paradoxical, since a solution exists even when ¢+(§)

is less than y (A) %(even when the former is zero and the

latter infinite, in fact., We shall first prove the result and

then give a rough explanation of "why" it is true. In the

following we prove feasibility for the agualitxuconitrained

problem. The solution constructed automatically remains

feasible for the weaker inequality constraint, so that

feasibility holds in general;

Tﬁw Theorem* Let (A, V) be a psaudomeasure space, with I an

infinite s&gma ~field. Then thuaa exists) a measure A on
(A xA, Ix X)ﬁsuch that the marginals A', A" are s&gma—finzte/r

and

SeTTERN T

('} i *"‘ ‘

(X"Au) = ‘p‘” i w

(Bquality in the sense of ?aeudomeasures).

H
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w¥§ | Proof: Choose a representative, (u,v), of Y. Since I is

PN
{j’\i) \
D)
/
! : i 4
s =

\)\/

L S j L3¢ ) o
ufala e %‘i and%(g,ga} e‘_.g}f - v{a_lg £ An\&nd /(ﬁn..g) ¢ 6}

infinite and uy, v are ségma finite, these exists an infinite
countable measuzabla partition, {Al' Az,...) of A into nons
empty sets.\such that u(A ) and v(A ) are finite for all
B®™)L, 2,000 o

Choose a point a n g,gg for each n, and &efine the set
function A, with domain Xfx Z, as followsy For each G € I x I,

and each n = 1, 2,..., férm the quantity

=

(
+u x (G) + v 'V, (8) e g—

V2, raspcd'wel-, 5

Here By and v are abbreviatlons for u(A 9 v(An),Axn(G) iglm

the number of integers k > n for which (ak, k+l) € G;

yn( ) is the nugkar of integers k > n for which (ak+1. ak) € G,
(If the number of such integers is infinite, take B (G) or

¥,(G) to be +~, and form (7) by the rules of extended real~

valued arithmetic)i Finally, A(G) is defined as the sum of
the guantities (7) over alln =1, 2,... .

We claim thatfl constructed in this way is the desired
measure. First of all, for fixed n each of the terms in (7)
is routinely verified to be a measure on I X I; hence A, as a
sum of measures, is itself a measure.

Now consider various sets E ¢ I in relation to the points
897 857000 o First, if none of these points belbngs to E, we

calculate from (7) that
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AE x 2) = u(E),| A(A xE) = v(B)/ 48

Second, if none of these points belongs to E; with the single

exception of am, ‘thren a more complicated ealaulation from (7)

yields
i {»;. ;ig 7
: 4 1 /10 1
A(E X %-) = u‘g} ""‘Hl Fesat UEB + Vl Foost '\"{att ~(-9~)

In particular, E = A has the prcperty just mentioned. Hence
Al (A ) = A(am x A) is finite for allm = 1, 2,..., from (9).
Similarly A”(Am} is’ finite for all m, from (10)., Hence the
marginals A', A" are aégma finita.

i

Furthermore, from %841#494wwﬂﬂéw4lﬁ} we find that

(gig.en)
AV(E) + V(E) = A(E) + u(E) “a1)

for any set E e Z to which at mast one of the points B1s 8gyeve

belongs, But,‘anm%hewe%hafwhand, any set E Q\E can be count®
ably partitioned into sets of this type: E= (En A )U(E n Aa, Wheaw o

Hence, by summation,;(lli is true for all E ¢ I But this

implies (6), by the equivalehce theorem for pseudomeasures.

Hence A is feasible. LW /1@

Measure A "works" in the foregoing proof for the following
reasons. First-ed=gll, the point a functmans as a "depot" orx

"entrep8t" between A, and the rest ofdﬁ‘ &4 absorbs any surplus
—_ )
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or deficit arising in A,; a, does the same for A,, and also
1/ 22 =2 =z
absorbs the net surplus or deficit at 8,7 23 does the same for

Age and also absorbs the cumulative net surplus or deficit at

8y, etc, In this way, each successive set;@n is brought into
balance, while the overall surplus or defie£; "escapes tg%i-or
framﬁm»infinityﬁ. The paradox arises precisely because there

is no point at which the buck stops and accounts must be settled.
Similar phenomena arise in other contexts°%-for’exampiehAin the
theory of Markov‘chains with an infinite number of states, or

in the theory of economic growth with intergenerational transfers

and an infinite succession of generations.

One might be tempted to regard this paradox as a reductiogi
ad absurdum of the unbounded formulation of the transhipment
problem; but this would be an error, or at least a premature
judgment., The formulation itself arises in a natural way. And
avén though a paradoxical flow pattern is feasible, it involves
a great deal of cross-hauling. We may presume, then, that no
such flow would be optimal, unless the problem is formulated in
a way that allows no avoidance of such flows (by making reqdirag
ments exceed capacities). It is quite common for useful models
to introduce artifacts of this sort., Finally, many former
"paradoxes" are now accepted as valid, so one should be wary of
making summary judgments about what cannot occur in the real

world,
C &
=2 v  The premise that I is an infinite sigma-field is essential

in this theorem. Indeed, if I is finite, we are in effect back
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in the ordinary transhipmant problem, and the "tame" feasibility
results of the bounded formulation apply.

{'@~j 7.9. Transhipment: Duality

We shall give a Urlaf 1ntr0uuctlen to the duality theory
of the transhipment problem, one ﬂh&@h parallels the treatment
of the transportation prablem‘ R@turnkag ‘first to the ordinary
transhipment problem, b&%w&Z)gaflsee&iemii; its linear programw
ming dual ig the folloyéing@>;

‘Find n@%?negative numbg¥s,4g1;..‘,9n satisfying;}
Pj " Py L%y |
(i, 3 =1,...,n), and maximizing 7
~a1§1>~...~ anpgwfr*” fégf!:

(Minus signs appear in the objective function (1) because we
expressed the primal in terms of net cagacities, “i (i = 1,.,Q,n).

If we had used net reqairements instead, we would get plus signs.)

The dual of the corresponding measurewthaoretic problem
{3\‘!) %E f{‘
(unbounded formulation),ktﬁi and {2) of-section-7, is defined

as followse

Find a measurable ﬁoainegative function p:A + reals satisfying
¢ “4'3 2}

p(a") - pla') < £(a',a") “t2)
for all a', a“ € A, and maximizing

L I P al&h .!‘%‘.m'-‘ -‘3’4} -

m«"
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]

&

Here (3) is an indefinite integral over space (2,2), and
“maximization” is to be understood in the sense of standard
ordering.

This is for the inegualitg«ccnstraineé ve#sion. For the

equality~constrained version the dual is the same, except that

P need not be naﬁrnegative; Sinai;y, for the‘boun&ed formulation,

everything is as above except for notationz;“fhe signed measure

u replaces the more general pseudomeasure ¥ in (3).

The dual for the transportation probiem introduced some
other constraints making'cértain definite integrals well~defined
and finite. Conditions of this sort pl&y a rgie here‘ toc, but
it is convenient to introduce them separataly¢

The following theorem yields the basic duality inequality.
It applies to both equalityw-and ineéualityncanstrained Vegéions,,
and to both bounded and unbounded foxmulations. The notation
for the latter will heiuse& ?fgf‘ghe {crmer, replace § by u).

The expression‘§avp éé meaas the fcligwing@ It is defined iff
the two definite integrals,!{# p d¢4 and A}p dwilmére both well-

defined and not infinite of tha same ﬁign. In this case we set

(AL w 5} 20 Lp 22 NI ; YViq. i)

I p dy “”[ p dy* - I\ P,V *:tﬁ%
(Equivalently, the expres&ion is éefined iff / p dy is a signed

"D N ¥
measure, an&‘k~ this case f \p dp is its value at AT~
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ﬂ#@¢( Theorem:

the transhipment problem, and let p:A + reals be feasible for
the corresponding dual problem.

Let measure A on space (A x A, Z x }) be feasible for

Also assume that
‘-"‘"‘m{x ‘1
A N 20 8 oo N0 ' :
L)/ ‘ 2 (7:4-%)
e [ pax',ll p A\ : (5)-
et Ml st
are both well-defined and finite definite integrals., Then the
following two definite integrals are well-defined, and the
stated inequality holds between themg
yobl o Wl P (jé’%:&r,)
[ f£dx >~ pap— 6}
AXA ‘AT A
PEN .

qz; Proof: ILet the functions p', é":A X A =+ reals be given byég

=

- p'(a',a") = p(a'), p"(a’,a") = p(a“),;‘-z.s"
\

/x“” 2 ﬁzu?r all a', a" ¢ A, Condition (2) then takes the forms
* p"

- p' < £, and we obtain

)\ 9 \'Sﬁ W 71 2t &)g‘ Hi 37

Jpa -] par =] prar-| ptan i

AN b Axa | axa Ll
| : ~ (7
i 31 (s V) e >
.‘ o I (p"=p")dr < I £ A\
H - 2
[
i

The first equality in (7) arises from the induced integrals
theorem, Note that
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e
2\ W g e

L (44.9)
[ (p" - p') ax 3.] 9 ~8)
ey < N~

from (2). The left side of (8) is finite, from (5), hence so
is the right, hence the last igtegral in (7) is well-defined.
The inequality in (7) then foliows from (2).

Nextf}we prove that

A S e » 57 w ;! gr (ha.4)

j p dA" ﬂf p dx’ 3_] p dzp” aj P,d""’-r‘”ﬁgw 9)

the differences being well~définad. There are two cases,

For the inequalityvcanstrained variant, we have P 2 0 and
(A',A") < ¥ i that-is, '

. 2.4. o
AY & W < AT 4 w —— 10)

so that
ﬁ‘»i 257 {’;w; 982 e\ 20 S‘G\ 0 o (5" e
f P aAt + f P ay” :F.[ P A" + f p ayt - 1)

Letting (?.ﬂ) be a Hahn décomposition for ¢, we have w‘(g) =0,
while ’
z'j«:uv |
—1\? (E) < A" (E) + ¥ (E) L AN(E) + w (E) = A" (E)

for any maasurablhtp‘g Nr Hence {"~ < A” It follows from (5)
that at least three of the integrals in (11) are finite. Hence

it is permissible to rea%range terms to obtain (9).
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For the equality-constrained variant, (10) holds with
equality. Also, by the minimizing prbp&rty of the Jordan form,

we have w+ L)', as well as ¢~ £ A". It then follows from (5)

e
N

— that all the integrals appearing in (1l) are finite. Hence (11)
holds (with equality) and may be rearranged to yield (9) (with
Squality).

(7), (9). and (4) together wield (6). 144“? I8/ |

s

Next,, we look for a condition unﬂer which the inequality

(6) of this theorem becomes an equality.

M =1 :'
f¥§;gaﬁefiniticns Let measure A on (A x A, I x I), and the function

p:A + reals, be feaﬂ;ble for the transhipment problem and its

Py, 8 2
dual, respectively., p is a (transhipment) measure potential

]?fﬁ for l‘iff the following two conditiéns are satisfiedf
B ;!} S »
{ 5,412

A{(alaaa) lp(az) - play) < f(al.az)} = 0, (12)
- and, when restricted to the subsat {alp(a) > 0} of A, the two

pseudomeasures, (A',\") and ¥, coincide.

This definition is meant ;b apply to both bounded and
unbounded formulations, and.bqﬁh equality~ and inequality-
constrained variants, of the ﬁranshipment problem. liote,
however, that for the eguali€g~constrained variant{ the second
condition is satisfied triv%élly and/may‘be dropped ; measure~

potentiality reduces to (12) alona@;;(ié) ééates that there is

no flow on the set of origih~destination pairs for which the
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d
/
F

dual inequality A2) is strict. This and the other measures
i

potentiality q?nditicn generalize the complementary slackness

conditions fq% transhipment,

_%{ | Theorem: Leyr measure A° on (A x A, % x I) be feasible for the

transhipmént problem, and p°*b + reals be feasible for its
L lcdual . Mso let
1 & ‘%‘f\ \% o e ( w:;i QL)’“ L‘,q A\\L \_Q L(

g gt 1 4 13;. pe dxer, L; pe ajen

both q% well;defined and finite. Then p2 is a (transhipment)

measuée potential for A® iff

3

, &S 3o b ,24 s %7 4.3

e [ £ dA2 = -! pe dy. ., £13)
Axa 0 .

—-—

IR
g

ﬂi#i ! gégggé Letngﬁ.be a measure potential for A2, Reviewing the

' \ pregeding proof, we find that the weak inequality in (7) is
(ff;? satisfiea with equalityflbecause of (12). For the equality-
&mL# conatrained variant this already yields (13), since (9) is

\ alsc satisfied with equality. For the inequality~constrained

vapriant, the fact that (A',1") = ¥ on the set {a{p(a) > 0} | ’fl('or
yields (10) with equality on this set. Hence (11) and (9) are
gatisfie& with equality, since P = 0 off this set; this again

ylelds xa3).

Conversely, assume (13). All integrals in the preceding

groef are then finite, and the weak inequalities in (7) and
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(9) are satisfied with equality. But equality in (7) implies

(12), while equality in (9) implies that (A',A") =¥ when

these are restricted to {a|p(a) > 0} (a trivial implication in
., ‘the equality-constrained variant.) ka? /

RN,
O €

//”,<§§/  Theoramz Let A® be a bounded measure on space (A x A, T x 1),
and puza > r&als a bounded functiontkauch that p? is a (tran-

/jﬁ% shipment) measure potential for A®. Then A° is best for the

bounded formulation of the transhipment problem,

, *f? Proof: Let A be any other feasible solution for the3€ranshipmeat
problem (bounded formulation). We show that

S v SLQ - uo 9:’1
"j;{D v a‘é 1\;\‘ \{)D (! ‘ ! o] ; . ] B { )' “fi ;’,;- )
~.§K;¥,r¢~ o~ ] f dAo == _,J 139 | du -ﬁ ! £ dl;- p (,g_g;

\ Axa A ! el Axp AT

‘1 :

|

all theaa definite integrals being well~defined, (Here £ is,
ny Wx

e#-eeaaee@\the unit cost function, and u is the net capacity
signed measure.) First,

us 2 2 ’:}

b A

i
L-28

] pe dr', f pe aA" 15)
L Rt A \

)
2,

S R R D

are both wali%defined and finite, since p° and \ are both

bounded. This yields the inequality in (14), by (6). +5)

A A R

(%) remains finite if A is replaced by A’,uand this, #egether with
tha measurewpotentiality pramise, yialds the equality in (14),
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by (13). Furthermore, this common value is finite. fiéi‘ghen

implies that A? is best under (reverse) standard ordering of

pseudomeasures, 7[J4“{:; ¥

1/W&“”ﬁwwm%

These results apply to both the equality~ and inequality~
constrained variants, Note that the last theorem appligé only
to the bounded formulation of the transhipment prohlem} however;
In the unbounded formulation, the integrals (15) will not
necessarily be well-defined and finite for all feaéible A,
which means that the inequality of (14) cannot bé derived,

In connection with tranahipment{potentialé‘one should
mention the work of Martin Beckmann.>> This deals with
commodity flow on the plane, and makes essential use of vector
analysis (gradients, curls, etc,) . Here "flow" refers to
"continuous” physical movement(—(as a fluid) — and is not
immediately reducible to the originndesfination form of the
transhipment problem, Yet he arrives at a potential fuﬁcticn
which--is similar to the transhipment potential.u One hopes
that future work will produce some kind of synthesis of ﬁﬁese

approaches.

7.10. Transhipment under the Triangle Inequality

We would like to obtain results for transhipment analof
gous to those for the transpdrtation problem ﬁ-guch as the
) \ _
existence of optimal soluti@nsa*themeu*eteaee of potentials

associated with unsurpassaﬁ solutions ,-ede. These results,
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however, seem quite hard to come by without making special

assumptions.

In this section we shall assume that the unit cost ﬁx

function f obeys the triangle inequality: -
£(a;,a)) + £(ay,ay) > fla;,a5)

for all‘al, a,, a3 € A. Intuitively this states that ﬁhere is
no advantage to indirect shipment@y'gb move from glrée §3)03¢
dozs not gain by going thrauthaz, a£d the same ;s true for
circuitgus routes involving several interme&iagé points. Now .,
if one compares the transhipment and transpoxiaticn formulal
tions; one sees that transhipment differs gésentially in that
it allows suchlcirauitous.ahipmenta, while the transportation
formulation forbids them. Since, under the triangle inequalitg,

this extra freedom seems to do no goca, one would expect that

cptimal solutions to the transportatian problem wew
%e #e optimal for transhipment as well.

This expectation turns out go be correct, at least under
certain limited circumstances.  The key to the following proofs
is the consideration of the dgél function, the potential., We
ﬁdn‘t know if there is a moré.diraet way of proving them.

Lgiius start with a raiﬁtively simple case. Given a
measure space (A,IZ,v), v heunded, and a point a, € A, consider
the problem of ézstrxbuting a mass v(a) aoncentrated at the
point a

MO
transportation problem on the product space A x A the problem

over space A according to distribution v. As a
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transhipment problem there are man

under the triangle}%

A
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e

: . 27
8 trivial; in fact, there is egactly one feasible solution,23

given by (1) below, and it of -course must be optimal, As a

y feasible solutions, but,,

inequality, one feels intuitively that (1)

should still be optimal. And so it iss

qgh{“whagram: Given bounded measure space (A,Z,v), and po;ni a, € Ap
let £:a X A + reals be bounded, measurable,;oﬁey gﬁe triangle

inequality; and let f(a ,a)) = 0. Let measure ;é‘on (& x A,

Z x I) be given by /
(2:70.1)
A°(G) = v{a| (ara) € 6} -
all G¢ I x L. Then A% is best for the ﬁranshipment problem
of minimizing = o ‘j; (.10 %
JA j gan / ' )
/»J AxA A
over bounded measures A ﬁatisfyingf 5
IJ/DJ l' ’L ’2» {"7‘ i §;14
43)

SR R

(Here v is the measure of mass v (2) simplyhconcentrated on the
point aofg

-y

()Y
2/

’J#¢F1““MW'roofs One easily verifies @ﬁat - A® is feasible for (3).
Define the function p:A *;reals by

i

5‘;(3) = f(__ag@).

7 ;- w
We widl show p is bounded and a medsure potential for A°. From
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the preceding duality theory this implies that A° is best.
Bounded measurability of p follows from the corresponding

properties of £. The triangle inequality implies that

(1.10.4)

(az) = Q(al) < f(aloaz) “{4’)
for any a;, a, € A, Finally, :
13‘% !1/ r,{/ ; ;
ref(a)0)) |piay) - play) < £(ay.a, >} | ¢
: ._‘%, 1O >
ab5b 7 , b

v{?lg(g) - play) < f(agfa)}f,wﬁ

by (1). But p(a,) = 0, and it is then clear that the set on
the right side of (5) is empty: The common value in (5) is

Zero. This proves that P is indeed a boundad measure potential

fox AS, def oy

To make further progress we must introduce topology.

ggiﬂw, Definitienz Let measure A on (A X A; LI x 2)5 and the function

et

"\

.
% )
y.

i

y

éﬁgééﬁé

p:A » realsg be feasible for the (equality»constrainea) tran~

shipment problem and its dual, reSpectivaly. ‘Let T be a

\ tcpology on A,

-’i.if

7P is a (transhipment) tqpological pctential for A iff the

fallow1ng conﬂitinn is satisfied=”:>

> If (al,az) is a point of support for A, then .

P(az) hi F(al) = f(§11§2)¢
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SRR

("Point of support” refers to the topology T x T and»s¢§aa—
field I x Z on A x A), That is, (4) is satisfied for all

(gl.gz),{and is satisfied with equality for points of support.

This definition is appropriate for the equalityuconstrainea
variant of the transhipment problem. (For the inequality~
constralned variantﬂyextra condition is needed, name&yj fﬁf a,
supportus - (A',A"), then P(§°) = O@Yge sha&i not giscuss this,

since it;ﬁot needed in what fallawsé

Cﬁp,\"Theoremz Let p be a (transhipment) topological pbtential for A,

§ o \! " §
i )|
| 4

= T x T have the strong Lindel8f property. Then p is a (tran-

for the eguality-constrained transhipment prqblem, and let

shipment) measure potential for A,

ﬁwwww””””””fi;” The proof of this theorem is Virtqélly identical with that
of the corresponding theorem in the gfanspartatian problem

(pase )¢land will not be repeatga here.

We are now ready for the next result, which generalizes
Ehe preceding theorem at the coat of attaching some topological

strings.

 Theorem: Let u,v be bounded mé;sures on (a,I). ILet T be a
réji topology on_A, such that T g I, and T x T has the strong
LindelOf prggerty. Let f£: & A + reals be bounded, cantinuous.
measurabla,if{obey the txiangle inequality, and let f£(a,a) = 0,

all a € A. Let measure ﬁ“ on (A x A, I x3I) be best for the
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transportation problem of minimizing (2) subject }b At =,

A" = v,

Then A° is best for the transhipment problem of minimizing

(2) over bounded measures A satisfying

Al » At B oy -y,

=

L

T B AR AR A

BT i T, B

=7 Proof: This is trivial for A = @, so we may assume A is nctff

empty. First ef-all, it is clear that A2 is feasible for the
transhipment problem, :,
Since A° is tranapott optima{,f @ i?:and'f is bounded
continuous, it follows that A% has a bounded etranspnrtation)
topological potential: a pair of functions p°, g'z&j* reals

ﬁhiéh are bounded measurable, and for which
| “ (1:10.6°
q®(b) - p2(a) £ £(a,b), / 46)-

all a, b € A, with equality in (6) if (a,b) supports A°. Now

define the functicn.gsg + reals by

) VoD

pla) = inflpex) + £x,@)),e n

the infimum being taken over all x € A. (Note the distinction

a
between p and p°). We will show that p isnbounded transhipment

topological potential for A°. ‘

Boundedness of p follows from bcundgghess of p® and £
(remember that A # ¢). '

For fixed X, the right side of (7) is a continuous function

of a € A, since £ is continuous. Then p, as the inf'of a
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‘ collecticn of continuous functions, is upper semi+continuous.

1 Since T € I, it follows that P is measurable.

Next, we will prove that p is dual feasible,~%§a%mis,

Oito.C)
play) - pla)) < £(a,,a,) e

fer all @y, 8 € A. TFor any x € A, we have

- d ‘ {/ 1O *’1
play) < p2(x) + £(x,a5) " {9)
% by (7). BAlso, by the triangle inequality,
| | (9, 10.1 ¢
£(x,a,) < gfi‘iél) + _g[gl,@z)jf“g«w €10)

Adding (9) and (10), and simplifying, wg;%btain

Taking the infimum over X € A on tha righﬁnhaaé side, we obtain
(8. ;'
Finally, let {al,az) be a point of support for A°; we will

¢

show that (8} is satisfied with equality. pxratha

show that,.
for any a é A, we have

8
i
|
]
4
ﬁ
g
i
:{%
W

! g”@<ipgﬁ>q’mh/”km 1)
f The 1eft inequality in (113 follows from o
P’(a) = 9 (a) % f(a,a) > pla )l

i The right inequality in (11) follows from taking the infimum

over x € A in
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[ ST pe(x) + £f(x,a) 2.q%(a),

\ ~which in turn derives from (6).
From (11) we obtain
Al 4% Roor Sl
e pla,) - pla;) > q° (a,) - pelay) = ;g(ﬁ;gz)ﬂ —+E%)

The equality in (12) arises from the fact that (gl,a ) supports

K Rt

A%, (12) shows that (8) must be satisfied with equality.

This completes the proof that P is a transhipment
topological potential for A°, Since f x f has the strong

Lindeldf property, p is also a transhipment measure potential

R oy

for A°, since p is also bounded, A% is best for the tranship<
| ment problem. ||} /4 '

We conclude by using this result to establish a theorem

n the existence of optimal solutions to the transhipment

problem,

Nm—— L —

g}} Theorem: Let u/}b@ a signed measure on (A,X), with u(a) = o,
: let T be a topology on a such that T is separable and topologi<
(ﬁj cally completeﬁkand I is the Borel field of f. Let £:2 x A »
- reals be bounded, cbntinuoué, 6bey the triangle inequality,;
\ and let f(a,a) = 0, all a e A, _
Then theuareﬁaeﬁs a hest solution A2 to the transhipment

problem of minimizing (2) over baunded measure A satisfying

_ m-d#mﬁ
i A"" A" = e
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\~_¥“’t““

.| Proof: Consider the trangportation problem with origin and

destination spaces (A, E,p*) and (A,X ,u"), respectively. By
the results of sectzen 4 there &Xl%td a best solution, x®, \to

\

this problem. (Note that u (A) = (A) < =),

The premises of the preceding thegrem are also fulfilled.

(T being separable metrizable, it has a countable basé,.hence

so does T x T, hence T x T has the strong LindelSf }%re?ertx}&?
Hence this A° is also best for the transhipment problem“of

mxnimizlng (2) over baunaed measures A satisfying
e

- Al...}‘aau‘*mu“ﬂu,

It would be interesting to know whether the triangle

inequality premise may be dropped from this theorem.

7.11. The Skew Transhipment Problem

ﬁatﬁas rapurn for a moment to the ordinary transhipment

" v { (5.7
lo. \

problem, +%+~+%%-o£ seﬁt&anwg@\with a finite number of 1oca~
tlans. 5ij and 3ji are the flows from location i to lacatﬁnn
2, and vice varsa,arespactively. ;Defineuyéj, the net flow
from i to 2, by '

eliln )
,“(74%;

(‘EJ 2 = l,on:,&)n
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We note at once that Y;4 Deed not be nonsnegative. In fact
» u Eu' -

-lfij = Tyji for all ks 2 = l,ueeeyn, That is, if the numbers

‘$i§ were arrayed in matrix form they would form a skew-symmetric /
X o , # : /-‘
matrix, | ;

{The term "net flow" has been used above in an entirely
different saﬁgéin'és/tha 5et amount entering or leaving a given
set of locations., It was represented abeve by a measuraQ‘11 or
Az, én (2,Z). Here it refers to a net movement on a giVen set
of ggigg_of locations. It will be represented belﬁw by a signed
neasure «%br, more generally, a pseudomeasurq;«-on the product
space (A x A, I x I). Hence no confuaiop shculd arise between
these conceptsﬁ@ : /

The basic transhipment constraint,- éﬁs{;f’ﬁaétion 6, takes
on a simple form when written in terms of net flows, nama%##

{/ b,
Fia *"'+r¥in s ?é/z V429

5, $ 3

@ UV (i = l,...,ni. What about the objective functlony~fﬁﬂ‘9£
section-62. Can it be written in terms of net flows? We
distinguish two'cases, dependinggon the nature of the "grogs"
Q?ow pattern (xij) This onttsrn is said to have the no-crosg=
‘lfgﬁling property iff min(xij, x, ) = 0 for all pairs (i, j)
(i,j = 1,...,n)«71That is, th&£a~never occurs a positive flqw
in both directions between any pair of locations (in particular,

%4 =0, all ;). In the no-cross-hauling case, it-is-easy to

- _r‘\ 5 At om
see that (1) above can be solved for x, namé&gmxxij = §§§(Yij'°)’\
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Hence, if we restrict ourselves to such flow patterns, the
(L2
objective functlonrwéa%maf*sectimn -6, can be writteﬂ‘

- ﬁinimize the sum of

2

~ gf ¥t s3)

e

over all &2 pairs (i,3j), (1,3 = 1,.0.,n0).

If cross~ﬁ%ﬁling occurs, the objective function aannot
be written in texms of S?ij) alone. éﬂ-tha»eﬁhe@f.' » little
is gained by allowing aro;;*hauling. For consider the follow-

ing two possible situationss

Ty T8 fi; + gnl < 0 for some pair (i,j). Then there is no

optimal solution to the transhipmant problem, because the cyclic

positivity condition,.- &4} -of-section-6, is violated.

ﬁaéﬁkha fij + gji > 0 for all pairs (1,3). Then there is no point

e

to cross-haulings If gij and gji are both positive for some
pair (i, i), an equal redﬁction ;f both of these. numbers by

min (x 137 "ii) preserves feasibility and reduces transport

cost — or at worst leaves it unchanged.

The problem of finding a skew-symmetric flow pattern
(yij = «yzi) that satisfies (2) and minimizes (2) will be
called the skew formulation of the (ordinary) transhipment

problem. The intuitive advantage of this over the' ordinary
formulation is that it automatically focuses attention on the
flows without cross-hauling, which are the only interesting
ones. Also it can be argued that the net flow (gij) is really

what one is looking for in transhipment problems in any case.

i
1/

e
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‘/:k /{:‘f' (1\;4!,«::& .
.(2) gives the inequality-constrained variant; the equality-

constrained variant is obtained, of-course, by substituting
"o’ g “<“ in (2).

It-turns—out-that all the arguments above carry over very

neatly to the measure-thecretic transhipment problem. The
remainder of this section will be devoted to showing this in

detail. Firs;)we need a few new concepts.

Transposition on a product space A x A refers to the inter<

change of left and right. It will be denoted by é%aggx 9*”;
Thusﬁ\if‘g is a subset of A x 3, its?f;ansgoae is the set o

6% = {(a;,a,) | (ay,2;) € G}.

(Just "reflect" é[ﬁhrough the ”diagcnal?g) 'simi1ar1y, the -
transpose of a function £:2 x A ;7f§§13 is given bygus

£* (éll,a;g) - .f;(.i.agrél') -7 y

;)We now want to extend thiélfoncapt tq’set functions. PFor this,

[ ——

the following simple result is needed.

s

| Lemma: Let (A,Z) be a measurable space. If G € I x I, then
() '

- G* ¢ I x L.
e —— TS ;
s MM ¥ ¥ ‘ »
"gyy . Proof: Consider the class, 6, of all G ¢ I x I for which
G*¥ ¢ I x L. We show that G owhs all measurable rectangles,
ii:} and that it is closed under complementation and countable
\ unions. This implies that G = I x I, and concludes the proof,



752

Le

e

1 -

€

o
t € ZS (EXF)* =F xE¢ I x X, hence E x Fe G,
Let 6, ¢

e

(A x A)\G)* = (A X A)\G*%; this last set
belongs to I x I, since G* doesp hence (A x A)\G ¢ 6.

Let G & Gforn=1, 2,... . (G U 8y Uesa)* = G * y

wr

G, * U...g,;his last set belongs to I x I since each G * does;

\\\Nh;m_m“b?ence G U 6 Usee € 6. “/14{

ﬂwwﬁ%;”’;;fiﬁitionz Let 0:I x I » extended reals be a set function whose

domain is the product ﬁiéma~field I x I, The transpose of o
# is the set function g* given by / :

o*(G) = o(gh) ,—— +4)

for all Ge I x %.

This is wali;define&, by the lemma just proved. It is
easily established that o* is a measure, or signed measure,
iff ¢ is a measure, or signed measura, respectively. Also,

stgma~fin1t@ness of ¢ implies the same for o%,

%ﬁ?ﬁ{{bﬁlfffinition: Let o be a pseudomeasura on (Ax A, I xI), The
fwju} transpose of ¢ is the pseudomeasure o* = (u*,v*), where (u,v)

is any rapresentative of o,

{'. For this to be a sound definition, ¢o* must not depend on
the particular representative of ¢ whieh is chosen. IlLet

(vl,vl) be another representative, so that;>

e

-

K4V, &y & ul
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" (equivalence theorem). This implies

u* N vl* ;L\)* &+ ulﬁ'
by (4), so that (u*,v¥*) = (ul*,vl*), and the same o* results.z
Hence the definition is bona fide.
o g g )
Note that A* and o* remain defined on the product space
(A xa, © xI), in contrast to A', A", Al' A, discussedfbrew
viously, which are defined on (A,3). Note also that'ﬁbuble

transposition restores the original: (G*)* = G, (q?)* = g,

etc,

/? In terms of transposes we now define the fékew“ concepts

, needed for the skew transhipment problem.

»%% Definiticn: Let ¢ be a signed measure or psendomeasure on

(A x A, £xZ), 70 is skew iff

D)

Lm0

, O% = —go— ] 45

For signed measure o, (5) states ihat o takes on values
of opposite sign on setssghiéh are trénsposes of each other.
It follows that, if Ge L x1Iis a 3iﬂgetric set #-wﬁaagia,

G = Gj}w then G1g) = 0, In particular, the universe set
A x A is symmetriec, so that o(A x A) = 0., Thus a skew signed
measure must be bounded., ‘

For skew pseudomeasures we have the following result.
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)
N

4} Theorem: Let ¢ be a pseudomeasure on (A x A, I x £). Each of
} X

the following conditions implies the other four:
‘?(___) o is skew;

(u)i 0" and O are transposes of each other;
{\,5 ?"’(L_.‘f_;'i.)g ¢ has a representative' (u,v) for which u = v¥;
v 3;1)‘ o has a representative (u,v) for which u + p* = v # v¥;
wb e (‘v%‘% ' X

u+ u* = v 4+ v¥ for every representative (u,v) of;c.
Proof:

Obviously, (ii) impla.es (114),, and (y) implies {g)@
’D ) q‘ (iii) implies (i) fesx, letting (u,v) be the representat:.ve

L of g with property (1~1) ¢ We obtain .

g
™
-

,%M o* = (u¥*,v¥*) = (v,y) = -0,
&
{
\

- which shows that ¢ is skewyp

q‘ gg implies 1_)@ letting o = (u,v), we obtain N
e '

= (’Vru)l\,

: T LN
o PSS -

|

2 = (u¥*,v¥) = g* = «g
% “and (v) follows from the equivalence theo;éem for pseudomeasuresj
]

9 (,;.x.)_ implies (ii)p» letting (u,v) be thqrepresentata.va of g with
e property (iv), we obtain

kel
™
((c)*,

(0 )*) = (u*,v¥*) = (v,u) = (U~,5+)‘” e %}J
The middle equality of (6) arises from (iv) via the eguivalence

theorem; the left and right equalities arise from two different
ways of writing o* and —o, respectively.
=

J/The left and right pairs in (6) are both mutually singular;
for if (P,N) is a Hahn decomposition for ¢, so that




L —————

e
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ot (n) = 0" (P) = 0, then (c*)*(y*) = (67)*(P*) = 0; but {p*,N¥}
is a measurable partition of A x A, so the left pair is
m;%ually singular, By the uniqueness of the Jordan form, it
follows that (6*)* =¢ and (¢7)* = 6+, which is condition (ii).

We now have a closed circle of implications. l}!*w &

\0

In connection with condition (iii) of this theorem, it

‘should-be noted that (if I is nontrivial) not all representaS

tives of a skew pseudomeasure satisfy u = v*, For example, the
zero pseudomeasure is skew, and its representatives are the
pairs (u,u) for all sigma~finité measures u. But u = p* is

not true for all such measures. ‘

We are now ready for the skew formulation of the trangl
shipment problem. The latter comes in bounded and unbounded
formulations, and each of these can be "skewed". The bounded
problem becomes one of finding the best of a feasible set of
skew signed measures (these must be bounded, as noted above);
the unbounded problem becomes one af finding the best of a
feasible set of skew pseudomeasurasg

71?& shall formulate the skaw bounded problem first.
Measurable space (A,I) is given, together with a sigma~finite

signed measure u on it (net capacity), and a measurable function

£:A x A + reals (unit transport cost). The problem is{ A5

*‘;&n& a skew signed meésure gon (A xA, I x3I) satisfying

{\"1.11,”‘3?

ol £n Cagn A1)
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and minimizing

(7.11, 8

Here o' is, as usual, the left marginal of O ;fﬁlji;ian
indefinite integral over A x Ajp.and "minimization" is taken in
its usual meaning of (reverse) standard ordering of pseudoé)
measures. WNote tihat the upper variation, c+{ occurs in thé
objective function, rather than o itself., ;

Onat
(7Yra§éﬂ(8) may be compared with the skew formulatxon of
the ordinary transhipment problem, (Z) ;na (3). Iaﬂaedq it is
not difficult to show that (7) aéd (8) reduce to (2} aﬁd 3),
respectively, in the special case when I i;a finita -«ségma~ ‘
field. The discussion there also provides a rationale for the

particular form that (7) and (8) take.

Now gﬂf “the skew unbounded problem. For this we need a
-
new concept, that of the marginal of a pseudomeasure. This in

turn is a special case of the followinge

M e
f -

“j# Definition: Let (B,I',0) be a pseudomeasure space, (C,%")

~ . another measurable space, and g:B + C a measurable function,

— The pseudomeasure induced on (C,Z") by g from ¢ is defined iff

the measures, y and v, induced from g+ and o™, respectively,
are both 9£éma~£inite‘ In this case (u,v) is the induced

-~  pseudomeasure,

e

Starting with the pseudomeasure space (AxaA, LxZ, o),

the left marginal — if it exists — is the pseudomeasure




757

induced on the space (A,X) by the projection g'(a',a") = a',
according to this definition. Similarly, the right marginal
is that induced by the projeatian g”(§',§“) = a". We shall

use tba notation o', ¢" for these respective marginals, so

;»f
that

f«&f /
' = 7}% [,Lr gﬁ,zsxg )
o' = Bf’+, } ? {ﬁ*)j ,‘\ gY = EG+) " g (G") "l o )

5

Again, o' is defined iff (a*)' and (07)' are both aiqmaffinite,
and similarly for o". 1In the case where ¢ is a bounded signed

measure, these marginals are all,bounded; hence 6' aéa o" are
always well~defined., 1In = t, one eaqlly Verll31 éhat, in
this case, o' and o" are bounded signed measures aoinciding

with the usual marginal concepts {

a'(}?}) =G (E x a), o"(E) = o(A x E), _

‘all E ¢ I. Hence the ¢' in (7) may be lockedfupon as a special
case of the definition just given.

The skew unbounded problem may now be stated. It is

precisely the same as the skew-bounded proﬁlem, (7}i(8),

except that ¢ ranges over the set of skaw Eseudomeasutes for

which o' exists and satisfies (7). Also ,the given net

¢apa¢ity signed measure ¥ in (7) is replaced by the given
pseudomeasure Pj—
Let us contemplate these skew formulations. One possibly

disquieting feature of-them is that left and right appear to
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be treated asymmetrically: o' must exist and satisfy a certain
condition, but not ¢", But this is an illusion, as the follow-

ing result indicates.

ﬂ#ﬁ | Theorem: Let 0 be a skew pseudomeasure on the product space

e (A x A, I xI). Then o' exists iff o" exists, and, in this
’ case, | s

; (20,1 O/

0' m = g% b (10)

2 7 e / b
w,fwzzgﬂwnproof: et E¢ IZ. Then

/ { } t ot

(6")'(8) = a¥(E x a) = ¢"(a x B) ==;(o“> "(E) e 43D

The middle equality arises from ot and ¢~ being transposes.
?lThd§ we obtain (a )' = (a7)". Simila:lyf (¢7)" = (0+)". Hence
f;;ZQ the twgtgazrs in (2) are interchanges gf each other, and
- o', o" ~(@if they exist;-are negativeg of each other. Also

o' exists iff o" exists. 44ﬂf [78 /

C%‘\\ \1~;+ \%ilb; ;iso holds in the special case where o is a skew
: signed measure, Thus in both bqunded and unbounded skew
formulations one could just as~éasily have written things in
terms of o* as of o',

We now want to relate tﬁe skew to the noékskew»formnlations.
In discussing the ordinary transhipment problem, we noted the
connection between skew flows and ordinary flows having the
"no-cross-hauling" property. To carry this connection over to
the measure~theoretic problem, we need a generalization of this

propertys).
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ﬁ% + Definition: Measure A on (§ X A, I X %) has the nO-~Cross<

hauling property iff A and its transpose A* are mutually
singular.

: One easily verifies the followings If I is a finite
igma*field, this property ia effect reduces to the one
mentioned above for ordinary transhipment: min (gclj, :le) = 0,
Any translocation has the no- crcssahanling property 7sinee A
has all its mass on a set P x N, and A* on the diajoiat set
N x §C]35f§} being a partition of A). The aonvarsa éf this is
false, and even in a three~point space ocia can fina a nons

translocation with this property (exercise).

§ﬁ Theorem- Given product measurable space (A x A, T x 1), let |
be the set of all sigma—finite measures‘%.cn it with the no-
cross~hauling property; let Ll ba the set aﬁ thase L~maasuxes

whose marginals A', A" are aégma finite; 1et L2 be the set of
those L1~measures~§h%éh are bounded. Also let Y be the set

gt

g

of skew pseudomeasures ¢ on (A x A, £ x S);‘let ?1 be the set
of those ngaeudemeasures for which the left marginal o

exists; let ?2 be the set of skew signed measures on (A x A,
g I x %),

Let g assign to each o ¢ ¥ its upper variation:

glo) = 0¥ 2

A =
] (7t 2
% \
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Let h assign to each A ¢ | the pseudomeasure (A,A%):
A0

L7740, 43
; h(d) = (A,A%)

Then g and h both establish l-1 correspondences between

the three pairs nwL and Y, Ll and ¥;, and LZ and Yoy~ and are
inverses of each other: :

m$ : (7. 0004)
g(h(r)) = 1, (higlo)) = 6.~

Ay

Finally, ﬁf ¢ and A are corresponding members of Yl and

& o' = (A',A") o—— f e
e e — |
. R %

)Fﬁﬁzq&  Proof:

| e

1
]
1
i
]
i
g
§
§

|
|
3
|
4
3
-
1
%
¢

First we show that the ranges of g and h are contained
, z /g .

f in the proper sets. If ¢ € ¥, the transpose of o is ¢, and

of course ¢, ¢ are mutually singular; hence ¢¥ has the no-

;“it§> cross-hauling progerty:~1?(c) & L - If, in additian, g e ?
o

’
l‘;‘g 1

Theslatter equals
(a )" (ef. (11)); hence o has aigma»finite marginals:

then (G )' and (¢7)' are g&gmanfinite.

g (o) ¢ éﬂ’{,zf' in additicn, g€ ?2, then it is bounded, so

ot is bounded: glo) ¢ Lz‘ This proves that g maps things

into the right sets.

e A e_L, then (A,A*) is a skew éseudcmeasurez h(k) € ?.

Suppose, in addltion, that A ¢ Li' so that 1A', A" are ségaa
}-

finite. For any E ﬁ\zJ wa have i

A"(E) = A(A x E) = 'ng X A) = (A%)'(E).
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Hencé[if = (A%)*, a§? the latter is #:gma finite. (A:A%) is

the Jordan form of h(l), hence (h (A))' exists: hi{)) ¢ Wl

If, in addition, A ¢ LQ, A 1é7wpun&ed, so (A,A*) is a signed _
measure: h(l) ¢ ¥, This proves that h maps things into the
right sets., {

It remains only to establish (I and (5). ror ax;y?'

o e

e —

S fmo) -Q_x ML & Dy -

since (A A*) is the Jordan form of h(d). For any o é ? Z

fq{a)) = (oF, (o* )*) = (6 ’0 ) 40’,
‘ ¥ + \%}"a\f
“ since ¢ is the transpose of ¢ . Finally,
o' = (%), (714 5
(” ((0+s'; (‘3 )") = (k’fxuyf

J

R POy T TR

; if a, A are caneapondang members of ?1, th This yields

| <1@ W

This long theorem has a very gimple interxpretation.

Compare the skew bounded transhigmenﬁ prablem, (7)~f8), for

instance, with the doMn~ %“9“f># problama
vﬁ\‘[jimi a bounded measure )\ satisfying N
> B ¢ u
~ and minimizing

] Fan, .
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— If we add the additional constraint that A has the no-cross<

hauling prcpeity, we find that the mappings g or h, (12) or
(13), establish a 1-1 correspondence between the set of measures
A feasible for this problem and the set of signad'measures o
feasible for the preceding problem. Furthermore, the objective
functions assign the same utility to corresponding A and o,
since )\ = o+. Thus these problems are equivalent to each other
in a rather strong sense.

Similarly, the unbaunded skew and ncnﬁskew problems are
equivalent to each other in thisésense,_if we add the "no="
crosg~hau1ingétconstraint to the non&skgw problem. The feasible
sets in the unbounded problems are subsets of Y, andler\
respectively, just as they are subsets of ¥,.and Lzﬁirespeca
tively,“in the bounded problems. : : ;

-Nete—that for the ordinary transhipmentfprcblem the

~—

mappings g and h ;;ke f;;ﬁs we have alraady’encounterad: g
becomes %, ; = maxijgif 0), anél&fbeccmeg,gij = Xy4 = Xy
Finally, we want to investigate th§=affacts of restricting
attention to flows with theF@nc—cross~gauling“ property. For
ordinary transhipment we pointed outﬁthatf\if an optimal flow
exists at all, then some flow witho@é cré;;—hauling is optimal.
This property carries over to measﬁre~theoretic transhipment.
_—lffrst&consider the process of "reducing” the flow pattern
(gij) by subtracting miﬁt(g;j, xsii from-xij and X4 if these

are both positive. This leads to the7“no~cross—hau1ing“ flow
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whose value at (i, i) is maxr}xij - le, 0). The following

concept generalizes this opﬁratian.
gﬁmwmmlgwmmw .....

gfi“& The no-cross-hauling reduction of A is the measure (A,A*)

{That is, form the pseudomeasure (A,A*), and then take itsﬁ

upper variation.)

§ To show that (A,A*)+ dees,‘indeed{uhava no cross~hauling,
note first that (A,A*) is skew. The upﬁar variatignvof this
is obtained by applying the mapping g, (12), whcsafranga was
proved to lie in the set of % no-cross~hauling" measutes* We
also have (), A*) £ A, by the minimizing proyexty of the Jordan
form. ;

We can,-in—fact, obtain an exact expreééion for the size

of this reduction, which may be called thg’”crass—haulinq"gl

{ii _ Definition: Let A be a g&gma~finita measure on (A x h; I x I).

gt The cross-hauling associated with A is the measure K given by .
L/ i B & ML TS P

L
o)

y
e

K = inf (A A%),

: q\ The Emllowing results show that these definitions capture quite

well the intuitive meaning of thase concepts., (Subtraction of

=3, section'l; if k is finite b

- measures is defined in chs e
this reduces to ordinary element-wise subtraciiﬁ%ffﬁh
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&Qumh% } & M Qeg uye

';ﬂ§3§2£$§‘ Let A on (A XA, £ x I), be=sigma=finite. The no-crosss-

B

hauling reduction of ) equals A - k, Also, A has the}*no-

eross~haulingﬂﬁéfoperty iff «x = ¢,

Cf?

o

Proof:
A,

The no-cross-hauling reduction of A is the upper variation
of the Jordan decomposition of the pair (A,A*), and this is
known to equal )\ - inf LY A*)ﬁ (chapter-3, section"l). The
second statement is simply a special case of the thaorem that
a pair (u,u) is mutually singular iff inf (u,v) = 0, which was
proved abeve in section'7. Here y = A, Vo= k*.*414fgkgiiﬁ?

wﬂﬂﬁe¢_h¥_£he~way7"tha@-this theorem helas faﬁﬁﬁgz,measure
A, not merely for s&gmaﬂfinite measures. In—the generaruaeﬁa*
(A,A*) refers to the upper variation of the Jordan decomposiZ
tion of (A,A*), which is well-defined for any A on A x A,

The crosswhauling measure Kk also has the property of being
symm etxic»i- that-is, k() = «(G*) for any G.¢ I x I, (this is
easily established from the fact that A and A* enter symmetriS
cally into its definition.). This implies that the left and

right marginals of ¢ are equal: k' = ",

k) With these preliminaries established, we are ready for

our final result. This generalizes the argumant given for
ordinary transhipment and says, in effect: /An looking for an
optimal flow, eme might as wall‘éonfine attention to flows
without cross~hauling. The theorem applies to both bounded
and unbounded formula;%ons, and to both equality- and inequality="

constrained variants;?s
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fi»v Theorem* If measure A on space (A x A, I x %) is best (or
fli)ﬁ unsurpassed) for the transhipment problem, then itgxknO*aross~

hauling® ‘reduction is also best (or unsurpasseé), respeetively.5

.§ka'Pxnof: For convenﬁence we use -f in place of £ in the objective

‘ function, and treat the problem as one of maximxzatxon.. we

shaill also find it convenient tc treat the measures wh&shmaxe

-’y discussed (amd which are all a&gma~finite) as pseudomeasures,
80 that they may be subtracted freely even though they may be ing
finite.

Let A be best for the transhipment Frcblém. First of-all,
i <j.1L!&;

(Rt aamty = aam = (o +sz«:"3', O+, ab

the equalities being understood in the psaudameasure sense.,

To prove (iﬁ), we first verify that all sxx measures appearing
there are s&gma finite. )' and A“ axe-s%gmawfinite since A is
feasible, k and (A,A")" are bothjg_x, hence their marginals are
a&gma finite, too. The rightnhagd equality arises from k' = k",
Similarly, (A,A*) and A differ by « (by the preceding theoremb
and the same argument establishes the left -hand equality in

(#ﬁ). Since feasibility depends only on the value of the pseud0$
measure formed from the marginals in this way, it follows that

A+ Kk and {A,x*)* are also feasible flows.

Since \ is best, we must have (7. 17
[ (=€) dx = [ c~g>,\§(a/-:\,<) ' (19)
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A

(Here “»" is the preferred-or-indifferent relation for standard
order) The same pseudomeasure may be added to both sides of :“

(il) without disturbing the order relation. Let us add.&f dx

to obtain ; :
Aqu01)
&k s
[ena0ma > [ na. ()

. |
But A=k = (A,A*)+, by the preceding theorem’” (17) states that
this measure is at least as preferred as A. Since A is.pest,

so i3 (A, am ",

Next, let A be unsurpassed for the transhipment problem.

. 6
S \ 18 feasible, hence so is (A,A*)+, by (iﬁ). Suppose that

(A, A%t is surpassed by some feasible measure v:

ot @)
+ 14
fg(”gbgv > J{t-ggg(x,x*) 4 ih
Ahdding ff(~§%§w to both sides of Ciz), we obtain b
: \ﬂio!
[ g > [ enar. ue

16
Since v is feasible, the same argument leading to (&p)

' L
establishes that v + k is feasible. 5&1 )?ﬁhan states that A
is surpassed by v + k. This contradiction proves that (A,A*)+

is unsurpassed. [ [T @
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FOOTNOTES ~ CHAPTER 7

&;;ilA. M. Faden, "The Abstract Transportation Problem,™ ~

AP o \ Y
éages 147~l75\6£wPaBers in Quantitative Economics, vol, 2,
A. M. Zarley, aditer (Univazsi@y Press of Kansas, Lawrence,

1971)y,i= a less advanced version of sections 2.3 t&xough 745,

) QN\/“ &
2s Vajda, Readings in Mathematical Programming (Wiley,

New York, -2é—ed, 1962); G. B. Dantzig, Linear Programming and

Extensions (Princeton Univg&aééy»?:ess, Princeton, 1963).

,)-s.

3The measure induced by a-s&gmawfinite measure is always

abcont, even if not aégma ~finite. {hur1ﬁﬁﬁ$

”4Thare are certain complications #f mixtures of equality

and inequality constraints appear within the capacity block, (! )

¢

y-of-section-l. We sﬁdil not disphss these.

SFirst proposed by G, B, Dantzig, "Application of the

¢

Simplex Method to a Transpertation Problem,“ chapee¥-23 ef

Activity Analysis of Production and Allocation, T. C, Koopmans

(ed), (Wiley, New York, 1951), pages 361-362.
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g A
General Topology (Van Nostrand, Princeton, 1955).

For further information see, £o£ma&ém§39, J. L. Kelley,

‘ wfo\7For topologies, the process of generation can be written

in two steps, as just indicated. For s%éma~fields it cannot be

countable
written in even a f&néte number of steps. In bgth cases,

however, the basic concept is the same: the intersectionAof

all topologies (reapectively,ﬁ s&gma-—fialds) containing the

v
given class G,

fig@ bl i",_ 8ne can show that this definition reduces to that of

b \:ohscu cseol&ere' @an thtervel o€
chapter 5 for the special case wher&™(a,T) is the real line with

the usual topology.

ik 49 9
( v
show that its Borel field as here defined coincides with

If A is the real line with the usual topology, one can

TBorel field‘{;é defined in_ghaptar 2. The same is true for

n-space.

T+ AJ0

v

A-pumber—of results from the theory of weak convergence

of measures are uaed in this part of the proof. On this theory

see P, Billingsley, Convergence of Probability Measures (Wiley,
New York, 1968), Cp&ptor'if and K. R, Parthasarathy,

Probability Measures on Metric Spaces (Academic Press, New York,

1967).
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'i € -
o ﬂsflli Con E8ess, 4
D T ngsley,y\pap 9, has a similar theorem, but with
® 4
equalities in place of inequalities; a simple twist of his
proof yields the statement just made.

AR AT Mpor readers familiar with general topology the following
remarks will serve to f“,plac‘:e“‘ this concept. The strong (or
"hereditary") Lindel8f property is implied by the possession

Mote also of a countable base, and in turn implies the (weak) Lindelof
J Nl N 4
that T,T ; property that every covering of the space by open sets contains
Yo Ln'mle 5‘ ]
f\“ hjm,l- a countable subcovering. One shows by counterexamples that
oes
juaranlee  [neither of these implications can be reversed. But in a
kst T x5’

metrizable space these three properties arjef logically equivalent,-

\.s ever \\/Cldk 3
Lindelof (35. and also equivalent to separability.w’ See V,JA. Wilansky,
spo\ol) oniL

real \\'m).

Topology for Analysis (Ginn, Waltham, Mass., 1970). This book

ends with a remarkable table of :I.mplicat.ions among topological

oloun (¢ properties,

.38 T’ D k. do#€ not éuav«hfee, et

(T' % T™HS(D' x L")s nor need we make this stronger assumption.

gt \*
uz;;ifavzt_, the single extra premise %tirat £ > 0 implies that

A" = ", hence (see balow)_z/that a wide-sensa topological
potential exists. But the proof im this case is more

complicated.
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(4" L. Kantorovitch, "On the Translocation of Masses™,

Comptes Rendus (Doklady) de 1'Académie des Sciencs;'da 1'3333(}\fJ
vel, 37, fo. 7m%& 199yg81°($943;{gep%§nted in Management Science.,
5 1%4;)(0&&, 1958), 3

\ {

"2 ﬁh. Or&en, "The %anshipment ,Problem"’, Mana emm-t $cimq.,

kit
"/

2 Z?ﬁhzssg Aprﬁ-’ lgsgﬁ L‘,C )'\5 v C‘A()?\h U}’d g.ﬂ 3" S‘)’!z_ 5 } {}fi’ fl\l
wmf& ){’)’amél—\\y)mw”&‘ .

| Fye skal: not deal with noslinecar oh:!eﬁ*;ﬂm functions in

this chapter, although some of cur results dd) generalize to this
case. Nota that a nonlinear objective can, 8till be psaudo«)-

masured-valueﬁ, as in chapter 5 above.

" 55,5000, ®y A Samuelaon, zimt:aux:‘*!:«amgu:a1:’&1!. /f’rica Equilibriums

A Prologue to the )f'heary of }B’paualation,‘ Waltwirtscw
Archiv, 7911811221, (1957 C. K. Kriebel, “Warehousing with

;I‘xanshipment ;Jiader }@asanal,bemandﬁ Journal of Regienal Scieneas.
s o : ' gy )

igoxden, m Trmshipmnt ﬁrcblem"; p&g&s 283-*285, There

are several algnrithms for finding a shortest route, Eer—-oamph
G. B, Dantziq, “on the ﬁhortest Foute Phrough a Network,®

Management Scienee, 6{\41877%99. ganum... 1960}
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;4,‘ae@he most fruitful network problems have not been of the

’ , ’ 4 G
transhipment type (1)-(2), but of the following form: ¢iven a
flow capacity on each link of a network, maximize the flow from

o
a given source to a given sink. See L. R. Fogd, Jr., and D. R.

Fulkerson, Flows‘in Networks (Frinceton Univgﬁaéey Press,
Princeton, 1962). A measure~theoretic treatment of these

f”g A L :
problems can be given, but we shail not do so in this book.

?iThe terminology (but not the meaning) is from;Kantorevitch.

—A

i o=
I wd

%, Beckmann, A Lontinuous Model of ffransportation,®”

oy
(o,

; / " & 4 2%

Econometrica, 20:643-660, Octobesx, 1952;;‘Ehe,éartialdﬁ§ui;
2 e ) N\ 4 s 7

librium of a ¢ontinuous!Syaca/market;" Weltwirtsc&gét&iuhos Arahiv;l\

71:73487, (1953}

'a;,ggExercise: _prove this uniqueness aséertion,_without

making the assumption that {50} € I. /

'fzd&vaugj}v, the properties of f{imély that(f X ﬁ%@ X 9% &
hence the measurability of £ follows ﬁ%om its continuity. The

same is true in the following theorem,

i~3‘§§We have been stating constraihts in the inequality form
.in this section. But ifiygfyis reﬁiaced by *n“in these formulas,

the diécussion is still valid word'for word,




