
  

) THE TRANSPORTATION AND TRANSHIPMBN‘J;{ PROBIEMS 
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(mfx 7.1. The Transportation Problem: Infiroductionl 
i \/ 

The transportation problem w1th‘§ sources and n sinks is: 

J #ind nn non+negative numbers (i=1,.00mp j = 1,..;,9);' 44 

satisfying 
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over all mn terms of this form (i = 1,...,@@55 = 1,...,9); 

Here the numbers a., Bj' and fi are given fiarameters (ai, 

> 0). 8y 2 0) 
- 

The most straightforward interpratatifin of this problem 

is the following? ifi the quantity of;a certain commodity 
#i5 

moving from a sourcewz (say a manufacturing plant) to a sink 

3 (say a market where the good is sc:ll.d)bfw f ij is unit transport 

cost incurred by this movement, so thatzyé) is total tramsport 

cost for the source-sink pair (1,3) The problem, then, is to 

minimize the grand total of costs over ail such pilrs. Source 

i has a caEacitx O and the constralntSS(l) state that the
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total shipments from a source cannot exceed its cap;city. 

There are m such constraints, one for each sourcgi Sink.Q has 

a requirement Bj’ and the n constraints (2) stfifié that total 

shipments into ;ink j must not fall below its éequirement. 

Besides this interpretation —-@rom which the transportation 

problem gets its namé>~ there are a remarkable number of others,. ;o 

concerning resource assignments, schedullng, etc.d” 

Now consider the following problem ;gvolving measures. 

We are given two measurefépaces, (A, 2° u;) and (B, X“,u"). (2,z') 
.w» 

will be called the source space, and (B 2") the sink sgacee 

u' will be called the capacity measure, and u" the regulrement 

measure., We assumélfhroughout this chapter that y' and u" are 

s*gma ~finite. We are alsoc given a cdSt function f:A x B -+ reals, 

assumed measurable with respect to the product afigma field, 

I' x " on A x B. : 

The problem is to find a measq&e A on the space 

,/’”?;& X (A xB, ' x 25 satisfying 

qonbl &pring 
P 2 | { 

A(E x B) < u'(E), 7 4) 

for all E ¢ L*, 

AMA x F) > u™(F) 7" 457 

for all F ¢ I", and minimizing 

J ED, Gl
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M 
Here (€) is an indefinite integral over sPac¢ A x B, and 

mlnimlzatlon"'ls to be understood in the sfinse of (reverse) 

standard-ordering‘of pseudomeasures. }Of qgurse, if the 

definite integral 4 

| 3 18 * 

{'—) v [ s ) 

A4y ] £ da 7' 

is weizidefined and - finite for all feésible A, #hen this reduces 

to the ordinary minimization of (7) ] But there is no a grlorl 

guarantee that (7) w1ll be finite, @r even welildefined, w1thd 

out special conditions on £, B, and u"' 
Fe il e 

(4), (5) and . (6) reduce to (19, (2) and (3), respectlvely,a 

iff both sagma~f1elds, L' and Z"“sare finite. To be prafiise, 
nt 

let I' be generated by a partitlon {Al,...,A } of A, and I" 

! 
by a partition {Bl""'B } of B. ;Then it is;éimple exercise to 

  

£ 
verify the preceding statement: u (A ) = 01.Xu"(B ) = B .y @tc, 

This shows that we are dealing with a bona fide generalizatlon 

of the ordinary transportatlon pfioblem. i 

The 1nterpretations-whéeh cén be given to (4),/{*47“4€4 

include all those for the ordlna#y "discrete" problem, and the 

greater flexibility whtch one attaln% with measures enables oae 

to fit the real situation that mu;h more closely. For example, 

in the transportation interpretat%on, one may now treat the 

case where sources are spread mbrégorfiless continuously over the 

gurface of the fiartth-hs inragricaltural productionj4ue£ where 

\ 
N
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| 
sinks arei (fis in|the sale of consumer goods to a diffused 

populati0fi3~ or both. The best the ordinary problem é;;::lzyf 

{3) can do is to aggregate these dzstrlbutionsa‘ %er~examp%e 

to treat countries as if located at single poiqts in inter®= 

national trade models. ‘7 

Again, in some interpretations the sourgés and sinks corZ 

respond to timeiihstants rather than locatigés; here the 

measure-theoretic formulation allows éégftofgork with continuous 

time, rather than having to lump things into discrete periods. 

This has clear theoretical advantages; it'may even be advantageous 

in practical applications, sinceh}contlnuous ‘models are often 
N : simpler than "discrete™ models. 4 

One of the most important non+trans§0rt interpretations 

of the transportation problem refers to the asfilgnment of 

resources to activities. Here the "sogrces“ are the various 

kinds of resources available, and the ?sinks" are the various 

activities. The measure-theoretic geééralization is especially 

welcome in this . interpretation, to alfiow for the infinite 

variety of resources and activities. %&nwfaet, in the-next b ] 

chapter we show that Thufien systems can be represented by just 

such a model. 

q{? 
La%wus now examine #iflqufiQijfii,more closely: u'(E) 

gives the total capacity of the set of;sources E, while 

A(E x B) gives the total outflow from Efiese sources. “4) then 

is the condition that outflow not exceedacapacity for any
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measurable set of sources. A similar relation, {S)QJholds 
A 

between u"(F), tflVZfequlrement for the set of sinks F, and 

A(A x F), the total inflow into these sinks. ' 

Tt will be convenient to formulate the cong%raints in terms 

of marginals, Recall that the left marginal'ofr(A x B, I' x 1", 

A) is the measure A' on (2, Z') which—is glven byz\: 
e ?™ 

= A'(E) = A(E x B),— 

for all E¢ I'. Similarly:jthe rzght marglnal is the measure 

A" on (B,I" ) given by{” . 

N A"(g') = é(a x r)r o+ 

*'all*g € I". It follows at once that the constraints (4) g, (5) 

can be written in the very simple fong: 

{ : (94808 ) 
ety L 

(1:1,4) 
A" > utr 5 {9) 

respectively. Let us refer to ! a@% A" as the outflow and 

inflow_maasures,%;espectively, and éo A itself as the flow 

measure. | : 

Nowlégr a point gfiiéi-was gloséed over., For (&) to be 

welfldefined as a pseudomeasure, A @ust be sig§a~finite. Is 

this guaranteed? We examine the siéuation in some generality, 

because it recurs several times in tfiis chapter, 
i 
%
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Let-(gi, ;0 My)y & = 1,2, be two measupé spaces, and 

g: + A, measurableg\such that the following relation obtains: 

Uy (B) = y,{a,|g(a;) € {‘J}rw {z#é;' - 

for all E ¢ 22; 4&a§~§s, U, is the measu?e induced from Hy 

by g. ' 
,;%; uow? if Moy is s&gma—finlte, then ul is a&gma-finlte. To 

show this, let G be a countable measurahle partition of A _2 such 

that u,(G) is finite for all G ¢ G. The collection of sets 

{al]g(al) € G}, Geg¢ G is then a cougg%?le measurable partition 

of 2 and by e uq is finite on ea@h of these sets. Hence 

tF by is sigma -finite if p, is. This completes the proof. 
—_— 

Lifmhe converse of this statement’if not necessarily true. As 

an egémple, let Uy be any infinite e&gma—finite measure, and let 

A, consist of a single ggigg. Then uz(Az) = and this is 

clearly)ggg sagmawflnitesx/ f 

Now consider the transportation pkoblem. The left marginal,~ 

A', ls the measure lnduced from A by t he projection g(a b) = a. 

Hence, if A' is| ségma finite, so is A,é But we are qlvengfhat 3 {/HT\ 

is s&qma-flnlte, and it follows from 2\ that A' is si;ma-’< e 

finite., We conclude that,-indeed, any %easible flow A is aégmaJ 

finite, and (6) is well-defined. Note, however, that the right 

marqinalL A“, is not necessarily stgmarfinite. 

It is common practice in analyzing t@e transportation 

problem to replace some of the inequalityzsigns in (1) and (2) 

by equalities. We shail also consider thefiponsequences of
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) 

replacing oné or both of the inequalities (3)’7 (9) by equalities. 

This givesféltogether four variants of the trangportation 

  

problem.;iWe shall label these types X, II, III, and IV, defined 

as folquSz vy 5 [ 
b D Ammpnc Iy yeC £l ks 
e LT ‘ 9% ;;;/W 3 li"’ L () 

e WP I =y &f Y 8 S p P N ot 0,7 
{ A< /u-' TV U’ 
| g /fi o’ 

  

Thus in types I and {E, requirements must §e met exactly, with? 

out oversupply. In types I and III capacfity must be fully 

utilized. Type IV is our original problém, given by (%) and 

(2). 1In all four variants the objectiv@éremains the same: to 

minimize (6). 

-~ The parallel analysis of these foér types is quite instruct 

tive, and they exhibit a surprising dé%ree of individuality. 
2 

& 

7-2. 

  
The Transportation Problem: Existence of FPeasible 

Solutions 

i
 

The first problem we tackle is ghis' ¢nder what conditions 

does -there oxlstha flow measure A sakisfying the feasibility 

12 S8 conditions é&fi# and |- hxor tfiotg eguallty-constralned counters, 

parts? The objective function &) piays no part in this 

dlscussion. % 

For the ordinary transporofifilon pf?o%em we have the 

following well=-known results: ‘f%¥ and (2) of-seetion-l have a
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feasible solution iff fiotal capacity is at least as large as 

total requlrementfis That-is iff 

o (2.8:1) 
Oy Feoot op > By koot anffi’" B 

e 

Furthermore, this remains true in the pase where all inequality 

signs in Yig of-section-l, or in(éai t&%suttion»i (but not both) 

are replaced by egualities. Flnallyj.lf all constraints are 

equalities, then a solution exists ;ff (1) is satisfied with 

equality. -In-other worde., (1) is fiecassary and sufficient for 

the existence of feasible solutiofié in variantstli, ££§Aand_;v; 

and {l) with equality in variant4§.fi/ 

Our main feasibility result;is that these conditions carry 

over completely to the measure~§%eoretic transportation problem, 

The demonstration of this is byjno means trivial, especially 

when the capacity and requiremaét measures are infinite{ 

Our first result establish%s feasibility for the ordinary 

transportation problem (varianfiag) extended to the case where 

the number of sources and sinké is countable. 

  

Qg?»u;iemmaz Let 0y, Oyyes0, and B4, B,,... be two sequences of noé} 
5 v 2\ 3 

negative real numbersg\such that 

. f= 
D X L 

{ \ 
\ C&l+0§2 +oooa61+82 +!lt L .(-2-)' 

Then there exist non+negative numbers xij satisfying s 
S . 20 

Xiq x.2 ces = 04 4+3)- 
| 

\i >
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for all Oy 0 and 
= . C?@’”} 

for all 51»93 
e 

gb(The two sequences may be finite or 1nfinite, and need not 

be equal in length; the common sum in {2) may be finite or   

    

; infinite;‘g indexes the sequence (mi), j the sequence (Bj)fifi ._‘—mfi%”fm» yo 3 - 
" ~ 

] o i _,n.“ a 2 

P '/ 
’igff L?roof. Define mi = “l +o..+ ai' ny = By *eoot 3 i “9 aupe 0; 

'Ff”x -amd then let (fex&\wfl 4 2,..., 2 =1, 2,...33 

(¥ 3 L o T L R e 
‘f g ) 7 - xij ol m}_{l ('I"ni’ 93) b min (m 7 j 1) 

N : o - 5 4 | ( 103:5 

7&, 5 - min(ml 17 nj} + m:.n(mJL 17 nj 1)(1“,fif Sy 

/ / )) \“flflfi show that (5) gives the desired feasible solution, Firsg) 
e 

\ we show that all the nufibers X,. are nonbnogfitlve. =13 
, Suppose that m ~1-fi(< gj 1+ Then the last two terms on the 

right of {5) cancel, ind the difference of the first two is 

clearly ncgfnegatlvé (Remember that nj > gj 1) A similar 

argument obtains 1f m j -1+ Hence xij is nonTnegative. 

,//”'Next, we verify thath for all indices j of the sequence    

  

(B ), and all indices i of the sequence (ai), we have 
...— \ ; f 

& 
ifl}‘;‘@\ 

- 

Proceed by in&uctiqfi on j. 

from (%), since n9 = 0. Supposigg (6)htrue for Jd =1 in place 

For j = 1, (6) follows immediately 
% 

3 
| of 3, we add (S) to it, and obtain (6) g se. Hence (6) is 

lj' true in general.
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Now in (6} let j increase 1ndefin1teiv (lf (3j) is an 

infinite sequence) or to its maximum value (lf (fi ) is a 

finite sequence). In either case we flad that 11m Ej 2 mn 

because of (2). But this means that ln,the limlt the rlg;t 

side of (6) simplifies to m =@ 4= mi. Thus (3) is verified. - 

. The same argument w1thw1 aéé 3 interchanged verifies (4). Lffx’”odfl 

,mlj as glven bXNES) has a very simpLe interpretation: ft 

is pfeclsely the "northwest corner" solgtion for the ordinary 

transportation problemké/fSpecifically;joue starts by making 

X, as 1arge as possible without automatically violating (3) or 

(4) - thatm&e take x;, = min (a,, Bké. If x,7 = 0y, theu all 

the other*glj must be set equal to zéro to satisfy (3) for 

iAa l; similarly, if_:;:11 = Bl' all ?he‘other_g.l = 0, Now go 

to the aéiyet:undetermined xij forifihich i + 5Wis as small as 

possible, and make it as larg;'as possible, subject to not 

automatically violating (3) or (4& This recursive procedure 

yields (5). WwWhat we have &enewifi»te show' that it still yields 

a feasible solution even for a countable number of sources and 

sinks! provided (2) holds, | 

The northwest corner solution will play an important téle 

in the-next chapteri In fact, for Thilnen systems a certain 

(generallzed) northwest corner solution is not only feasible 

but ogtimalfikond encapsulates in a striking way the main 

structural features of such systems.



639 7 

We now come to the main resultf Essential use is made of 

the product measure theorem. Recall thatg\if (A,Z°,u') and‘ 

(B,Z",u") are measure spaces with u, veigma-finite, or even 

Gr%TTrary 
ateont, *mefiajex1stsia megsurewajon the product space 

(A x B, L' x I") with the prqgarty that A(E x F) = pu'(E)u" (F) 

for all E¢ L', Fe I". Thié is called +8e product measure and .o 
5 

d a ¥ X ll' S enoted u H 

{$£-ifTheorem: Let (A,L',u') and (B I",u") be sigmavfinita measure 

spaceswwh;eh are the souzce and sink spaces, raspactively, of 

\\ 
a transportation proble@; let B # @. -There exists a feasible 

£SIES flow measure A for thié?problam iff 
Bl A\ i 

E 
A
T
 

S
 

oo
 1 ' 

Ju' () = u"(B) n 

in variant I, and iff§ 

u'(2) > u"(B) 
G2* 

in variants II, III,‘%nd Iv. 

| Proof: The Yonly if" pért is simple to demonstrate. Letting A 

  

be feasible, we find that 

(A) » X(A x B) > u"(B) - 
5 

**Aln variants Ir, III, IV, while the same holds with equalities 
. petiemme 

in variant I. 

  

/g'Now £@r e 4 f" part. ififlfifiaaafiea%%, -any A feasible for 

II or III is also feasible for. xv. Hence it suffices to prove 

the existence of feasible A fo: types II and III only, under 
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assumption (&) (os well as feasibility for type I undexr (7%% 

of-course) . 

“We consider three cases, depending on the magnitude of 

u"(B). 

m«fi-'—jf case s i)% u"(B) = ) 

-5 For variafifi I, (7) implies that/A (A) = 0 also. Hence 

the identically zero measure on (A x B, I' x I") is feasible. 

A =0 is also feasible for II, since only requirements must be 

satisfied with equality. As for III, choose an arbitrary 

m 

point b € B, and define A as/follows.é 
e e 

. MG) = ' {ax(a,b ) € G} 

“for all ¢ ¢ I' x I", (A is welliéofinad, because "cross- 

sections" of measurable sets,ara measurable. It)is easily 

verified to be a measure, and A(E x B) = u'(g)finfiil Ee L', 

Hence the conditions for'transportation variant III are 

satisfied. @h&sma@mp%efiesmessew4i4w 

X — : 
ak%éamgfi" case sii);- © > p"(B) > Of) 

{ 
A = Por variants gfiand'III, take A proportional to the product 

> (u* x u% S 
~ We then haveg§(§,x B) = u'(E), while A(A x F) (=, Mt (F) for 

measures . 

R 
variants (I, 111), because of (79" (9), respectively. Hence 

S 

A is feasible.
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Variant II is slightly more complz.cat:ea. If u'(p) = », 

’t?\eu,.% hecause u is sé;%a-»finite, hence abcont -there exists 

a measure on A such that {i £ ut and 

( ‘”') sk 

® > {i(A) > u"(B) oy 
\(If u'(A) is finite, we simply take i " 'y (9) then follows 

from (2)Y7 Nofidefine A by 

8 £ f i ; AR (fi X U i A= JYTAY 
£ / J £ 

A 

~ Then A(A x F) = u"(F), all F ¢ I". also, 

ME x B) = BEWEE) /¢ gmye y (), 
7 nia , 

all Ee I'. 
; Q 

mditions for variant II are sptisfied. ®his- 

    

e
 

(g (B.) L 

{;This is the hard part. ‘F:trst-of—-a-l-l-, from (7) or (€) we 

obtain -u'(a) =m[also. Hence 11: suffices to find a feasible A 

for variant W]}:,{ because this ) wa.ll also be feasible for I, 

11, s 1. 
Since u' is aigma flniteghence abcont, it may be written 

as a countable sum|of finite non-+zero measures: 

- - u' - 'ui 4 Mé +oo."-' 

3 
4)



s
 

g
 

a
n
 

ot
 

' ; v, : /'Q\‘ “ 
- J . !/ 

4 
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Similarly, for u" we may write N 
i 

  

Efiuua u;"’uz” +Q.Q'x 

~y/ ~ [ all ug finite, nontgero. Define the sequences (mi), L»3, Biiee 

(fij): j=1, 2,000y by 

pr— 

| ST, 8 = . 
) 
These are positive real numbers. 

Now invoke the preceding lemma, (2) is satisfied, both sides 
- 

summing to 4w, Hence there exist noq}negative real gij' 

j'l j = 1, 2;.“,&satisfying (3) and (4)‘ 

Define A as the sum of the product measures . 
) 

et 

xt s r’/ 

2/ s 

3 
(uj x uy), 

thélfiummation extending over ali pairs (i, j), Le J =X 24000 

We show that A is feasible for variant I. For E¢ &', 
/ 200 

A(E x‘g) is the sum of all te;ms of the form i } 

St . (B)  =x. . v (6 g | ) /W? =4 N & Vi lj v L] . ; ) J /&E§§~ui(E)Ujfi§t ffai %ui(E),w — Al 

Summing first over J», and uéing (3), we obtain ui(g). Sumngg 

this over i, we obtaig u'(g). Hence the capacit; constraint 

is satisfied: A(E x B) = é'(g). A similar argument with i 

and j interchanged shows tiat A{(A x F) = u"(F), all P ¢ I", 

Hence A is feasible for vériant I,fhencerfor iII, III, and IV. 

This completes case (iii) and the proof. Lu,fflfi 
e .
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™, 

(\‘\}‘»\ X i " 

[ (3ctuall* ‘g%é seeg taat this proof is valid even if u' 

and u" are not sfi*fi&a finite, but merely abcont. In this case ifl&; 
Conetrwe Lad o The Riosf 

ST A,is also abcont.%;\ 

  

( ix} 7.3. The Transportation Problem: Duality 

Linear programs come in pairs, each being the dual of the 
ey ) 

other. The dual of the ordinary transportation problemtléfiifif 

ea#;:#a*-eé—sactian~l4 is: 

) Find m + n non+negative numbers pl,...,p v Gyreserdy satisfying 
— 

(1.3.1) 
3 = Py £ 54 1 

i= lyeeeomp j = 1,...,9)} and maximizing 

L (2.3 2 
Blgl vest 69?1} b algl eae™ o"mEm.m“' ~(’2‘,’ 

This pair of programs has the following properties, 

sha%éd by any pair of dual programs. If any feasible solutions 

are substituted in their respective objective functions, ¥%+ 

of-seetion-l, and {2), than éhe value of the minimizing 

objective(%%3)0£»aee%*on~l4 never falls below the value of the 

maximizing objectlveg\(z%-a§e¥e. Imr—facty g pair of feasible 

solutions are jointly optimél for their respective problems 

iff the values they impartlio the objective functions are equal. 

~Furthermore, ;his equélity obtains iff these feasible 

solutions satisfy ;he following "complementary slackness" 

conditions. There is, first-ef-all, a natural 1fil corree 

spondence between the condtraints of one problem and the
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variables of its dual., For the pair above, the constraints' 
) . 

%réuafi-&eeaieaw& correspond to the varlables pi (1 = l,...,m), 

(1.3 
{2) -of-seetion—-1 corresponds to 9y w?j = 1,.,.,n), and (1) 

abewve corresponds to x‘Jwil = 1,...,m¢\j = l,...,n? The 

complementary slackness condition then states that,alf a 

variable is positive, its correspondlgg constraint is satisfied 

with equality. 

Pfiz i7 The qguestion now arlsesa\ Does . the duality construction 

Ty    

  

carry over to the measure—theoretla transportation problem, 

and does the resulting pair have properties analogous to those 

just mentioned? The answer is yes, up to a point. 

Consider the transportation problem determined by the pair 

of &igma ~-finite measure spaces (A,L',u'), (B ", u"), with the 
Ut"b’) {l 

constraints A' < p' and A" > u wze&) and éééfloi_sectian~lé and the 

AN 
objective of minimizing ff dl i ’ef*&eetzon*%} over feasible 

g flow measures AW (£:A x B + reals is measurable). 
%l’w@mw* e a—— 

j ) We define the dual of this problem as followspg 
o8 % 

“Find nontnegative measurable functions p:A + reals and 

q:B + reals o, 2% Y satisfy 

a(b) - pla) < £(ab) 3y 

for all a¢ A, b € B,-aa& for which the definite integrals 
& \fi;Ox. 35 b o 3B i 

™ Q%4 

f pdu'gl | q@n” Nt 
gi- N b
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are both weli\defined and finite, 
    ) 

and which maximize 

,fiqs e s &t 

" 1 : I EB,g,\..,du ]A .p,\du <5 

  

Tnt as first compare this with the ordinary dual, (1) and 
)6 

(2) We have already noted that the measure-theoretic reduces 

to the ordinary transportation problem exactly when the o&%&a 

fields,fz' and I", are both finite. The same is true for the 

duals. More precisely, the situation is as follows. Let &', 

I" be generated by the partitions {Al,...,A ¥ {Bl""'B },- 

respectlvely. Since p is measurable, it must be constant on 

each set A; let pi be this value on A,. Similarly, g has a 

constant value 9y on Bj’ and £ a constant value f ; on A, X Bj‘ 

Then {3) and LS) reduce to {1) and Qz),;respectively. 

Condition (4) has no explicit countcrpart-in the ordinary 

dual, but,%since the integrals rcduce to finite sums, it is 

of -course automatically satisfied in the ordinary dual. ©One 

might ask, however, why -eeaditien {4) should be includedp 

Would not (3) and (5) alone be an adequate generalization of 

the ordinary dual? ' 

One difficulty that aréses if (4) is dropped is that the 

objective function (5) might no longer be welltdefined for all 

feasible pairs (9,q). This difficulty is easily surmounted, as 

< 
follows., First, assume that A and B are disjoint (this
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involves no real loss of generality, since common points can 

be formally distinguished). Next, interpret the expressions 
n ‘ 2 

in (4) as idefinite integralsc;in the sense of pseudomeasures. 
T 

Finally, interpret (5) as the direct sums 

<5@4*€;””»fi ol (72.2.0) 
[a,au" @ [, aur o 46 

f(éi issghcg)a pseudomeasure over A U B, and "maximization" is 

to be understood in the sense of standard order. If now (4) 

also holds, then everything is finite,,and the standard 

ordering of (&) reduces to the ordinary size ordering of the 

definite integrals (5). Thus a perfectly reasonable problem 

results even if (4) is dropped. 

Our main reason for inserting (4) is that with its aid 

we can prove that many ordinary‘duality properties generalize 

to the measure—theoreticzgose, whereas without it we can prove 

less., We =hall refer to Qé) and {5) alone, without (4), as the 

dual in the wide sense. 

The entire discussion of duality to this point has been 

framed in terms of the inequality-constrained transportation 

problem';-tfia%~ée, variantAEy. For the other three varlantsr 

we define the dual exactly as above ~*é£2¢fiiixlan&w+5% - but ; 

relax the nofl}hegativity constraints on p and/or g. Specifi- 

cally, if requirements must be met exactly (variants I anddgg), 

then g is allowed to take on negative values3 And if capacity 

must be utilized fully (variants I and III), then p is allowed
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to take on negative values. This is completely analogous to 

what happens for the corresponding variants of the ordinary 

transportation problem, and indeed for dual linear programs 

in generals Equality constraint; correspond to dual variables 

without sign restrictions. 

= With these definitions, the following theorems hold for 

all four variants of the trancportation problem, each with its 

particular dual. The maasuré-thaoretic transportation problem 

(in any variant) will be called the primal. This and its dual 

are determined by the aégma»finlte source and sink spaces, 

(A,Z',u') and (§E",u“), and by the measurable cost function 

f:A x B -+ reals. 

%——" 

%ji” Theorem. Let flow measure A be gfasible for the primali’and 
25 I 

funagicns (p,q) fea51b1e for the dual. Then foé £ dl is 

: \ wellideflned, and 

o 4 R S 22 & » U <’7:> b 

AM"?‘ Eroof: e have Wi = =2 29 (. 3, %) 

| 
(p du* > I dl‘ & W 

A 

et 

To show this, we consider two cases. In problem variants I 

and III, pt! = A',,and (8) is trivial; in variants II and IV, 

u' > A' and p > 0, so (8) again is valid. (?he right inequality 

by (4),) 
in (8) follows from the 1efcj Similarly, 
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e mi e (7.3.4). 

I q,4u” i[ q,8A" > weo +9) 
B -\ B = 

foxr, u" = A" in variants I and II, while u" < A" and g > 0 in 

variants III and IV. The right inequality in (9) again follows 

from the left.. 

—~From (8) and (9) we obtain 
>°\ 

2 14D S 22 = ¥ &1 ® 1 2y 6.5.10) v 3,100 

Is g,\du“ > IA Ev\*du' = [B qu;\“ E IA P&‘-n' RO, (ToYy 

et 

\ s 

-1§ow define the functions pl; qq:R X B + reals by 

; - (?1(§,13,) = g(%):Land E_{l(g,b) = g(}g). all ae A, b ¢ B, We find 

  

that 

G St RN e 611 : 1 B Jr 3.1} 

P On . [ Py, 9N g, 00" - gy Sy - T 
o . B~ AxB~ 

by the induced integrals theorem. (Verify this separately for 

p+ and Pl+’ and for p and gl", and subtract; similarly for q, 

4y). From (10) and (11) we obtain 
o W < 2O B 3] 2% (.%.1%) 10 "/ 

f q\dk“ 43 ] P}\dkl = I (qlupl)A§A > =00 (12) 

B - AN axB "~ T 

N 

251 S 
[ Sinoe q; -~ Py S £ fyom (@), it follows that >{3}"§ £ - 

f 
J 

3 
is wellhdefinedfi for 

3 Y 
\ 2\ (:?/ 

" 

£ dx =« - dy < o 

JAXB 2 }\“ e [Axg (S"Il ?l) i A }\,% 

—— T — N
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from (32). And, in fact, from (3) we obtain 

7o) . 

ED;J) \Z{.’ 3l ID'} = 3‘ (“}'??ll 3 ) 

j (9P ) dA j'f £ dAerr— : ~++3) 
AXB ~ 7 A AxB A , 

o 

Finally, (18}, (12), and (13) together yield (7), Mf;/fi 

     
This theorem generalizes the ordinary duality property 

that a feasible value for the maximizing problem never exceeds 

a feasible value for the minimizing problem. Note that the 

mere existence of a dual-feasible palfljp q) implies a condition 
27 ’ jel 

on every feasiblg A: that prfi f A\ be well~c—k}ned, or, -in 

other words, that the indefinite integral J £ d\ be a signed 

measure, not a proper pseudomeasure. 
—t \(" 

We now introduce a concept fi%ééh generalizes the notion of 

"complementary slackness." 
15 
e 

(;g;mfmbefinition: Let flow measure ) on (é x B, ' x "), and the pair 
et 

  

P of functions p:A -+ reals, ¢:B + reals be feasible for the 

J%” transportation problem and its dualfixrespectively.? (p,q) is a 

/ measure potential for A iff the following thwree conditions are 
/ . 

/ \?’ \ satisfied: ‘ 
f g (0 .'6'!‘\/5,; 

1S ) A{(a,b) q(b) - pla) < £(a,b)} = 05 —~434) 
(72.%.15) 

X' and p' coincide on subsets of {a|p(a) > 0}; {35y 
\ @ (o E (7. 316 
\ LA™ and u" coincide on subsets of {blq(b) > 0}. 16) 

    

(14) states that no flow occurs on the set where (3) is 
Corda 0 

satisfied with strict inequality. f(lS) states that capacity



is fully utilized on the set of sources where p is positive. 

Lol Mae 

~ (16) states that requirements are met exactly on the set of 

sinks where g is positive. 

This definition is meant to apply to all four variants of 

the transportation problem. Note, howevér, that in variantswg. 

and III we have A' = u', so that (15),ié automatically 

satisfied and may be dropped without_changing the definition. 

Similarly, in variants I and II wa,have A" = u", so that (16) 

must be true and may be dropped. - 

»> As an exercise, thé rccachfiight verify that this reduces 

to the ordinary “complementary slackness" conditions when both 

ség§a~fields,_2’ and Z“fl are finite. 

Note that dual feasibility of (p,q) &1c&;£;is, satisfac- 

tion of conditions (3) and (&» f{is a xequiremefit for measure 

potentiality. If, as suggested above, (4) is dropped as a 

dual constraint, tfiis gives rise to a correspondingly weaker 

concept here, which may be called measure potentiality in the 
  

wide sense. For the time being, however, we stick with the 

X original concept. 
el 

C?y¢~ Theorem: Let A° be feasible for the transportation problem, and 

(p®,q%) feasible for its dual (given by (3) and (4)). Then 

.'Jm 

i 

, 7\\2 (p®,9%) is a measure potential for A2 iff 
L2 7 ,?\ <7 W0 u¢ 2@ Q‘Z (} 1% 177) 

AxB B~ e
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\""""""‘""‘*-, 

i?%;'hgggggz Let (g‘,g?) be a measure potential for A°. Reviewing 

the preceding proof, we find that at (3), (9), and (13) the 

weak inequalities beconme equalities,fibecause of (18), (1é), and 

(14}§\respaotively‘ Hence (7) is safiisfied with equality; this 

e is (17). 

/ZZZZf Conversely, let (17) be true. Then all the integrals 

appearing in the preceding proof must be finite, and the weak 

inequalities of (8), (9), and (13) rnust all be equalities. But 

finite equality in (8) implies condition (15). This is trivial 

in variants I and III; in vafiafits};; and IV it follows from 

the facts: p2 > 0, A®' < y'. Similarly, finite equality in 

(9) and (13) implies conditions (16) and (14) , respectively. 

Hence (p°,q°) is a measure potential for A°. |}* [ # 

%] Theorem: If the pair (p®,q®) is a measure potential for A%, 

then A2 is a best solution for the transportation problem, and 

/) | 
'~x¥’f (p?,q%) is a best solution for its dual ("best" in the sense of 

standard order). 

flwi::j::r* 
P Proof: Let A and (Q.q)fba any other solutions feasible for the 

transportation problem and its dual, respectively. From the 

i}é}; two preceding theorems we obtain 

/ 5 %2 3 S e v%:] 

o I £ dx :e:] q° du" - ] pe, du' 5 
< v éx§ = . 1:"_ , é i i‘ iir?’?' 12 

%:1 BT o 1V e w7l 

! : f gaxe > [ qawm - [ panto v



4 
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All integrals in (18), except possibly the leftmost, are finite, 

by (4)., dYow, when the objective functions are weli;defined as 

definite integrals, and finite for at leaot one of the two 

solutions being compared, standard ordering reduces to ordinary 

size ordering of definite integrals. Recalling that we are 

maximiziné:the dual and minimizing in the primal, it follows at 

once from (18) that (p?,q°) and A® are hest for their‘respective 

problems. LW /I 
e 

All of these results are direct generalizations of duality 

relations that hold for the ordinary transportation problem, 

Note-that the finiteness condition (4) is essential to the 

preceding demonstrations. What happens if it is relaxed? It 

turns out that we can still deduce a weakened form of the con- 

clusion of the preceding theorem, with "unsurpassed" in place 

of "best". Specifically we have the following result, which 

has an application in the theory of market regions 4q§;2fi‘53, 

»M 

e AT A0 
fg;a\ f‘ Theorem: , Let (?,g) be a measure potential for A° in the w;de 

agaggfgi.c.gwithout (4) V>, but with at least one of the two 

acfini;e integrals in (4) well-defined and finite. Then A°® 

is unsurpassed for the transportation problem (in any variant; 

"unsurpassed” refers to reverse standard ordering of pseudojp 

measures) .
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\__—//“—M 

§$€~; Proof: We argue by contradiction. Suppose the conclusion were 

>f§“j false; then there is another feasible measure A surpassing A2, 

ST That is ) 
/ T : f 

(1:%:49) 

i: > 3 I £ da [kf_dke £19) 

: 37 . A~ N 
i 

W&o % | \ 4 
A ¥ 

4 | (standard order; remember that we are minimizing). 

\%~ Define the#functions Pys 9y on A x B.-as_abowe by the rules 

| py (asb) = pla), qy(a,b) = q(b). From (3) we obtain 

-' {r},k;};‘g & 

an [t - o | b N 

(“i" refers to narrow order). :(14) holds for A®, so that 

inequality (3) is actually an equality A°<almost everywhere. 

' From this we get the pseudomeasure equality 

] (R = PyIERR = I,§h§3°f" “+23). 

Let ¥ be the pseudomeasure (A,A°). Then 

' (7432 
j(ql = Pylav fi,['f ay < 0. ~22) 
A ,\ > A f 

(The left inequality in (22) arises on subtracting (21) from 

(20); the right inequality in (22) is the same as (19)). Since 

standard order is an extension of narrow order, (22) implies 

that 

[ glxéw <’jv?1 dy. 
t23) 

The rest of this proof is aevoted to showing that (23) is false. 

go-p This contradiction will complete the proof.
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f 
( One should keep in mind 4in what follows that the upper 

\ ___ variation w* is just an oi&inary measure on A X B; hence it has 

5%PW4LA?15 left and right marginals, which we denote by wf&; w*“,}\ 

X - 1y e 
? ) respectively. Similarly, the lower variation y has marginals 

»c, b one ' ' 

leve| 9 9. 

l‘;J/ 2 Consider the following indefinite integral with its Jordan 

forms 

We wiill show that, for the following definite integrals, 

  

[ pytavt = | ptawtn 5_[ 3 dw: 9 = | 
AXB ,A Axg 

and 

Lo )"r \ “ft;" A {; 22 “ e 2 J . ”\;fl,u. “ £y 

| ] p; Qv = j p a(p™*) = [ prawt) = j py " ELS?S% 
Hup =N AR A axs ~ 14 38 

The outer equalities in (24) ahd (25) all follow from the 

induced integrals theoremn, For the middle relations in (24) 

and 625) consider two casesp 

ij gase %i%: Variant I or IIX&xh@*& 1 

B/ | A' = XY m oy, 426) 

By the equivalence theorem for pseudomeasures we have 

e A = YT 4 Ay Qn
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u' being sigma-finite, there is a countable measurable partif 

‘tion 6 of A such that p'(G) < », all G ¢ G. For any such G 

and any E ¢ L' we have 

7 

e
 

B 
M 

SO
 

4’* 
"(EnG) +AM(ENG) =9 "(En @G +A'(En G, 

| on taking left marginals in (27). 
| 

By (2€) the A', A2' terms 

drop out. Adding over G € G, we obtain 

oty 
(28 

Thus the left marginals of w+. Yy~ are equal, and the middle 

T relations of (24) and (25) are established with equality. 

ffgia C;j icage iis Variant II or IV: here p > 0, so p p = 0 and (25) is 

</%f(trivial. Also, since (15) holds fo_lif, we have 

o ASME) = u' (E) 2 A'(E) 
A  Similar To 

for any measurable E s {alp(a) > 0}. Fhe argmz/,,(zz) 

428} now yields — 

g ‘*"1 (g) fi tP-‘ (E) 

& - for all such E. i E. This establishes the inequality in (24). 

:%k‘w“»*'}’_ (24) and (25) now imply that the following statement is 

féise: : 

> I B e W 

For (29) is true iff the sum of the two left~hand integrals-in 

(032 
{E) = " B o 

2
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Furthermore we have: 

) b 27 etk Sl g (1.3.30> 
a If I p du' is finite, thén I Py ¥ < 0., 430) 

( N N TN 

To see this, note that ¥~ < A2 (min@fiizing property of Jordan 
-t 

form); hence ¥ < A%', implying 

A W . & ‘i\/ e ge e 

[ p:{é(ww‘fl £ [ Px d(rer) ij pi-du' ' B 
e A ™N P N = 

a1 

e
 
e
 

S 
ot
 
s
 

This result shows that all the integrals in (24) and (25) are 

    

    

flnita, (24) and (25) then yiexa the conclusion of (30). 

B G We now run through a'simiiar}argument with g in place of p. 

0nl§ the high points will be @enticned. We-wi¥l show that 

; 20 N WO » P\ s | gL 21 : 

% I q; ey’ = [B q d(w*“) 2 [ ata™) = I 

and 

- G 2\ '\:‘2\’ e i, - :: 2L 3\ \*fli {9, %:%%) 

[ oo =] aan™ a] 2 aw‘“") - [ gavte [ 
AXB B AxB 

The outer egqualities in (31) and (32) again follow from the 

induced integrals theorem; For the middle relations there are 

i again two cases to considen@ 

7/ casgég Variant I or II§ here we have o 

‘& 
¥ 

i;’} . Jx 2% 

& A" = A = (33) 

An argument similar to 126) thi@ugh (23) shows that « 

Mfiq’*’"“wfl



Mm%figzgfigfiJ;é 

657 

which establishes the middle relationé of (31) and (32) with 

QA aquality. 

o8
 

2y £ 

Variant III or I;Z-here g 20, so q = 0 and (32) is 
- ‘}{:) i{£ 

trivial. Also, since (16) holds fo;lifi, we have £ 
\ S Ao 17 

\ ( L n B | : - Vo 

RHP) = w(®) < Anm — A ) _ s 2 e 

for any measurable F g {blg(b) > 0}. There is one subtlety at 

this point, since we cannot assume that A" or A%" is aiéma 

finite, but the argument still goes through as follows. Let é 

be a countable measurable pa:éition of B such that u"(G) < =, 

a1l G & O, Then, for any such F and G, we have (noting that 

A2"(F n @) is finifie), 

oyt n e = ¥TMFa @) + AM(F 0 G) - A2(F 0 6) 

2V "(F n 6. 

Adding over G ¢ é, we obtéin 

By "'u y w7 
= PZ\ME) 2 IF) 

for all measurable Fg {blq(o) > 0}, which establishes the 

inequality in (31). 

“\kgarallel to the argument above, (31) and (32) now imply 

that the following statement is false: 

‘. (7, % &) 

f [ 9y ap < 0, 
A = 

and,\furthermorgg 

B
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\ Y {2 ‘?:: o L 7l 

s i : . : (7.3.35 
~ If I g du" is finite, then [ 93 4¥ & 0. 435} 

| B A ‘ A’ 

)\ 1 (35) follows from the observations{ 

| L 5 e E;l 22 @ i?‘ 22 e / {k 7. 3136 : 
¥ s e 2 i J \ ; 

| a¥aw™ < | a¥anen - [ ataw <. {36y 
B B~ N B BT A 

(The equality in (3§) follows from (33) in variant I or II; it 
A { eAne 

follows from q > 0 and (16) in variant III or IViQ) #38), (31), 

and (32) then imply that 

\ T 2! \zg‘ ¢ 2l s ]2 

\ \ O 
. . 

& . 

[ ql dl{’ + J ql dy < » 

AxB A@ EAK,.B“ A 

and this fact, together with (31) and {(32), yields the concluZ 

sion in (35). # | 
éfiifiinally, at least one of the premises in (39) or (35) is 

R
 
O
 

2 true by assumption; hence at least one of the conclusions in 

i (30) or (35) is true. Thuskghombining things with (23), either 

i\W which contradicts the falcity of (34), or 

0 g [:,:qlh dy < [», Pl é‘pr s 

which contradicts the falsity of (29). This contradiction 
/‘:? . i ‘qm 4 2 

completes the proof. x$4+““*4/£5 

ahm— 

  

: @éssary con on
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<h§\ | 7.4, The Transportation Problem: Ex1stence of thimal Solufiions 

~This.book. is now-fairly -well-along,—and {50\(6.0’ B ntannd 
:;1§opological concepts have scarcely been usedfi»f?hi# has been a 

matter of deliberate-golicy*ito underline the;fact that, < 

contrary to popular t&b&ewfia;k ~ measure thecry is far more 

significant than topology as a groundwork foi social science. 

» But for the rest of ihis section/»topqiogy is essentiéi. 

indeed, we know of no general method for péoving existence of 

optimal solutions to the measure-theoretie transportation 

problem without using topological concepfié. Nor do we know of 

any topology-free method for constructinc measurespotentials 

from optimal solutions. 

: wa~ahal; not go deeply into the subject, but simply list 

those concepts and theorems which are actually used in the 

  

™ sequSl.~ 
Al 

/g’ Vi Given a fixed set 2, let T be a collection of subsets of 
/" \H 

e T; (ii) if 61;1?2 

uG € T. (In words:| T is closed under arbitrary unions and 

A, T is a topology over A iff (i) A5e T, and the ?mpty set - 
v 

; then Gl neG,e¢ T: (111) Gz T, then 

finite intersections, and owns A and #). The pair (A,T) is a 

topological space and the members éf T are called open sets.
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Set F is said to be closed iff A\F is open. 

Let G be any class of subsets of A, From this, construct 

é:, the class of intersections of finite subclasses of 5; and 

thénféfi, the class of unions of arbitrary scbclaases of é', 

together with A and &. One can show that;@" is a topology, the 

topology generated by G; G is called a scbbase, and.G‘ a base, 

for this topolcgy.?f 3 : 

Let (A, 3% be a topological space,ccd let E g A. The 

relative topology on E is the class,of}éll sets of the form 

E N G, G ranging over the open sets offag This collection of 

sets makes E a topological space in ité own righfi. This is the 

construction implicitly referred to bciow when we speak Off}& 

e+g., the "usual topology of the ratiénals?, or “topological 

completeness of a closed subset 0f,¥~% 

Here are some example$. Let A be the real line, and let 

G be the class of all o mgr“ intervals. ‘The topology generated by 

G is the usual topology for the real 1ina, the one implicitly 

used in ordinary discussions of ccntinuity and convergence of 

real numbers. j 

This example has a far-reachingggeneralization. Recall 

that (A, d) is a metric §gggg iff the function d:A x A + reals 

satisfies: d(a, a) = Onlg(al, az) > 0 if ay # g, d(al, az) = 

Q(az, a;), dla;, a,) + dla,, a;) >|d d(a,, §3). Now let G be the 

class of all gggg_giggg'f th;twis, a}l sets of the form 

{gl@(ao, a) < x}, for a, € 3, % real;an& positive. The topology 

generated by the metric d is the one%generated by this G.n
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%;”The topoleogy generated by the Euclédean métric in n-space, 

(n =1, 2,...) is the usual topology for thisfspaca, and will 

be assumed if no contrary assumptions are mace. 

Given a topological space, (A, z;{_ogé can ask: Does f‘yflflk7~ 

there exist a metric d on A,w%%cfi gencrctés T as described - 

above? T is said to be metrizabla 1£f this is the case.\ 
\ 

e e We need the concept of coggleteness of a metric space. 

A sequence a3y Byrees from (é, d) has the Cauchy property iff5 

for all € > 0, there is an integer fi such that, for all 

integers m, n >N, d(am, an) < g3 ;roughly speaking, the points 

get indefinitely close to each cther.‘jig, d) is comglete iff 

any such Cauchy sequence converges to a point a, ¢ A. That. is, 

izfcr all ¢ > 0, -there-is an'NKsuch that, for all n > N, 

@(@Q. #n} < €. For example, tfie real numbers are completefifcha 

rationals are not, under the ficual topology. A space (A, }; {fly?f- 

which is not only metrizablegibut generated by a complete metric 

is said to be topologically:complete. The real ii;;, and n- 

space in general, are topologically complete under the usual 
\Or_open 

topologies, and tha same is true for any closedYsubsets of 

these spfides {ifi—%he—rctafitva-tcpo%oqr+- 
\ 

(A, T) is s agarahlc iff there is a countable subset A' 

such that any nonfcmpty ‘open set meets A': G ¢ f and G # ¢ 

implies G n A' # ¢, Jn~space is separable for any n (e.g. At 

may be chosen to be the set of n-tuples with rational 

coordinates). Indeed, any subset of n-space is separable,



{ ;’i QTQ“{ ¥ 

N 

  

compact iff every sequence from it contains a fi%baequenoe cons 

verging to a peoint of K. Any closed boundad subsat of n=-space, 

for example, is compact. :f 
7 

We need a few continuity concapts, confining our attention 
o 

to real-valued functions. ILet (A, TP‘be a topological space, 

and £ a real-valued function with ficmaxn A. £ is lower semi- 

continuous iff every set of the Sorm {alf(a) > x}, x real, is 

g ‘§% £ is upper aemiiconfixnfious iff -f is lower semix 

contmnuous, or, equivalently; iff all sets of the form 
. {;_1 

{alf(a) < x} are open. Finally, f is continuous iff both lower 

and upper scm1+continuou%u 

Let (A, T') and (Bq T") be two topological spaces., On the 

cartesian product A x*B one defines a product topology written 
g 

f:} x T®, essentxalh& in the same way one defines pro&uct-s&gma 

fields. Spec;fica&ly, rectangles E x F are called open iff 

Eg T‘ and F ¢ Tm' Tt x T* is then defined to be the topology 

generated by thfi open rectangles., One can show, in fact, that 

G ¢ TV x T® 15? G is the union of some subclass of open 
3 

rectangles. ; % 
& W 

.f N U W 

The discussion to this point has been *purely”® topological. 
i 

We also néed some concepts that depend both on topological and 

meaaure#theoratic ideas. The Borel field of topological space 

(A, Tp’is the &igma~field generated by T.%/'th members are 

f 5 S 
- -
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called Borel sets. 

Let (A, T) be a metrizable topological space, let I be 5fi’ 
; 

Loqn Qc( 
o its Borel field, and let u be a measure on L. u is said %o be N 

é tight iff, for every positive number €, there is a comgact set - X 

/H(A\KJ K such that u(ARK) < €. ILet M be a ccllection of mmasures on 

v v 

that u(A) < N for all u ¢ M, and (ii) for evg&y positive 

number € there is a compact K such that u(fi\K) < ¢ for all 

U E M (Note—that the same K must serva for all w) 

thh (A, T) and I as above, lct fl be a bhounded measure 

on Z, and Uys Hyrees @ sequence of guch measures., This 

sequence is said to converge weggly to u, iff*‘for every 

g:A + reals wh&ch is bounded gnd ccntinuous we have 

95 j*§ 

    

  

  

;f With these definitions out of the way, we are ready to 

gESaeea, mhe following is an omhibus theorem, covering the 

alternativa variants of the txansgortation problem under 

alternative assumptions. ~fiae~as first briefly contemplate the
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practical import of some of these assumptions. }Anx subset of 
t‘ 
2 

n~space is separable (in the relative topology), and any subw 

set whaeh can be expressed as a countable intersection of open 
leKsandrov's theorem; iy, 

setes (a so-called génset) is topologically comp ete,\fi        
   

particular, clcs§g¢g§§§ets of n-space are Gg) o Hence these 

conditions constitute no real restriction when impose& on 

(physical) Space or Time, or other spaces bu%}t up from these 

in a simple manner., It is unclear what regfiéictions they imply 

when imposed on topologies on more comp;gi spaces, such as 

Resources, ex Histories, or Activiticgfw The boundedness of f, 

u'gand p“'means that these resultsgwill often not appiy to 

problems involving ingiaite:§paoa5or Time horizons, but /<o 

constitute no real restrictionf%hen applied to "practical" 

problems in the narrow sansefof the term. 

ihc&u~aiso—thatJ;hese;fioundedness afisumptionc:ifiply that 

the objective function is weliidefined and finite as a 

definite integral for~ény feasible flow A. Hence standard 

order reduces to the ordinary comparison of definite integrals. 

We awg?iéfiigrérop the distinction between "best" and "unsurpassed" 

: solutions, and simply speak of optimal solutions, 
\—T\\ N 

?&;-‘ Theorem: (gmnibus‘existence theorem) - Let (A,IZ',u'), (B,Z",u") 

be the source and sink spaces for the transportation problcmfi 

() i B # ¢, with costgfunction f3:A x B » reals, where 
v 5| 290 

7 (i3£“ g and g_are all bounded, and u'(a) > u"(B); and 
: i
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x’;’ 
R 

i (ii) /—there exmst tQpOlOgleS T' T"on A, B, with X’, " as 

% Jtheir Borel fieldsfl respectively; T', ™ are both topologically 

»ccmplete and separable, and £ is lower aemi%ccntinuous with 

fluL,’gz_jgwspect to T' x T“-~ ; \ 

{ ‘qfi‘ (111% one of the following extra assumptions is mades 

(a) no extra assumption; or 

(b) s‘f > 0, or 

e ¢ 
; 1c)§g§ T“) is compact, cr 
i { 

o () fu' () = u"(B). 
BN K i 

T 
fl }}D 

Then we have # 

f/’“ :%fi( Ii\r 131\1 -fk 3 | & L IV IILaT s 
Sy p ‘ l[ (a) v x x X A }it f‘ Y}a 

g b NP Y T e TSy / ;fimeSna ‘ (b) | V¥ | V| x| x 4 o o P f@ i(fiiyg 
A\ ;ong - ;¥c+ s :a}. @gggfiigxw:*" . } 

f‘ ph 0 L 08 N 
el 7k ‘ 

() Sy /Y b(! WM att 
5 sl (| 

where 7rindfcates that there always exists an optimal solution 

to the trafisportation problem for the given combination of 

variant I, 11, III, or IV, and assumption (a). (b) , (e), or (), 

and x indioatas that thexe somctimes dces not exist such a 

solution. 

f%r-_m.Proof@ There are sixteen things to prove, and of thase twelve 

2N 
¥ 

4 4 
et 

— 

v 
fiof the other four, 

entries, 

| can be disposed of rapidly, either directly or as a consequence 

First,fltha counterexamples for the Ty - 
A L
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pwi<(1a), (Ib), (Ic): Let A and B be singleton sets, with 

u(A) > u(B). Then variant I does not have even a feasible, 

let alone an optimal, solution. 

__.(IIIa), (IIIb)y Let A be singleton, with p'(y‘k 1; let B be 

the integers {1, 2,...}, with %“ = 0" = alluécbsets of B, and 

u" identically zero; finally, let unit txansport cost to point 

n € B be l/n (n 3 Bianals (, 

Since B is countable, T" is saparable: it is also 

topologically complete, sinca,genegated by the complete metric 

d given by d(m, n) = 1 if m #"9.;f§hus the stated problem 

satisfies all premises of the gfioorem, including (a) and (b) 

of (iii). : € 

There is no optimal soiction, ,for,,ca~the"cna~han&; cost 

can be reduced below any s > 0 by shipping one unit to a 
¥ 

sufficiently large n ¢ §« On _the.other-hand, zero cost cannot 
¥ 

be attained, since £ ?fb,*and A(A x B) = u'(a) > 0, 

»WQ_(IVa) Let everything be as in the counterexample just given, 

except that unit transport cost to point n ¢ B is (l-n)/n. 

Cost can be;reéuced below any real number >~1 by shipping 

one unit to sufificiantly large n € By en~thew§£§érmhand, cost 

of ~1 cannot be attained. This is clear if A = 0; while if 

A(A x B) > 0, then, since £ > -1, we have 
: b
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2\ U 3l 

By |8 
f | £ .4 >f 1l d\ = =A(A x B) > =p'(A) = =1, 
|'axp axp 

Hence again there is no optimal solution, iéj*’ }flf 

"_>w, fTfiis finishes the “X's and we start on the !#?5' First) 

re
” 

  

of-all, existence in cases (I1Ib), (IIc), and (I xd) cbvicusly 

follows from existence in case (1Ia), 

!(iifili:jffggg), (111d), (Ivd)§ Existence in these‘césea follows from 

fLé/v existence in ca:e (IId). To show thig, we prove that any 

feasible flow mg@gasure ) must satisfy the transportation problem 

constraints with equality in(g&égfiggg variants., Por suppose 

there were an E ¢ L' such that ut (E) > '(E). Adding the ing [)‘p,,,',_‘ 

equality u'(A\E) > A'(A\E), we ‘obtain u'(a) > A'(a). (The 

atrict inequality carries over because all measures involved 

are finite). But A'(a) = X(é x B) > u"(B), so u'(a) > u"(B), 

contradicting premise (d). Thus we must have A' = u'; a 

é similar argument establishes A" = u"., Hence all four variants 

% have the same set of géafiible solutions. If an optimal solution 

exists for any of thém, therefore, it must exist for all, under 

premise (d). 

/g’This leavesféhe four cases} (Ila), (IXIXIc), {IVe), and 
£ — J:"' 

§ (1Vb) . ;
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2 

We show that the existence of an optimal salution 1n 

case IIb implies its existence in IVb, Let A be feasi@ie for 

variant IV, so that A" > u". Thus u" is abaolutelyfigcntinnous 
=z 

Since all measures are also ;in;te, 'we may 

invoke the Radon~Nikodym theorem and infer tha1£xistence of a 

with respect to A". 

  

O 
'_,l.;:;“j" 

f;} w2 

o h e k“’r’ 
(2) 

) 
\ Lt 
\ AP 

g ‘must take on values in the closed interval [0,1], except 

possibly on a I"=set of A"-measure zero, Altering it to zero 

on this set}fwhich does not invalidate (2)f%'we'thns have 

0 < g(b) <1, for all b ¢ B, Now define h:A x B + [0,1] by: 

h(a,b) = g(b), -and then_xl by 

g (74, 5D 

This is an indefinite integral over A x B, and Xl is therefore 

another flow measure on (A x B, I' x I"), We now show it is 

feasible for varianti;;. Fixst)ofi—a&%* Al £ A, since h < 1; 

hence 4 
(7.4.4) 

li D' < uteo A4) 

Also (7.4.5) 

e j,\!\é”rr | ~t5) 
‘?w,;;,f.;l G At 

from (3) by the induced integrals theorem.“fi(é), (S)Aand (2) 

show that A; is feasible for variant II. Also, since Xy < )
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and £ > 0, we obtain 

‘ ’ i’J‘ 4.0 3 

] £an < [ £ A | —+6) | 7AxB, ~\” AxB 

L Thustxassuming £ > 0, we have shown that f@r any flow A 

feasible in variant IV, -there exists a flow 11 w%%ch meets the 

more stringant conditions of variant II{iana whose transporta<S 

tion cost is ho higher than that of A, by (6). It follows that 

any solution optimal for variant 1z wiil also be optimal for 

& variant 1V, under premise (b) . fifi 
7 

& 

jffié;/ . (I1a), (IIIc), (IVbJ* This is che last, and wost difficult,w 

P & part.lg” The proof goes through several stages. fhe first 

stage is to show that the sa& of feasible solutions in these 

cases is uniformly ’"gmm 

First-of-all, from g”i;e fact that T' and T" are both sep= 
arable and matrxzable, it may be shown that I' x I is the 

Borel field of T' x T‘ Also it is known that any bounded 

measure on the Borek fixeld of a t0pologically complete and 

Y separable topologinal space is .flfiL._ (Ulam ;cemficiiéééa&eyqfiza 

~afigea:5~6i3 Hen&e, for any € > 0 there are compact sets K', 

K" o~ contained in A, B, respectively - such that 
il 

  

a‘ 
( 

f (7:47) 
u'(fi\K“ ) < E/?.j fu* (B\K") < /2. — +7) 

Now %éc A be a feasible flow measure. We always have 

l'(§\§'LJE’u‘(é\§'). In variant II we also have 

A 

o
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\74.8) 
A" (B\K") = u"(B\K").,— ~{8) 

Furthermore, if premise (c) holds, B itself is compact,, and we 

may choose K" = B to satisfy (7) and (§). Hence in all thn 

three uaseafi (11a), (11Ic), Ich); K' and K" may be chcscn 20 

that 

b w.q) 
AT (A\K') + A¥(B\R") < ar1;>“ -5} 

for all feasible A. Next, consider the numbar A[}axa)\(x‘xx"il 

This does not exceed the left side of L?), since 

(A x B)\(X' x K") g Hé\li(') x ci U IR X (B\E")] o 
‘1’ 

&130 K' x K" is itself compact in the product topology T' x ™ 

(Tihcnov’a theorem) . Finally, A(A x B) < u'(h) < =« for all 

feasible A. This shows that the set of feasible solutions is 

indoeéfanifo:mly tight in a&l three cases, G 
A 

w"(‘ffifi!;\j 

_j;flo know there is at;la&st one feasible solution, Hence 
there is a sequence of fihem, xl. Ajsevee, with the property 

“5\1    
. tre) 
txoy 

where V® is the ixi?figum of the attainable values of the 

objective funct&on. 

S8ince T‘ ané T" are both metrizable, the same may be shown 

to be true fox the product topology. We now invoke tha basic 

(2 theorem of Ex¢h0r¢v~varadarajan“%fi&l&angxlsgngago~3§¥# If 

*1* Az'*'? is a sequence from a uniformly tight set of measures
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on the Borel field of a metrizable topological space, ! en 

there is a sab{-saquanaa which converges weakly to some measure 
A% (not necessarily a member of the set). 

Let A2 ba this weak limit of a s::b«l-sequence of the 

3\1, "2*’“ rhi:eh satisfies (10). wWe ghall prwem this A2 

is in fact optimal for the transportation problm.\ by showing 

that it is feasible, and that 
i 

2\ ; 7(7};‘ 13’; 

I £ dr® < V"( - L) 
Axn - 

A ,ii § 

}‘imt for (11). Por convenience we retain the notation 

Aye 2&2,... for the convergent aubfmsqmnce of the original 

ae%mcc. Invoking a theorem of A. D. Aleksandrov, it follows 

that . e 1\7' ] q—@ éi}if;!;i@i 

A% (G) 3511::& mé Ay cm ~32) 
(A 

for all open sets {} g A x B. Let us now temporarily make the 
2 

S addmicnal + tion thafi f > 0. We then have g1zl 
"?I \e &A" = j &'{(a.b)]fia,b) > t}ifit 

M% e 

\i* e-u ye e 
] Im mt}z {(a,b) |£(a,b) > t}dt: 

(M‘)cm’;) 

»}’3 % & 

< hia tng ["[atcam 1220 > g}g_g | 
4o Ve 
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x\mha last equality in (13) comes from (10)f} The oc&cr two 

equalities invoke ‘the Young integral, which is a@*ordinnry 

Riemann intogan@-;neapugu-~w«* The first 1naquality results 

from Aleksandrov's theorem, (12), and the facc that — since £ 

is lower scmi+continacus)qvthe set {(a,b)lftu,b} > c} is open, 
The second ineguality is from Fatou's lgmmaf.aw‘ 

How drop the assumption that 1 2 0; Since £ is bounded 

below, there-is a real number x ancfi that £+ x>0, The 
fé e argument of (13) now yields 

f _ £ . 

i%* A \ i 5 . /(714J4? 
[ fi!&x)dks lim inf f (f%x)dl «/firf @) 

Ax % 
{ 

g B 4 ;f: { ‘ - 
i 5 

But weak convergence impl&cs that lim k (A x B) = A%(aA x B)., 

(Substitute the cenatanc !unc&ion g 1 in definition (1)). It 

zbllows that the x‘s arop out of (14), Thus we obtain (11). 

E //fima final step is to prove that A2 is feasible. PRirst-of 

fi%&,.sinca ll' Xz,@.. converges weakly to A%, it follows that 

the marginals cchargs weakly to the respective marginals of 
\.3~ A¢ (by the Mann«flald thaora%}ws&%&&ngu&eyvmgcges—a&~3é+* 

ke ) 
i 

2 zm x! = xvc lim k“ - 23—~ 
c- 

where '1im" stanés for weak convergence. *fleu, for all n; the 

maxginaln cak&afy the feasibility constraints for the trana« 

pcttat;cn problem: Cicid / 
’,\ il D ) 

‘ 3;1 [\“‘ '«')u e\ 1* ("‘ ’ ’)u ) +13)



e
 

e
 
s
t
y
 

ses
cn 

o
 

R 
e,
 
P
R
 
A
T
 

T
 

673 

the particular signs depending on the variant in question. % : 

must show that the marginals of A® satisfy the same consg;x‘&in&m 

,{yg he following result will be used: et u, v be ‘WO 

bounded measures on the Borel field of a mttiub;g*" i:opeloqicul 

space, C. If ! 0 - k q 
¢ 

; ol B S (e I g du > J g av 6) 
c ,-,,/\a- ? “(_f 
—l 

for all wounded nontnegative cantinuous l’unct'.s.om g then 

u 2 v.fi" It follows that,. if Myo flziootg and v, Vgrees are 

two sequences of bounded mcasures 6n this Borel field, con= 

verging weakly to bounded mensggoa ¥, v, respectively, and 

”:; > v, for all n, then u 3_ ‘Us For, 

5 e 
I qdumlj.m“cgdnn i!‘i‘“[égd" - | 

‘C e y | 

{ 

? 
20 o> 2 5{ 20 

  

if g is bounded nofi%qégative continuous; thus (16) holds, 

yielding u 2 v. | 

Now consider fiha two naquonco;; 'y #'se00, and xi. li...., 

The first is a constant sequence, converging wecély to u'; the 

second convorgén weakly to A%', Since u' > Are all n, ve 

obtain u' ¥ xfifl[by the above result. simalax arguments show 

that the relaticnz {(15) get reproduced with X®'; A®" in place 

of kn. ;:, reapectivcly.‘ Kencc as is indeed teasible:// .}hfiv 

Binca i:lflso attains the infimum cf the objective func~ 

tion, by (11), it is optimal., The proef-is—cemplete, 1}45:*LJ &
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These results can be generalized in a number of ways. 

Firstmeina&l, ghe condition that the unitqtrfificport cost func~ 

tion f be bounded can be relaxed;‘lghe fact that £ is bounded 

above was used only to guarantee that }(;13 £ ad(i . is finite. 

Hence we need assume merely that £ ifi bounded gg&gg and that 
21 Yo 

foB £ dl is finite for at least ghe feasible A, 
§‘ 

The condition that £ be bofinded below can in turn be 

weakened to the following: %hera exists a m?%iurable function 

h:A + reals such that h(a) %}f(a,b), all a¢ A, b ¢ B, and 
“‘i C = i/ ih du' is finite. We omit the proof of | this statement. 

é ,Noxtg\the ccndition that (2,T') and (B ™) be topolcgically 

complete and separable can be weakened to their being merely 

Borel subsets of such fipaces. vcrhxficcst~o£wa$%* such subsets 

still remain separable metrizable, and, c&n@ndi@ ~any bounded 

measure on such a s@ace still remains tight f?urthasfiiachgfi 

~pages—29=-30)., Th& proof then proceeds exactly as above. Just 

about any subscts of n-space with the usual topology whéeh arise 

in practice woqid fulfill this condition, for example. 

Finally,,&ha simple constraints of the transportation 

problem can @e complicated considerably without invalidating the 

preceding ptcof. Suppose, for example, that shipments are not 

allowed b%tween certain source=sink pairs (say because a road 

does notféxist, or because the resources at the sources are 

unsuitgfiie for the activities at the sinks). More generally, 

there;fiay be upper limits on the flows between certain pairs 
/
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Qfiue,wforwcxampleq to limited road capacity). Or, there may 

be lower limits. The following result gives the generaiiza~ 

tion. 

j“fi{ Theorem: Let a transportation problem satisfy %1i the premises 

of the preceding theorem for one of the chgcied cases (IIa, etc.). 

b= In addition to the usual constraints, any:faasible flow A is 

(12}5 required to satisfy the following: - 

(@ W D) 

AlG,) fihfii;f o 
: 

off 1 ¢ 3, ana 
/ (9414 

%fi?j) g.yjrfa”' -€18) 

all j € J.{EXHere 3 afié J are arbitrary sets indexing the con- 

straints, the xi and yj are given real numbers, the Gi ‘and Fj 

are given _g“” and closed subsets, respectively, of A X B.)A} 

Then, BtOVlded at least one flow A exists satisfying the 

transportation problem constraints augmented by (17) and (18), 

! E thare exists an ogtimal solution for thms system of constraints. 

   

?} Proof: !ye proof proceeds exactly as in the omnibus theorem, 

with these additional oomments. The set of feasible solutions 

here is a subset of the original feasihle set, hence it inherits 

the uniform tightness of the original. As above, there is a 
»u, 

0% 
sequence of feasible flows Ayr Agress conwerging Weakly to a 

bounded flow )A°, and the objective function IA BXf dx Ettains 

! 

  

its infimum at A°. 
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e
 

It remains to prove that A° is feasible. It satisfies 

the original transportation problem constraints, by the proof 

above, and we must show it satisfies (17) and (18). 

wo | 

- | 

But5 

o\ 

e
 

S
 
P
t
 

e
 

fex all i ¢ I, since each of Aye Agress satisfies (7). This, 

(12), proves thqk A% satisfies (17). s
z
t
 

with Aleksandrov's theorem, 

Similarly, we have 

t ' c‘(‘; : T 44 ) 

A2 (Fj) > lim sup A (gj) > !j +19) 

T
S
 

for all j € J. The left inequality in (19) is a corollary of 

(12) which holds for any closed\set Fj; the right inequality 
Iy‘,‘ifi( % el b 

arises from the fact that all Al' Az,... satisfy (l&).kw(19) 

| implies that A° itself satififies_(l&). Hence it is feasible. Lkrkéffifl L e ; 

v KQ} 7.5. The Transpoxtationfbroblems Existence of Potentials 

We have seen thqfi}lif a pair of functions p:A + reals, 
- 

qsB + reals is a meg%ure potential for flow measure A, then the 

latter is 0ptimalg§or fihe transportation problem. In this 

section we tack}é the converse quastiofig Given an optimal 

solution to thé transportation problem, does there exist a pair 

of functions)which is a measure potential for A? 

Experience indicates that questions of this sort are hard 

to answer, and this one is no exception. Our procedure will 

be to establish the existence of functions with a slightly
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different property, that of being a topological potential for 

A. We begin by setting out the various concepts needed, and 

%% investigating the relation between the two "potential" concepts. 

  

ffifiet (c, ) be a topological space. Set Eg C is a 

neighborhood of point ¢ ¢ C iff there is an open set G for which 

¢ € Gand Gg E. Now let C also be a measure space, with u&gma~ 

field I and measure y. (We make no assumptions about the 

relation between {/and Z)y ©¢ € C is a point of support of the 

measure | (with respect to }) iff every measurable neighborhood 

of ¢ has positive p-measure. The set'of all poipts of support 

is called simply the support of u,"h 

Intuitively, the support og;é measure is "where it's at'". 

As examples, &cééus take someffamiliar probability measures on 

the real line, with T and zfiéhc usual topology and Borel field. 

For a discrete-distrihutiqfii taking positive mass on at most a 

finite number of points,f;he support is simply those points. 

For the Poisson distrifiction, it is the noqéhegative integers., 

For the normal distrioution, it iz the entire line. It may be 

shown that the support of a measure is always a closed set, 

(Hint: show thatvche complement is open.) 

)//Now suppose we are given a transportation problem defined 

by the sourcc-and sink spaces (A, I', u'), (B, I", u"), 

respectively, and unit cost function f:A x B + reals. As always, 

e n" are a&qmanfinite and f is measurable. Also assume that 

The following definition applies to any of the variants - I, 11,
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III, or IV - of the transportation problem. Recall that all 
l ‘j' ;ga ;! ) 

variants have the same dualh (3), {4)y-and (5)of -section-3 — 
except for sign restrictions: P20 in variantsg{%;and 1v, 

g 20 in variants_{g; and IV. 

Definition: ILet flow measure A on (A x B, 2’ % 8 ), and the 

  

pair of functions P:A =+ reals, q:B + reals. ba feasible for the 

transportation problem and its dual, respectmvely,'f(P;QJ is a 

topological potential for A iff the foilowing three conditions 

   r:tifd A, 
_are satis ied: 353 ;'r; 

2"%‘ 

;3 if (a,b) is a point of supporfi for A, then ( 
7S 0 1) 

a(b) = p(a) * £(a,b) 0 1) 
ij if a € A is a point of sc?port for (u' = A'), then 

G 
p(a)m 0y (2) 

[M&J ;f b € B is a point of%support for (A" - u"), then (. fi 

fii’im -0, 3y 
g § 

& 

,fl“’”fl”—’”"—fln* A few clarifying cfimmants are in order. "Point of support" 

in (1) refers 4@ ceucae to the product space A x B, and it is 

relative to the prodpct topology TV x T". In (2) and (3) we 

are dealing with measures on (A, z') and (B, "), relative to 

the topclcgles Tt and T", respectivaly.A 
. mea 
5} u' = A' s capficity minus outflow, and So is the unused N 

TEPIRReY 
capacity measure on the source space A, Similarly, A" - u" is 

inflow minus requiremant, and so is the oversupply measure on 

the sink space B. (Subtraction of measures is defined as in 
,ehagtafioscigectionéfi.)
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~/fAsmunu , _this definition is to apply to all four 

variants. Note, however, that for variants I and 11, u' =AY 

hence p' - A' = 0 has no points of support. V{ifwis’thefifiv 

vacuously true and may be dropped from the conditiqns. 

Similarly, in variants I and II condition (3) is vacuously true 

and may be dropped. This is exactly as in the definition of 

measure potential. ; 

There is."indeeof a striking paro}iolism between the two 

"potential® conceéts:. (l);(B) have aé much claim to generalize 

the complemeotaty‘slackness conditions as do the corresponding 

eené&tions(?34%;4¥6¥'ofiroaotionha For the special case in 

which the sigma-flelds g aofi‘t“ are finite (and coincide with 

the respective topologies‘fi and f“); both potential concepts 

reduce to the ordinary oomplementary slackness conditions, 

dj(a,b) heéag a point of support for A generalizes the notion 

that there- is a Eositive flow from source a to sink b. Com= 

plementary slackooss requires that the dual relation for the 

pair (a,b) be finifillod with equality, and this is just what 

(1) requires,fxfigoin, if there is unused capacity at a source, 

the dual vatlable must be zero; this is (2). (2) geooralizes 

the analogous condition for oversupplied sinks. 

Topoloqical potentlals in the wide sense are fiefined in 

the same way as the correspondlng wide-sense concept for measure 

potentials,~namol§, by dropping the requirement that (p,q) must 

satisfy the finiteness oondition, €4%~of'seotionma In the 

following discussion of the relation between these two
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"potential” concepts, we understand them to be either both | 

ordinary or both wide-sense. ' 

We are mainly interested in determining when oftopological 

potential will also be a measure potential,; for afitopological 

potential is what we get from the theorems to coms, while a 

measure potential is what we want. The following concept is 

5 needed. 
R R S 

’#4%7 Definition: A topological space has thofétrong LindeldSf E;oporty 

iff, for every collection of open sots GS there is a counthble 

  

subcollection G' ¢ G such that us' = Y6, 

" Any subset of n-sgpace wit@fitbe topology generated by the 

Euclidean metric -@ndoed, aqffseparable\metrizablo 3paoéy~ 

has this property, so that §t includes many cases of practical 

interest.”® The followingitheorems apply to all four variants 
- ‘ of the transportation pgéblom. 

- X 3 
4 & 

?% Theorem: Given a transfiortaticn problem, and given topologies 

/ibé T', T" on the souroo and sink spaces, A, B, rESPootivaly; if 

(p,q) is a togologgcal potential for flow A, and the product 

space (A x B, T' / T“) has the strong Lindelof property, then 

(p,q) is a meaonro potential for A. ————— 
e / (408 (%}w Proof: We show that (;;#.4g+f~f3+-imply the oorresponding condi~- 

,9» tJ .«‘%{*&n 

~ tions for moasuro potentiality, {34), (15%7“4%&)flof~seotignm3, 

@ respectivély. If 
/ & 

e



-
 

t 
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q(b) = p(a) < f£(a,b) 4y 

Mapoint (a,b), then (a,b) is not a point of support for A, 
} 

) by (1). Hence (a,b) has a measurable neighborhood, g(a,b) " of 

A-measure zero. There lis a;/épon set §(§'9)o g(g'é) :dtth 

i (a,b) € Q(é'}g). Consider the collectioo{ G‘{,» ozbll these open 

sets, one for each point (a,b) satisfying (4). By the strong 

| Lindeldf property, there is a countable subcollection é' with 

uG' = UGV. Let N' be the corrasponding subcollection of neighbor-‘-j 

hoods of measure zero; N' is also countable. Then 

{(a,b)|a(p) - pla) < £(a,D)} g we) = (ué'{g{(ut‘?')/aw 

Hence A{(a,b) [a(b) - p(a) .““‘f(g,?)} does not exceed the sum 

of “E(a,b)) over all moufloers of .;I'. This sum being zero, we 
2025 L 1) 

obtain (14) e: sect:ron;& 

Next we prove {é;é; }oé::sentm—éa First, it is easily 

verified that the co;aponont spaces (A, :l") and‘ (B, 'f“) inherit 

the strong Lindeléf property from (A x B, T' x T"). If 

;_)(g) > 0 for poix;x”t a € A, then a is not a point of support for 

u' = A', by (2)&;‘5 Arguing as above, we find that {g.!g(aj) > 0} 

is covered by;;g countable number of sets of (u' =~ A')-measure 

zero, Hence’ (u' - A'){a|p(a) > 0}= 0, which implies that 

g
 
A
T
 

N 

u' fi At ox}.-"f';ubsets ofc_{_gslw The—eppesite—inequality 

. This s ‘_Fé%»';éa ’ 

In the same way we find that (A" - u"){ylg(g) >0} =0, 

which implies that A" i 1" on subsets of {lglg(lg) > 0}, yielding 

(316)
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A condition for the opposite implication is oasiox to 

find and to prove: gfi 
& 

,JJV‘”Theorems Let (p,q) be a measure potential for flow A. Let 

f‘, T be topologies on the source and sink spaces A, B X 
=) 

R%égf respectively, such that 

' 4 f/ 255 ) 
{(a,b) |q(b) =~ pla) < f(a,b)}e T' x T",—— ) 

and (in variants II and 1IV) 

(3.6 {alp(a) > 0} 6 7“J4Vw 

and (in variants III and IV) 5; 

J v (B.$0) 
{bla(b) >0} T, {7) 

3'"“ Then (p,qg) is a togoloéical potential for A. 

= \fif%}f*<§s€ 
%hiProof: We show that f&é%ww%&fi%fland”fifi) -of-section-3 imply the § 

,;‘3 l /j { % “ 

corresponding conditions 6&%%L12),~(3} for topological 

   

s fiflf potentiality, respectively. 

’ Let (1) be falso, so that A has a point of support (ao,b ) 

for whlcglo(b ) - p{a ) < f(a /by). The set {(a,b)|q(b) - p(a) 

< £(a,b)} is then ;zggosurable neighborhood of (a ,b ), by (5), 

hence has positive A=measure. Thus<%§;3)oficooction—3 is false. 

This proves that etgy-of -section—3 implies (1), 

In variants I and ITI, (2) is vacuously true. In variants 

R 
T
 
A
 
T
 

g 
XS 

TT
 

  

% W\ I1 and IV let'(2) be false, so that (u' = A') has a point of 
support a, for which p(a ) > 0. By (6), {a|p(a) > 0} is a



  

:asfl"""nn”‘ 

683 

measurable nelghborhood of a,, hence has positive y' a_xf 
a0 AT ’i i il e measure. Thus f$§$ of-section-3 is false(} £35)— of~ooetton~3 

implies (2) in all cases. . 

Finally, (3) is vacuously true in variant§ I and II. 1In 

variants III and IV let (3) be false,kand,conolude by an 
i 

argument similar to that just given that C%fi)«eflmaeetoaawa is (2:106) 
false, Thus 416) efl?%m&etion*%-implies (3}. This—econeludes - the 

prook. |2 17 0 

dote that in variant I (5) alone suffices to insure that a 

measure potential is a topolog}cal potential, and in variants 

II and III only one extra oogdition is needed, 

Potentials have boen’gefxnofi in terms of a pair of funct 

tions, (p,q). It often mappens, however — as in the-next 

chapten — that one of ;hese functions arises naturally from the 

problem situation anoxhas a natural interpretation while the 

other does not. Fogfthis reason it is useful to have a concept 

involving just on‘ffunotion. Suppose, then, one ;o given the ° 

ingredients of afitransportatxon problem: measure spaces 

(A,2',u'), (B,v*,p“); measurable cost function f:A x B + reals, 

with topoloqiés T' T" on A, karospectively. Let A be a 

feagsible flow. Measurable funotion pzA + reals is a left half- 

potential for A iff 

p(fto) - f(a 1by) < pla) + f(a,b,) 48y 

or all 2,a, € A, b, € B such that (a ’bo’ is a point of support 

for a (relative to tho topology T x T“). That is, for fixed 
e
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flto, the function p(») + f(',b ) attains its infimum at any point 
a, €A whioh, paired with b ¢+ Supports A. Similarly, moaanrable 
function q:B + reals is a right half-potential for A iff 

Lo EE q(h ) - f(ao,b ) 2 g(b) = f(a ,b) {9 

for all a, € A, b,b € B such that (a ,b )»Qupporta Ao 

One easily verifies that, if (p,q) is a topological 

potential for A, then P and q soparately are left and right 

halfmpotfintials for ), respectivo&y. Indeed, from{i;;iofi 

section—3 and (l) we obtain fo 
e —— i 

p(a ) + f(a ,h ) = ng ) £ p(a) ;lf(a,b ) 

whenever (a +by) supports A. This yields (8), and a similar 

argument yields (9).‘ Conversely, given a half-potential, -one 

can lay down oertaln conditions under which the. opposite half- 

potont1a1 exists, the two together being a potontlal (p,q). 

(Thus,fiif p is given, q might be defined byt q(b) = inf{p(a) 
+ f(a,b)}, the infimum taken over all @ € A). The following 

theoram. together with the rest of this section, accomplishes 
ngfif' this  task indixectly{gand at the same time relates these to 

& o another concept of interest. 

  

é@* iy Theorem. Let flow A have a ha1f~potontial, and let (ai'hi> 

>" (i = l,...,n) be points of supgort for th > 2). Then 
e ] 

r 
-5l £(a;,b;) +...4 f(an,b ) < f(fil.b ) +...+ £(a l,b V+£(a ,plyfi\fio) 

2 Vi / 
s 

A 

(’4’
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   Proof: Suppose A has a left half-potential p., Then 

(ai) + f(ai'hi) < P(a’ 1) + f(a 1th ) 

“feor i=2,.04yn, and also 

pla;) + £(a;,b;) < p pla,) + f(a .bl); 

‘ all from (8). Adding these n inequalitfiea, the p‘s drop out, 

and we are left with (10). The pxoqg for a right half- 

potential is similar._L}{ fifi,ff 

o~ ?r. 
& 

9 
o A 

(10) is sufficiently integbsting to merlt a namo. Tet-us 

    

call it the circulation condxtion. Intuitively}it says the 

following. Suppose we cyclically reassign sources to sinks, 

shifting some outflow from a1 away from bl and to bz' etc., and 

completing the oirole by shifting a, -outflow from b to bl‘ 

This reassignment «-which leaves all total source outflows and 

sink inflows unaltgred}-does not reduce total cost, according 

to (10). Fi 
For n = 2;52 particular, the circulation condition bears 

a striking roéemblanoe to the concept of comparative advantage. 

(Think of ai‘and a, as two countries or workers, bi and b, as 

alternatiVe activities in which they can angagd). Comparative 

advantaqe is usually expressed as an inequality among products 

or ratios, however, while the circulation condition is an 

ineqoality among sums or differences.
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We now come to the demonstration of the existence of 

topological potentials. This goes through two main stages, 

each rather long. We start with A2, an optimal so;ution to the 

transportation problem; more precisely, A° is unsurpassed under 

(reverse) standard ordering of psoudomaasuros"”From this we 

deduce five inequalities involving the cost function f. The 

crucial one is exactly the circulation oondition, {11) bolow. 

This is used to establish the existence and major prperties of 

the topological potential. The other inequalities are needed 

] for (2), (3), and nonwnagativity conditions on p and q. 
,Zijij zs) From now on we use the abhreviation ab for f(a,b). 

%f% Lemma: Let (A,Z',u') and (g,z",u“} be siéma»finite measure 

spaces, and £:A x B » reals measurable; let %‘, T" be topologies 
," ¥ 

!i on A, B,}rospeotivoly(QSuch that T' ¢ 3, ™" ¢ Z“ig, and f is 

  

~continuous with respect to T' x T"., Let A° be unsurpassed 

) (reverse standard,otaor) for the transportation problem formed 

j from the above, afia let (ai,bi);fifla 1,...,§x be points of 

e _support for A°g; Then 

{‘1.};'”? 

: lij % a;by +,;;+ ab < a b, +...4 a, 1b + a bl a1 
_— 

i holds for ‘all problem variants, I, II, III, IV (n = 2,3,...)]\ 

kS 353;!; (11) If ag < A is a point of support for (u' - 1°'), then, in 
A" 

) 

  

H”ggoxfi variants II and 1V we have 

M £ 
: 

("1 S41> 

\ (n=1,2,...), and in variant IV we also have 

| 
b |, 

—
—
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Clwd2, 
-«lbl +oo ot gnb < agbl +onnt anbn+1)7 % 

in = 0,3,.0efs (For n=0 He ledl side of 68 75 2ero.) 

T (iiiifi If bl € B is a point of support for A" - u" " and all,,*fi 

    

subsots of B belong to T" (hence to E“), then gfiw 

  

(7:$; 

11(3 = 1.2,...b'in variants IIT and IV, and 'gfig 

o (7.5 
ayby +eoat gnhn 2 a;b, +...4 ,a;;,_lb {15) 

\(for hs) the wad' side of Ug) g erD)) 
(n = ] 2,...y*in variant IV;V’Yfioithar the ai‘s nor the bi‘o   \ 

N need be-a&&-distinot in any of those casedfil 
,49' 

w = a";v 

Proof: For each case,x(ll)ng£5), we construct a new feasible flow; 

[ 

the corresponding inoquoxity is then deduced from the fact that i 
& 

this new flow cannotAofirpass'kfl. 'Only (11) will be proved in 

detail. 

  

Given ¢ > 0 thore are open sets El,...,E < A and 

Fl’a‘ogr' < By satifif}fing ai & Ei; bi & Fi (i = 1,..a,n), andr-'\ 

for all a e Ei‘ b ¢ Fi' 

lab - ap, | :s.e:/> 6y 
(i =1,...,n); and, for all a GE;* b C'Ei_u'   = 7 3.0} 

‘lg = 1,..4yn), (In (17) for i = n, n+1 and bn+1 are to be 
understood as Fyv bl' respoctively) For, the continuity of £  
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implies that there are open sets owning ai and bi' respectively, 

such that (l@) is satisfied for all (a,b) in their cartesian 

product, and open sets owning ai and bi £ sufih that (17) is 

similarly satisfied. This gives two open sets for each of the 

pOints (al'u-o;a v blyoboyb )u Lat Ei be the intersection of 

the two open sets for ai, and construct Fi in the same way for 

bi (i = 1,...,n)' With theso,:all the relations above are 

satisfied simultaneously.lgf 

e L—(E X Fi) > 0,{s;nce Ei X Fi is a measurable neighborhood 

of (ai, bi), a point of support for k° A“(Ei ani) may in fact 

be infinite,‘but ifi so there is a measurable set Gi < Ei x Fi 

such that « > A‘(& ) > 0, since A° is a*gma-flnite. Choose‘ 

a set G, satisfying these conditions for each i = 1:---» . gm%gflfl 

i 
(wNow define measures v, on (A x B, ' x ") =s follows- 

~ ,y 
/- & 2+ 5 

fim s MDA g ] ao 
/ 

s 

He I' x I", i = 1,...,n. Copéider the signed measure V given 

by =~; e 

i,f{h“ 

" ,’“f 7 

P b v g ' 5 et T 
B “'fi ‘\- ; = 

(Here v' is tho 1eftJMarginal of vy, vg is the right marginal 

of V,yi Wwe are to form the product measure of these, add up n 

similar produot measures, and then subtract the vi’s of (189). 

% All the summando in (19) have universe set A X By of- course). 
-\\\ 

; s 
3 “ 3 
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S For each ;, vi(§ X B) = 1, so that (19) is welleefinod, 

and in fact boundo&. Finally, consider the (signed) measure 

A given by 

  

2 " \\\fi We shall prove that this )\ is a feasiblo flow, First, A is £ V’,’f " ,/’/ 

izj;»lffl 'nonrnagatlve. For, yvi(H) < A%(H)/n, all i; from the defini< 
| tion of ¥, so that 

A(H) > A°(H) - yvl(H)_fif‘.fl YV, (H) > 0. ¢ 2 
e 

Hext, for any E ¢ I' we obtain vggfx B) = 0 by direct substitus 

tion in (19). S
 

T 
T 

Similarly, v(A §5?) = 0 for any F ¢ I". This 

means that A2 and )\ have the,éomo marginals. Hence, in any 

variant of the transportat&on oroblem, the feasibility of A° 

implies the feasibility of A 

i It follows that onannot (downwardly) surpass )\° 

[ £ fii - [ fdr =y ] £f dva S e s 
,«l“ 

Now 

But the 1ndofinito integral f £ 4v is actually well»dofined and 

finite as a doginito integral over A x Bj ?ot, f is bounded on 

the set 5g 

“?"i (filffifiFl) Ueoel (gé x,pn) u (B 

/ # 

1 X Fy) ueewu (Ejp P 

by (16) and (17), while v is zero off this set. Hence un€, 

surpassedness under (reverse) standard ordering reduces to the 

o



    

M 
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condition : 5 [ & A 
" 2 (V;iléiji b 23 [ £ dv > 00— 121y ;fl éfifi AxB ¢ woj 

Expanding this by (19), we find that 
; "1 ,7(@ 

) g-;",’;!..,g‘,.& 

-ijB §~dui > (ai i ~ €)v; (A x B) = (aibi - &)/ 22) 

(i ®# l,40e,n), sinca vi is zero off Ei X Fi' and f is bonnded 

below by a, bi -~ eonE, x Fi' according to &16). Similarly, 

> 0) ‘gfi. v 

{ Dasw 5) JA"Bf ci(vi x "é:-t-flf(?;bgu + a)v;(é)vgfi(fi} - “31514-1 + €)/ (23) 

(i - 1;.00,“), 311’!0@ f { aibi+l + @ on Ei X ?i’;‘l' by (17), 

while vi x vi+1 is zero off this set. (For i = n, i + 1 should 
be read as @1“) 

\“» u- .é > 

From (21). %32), aodm43§) we obtain 

a‘lb2 *eaohk anbl i albl “ass™ anbz} 3. “2123. % 

But € is an arbitrary gésitive number. Hence (24) implies the 

circulation conditioqf{ll). The first inequality has been 

obtained. 

  

 We now sketqh the proof of (12) and (13). It proceeds as /5 
- 

above with the following differonces. In addition to the open 

sets E,, Fi (i = l,...,n), we find open sets E, ¢ A and — 
0 

for (13) - F‘ +1 S B, such that .a.e é Ee, bn+1 € F *1, and (17) 

holds for 1 = Q t1yeee,n. 

2
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The sets G; « (E X Fi)y (i = 1l,s..,n) are constructed as 
above. 1In addit:.on we fin& that (u' ASJ')(_E_:Q) >0 ,;oince _I_é:s 
is’ga measurable neighborhood of 59, a point of support for 

u' - per, (u* - a2y (_{39) may in fact be infinite, but there is 
always a measurable set A' ¢ _Ee for which « >(u' - xe')(a') > o, 
since these measures are sigma~finite. 

The measures Vi (i = 1,.“.13),‘are defined exactly as in 

  

(18). In addition, define the measure ue' on (A,I') by 

5 ué(g) = [(u* = axey (E n %}'fl/(u‘ - X2') (;_g')y _   allEg I'. Also\:}- for (13) < define measure F;’;‘*‘l on (B,I") 
by 

D Vgl 91 Af b€ B w0 gD 9+l ‘ F") 

all F ¢ I". Consider the signed measure v op (A x B, L' x I") 

   

    

  

  

given bys ° 

i 
o » + ! % v L 
g W (3 & s 

61\'_'15 Formula, * (V] 4y X V) w vy, .-, - v [+(v' X Moy U . n-l1 n 1 n+l applies for 
/ 

g?.‘l; Rsniniz lwhere ‘the bracketed measure is to be included when considering whiel, ariges [ 
(13¥ , and omitted when considering (12)1’ Each of the measures o"“z \‘er (B) 

de me v in (25) has the value one at A x B, so (25) is well-defined and 

“5/‘0 ’(/4 ) bounded. Finally, consxder the (signed) measure A given by 

> -~ *‘7 3 ([‘ & = ) 

A + zv | t26)



  

  

N
 

——
 

§ 
& 

i 
i 

i 
1 
1 

3; 
g 
1 
i 

, 
/ 

2> W 

7 .1l=/ 
T Y 4 il 

‘whereigyis?fiow-tho positive real number mincg, (u'wk")(&f)). 
y being defined as in (Zfl)gpbavo. 

Non?hegativity of A is proved as above. Next, substitute 
E x B into (235) (inclusive of the bracketed term), whore B¢ 2, 

The result is ue(E). Hence, 

3 ) AT(E) = X2!AE) + ,,zué(.:fi) SAE) + (0 - A (B) P 

the inequality arising from the definition of Z ffienco A' g u's 

A satisfies the capacity constraints in variants II and IV, 

The same result holds a fortiori if the braoketéd term in (25) 

is omitted, since this leads to a smaller ). ;; 

Hext, substitute A x F into (25) (omittifig the bracketed 

term) , where F ¢ ", Everything cancels, héoco A" = AeY and 

feasibility is preserved for the roquiromofit constraints in 

any variant. Adding in the bracketed tero, however, yields 

merely A" > A2", so that feasibility is oresorvod in variant IV, 

To summarize: A\ given by (26) is feésifilo for variants II and 

IV if v is iefined by (25) omitting thé bracketed termf and is 

feasible for Iv if v includes the bracketo term., . & S S : -1 f“\ - ] f ;’,,/” 
S 21 , 

Just as above, the feasibility of A Ieads to foB~ dv > 0, 

and an argfiment similar to the one above gives the inequalities 

(12) or (13), depending on whether-(ZS) omits or includes the 

bracketed torm, rospeotively. These inequalities are then valid 

for thgoe variants in which A 15 feasible. 
s 

A R
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/( Finally, the proof for {14)4(15) is very similar to that 
L | 

There is no point gg, and consequently no Eg, 

A', or ul. 9 We choose F, to be the singleton set {b,}, which 

can be done because every subset of B is open by assumption.j 

Otherwise proceeding exactly as above, we define v by (25), 

modified by the omission of the measure ué x “1‘ The{tracketed 

measure vé x "Q+1 is to be included when oonsidoring (14), and 

omitted w;en c;nsidering (15). A is again defined by (26), 

where z, however, is now the positive real number | 

' (1.5.21) 
min(y, A%k} - w"iby ) ) (27) 

¥ being defined as in (20). To show that z is indoed positive, 

note that {Ql} is itself a measurable neighborhcod of bl' hence 

has positive (A®" - u")-measure since b, is a point of support 

for that measure. 

NonTnegatzvity of A is proved as above, ffiext, substitute 

E x B into the modified (25) (inclusive of tho bracketed term), 

where E € L'. Everything cancels, hence A' /= A°' and 
Lgp«qf 

feasibility is preserved for the_roqu%rgho@t constraints in 

any variant. Omitting the bracketed term;@ields A' €A 

which preserves feasibility in variant 1v. 

iext, substitute A x F into the mo@ified (25) (omitting the 

bracketed term), where F ¢ I". The roofilt is ~vl(§ x F). Nowm\ 

since F; = {b;}, we have G, Hence, from (18) with 

i=1, ve find that v;(A X F) = L if b, ¢ F, and v (A x F) = 0
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if by ¢ F. In this second case we have A"(F) = Xe"(F), while 
on {b;} we have . 

2 i 
£ 

from (27). Hence A" 2 u", and X is feasible for the requirem % 
ment constraints in variants III and IV, Adding in the - 

\ bracketed term of (25) can only increase ) 34 honce prosarves 

e
 

this feasibility. flo:summarize: if the brooketod measure in 
modified (25) is included, the A thus defined is feasihla for 

AT
 

variants III and 1V; if it is omitted, A is atilljfeasiblo for 

1v. | 
i The argument from unsurpassedness to (14) qr {15) then 

follows the pattern laid down above. |J} 4;?# 

  

We now come to the main result. floteuthat we prove the 
.\ 

existence of a topologioal potential in the wide sense ¢~that 
48 the integralsi?;.é ;Z ¢ ?B‘q éu% neoijgot be- finite, oxr 

even well*defined. As “Lfitlfinfld below, a aimple extra premise 

removes this qualification., Note alse that the premises for 

variants III and IV are somewhat stronger than for variants 

,«{, and_II. | 

f%: \ Theorem: ILet (A,Z',u') and (BZ",u") bofnonrempty sigma-finite 
M\ measure spaces, and f:A x B + reals moasurable and bounded., 

o ¢ Let A% be a measure on (A x B, I' x Z") which is unsurpassed 

  

—
 e
 

/f : (reverse standard order) for the tr@nsportation problem 

determined by these.
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« e Also let T', T" be topologies on_§gf§, respectively, such 

that 7' ¢ ', T" ¢ I", and £ is continfious with respect to 

A +_1, \ T' x T". (In variants III and IV make the additional assumption Y ‘ 

Avmbl ¢ [rme| Ehat all subsets of B belong to #"!; 

'q} Then there exist bounded funotions, p: A =+ reals, q:B -+ 
Oy, & 
b;;A\i reals, p lower and q upper semifioontinuous, such that (p,q) is 

Q4'), a topological potential for A“fi%n the wide sense. 

?fifi, Proof: We shall use iifferent flefinitions of for the different 

variants I, II:]EII, IV. Am4X~seguence is a sequence»of the 

n i 

is a point of support of Ag for i=1,...,n./ That is, it 

fifi}, form a;, by, al""'bn’ a ?n = 0 or 1 or «es), where (ai'bi) 

% consists of 2n+l points, olternating from A and B, beginning 

i and ending with an A—point (For n = 0 the sequence consists of 

: a single_§—901nt, 9. Q B-sequence is an a-sequence with an 

extra B~-point b 41 tackod on at the end. (Thus the shortest 

B-sequence is of the £o§m~§o,9195} ‘ 

The value of an céi(fi-) sequence a,, 91,‘..,§§. (b, ,q) is 

defined as 
§ Ve 

-agb, + a;by «falpz +...*,o§bn (”anbn+1)y/}_ {28) 

where the parentheticél term is included for B-sequences only. 

(Heré*§§‘aboreviates %(o,b) as usual. The singleton sequence 

a, is taken to have the value zero). 

Now define the éunction_g,iwith domainig,_in three ways. 
() e 

The o-definition sets p(a) gqual to the supremum of the values
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of all o-sequences beginning with a, all a ¢ fi: The 

B~definition is the same with all B-sequencos beginning with a. 

The y-definition is the maximum of these tWO, inrtflsmnrsnmo&s, 

the supremum of the values of all a~- gag@fiwsequences beginning 

with a. ‘f 

We now prove that, under any of tfiess dsfinitlons, the 

function P is bounded, lower semiwcon&inuous, and measnrabls. 
LAAN ’f; A 

£ is bounded, so €] < w for some rsal number N, Hence 
) 

p(a) > 0 ox ~ab on the ay &definitionk‘respectively, for any 

ag€hr beg B, so that P 2 -N: p i; bounded below. 

Nsxtd boundedness above, Ssgusnces of length ot most 

four have values which-—-are not greater than 3N. For sequences 

of length five or more we make use of the circulation coooition 

(11) , which is wvalid in all variants under our premises, i(28) 

may be rewritten as 
1;" 

yy = Bgly *vee= Baby, * "“:3’ = a5by] Z{q.ggs;: 
29) 

, +-aobl - agby ("a&bn+l) 

(n = 2,3,...), But (11) statos that the bracketed expression 

is non+positive. Hence €2§}i%evsr exceeds 3N. Thus p is 

bounded. : 

Lower semi;continuity ié proved as follows. Think of all 

points in (28) except a, as oeing fixed. f(fifif”;heo defines a 

family of real-valued functions with common domain A, each 

sequence by, 8y,.e.,b , &, (b, ,) indexing one such function. Sl 
=
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Each of these functions is continuous, since f is continuous. 

tne easily shows that the supremum of a sst of continuous 

functions is lower semé}continuous. But p on any definition 

is such a supremum. 

The sets {a’P(a) > x}, X real, ‘are open, by lower semis 

continuity. But T ¢ I', hence these sets are also measurable. 

Thus p is measurable. (Simllarly, an upper ssmricontinuous 

    
function on § is measurable, fact is needed 1atefiffi 

With these general resgits in hand, we proceed to each 

variant in turn, 

41 lVarlant I. Use any of tgi three definitions of p, and then 

j// define q:B » reals by ; 

  

q@-—@) = inflp(a) + abl, - “(30) 

the infimum taken ovsr all points a € A. Since p and f are 

bounded, g is bounda& Think of p(a) + ab as a family of 

functions of b, 1ndoxsd by a. Each of these functions is 

continuous since f is continuous. Then q, as the infimum of a 

set of oontznuousflfunctions, is upper semifcontinuous, hence 

also measurable, 5 

It remains qb show that (p,q) is a topological potential 

for A° in the wiée sense. For variant I this reduces to the 

following: 
e? 

; i) 
§ q(b) - p(a) < ab ; K~E¥k} 

for all a € A, b € B, with equality if (a b) supports A’.'.(Sl) 

however, is an ?mmediato consequence of definition (30). Let 

(gg,ga) supporé A%, Then
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pla) > -ab, + agb, + play) 329 

for any a ¢ A5 ‘fior, _the right side of (32) is the supremum of 
the values of soqusncss (a3 8" or both) beginning (a,‘ 0* ao,...)g 
while the left is the supremum ovsr a wider class of such 
sequences. It follows that the infimum of p(a) + ab is 
attained at as= aye Hence 

  

   

  

a(by) = plag) + agby, @3 
8o that (31).15 satisfied with equality. This-completes-the. 

Varlant I1, Use the ondefinition of P, and define q again by 

,//'{303 All eof the argumeo. for variant I applies here, soo. To 
  

complete the proof for {ariant II, two additional facts must 

be established: L A 0, and p(ag) = 0 for any point a, 

   supporting u' - x°°', 
r Al 

e any a € A, tho singleton consisting of a alone is an 

U~-sequence of value zéro: hence P 2 0. Let ao support u' = A°', 

Then inequality (12)113 valid,, and states that (28) —(omitting 

the parenthetical term -~ is never positlve, hence o(ao) = 0. 

This— f&nishesuvarien%wxxn 
\ el 

" ;? 
fe 

Variant IIIT Use tfis B-definition of P, and define qg(b) by (30) 
/)’ if b is not a point of support for A" - u", while q(b) = 0 if 

b is a point of sup@ort for X2~ u®, 

‘J &
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é?(rg/isaclearly bounded. Since f“, hence I", own all subsets 

of g,q is automatically continuous and measurable. To shoq 

that (p,q) is a topological potential for A® in the wide séoss 

we must demonstrate (31) Qwith equality if (a,b) supports l_) 

and also that q > 0, with q(bo) = 0 for all points of support 

of N% - y", This last fact is true by the definition of q. 

- For any a € A, b € B we have p(a) > ~ab, sioce the latter 

is the value of the B-sequence a,b; hence q > 0'; The same 

inequality yields (31) on the support of A" = u", since q = 0 

there; (31) follows from (30) off the support. 

Finally, let (ao, po) support A2, If:q(to) satisfies (3OL 

the argument of (32) leads to the oqualiti (33). This leaves 

the case where b, supports A®" - u". Qflen inequality (14) is 

valid, in the forms 

- L 

o Caae SR 
™ 0 0 T 2 g i 

(n =0 1,...). Here bl' al,...,ae,b +1 are any points such 

that (a ' birmsupports 1° (i - lg...,n). But{;by (28), p(a ) 

is the supremum of the rlghtuhofié expression in (34) over all 

Since the opposite 

    

such sequences. Hence p(ap) £.~ao 20 

inequality always holds, p(a ) = -aobo ‘But this is (33), 

since g(b,) = 0. 

supports A2, This»finxshss;mariantwrfr 

%} Variant Ig” Use the Y-deflnition of p, and define q as in 

///”variant III. The same argomsnts as in variant III then show 

that q is bounded, continuous, measurable, non+negative, and
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zero on the support of A2 - u", and that (31) holds for all 

a€ A, be B, Three more facts need to be demonstrated: p > 0, 

p = 0 on the support of u' - A%, and (33) holds for (se,bo) 

supporting A°. 

e
 
A
N
 B 
A
 

S 
S
T
 
A
0
 

w:g@ For any a ¢ A, p(a) is not less than the value of the   
    

A
R
 

TR 

singleton sequence an hence P2 0. Wext, let a a, support 

' = A2's Then inequalities (12) and (13) are valid,‘and imply 

that (28) never exceeds zero, with or without the parenthotioal 

term; hence p(a,;) = 0, 

A
 
A
5
 

T
S
 
SN
 A

 

Finally, let (?0' po) support A°. As abova,=if‘gfi does 

not support A2" - y*, then q(b,) satisfies (30) and the 

argument of (32) yields (32). Suppose b, does support A°®" = u". 

Then inequalities (14) and (15) are valid, in the form: 

7/ gy B *NaBy * By “eead %n b ( anbm—l)/3 e sonsr” 

J(g{m 0,1,...), with or without the parenthst§Ca1 term. (Note 

that for n = 0, (15) in the form (35) is s;zifplya ~aghy > o)L 

By (28), p(ao) on definition vy is the suprémum\of all the 

right=-hand expressions in (35), for bl' al,...,b 2 '(bn+1" 

where (a.,bi) supports A' (i = l,...,n). Hence again 

le(ao) < -aobo, and the same argument as in variant III shows 

that (33) is satisfied., This flnlshoo variant IV and the 

proof. LK ""”“fi' | 
/Nfi‘wm 

As noted above, (p,q) is a toyological potential in the 

wide sense. But if we impose the additional premise that u'
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and u" are bounded, then (p,q) is in—faet a potential in the 

strict sense. TFor, the funoti%?s p and q as oonstructed above =12 - 
) ¢ 

are also bounded, hence the definite integrals,éfA P du and 
2,140 — 
IB}éidu”,;are both well-~defined and finite. 

The extra premise that all subsets of B belong to T" — 

imposed for variants III andq;?}4-is somewhat restrictive 

(although natural in some cases, e.g.) wheg B is a finite s.st). 

In variant v it may be replaced by the extra premises that £ 

is positive and Afl"fisigma-finite.&4 
A 

Using the Radon-Nikodym theorem as in case (IVb) of tne 

We show this as follows@ 

optimality existence theorem, we show the existence of a 

measure A, on I' x I" satisfying A; < A° and beingvfsasible for 

variant II, hence for the original variant IV. Srroe A, does 

not surpass A\°, and £ > 0, we must in fact have ;; = A%, Thus 

A2 is feasible for variant II,kaoé)in fact)unsoépassed for it. 

let (p,q) os a wide=~sense topoiogical potentisi for A% con- 

structed as for variant II. To verify that ttis (p,q) is also 

a variantfify gide*sonse potential, we must qsmonstrate two 

additional facts: a2 0, and g = 0 on ths'support of 28> ~ u". 

This last property is trivial, because ths support is empty, 

since A2% = u", Alsc q is fisfined by (30), so the non+<negativity 

of p and £ imply the non-negativity of q. This concludes the 

proof. 

The functions p and g constructed in our main theorem are 

semi+continuous. We can strengthen this result by adding some
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extra premises concerning_fi. First)ws need a few continuity 

concepts, 

Let (C, T) be a topological space, and é a set of rea1~ 

valued functions with common domain c; ifiiis eguioontinuous at 
the point C, € C iff, , for svsry positive number ¢ thsre is a 
nsighborhood N of €, such that 

lgte) = gle )| < e, 

for all ¢ ¢ N and all g ¢ G (1¢ 6 oonsists of just one 

funotion g, this is simply the definltion of oontinuitx offlg 

at the point Cy+ One may then show that g is~éontinuous as 

defined previously iff it is continuous at ers;;Nooint of its 

domain as defined by (36).) fiext, suppose that T is generated 

by a metric d.,fG is uniformly equioontinuous iff, for all 

€ > 0 there is ad » 0 such that 

; » o = 
o 4 2, ; (5. 2/ if g(ol, oz) < 5,%then%lg(§l) > gf%z)' € € 437) 

for all €1+ €3 € C and all g ¢ G. (If G consists of just one 

functxon 9. this is simply the dsfinition of uniform continuity 

of g).; . | f 

5 Now consider the transport oost function £:A x B + reals, 

“fi f may be thought of as a family of functions f(-,b) tA + reals, 

indexed byzo € B, Suppose this family wors equicontinuous at 

the point a' € A, ~%hatmrs for al& € > 0 there is a neighbors<, 

hood N of a! suc; that o 

[f(a,b) - f(a',b)l < g
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& 

for all a ¢ N, b ¢ B, Phen we claim that p, constructed under 

any of the definitiong o, B, y, is continuous at a', 

7 ‘;\x(,{;%-The proof of this statement rests on the easilyi;;rified 

7 
fact that& if the collection of functions ( satisfies (36),kand 

Cinite 
the supremum of (§ is real—walued, then sup‘fi is continuous at 

C,+ Now consider (28) as a function of a_, the othsrlfioints 
- R © ( 

byr 8yreeesb sa ,(b +1) being parameters. This function differs 

only by a constant from the function ~§(',bi). Ksfics the 

functions (28) are equicontinuous at a', so that.p, which is 

the supremum of an appropriate subset of them,;is continuous at 

a:. This conecludes the proof. 
F 

<;Ww“Thus, if the family £(-,b), b ¢ B, is oquicontinuous at 

each point a ¢ A, it follows that p is oootinuous, not merely 
€ / 
lower semifcontinuous. 

s 
What about q? f nay also be thought of as a family of 

functions f£(a,*) with common domain g, indexed by a € 2. 

Suppose this family werxe equicontinfious at b" € B. Then we 

claim that q, given by (30), is oontinuous at b". 

The proof is virtually the sams as that for P. on noting 

that, if G satisfies (36), iufl the infimum of ( is also 

continuous at co, provided inf G is ré:%fl:o&aed- (This takes 

care of variants I and II; in variants III and IV all subsets 

of‘gflbelong to T", which makes ggz function %F? + reals 

continuous) . B 
v 

Next, suppose T', the topology of A, is generated by a 

metric d', under which the family £(+,b), b € B, is uniformly
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equicontinuous. Then p is uniformly continuous, under any of 

the definitions a, B, v. | 

The proof is similar to thosefgbove, and is based on the 

fact —:again easily vsrxfiedj«-that if the family G satisfies 

(37),, and suptfi\is roa;ggéifleé, then sup (G is uniformly con= 

tinuous, Reversing tho‘rSLos of A and B, we get a similar 

‘ oondition implying that qyggivsn by (305{19 uniformly continuous. 

% Our final theorem summarizes many of the prsceaing results., 

-Note—that ths boundodness assumptions guarantee that the 

objectifie function for the primal is always a finite definite 

integral. Hsnos’oe speak merely of an optimal solution, the 

distinction between "best" and "unsurpassed" disappearing in 

the present,ihstance. 

e : 
(«fiiwrowhsorem= Let (A, &', u') and (B, 2“, 1") be bounded measure 

spaces, and, f A x B + reals be bounds& measurable, Let A2 

VD) be an optimal flow for the transportation problem determined by 

these. : 

Also let T', T" be topoloéiss'on §,>§,(respectirely, such 

that T‘ e, T"g I", £ is oontinuous with respect to the 

product topology T* xlT"; afic the latter has the strong 

Lindeldf property. ({(In vsriants IIT and 1v, add the condition 

that all subsets ofvg_begong to T 

Then -tchere—exist fooctions p2:A + reals, q°:B + reals - 

such that the pair (?9;fq’) is best for the dual of the trans< 

portation problem, and the primal and dual values are equal: 

4 § 
4



A 
[ 

o £ 

    
LounJed ' Proof: By the main result of this section there exists apair , 

A §§?,Vg9)hwh%oh is a topological potential in the wide sense 
for )2 fi io,fioot@‘a potential in the ordinarysssnso, since p' ~ also / ! and u" are sbounded. The strong Lindeldf property than implies 

that {p ’ q°) is a msasure potential for %’ from whzch the 
‘f;c!.fi" 

stated result follows (see 18) of seokion -3) . fi}kfiyv97tfi 
w" : 

; 

We conclude our discussion of tho transportation problem 

with a brief glance at the pionesrlng work of Kantorovitohf*s 

§we -shall use our notation and terminology to facilitate 

sxposrtionr He formulates a speoial case of the measure= 

theoretic transportation problsmfivariant_z) — special in that 
tho‘sourcs and sink spaces are tfio same: (A,X') = (B,I"), the 
cost function f is nonunogativo; u' and u" are bounded, and a 

certain topological struoturo is imposed. Next; he defines a 
: fisasible flow A as being Eotontial iff there exists a 

(measurable) function pia » rsals such thst 

QJ L Ip(b) » p(a)l < f(a,b) c;n{m 

fé;r all a,b e A (rsmombsr that A = B), snd 

> 

p(b) - pl(a) = f(a,b) 

if (a,b) is a point of support for A. His main assertion is 

+then that a flow A is joptimal 

  

it is potential,



706 

This is quite instructive, both in its accomplishments 

and its errors. The oofinition ofug is close to our concept 

of “topologicai potential” for )\, differing from it in the 

minor point that the absolute value appears’on the left of the 

inequality, andAin the major point that just one function, Py 

appsars{\insiead of a pair (g,g}.,;iiowsohor»worés, while the 

problom éormalatod is of the transportation form, the "potential” 

concept used is more appropriate for the transhipment problem 

considered below. ThiEZQOuld not have happened iffKantorovitoh 

did not identify the source and sink spaoss).‘ To place things 

into the transportation problem framework, think of these 

relations as defining conditions on the EL___ (p,g) rather than /(p,R) 

the single function p.tw(p,p) is, indeed, a/ topological 

potential for A if it satisfies those oonditiong. 

As for Kantorovitch's assertion, the "if" part is correct. 

We indicate how this can be demonstratod within the framework 

of our theory. The topological assumptions he makes imply the 

strong Lindeldf property, so that_(g,g} is also a measure 

potential. The boundedness assumptions then guarantee 

optimality of A. ' 

The "only if" part is erroneous. If A is an optimal flow 

one can indeed demonstrate the existence of a topological 

potential (p,g) under his assumptions (by our proof above). 

(Here both p and g will have domaineé, since source and sink 

spaces are the same). But QQ?joannot make‘the further assertion 

that p = g, as the following counterexample demonstrates. Let
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A= {a, b, ¢}, with all subsets open apfl measurable; u'{a} = 
é"{c} = 17 w'ib,c} = u"{a,b} = 0; £(aic) = 1, £ = 0 elsewhere. 
Thislsatisfaea all of Kantorovitch's premises. The optimal 
flow is} A%{(a,e)} = 1, and A';w 0 on all other singletons; 
in fact this is the only feas%fiie flow. Now suppose this flow 
were potential. We would h§v€_§(g9v~Ap(g) = 1, since (a,c) is 

a point of support for A’»“ But also p(e) = p(b) < 0 and 

p(b) - pla) <0 - cont:adiqtion! 1 

This three~page pape%fiégh; fxéa locus classicus for the 

measure-theoretic txans§ortation problem. The problem itself, : 

the key réle of "potentials", and certain basic solution methada,4 
are all adumbrated here, even if the exposition is flawed. The 

energies of resgearchers have in the meantime been directed into 

other channels ;Qmainly to the development of "ordinary" 

programming‘fiethodé3~Qsa that the work of Kantorovitch appears 

to be the direct pradecessor of &h&?pfaaeat chapter, with a 
.4'6)/ ‘ ‘._.ii.: < 

lag of thirty years., 

7.6, Transhipment: Introduction 

The transhipment problem with n locations isa 

#ind nz nonfinegatxva numbers xij (i,j = l,...,n) sahiafying 

(N)»(f-‘i% 

(Xgg *eeot X)) = (xy; +ooot x0) < ap Sy 

(} = l,-.o;l}); 

and minimizing the sum of
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{:;, D 

£13 219 ' Ed 

over all n2 terms of this form, Here the numbers “i and fij 

(i, 3 =1,0000m) [are given parameters. 

The simplest interpretation is the following. X4 is the 

quantity of a certain commodity moving from location ito 

location j. On the left of (1), the first parenthetical sum, 

xil toeot X, /h(excluding xii) is the total qnantity exported 

from location 1 to other locations; the second parenthetical 

sum (again exéiuding xii) is the total quantity mgorted to 

location i from other locations. Hence the leflt side of (1) 

méy be thought of as net exports from locatiofi;i. {The 

g%aning of x;.; is problematical, but this tétm cancels out 

from the leftgof (1) and therefore creataa;no interpretive 

difficultfififi @y may be thought of as the net capacity of loca- 

tion i, If positive, it gives tye amount by which exports 

from i may exceed imports to i; ;f neéatiVe, the am?qfigvt 

by which imports to i must exceed exports from ;?irtl) states 

that net exports cannot exceed net capacity; we could just as 

well have stipulated that net imgorts cannot fall below net 

requirements Bi' where Bi is samply ”“i‘ 

“Let-us compare the constraint system (1) above with the 

constraints cf the transportation problem,-klsl;fiéfég) of 

gection-1. We can think of those locations i for which “i is 

positive as being sources, those for which “i is negative as 

being sinks. (If a; = 0, i may be placed in either catagoryfz\\\\<§
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The transportation problem allows flows only from sources 

to sinks, while the transhipment problem allows flows between 

any two sites, including source~to-source, sink-to-sink, and 

sink~to=-source. Thus it becomes possible to "tranship" a flow 

from a source to a sink through a series of intermediate 

locations. 

The objective function, (2) abewe, has th& same form as 

that for the transportation problemkfési-etzflactian“%@\though 

unit transport cost fij must now be deflned-fcr all pairs of 

locations, not just for source—sink pairst) 
e t.__,,mm_,/ 

» As with the transportation prablam,,we may distinguiseh 

variants of the transhipment problem. ii; {2) abowe-will be 

called the inequality-constrained varlant. The egualitg» 

constrained variant simply replaces ”4“ in (1) by "=", 

The transhipment problem was first formulated by Orden, 

who also showed that there is a trahsgortation problem gh&ch % 

is equivalent to the transhipment problem in a certain sense.&fi 

Indead, several ways have been suggested for "reducing"” trdns 

shipment to the transportation problem (or something resembling 

it). We-shall explore one of these below, 

Firstp hewevex, it is worthwhile to compare the transporta< 

tion and transhipment problems from the point of view of 

possible applications. We have alveady mentioned the inter€ 

pretation of transhipment points as locations of physical Space. 

Specifically, imagine a system of cities ~ thought of as points <~
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linked by a system of roads. A road directly links cities i 

and j iff it starts at i, ends at j, and passes through no 

other city. We then let fij be the transport cost incurred 

in mcving unit mass of the commodity from i to j over this 

direct link, or over the cheapest dzrgct link if there are 

several, (If there is no direct liai, set fij = w, Alter= 

natively, one may resort to the artifice of making fij finite 

but "very large"”, so that traffic aveoids this "link" if at all 

possiblaf\ | 

Note 3hou&é~bEMtakenvwbyw%hewway,=e§-the heroic/linearity 

assumptions involved infthe objective functions (2) abeve or 

%ég{eiwsectienn&v»%px'their generalizations to integrals. Con=- 

gestion phenomenafénd scale economies( both very important in 

transportaticn}:éie ignored, and a doubling of traffic is 

assumed to douBie cost on any link. The concept of transport 

cost itself cuvers a motley collection of categories: fuel 

consumptian, vehicle and road wear, travel time, risk of 

accident; discomfort, deterioration of cargo, traffic control 

costs Vgerhaps vehicle and road construction costs, as well as 

pollution, noise and other disamenities if all sacial costs are 

to be included.¥? ' 

5 "firushing aside all theseiécnceptual difficultiesg, then, we 

postulate a unit cost £, j aafiéciated with the cheapest direct 

link from location i to lacation j, ‘bet-us _suppose fij 

always finite, and let A be the set of all locations in the 

transhipment problem, Tbe domain of f is then A x A, which is
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the same as that of a metric on A, Is it reasonable to 

assume that_f is a metric? Let—us examine the conditions one 

by one. Recall that d:A x A + reals is a metric iff d(a,a) = 0, 

dfay, a)) > 0 if a; # a,, d(a,, a,) = d(a,, a,), and 

d(a;, a,) + d(a,, a,) > dla,, a,). 

As for the first property, fii =0 has no clear empirical 

meaning; it flecsmoften~%afinw6fit to be mathematically convenient 

to make this assumption. As for the second, while fij will 

usually be positive for i # 3 it might be negative for some 

pairs (e.g., pleasure driving). Again, while‘fijAand £,y might 

be approximately equal, cnefcan think of severai‘reésd;é for 

inequality: going ufi%hill; up+stream, up-wind, vs. downhill, 

downfstream,iacwn+wind; one-way streets; asymmetric bus routes; 

the ease of getting from little~known i to well~known j because 

of direction signs and road convergence, 

This leaves the triangle inequality®% Is it true that 

:ij + fjk 3-fik? Not necessarily - it may be less costly in 

going from i to k to tranship through j rather than take the 

direct link. It is almost obvious, in faé;, that if the 

triangle inequality holds)there is no rationale for transhipgf 

ment: One does at least as well to ship di:ect1y~from sources 

to sinks. (Sée gectionqio he%ewig 

In summary, the unit transport cost function f need not be 

a metric, On the other hand, £'s that satisfy some or all of 

the metric postulates~de constitute interesting special cases. 

Even if £ is a metric, however, it need not have any close 
/L
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-resemblance to "real" geographic distance. The irregularities 

of nature, the construction of roads between some but not all 

places, irregular tariffs and institutional barriers — all 

these conspire to weaken the relation between geographic 

distance and transport cost. 

The points of the transhipment problem can also be inter= 

preted as points of Time, or Space-Time, rather than points of 

5pn0t~13/ fij then becomes storage cost, or combined transport- 

storage cost. i3 Cen 7 

W 4‘—1flzmmmdrtime-&a%oevat-from—t—te—§+(;f j precedes i we set 

fij = ®w, or, a number high enough to discourage traffic flow in@dy 

the past.B 

The relative advantages of the transhipment and transporte 

ation problem formulations may be summarized as foliows. 

Because it allows connections between all ;;irs of points, the 

transhipment formulation allows the study of routing oatterns 

and intermediate féows~whioh escape the transportatioo formulas 

tion. en“thééotherwhaaé, the vexy fact that all points are 

treated symmetricallykAQrather than being dichotomized into 

sources and sinks - means that a number of important interS 

pretations of the transportatioh problem do not cafry over to 

transhipment. In particular, this applies to the assignment 

of resources or 1and (as sources) to alternative activities 

(as sinks). The major applioétion we make of the transportation 

problem in—faet has this interpretation (see chapter 8) ; hence 

the latter is of much more importanaoAto us than tganshipment is,



N 

713 

Even on its own ground the tr%hshipmen? formulation is 

not necessarily more useful than the transpbrfiation formulation. 

We have adready mentioned that the former éan be "reduced" to 

the latter in a number of ways. The following considerations, - 

while nog,aéfifiétiyuépaaking‘ constituting a "reduction" - 

indicate another reason why the transportation formulation is 

often perfectly satisfactory (f is finite in the following 

discussion.) Dichotomize the points of a transhipment problem 

into “souroes“ and "sinks" according to the sign of the net 

capacity a;. Suppose that for any pair consisting of a source 

i and a sink j there is a shortest route; (kyseessk ), in the 

following sense: kl ’.i' km = j, and the sum ) 

[ : (x.&lgg 
el g +...+ £ ~ “3) 

913 = Tryky * “W*"s 15 

is a minimum over all possible finite seguences of points, 

(gl,...,gm) satisfying kl = i, km w;j. Choose one such route 

for each source-sink pair (i,j). It may then be verified that 

the transhipment problem, )42y above., "reduces" to the 
i§‘3flLh Y 

transportation problemrw&&%w%&%qofl soo&ion le of all source= 
— T 
sink| pairs, with capacities and requirements given by the 

absolute values iai], and unit transyort costs 9314 given by 

(2) abeve. "Reduction" here moans that, if yfj is an optimal 

flow for this transportation problem, an optimal flow for 

transhipment is obtained by sh?pping gij along each link of the 

shortest route from i to j, adding over all source=-sink pairs 

(1,3).
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“Now, if the shortest routes are easily found,;or othefg 

wise uninteresting, one might just as well go to the transportag 

tion problem derived above, which gives the optimal origin= 

destination flow pattern{\ana;is easier to solve than the 

originai. : 

" To round'out the diseugéion, we-briefly mention the 

problem of finding a shorteét route from_i to j, one that 

minimizes (3). As pointed out by Orden, this San be formulated 

as a special case of the transhipment problem:éé figgoigmolet 

a; = +1, a; = -1, a =0 for all other points. An optimal 

solution to this wiil yiold one or more sequences»kl,...,km, 

with kg = i, k, = j and positive flows between each suc&éssivo 

pair. A little thought shows that-each such sequence is a 

shortest route, and the minimal total cost for this problem is 

precisely gij of (3). 

Does a shortest route always exist for any origin i, 

destinationvj? It does iff the following cyclic positivity 

condition is gatisfied: 

; (7.6.4) 

fklkz +ooot fkm‘l. ke + fkmkl b Doy 4) 

for all finite sequences (ky,...,k ), m = 2,3,... .i-(4) states 

that the sum of uoit costs around a closed circle of éinks is 

never negatives For suppose (4) were false for some sequence. 

By goingfi%ound the circle sufficiently often one can drive 
) 

cost below any negative number, hence there cannot be a
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minimum sum (3)., Conversely, if oyolio positivity holds, there 

is no cost advantage to routes whieh include the same point 

more than once. But there are just a finite number of routes 

without repeated points from ; to j, hence a shortest route 

exists., (For the aeneralized tranéhipment problems discussed 

below, where the number of points may be infinite, the situation 

is much more complicated. But (4) iemains a necessary condition 

for the existence of shortest routas? 

2Cyelic positivity is implied by. but weaker than, the 

triangle ineguality. Indeed, with the triangle inequality, the 

pair (i,j) itseif is a shortest route, and gij = fij in (i). 

Finally, the measure~theoretic treatment “of the trans= 

portifion problem seems to‘be easier than that for transhipf 

ment;fi \ _ 

In the following pages we shall study the transhipment 

problem in measure~theoretic form, We shall emphasize those 

aspects in which transhipment is distinctive, where new and 

sometimes paradoxical phenomena appear. We shrall also show 

how the use of pseudomeasures to formulate constraints arises 

naturally for transhipment. (éélééixhig point-in the book, 

pseudomeasures'have been used only to represent preferences, 

with one small exception in 6.9). 

7.7. Transhipment: Measure-Theoretic Formulations 

We shall give two different measure-theoretic formulations 

of the transhipment problem., For the first, the raw materials
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are: a measurable space, (A,2); a siqma ~finite signed meaaurerk 

M, on this space, and a function £:A X' A » reals, measurable 

with respect to the product sigmanfield L xZIonaAx A.T{The 
problem isg : 

“}?ind a_bounded measure A on (A x A;IE X I) satisfying 

Al wye fif“c Y 
fl" 

and minimizing 

':- 
(77 %) 

I £ z»dx"»;. ~+2) 

§ ~ Here A', A" are the left and right marginals of A, 
ff%espectively, so that (1) could also be written in the 

following less abbreviated #orm: 

A(E x A) - A2 x E) S U(E),— ~3) 
e A/ 

for all E ¢ I, 4(2) is an indefinite integral over A x A, and 

"minimize" is to be understood in the sense of (reverse) 

standard ordering of pséudomeasuras. This is the inegualitxé' 

constrained variant; éfiéiobtaina the ogualitx~oonstrained 

variant by substituting =¥ for <" 'in (1) and. (3),-abover- 
The signed measote ¥ is to be interpreted as net capacity, 

so that u(E) is the;omount by which the gross outflow from the 

points in set E may exceed the gross inflow to those points. 

i 

gu(é) méy; of couroé) be negative. A is the flow measure, so
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that A(E x F) gives the total mass ;hioh moves (directly) from 

origins in E to destinations in F. 1In particular, A(E x A) 

gives the gross outflow from origins in E to all destinations 

(including destinations in the set E); similarly, A(A x E) 

gives the gross inflow to destinations in E from all origins. 

Thus (3) is precisely the relagion between inflow, outflog_and 

cap%city mentioned above. £ ié unit costs, and (2) gives the 

total cost of flow A. : ‘: 

Care should be taken tofdistinguish these set functions — 

(such as Aj~?vfiifih=a=o defingd on the product space (@ x A, 

I x I) from those ~(such as 1A', A", and u)~-which—are defined 

on (A E). b . i B 

1 (1) kZ) abo&e reduce/;o 6%%;;%% of‘the&pxecadmngwaect&ea 

precxsaly in the case when I is a finite siqma~field, so that 

we “de ifidbmfl have a generalization of the original transhipment 

problem.';n 

- In ordinary transthment one distinguishes "source" points 

from "sink" points by the sign of the net capacity. In the 

generaiizatioo (1) this role is played by the Hahn decomposition 

of net capacity u. -&néaedT if (p, N) is a Hahn decomposition, 

:;;ru(E) 2 0 for all measurable E ¢ P, u(F) < 0 for all 

measurablo_? c N, so that the points of E may be thought of as 

sources”, the points of N as “sinksM, 

Note“that_poundedness.is a feasibility condition for A. 

Indeed, if A wefie unbounded;than (1) would not be weldeefined,
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4 i é"%w.r. ‘r'(@\i 

since we would have )\'(A) = A"(3) = », -On-the-other- hanqo\this 

  

= excludes some interestin§ theoretical situations. 

On the endless plane of location theory there will usually be 

a flow of infinite mass. The same is true with an unbounded 

timelhorizon,lin those cases whero_éris a subset of Time, or 

Space~Time. In thase cases a similar question arises con- 

cerning the adequacy of a signed measure to rgpresent the 

concept of "net capacity". Supposo that A is split as above 

into two pieces, Sw“source " space Ph“and a ‘ank” space N, 

Since u is a signed measure, at least one of the two numbers ;> 

u(g), u(N),-must‘be finite. ,fiut there are reasonable problems 

involving both infinite capacity on P and infinite requirements 

on N. k 

Our second measure-thooratic formulation enahles us to 

deal with the situations just discussed. As might have been 

expected, the key lies in the introduction of pseudomeasures, 

(A,I) and f remain as above. The objective is still to 

minimize (2), but (1) and the boundedness condition are replaced. 

Instead of the signed measure 1 we have a pseudomeasure ¥ on 

(2,2), and the constraint 1sa 

Find a measure A on (%lx_A, I x I) whose marginals{ A' and A", 

are sigma-finite and satisfy{ 3 
- @’ 1) 

(A", A") £ Yoo (4) 

&—— That is, we form the pseudomeasure (A', A") from the 
L 

marginals of A, and constrain gt to be less than or eqgual to
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¥ under narrow ordering. Letting (w+. ¥”) be the Jordan form 

of §, (4) may be written in less abbreviated form as followse 

AE x 2) + y7(E) < A (A x B) + Vv (E) 45) 

for all E¢ L. This is the unbounéod formulation of the 

transhipment problem, (1) giving the bounded formulation, 

When A is bounded, and ¥ isjo signed measure u, eme 

eastly seeg that (5) is\the_samoras (3). Thus the constraint 

{1) is a special case of (4). ffiut it cannot be said that the 

bounded formulation is merely;o special case of the unboundegg 

since the boundedness oonditfon is present in one and absent . 

in the other. As above there is also an agualitz~oonstrained 

variant: just substitute T for “*“ in (4) and (5). 

M} ~The pseudomeasure (1A', A") may be thought of as net out@? 
o 

flow or net exports, and the fact that ifimgg a pseudomeasure 

allows the possibility thgé gross inflowlond outflow for'a 

region may both be infin@%e. Y is ggain net capacity. If 

(P,N) is a Hahn decomposition for P, we may think of it in the 

following way: ¢+ giveé the net outflow capacity on source 

space P, while ¢~ gives:the net inflow requirement on sink 

space N. »I } 

The conditions tfiat A' and A" are sé;ma~finite are needed 

to make (A', A") well~defined as a pseudomeasure.' Recall that 

either of these implies that A itself is s&gmaufinite, so that 

(2) remains wellmdoflned as a pseudomeasure, (No%ew%hat 

{prafarence among different A’s is expgessed via (2) by standard
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ordering, while the constraint (4) involves narrow ordering. 

This disparity is essential to achieve a bona fide generaliza- 

tion of the ordinary transhipment problem.) 

We have now set up the two measure~theoretic transhipment 

problems,:and shall investigate feasibility and duality con=- 

ditions for them. But first we}aha&i finish thizs introductory 

-section-by deriving some resulgs concerning measures A on a 

product space of the form (A &gA, : ; i). The aim is to 

achieve a certain insight into the structural differences 

between the transportation afid transhipment constraints. The 

following remarks are abstraoted from any particular problem 

context, however. Notewalsomthata;hey épply to arbitragg 

measures A, not merely to-ii9ma~£inite measures. 

i;}fl Definition: Measure A on (g'x A, I x1I)is a translocatiofiag" 

iff there is a measurablefpartition,‘{P,N}, of A into two 

f;\} pleces such that A[(A x 41\.;5)\(1’ X N)] = 0. 

'@hat is, AM(P x P) = A(N % N) = k(& x P) = 0p The only possible 

flow is from P to N.) 

—‘WM g ; 

fl”““f#fijheorem: A is a translocation iff its marginals, A' and A", are < 
) mutually singular. 

  

ST 

-iqi,fw;roofz Let A be a translocation,xwith P, N as in the definition 

w”[) above. Then A'(N) = A"(P) = 0, so A\', A" are mutually singular. 

1 Conversely, let A', A" be mutually singular, so that 

f A'(N) = A"(P) = 0 for some partition {P,N} of A. But this
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} yields A(P x ) = A(N x N) = A(N x P) = 0, so A is a 
m,ranslooatioh. UWF LF    

  

~Next, we want a formula giving the transhipment associated 

with any flow measuré A. Intuitively, the transhipment in a 

region is given by the "overlap" bétween:inflow and outflow. 

To be precise, lét transhipment be reprosentod by a measure 

6 on (A,I). We require that e < aod e 5_A“23-thot#§s, 

transhipment ih any region does not gioeod_groso outflow from 

that xegionfiiand does not exceed groés inflow into that region, 

resgectively; The “overlap" is thollargest measure meeting 

these con&itioos. But this is préoisely the infimim of A' 
£ . 

and A", as defined in-chapoo£~3,;§ectioofil, Thus we have 
gy ( £ 

AU S—— 

9@ Definition: Given measure A-oo (é x A, I x L), the transhipment 

is the measure 0 on (A,E) given by 

' ;. b {,'1,'”?,\‘1« 3 

0(E) = inf(A' A") (B) = ine{A' () + A"(E\P)|F < E, Fe I}, 18 

,all E € I. ' - . 

‘X thhgl Here A', A" are the left and right marginals of A, respectively. 

We have repeated the explicit formula for inf(A',A") for con~ 

2 
fxngi 

venience, 

This definition seems to capture quite well the intuitive 

notion of "transhipment". 1In particular, consider the case 

when A is a translocation. Here the marginals are mutually 

singular: Jfhere is no overlap, and transhipment should be zero. . 
\



722 

[ 
Furthermore, the converse should be trues | If transhipment is 

i 

zero, them inflow and outflow should be mutually singular, so 

that \ is a translocation. The following result confirms this 

expectation. Note that we are aotually proving an abstract 

inf'(u,v) = 0 iff (u,v) isra mutually singglar_pair. 
i 

theorem: 

T — g = ] 

[ Wi- Theorem: A has a zero trpnshipment iff A is a translocation. 

: ’Sn Proof: Let A be a translocation, so that A'(N) = A"(P) = 0 for 

Then /" some partition {P,N} of A, by tha?theorem above. \ 

" from (6) with F = N, Hence © a!b. 

Conversely, let B(A) = 0, Then, for each n = 1, 2,¢444" 

~-there—is a set F e Z such that ~ 
= 

7 

*'(,F,}) + x'(a;\s_,}x £330 

“from (6). Iet F = lim sup F_ i For each n = 1, 2,,.. we have 

  

A! (F) £ A'(F U F 1 Ueso) £ 2 B ay (n+1)+...= 20271 

Hence A'(F) = 0. Also A\F = Llim inf(A\F ), so that A"(A\F) 

does not exceed the sum of 

n[:(A\En)_‘:n (A\F, ;) J 

But each term (7) equals zero, since it 

(1727 

over n = LyBevun 

does not exceed A"(A\F,) for arbitrarily high k. Hence 

e
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f?} A"(A\F) = 0, This with ' (F) = 0 shows that A', A" are 
matually singular, hence A is a translocation, by the pres 

. ceding theorem. L}{k”/;flfi? 
MM . 

NE awtt 

ALA‘, A" have been interpreted as the‘ggggg outflow and inZ 
flow, reapeotively, associated with A. &hare are a number of 

intuitive net flow conoept&a The one we have in- mlnd here is 
that w&%oh=nats out the "overlap" of A' and A" from each of 
them4w &fiaonés, subtracts the transhipment, Ehe~éf@&b&@~as 

thut these lmeasures may all be infinite, so &het subtraction is 
not a well-defined operation. 

But recall that, in seotioa 1, we did define a 

  

subtraction operation whioh is wvalid for infinite measures., 

The concepts in that section, in foot, turn out to be admirably 

well suited to explicate the intuitive notions we are 

struggling with here. 

  

/- Befinition: Let A be a measure on (A x A, £ x3I). The net outs 
/ij;\ flow and net inflow of )\ are the respective measures Al and Az f 1 ! 

g \— on (A,I) given by _ 

S0gs ) =300, an, 

That is, Al and 12 are the upper and lower variations, 

respectively, of the Jordan decomposition of the pair (A%, A%, 

    

;J““ That this is a reasonable definition follows from the 

basic relation between pairs of measures, their Jordan
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decompositions, and their infima, which in this case is 

N _ 
Ap = A" = dnf (A", A") = A' - 0, 

Ay = A" = dnf (A%, A") = A% - 6. 

(See pasec~.,) That is, the net outflows and inflows are 

indeed obtained by subtracting transhipment from gross outflows 

and inflows, respectively. (If 0 is finito)this reduces to 

ordinary suboraotionol) 

Another intuitively appealing property thet one would wish 

the net flow measures Al and 12 to posséss is that they be 

mutually singular. For in this case one can split A into two 

pieces, P and N, which can be unambiguously labeled as the 

outflow and inflow sets, respectively. (gere Al(y) = Az(g) = 0,) 

An obvious sufficient coodition for this is that A be a tronsg 

location; for then even the gross flows, Al and‘x",_are 

mutually singular, heoce Elfo;tiori the net flows, Al and kz. 

(In=faet A, = A' and A\, = A" in this case; since @ = off S The 

following result shows that,yéven if A is not a translocation, 

| mutual singularity is guaranteed under guite general conditions. 
P { 

yf -/ Theorem: Let measure A on (A X A, I x I) be abcont. Then its 

net flows, Al and Az, are mutually singular, 

;’-#M__Ls" 
2] i 

(#— Proof: Marginal A' is induced from A by the projection (§1,§2q+F1. 

Since A is abcont, so is A'. Hence the pair (A', A") is Hahn 

e 
decopposable, implying that its Jordan ddcomposition, (Xl, Az), 

(,:\_@l \'Z."-{-_ Loy *: i / - ; 

e is a mutually singular pair, [H— (/& 
"y ,,,,EMM v
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Finally, let us tie these céncapts to the transportation- 

transhipment problem dichotomyfl; We show in-fact that the 

transportation problem (variagéni) is essentially the trans- 

shipment problem (equality~coostraino& unbounded formulation) 

with an extra constraint thrown in@b:that A be a translocation. 

§ 7 Start with the transhipment problem whose feasible set is 

;E;, detarmined by the pseudomeasure spaoe (A,Z,¥). Measure A is 

5 feasible iff the marginals A', A" are sigma-finite and 

(A? fl") "‘f !}h/,m : (8) 

Q}@£Yé) is an equality between pseudomeasures (cf. (4)). Now add 

the additional constraint that A must be a translocation. It 

follows that X', A" are mutuallf singular, so that (A',\") is 

in—=fact the Jordan form of ¢: A' = w ;and A" = ¢ . Let {P,N} 

be a partition of A such that @ (N) = ¢~ (P) =‘0. Then ) is 

zero when restricted to (A x A)\(P x N). Let A, be X restricted 

to P X N, let u' be w restrioted to P, and let u” be ¥ 

restrictedflfio N; also let I°, Z“ be I restricted to P, N, 

respectively. Then ifi*fiomeacym%o-see that A 1s<feasible for 

the (variant I) transgortation problem, with source and sink 

spaces (P,Z',u'), (N,Z",u" ), respectively. 

% =7 Conversely, given this transportation problem with feasible 

: ‘ “wflow A o’ this entire procedure may be reversed to yield a 

translocation A satisfying;{fi). Furthermore, if f:A x A + reals 

  

'ér_;j determines the transhipment objective functions and £ is £ 
gy [ ) ¥
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restricted to P x N, then G\gofgao yields the same ordering 

among feasible transport flows Aowas !kfadk does among the 

corresponding translocations ). This shows the essential 

equivalence between these two problems. 

7.8. Transhipment:; Feasibility 

We now investigate‘the conditions under which feasible 

solutions exist for the bounded ad& unbounded formulations of 

‘the transhipment problem, The bouoded case is well=behaved, 

and the results are analogous to those obtained for the 

transportation problem. But the results for the onbounded 

case are "wild"., . tosia 

Eirstfgorfcgémbounded'formulatioolyhg>f§ on—7 -, 

Actually we -shall prove results for a SOmewhat more general 

problem: We-shall let net capacity be a pseudomeasure ¥, and 

not merely é%lsi%ma—finite‘signed net 

  

capacity measure$ p. This yields a problem somewhere in 

between the bounded and unaounded formulations,; -namelys 

Find a bounded measure A on (A x A, I x I) satisfying 

"€, 

AV A") < Yo ) 
i) 

Here the marginals A', A", as well as the pseudomeasure V, 

are all defined on the Space (A,Z) as usual, The left side of 
/ Tt) o2 

(1) could also be written as A' - A", as in (l)=of section 7, 

but we prefer the pseudomeasure notation,
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) 
The reader may wonder why we used constraint ) of 

_-section=7 instead of the more general (1“) abeve, The answer 

is contained in the following theoream@ 1f Y is a proper 

pseudomeasure --Q;hat isp if ¢ and ¢” m ‘both infinite . 

neasures  — fimn there is no bounded A satisfying (1) abewve. 

Hence pseudomeasures are actually usoless here, androne might 

just as well use the signed measure formulat:.on of fil’-;»—of 

seetion—7; which is after all much Acloser to intuition than 

(1) m is. But ohe needsg to formulate the problem (1) abewve 

~ to prove this vexy fact. 
e - (51 - 

(QM— ‘):',l.‘heoram: Given pseudomeasure space (2,2,9), t:ho-seiéxlsts a 

bounded measure A on (A % Ay Lk L) ,satishfyiné & 122 

: | + b @4 Y (A) 2 9T(R) € o S 

Also, there exists a bounded ,;'-,’\ 'satisfying (1) with equality 

iff ' o 
+ R (1-§3) 

v () "’;‘w (A) < o) 4£3) 

    

/ _;J-f}ff_!’j_y_o_gg : Let bounded A satisffir (1), which may also be writteo\r' 

o + (19 4) 
A 4 VTSR 4y 44) 

: Ix We have A'(A) = A(A x &) = A"(A) < =, Hence, substituting A 

into (4) Eho A terms drop out and we have Y~ (A) < zp (n). 

Next, let (P,N) be 7Hahn decomposition for V. “p (P) = 0, and 
s 

Y~ (N) < A"(N) results from substituting N dnte (4)., Hence 
§ wnme — i
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¥~ (a) is finite. This yielfis 2y 
o e "‘"/ 

S1f bounded A satisfies (1), hence ié), with egnalitz, the 

same argument yields (3). 
    

  

\%‘5%: !j;Conversely, let (2) obtain, and considor the transportation 

j problem with source space (§,2,¢ b ao&-sink space (2,I,¢"), and 

g constraints e 

AY S T, A" m T “45) 
| : 

t This is variant EE, hence a feasmble solution A exlsts by (2). 

- %{g) 1mpl£es {4), which is (1). Also A"(A) = ¥~ (A), hence ) is 

bounded, again by {2). Thus igis feasible for the bounded 

transhipmont problem. : 

| Finally, let (3) obtaingjand consider the same transporta= 

E% tion problemfi;except that (55 has all equalities. This is 

% variantfig, hence a solution;exists by {3). f?éginow yields (1) 

with equality. |\ is again bounded, since ¥~ (A) is finite. L}ffi"iffif 

M"a""fif-@w“"” | | (7e0) N 
When ¥ is the signed measure u,\as in‘4i+~o£wfiee%ion"%a 

this theorem takes on a very simple formg 

; £1,1) 
*&- " Theorem: There exists a bounded measure satisfying »i&w@% 

f'jfi} section—7 fifif ula) > 0. %hofie{exzata a bounded measure ) 
1) 

satisfying (1) of- soe%ien 7 with equality iff u(a) = 0. 

> : on 
f?;rfig_A Proofs Immediate ffiom (2) (3) ahaue, noting that p(a) = 

H (A) - u (a). l'i 

o - emmE———————
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Thus a solution exists iff total net capacity is noni, 

negative or zero, in the inequality- or equality-constrained 

problems,;respectively. As-mentioned _above, this bears 

oomparisoo with the transportation problem result., Here a 

feasible solution exists iff total requirement does not exceed 

total capacity {in variants II, 1II, IV, which involve 

inequality constraints)tlor iff total requirement equals total 

capacity (in the all-equality-constraint variant I). 

This brings us to the unbounded formulation of transhipS 

menttigé;;o%“section-¥a The basic :esult is that hhofiggalwazs 

exists a feasible solution (unless I is finite). This is 

highly paradoxical, since a solution exists even when ¢+(§) 

is less than ¥ (A) %.(even when the former is zero and the 

latter infinite, in fact. We ®shall first prove the result and 

then give a rough explanation of "why" it is true. In the 

following we prove feasibility for the egualitzuconitrained 

problem. The solution constructed automatically remains 

feasible for the weaker inequality constraint, so that 

feasibility holds in general. 

fiiw Theorem: Let (A,Z,y) be a pseudomeasure space, with I an 

7<) infinite sigma~field. Then thers exists)a measure A on 

(AxA, Zx X)asuoh that the marginals A', A" are o&éfia-finite{f”, 

and fiog 
*1:8:6) 

(A'A%) = Yoo &) 

(Equality in the sense of oaeudomeasures). 

e ——
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w¥& | Proof: Choose a representative, (u,v). of Y. Since I is 

xfijf infinite and u, v are ségma finite, thoae exists an infinite 

countable measurable partition, {Al' Az,...} of A into nons 

empty sets,Ksuch that u(A ) and v(A ) are finite for all 

D™, 2,000 « ; 

Choose a point a g«fig for each n, and define the set 

function A, with domoln 252 I, as followsy PFor each G € I x I, 

and each n= 1, 2,004, form the quantity 

/ . } St ™ !;- 

) u{a‘a € A {and (a,a ) € G} + v{ la € A \and/(a ,a) e G} 

N
 

*unn, (8) + oy, (@8- 
- — 

\, guspdel; 
Here L and v are abbreviatxons for u(A ), V(A ), X (G) i;lu 

“n’’A"n 

the number of integers k > n for which (ak, 
- 3‘{+l ) e g,l 

gg(g) is the nugbar of integers k > n for which {ék*l' a,) € G 

(If the number of suéh integers is infinite; take gn(g)‘or 

Zn(g) to be +¢gsandfform {(7) by the rules of‘extenéod real~ 

valaed arithmetic))) Finally, A(G) is defined as the sum of 

the quantities (7) over all n =1, 2,.s. . 

We claim thatfl constructed in this way is the desired 

measure. First of all, for fixed n each of the terms in (7) 

is routinely verified to be a measure on I X I; hence A, as a 

sun of measures, is itself a measure. 

Now consider various sets E ¢ I in relation to the points 

897 857000 o First, if none of these points belongs to E, we 

calculate from (7) that
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AME % B) = u(E),| A x E) = v(E)/ - 

Second, if none of these points belongs to E; with the single 

exception of am, ‘thven a more complicated calculation from (7) 

yields 

; ;’Y iy} ‘5 { 

X(”E x fi) = U‘g) ""Hl Ftoaot U{r} + \’1 touot _:\’E!t"}‘ £9) 

and 

A(;_A X ?:) = V(%) + ul Fooot um + Vl +ouak er—-w.‘ ("}:9‘) 

In particular, E = A has the property just mentioned. Hence 

Al (A ) = A(am x A) is finite for allm = 1, 2,..., from (9). 

Similarly A"(Am} is’ finita for all m, from (10), Hence the 

marginals A', A" are o&gma finite. 
) 

Furthermore, from iaérwls)i -and-—(10) we find that 
   

for any set E e Z to which at most one of the points B1r 8gyeve 

1
)
 

belongs, But,"onmthe—o%hafwhamfih any set E Q\z can be count= 
ably partitioned into sets of this type: E = (E n Al)u(E na, Iwsw o 

Hence, by summation,;(ll) is true for all E ¢ I. But this 

implies (6), by the equivalchce theorem for pseudomeasures. 

‘ Hence )\ is feasible. |[}{ 0@ 

Measure A "works" in fihe foregoing proof for the following 

reasons. First-ed=gll, the point a functlons as a "depot" orx 

"entrep8t" between A and the rest of A &4 absorbs any surplus 
o
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or deficit arising inléls 29 does the same forhgz,fggg also 

absorbs the net surplus or deficit at g, 23 does the same for 

§3, and also absorbs the cumulative net surplus or deficit at 

B0 ete, In this way, each successive set_@n is brought into 

balance, while the overall surplus or deficig "escapes to§=~or 

fromfim»infinity”. The paradox arises precisely because there 

is no point at which the buck stops and accounts must be settled. 

Similar phenomena arise in other context3 a'for*e*amp%e”Ain the 

theory of Markov‘chains with an infinite number of states, or 

in the theory of economic growth with intergenerational transfers 

and an infinite succession of generations. 

One might be tempted to regard this paradox as a reductiogl 

ad absurdum of the unbounded formulation of the transhipment 

problem; but this would be an error, or at least a premature 

judgment. The formulation itself arises in a natural way. And 

evén though a paradoxical flow pattern is feasible, it involves 

a great deal of cross-hauling. We may presume, then, that no 

such flow would be optimal, unless the problem is formulated in 

a way that allows no avoidance of such flows (by making reqoirag 

ments exceed capacities). It is guite common for useful models 

to introduce artifacts of this sort. Finally, many former 

"paradoxes" are now accepted as valid, so one should be wary of 

making summary judgments about what cannot occur in the real 

woxrld, | % 

"  The premise that I is an infinite s&é&a-fiela is essential 

in this theorem. Indeed, if I is finite, we are in effect back
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in the ordinary tragshipmont problem, and the "tame" feagibility 

results of the bqfifided formulation apply. 

) 7.9, Transhipment: Duality 

We akall give a brief lfltIOuuLthn to the duality theory 

of the transhipment problem, one wh&eh parallels the treatment 

of the transportation problem‘ Roturnkag ‘first to the ordinary 

transhipment problam, 6&%*%2)§o§;saetioni¥;'ito linear program» 

ming dual is the folloyting@>; 

Find nonfnegative numbors, PprecesPy satisfying g 

/Py =Py £y 

4, 3 = 1,...,n), and maximizing 
; . (1401) 

=GPy Tees= anynvfr*” <) 

(Minus signs appear in the objective function (1) because we 

expressed the primal in terms of net cagaoities, “i (i = 1,.,Q,n). 

If we had used net reguirements instead, we would get plus signs.) 

The dual of the corrasponding moaaurewthaoretic problem 

(unbounded formnlation),kfié5uandé&%;fiefitoeotéon-? is defined 

as followses - 

Find a measurable ooofnegative function p:A + reals satisfying 
é “4’? 2} 

p(a") - p(a') < £(a',a") “t2) 

for all a', a“ € A, and maximizing 

- I p : dw o é,flA“ 43"‘" " e '\‘ -
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131 
Here (3) is an indefinite integral over space (2,2), and 

“maximization” is to be understood in the sense of standard 

ordering. 

This is for the inegualitg«constraineé ve#sion. For the 

equality~constrained veroion the dual is the same, except that 

P need not be nonynegative. Finally, for the‘boun&ed formulation, 

everything is as above except for notation:j“fhe signed measure 

u replaces the more general pseudomeasure ?Lin (3). 

The dual for the transportation probiem introduced some 

other constraints making'cortain definit@ integrals well~defined 

and finite. Conditions of this sort play a r@ia hera; too, but 

it is convenient to introduce them separately. 

The following theorem yields the basic duality inequality. 

It applies to both equality~-and ineéuality»constrainad Veicions,, 

and to both bounded and unbounded foxmulations. The notation 
I‘ 3 {,} A 

for the latter will be \used (for the former, replace ¥ by u). 
W “ o e 

The expression ?A'p dw meags the followingm It is defined iff 

the two definite integrala !{Q pldw and A}P dwikmore both well—~ 

defined and not infinite of tha same sign. In this case we set 

W o ® 55 B W 20 V) (9. 4) 
s ¢ - 

J p dy ,,[ p Ay = I P,AY ::tth% A0 KRR 3 

(Equivalently, the express;on is éefined iff / P ay is a signed 
"o : - 

measure, an&]f? this case 

f 

f ip dy is its value at A.)>~ 
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e e 

Q%fifi_ Theorem: 

the transhipment problem, and let p:A + reals be feasible for 

the corresponding dual problem. 

let measure A on space (A x A, Z x }) be feasible for 

Also assume that 

P 
9 ) N 20 8 1 e o ' e 

Uxa?" : 5 (fm)lqlg) 

= [ p dl‘,";_] p da" . {5)- 
AT T 

are both well-defined and finite definite integrals., Then the 

following two definite integrals are well-defined, and the 

stated inequality holds between themg 

)\l? 2\ 

a
—
 1 2o gy (jfi,ég 

J £ar >~ pdy— (6) Jaxa =\ | A 
A 5 ¢ : 

4fi5 Proof: ILet the functions p', é”:A x A + reals be given by# 

© p'(a',a") = p(a'), p"(a',a") = pla”) 
\‘. - » s, 

fi?ofi for all a', a" € A, Condition (2) then takes the forms: ~ 

; p" - p' £ £, and we obtain 

S\ 0 =4 1o ol 3 =\ ) )7 

I p dA" - I p dA' = j p"dA - I p' di - & 1) A~ N h R AxA A Axa A\ \J 5 
, - = o (7 
",’ l”’\"] 11 E‘:’\fl N }‘ 

| \ - I (p"=p')dar < I £ dro 
AxA PR N 

£ iy 

% 
{ The first equality in (7) arises from the induced integrals 

theorem, Note that 

T
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wie 
\ : { e 3 : _b \\3 i ’5 

{c;)‘?’:};\} 

[ e-mmms| o <) AxA N AxA < A 
s 

from (2). The left side of (8) is finite, from (5), hence so 

is the right, hence the last igtegral in (7) is well-defined. 

The inequality in (7) then foliows from (2). 

Nextfizwe prove that 

.—\\L ?1&\ ‘;fg 28 ; S w} 25> i { 1;4’5 22 .‘_&L £ } ' .’; ‘2 ) 

" 1 e + i‘ b Eo p dA" =~ p di' > pdy - p%a¢ — {9) 
& AT A A A : 

the differences being well~défined. There are two cases., 

For the inegualitx»constrainad variant, we have P > o and 

(A',A") < ¢ & that-is, 
7 ‘ 

:?‘&:" éé 

7«"‘5‘!}) <l”*‘ll g 10) 

so that 

a% 10 %««; g0 !\ 2 S«G\ 7 O / siciia ) 

f p A’ + f P ay” .fi[ P dA" + f p dy* .- (11) B g A= N 
i i - s 

Letting (?,n) be a Hahn décomposition for ¢, we have w“{g) =0, 

while ; 

zmfl. 

1¢ (E) < A" (E) + ¢~ (E) S A"(E) + vHE) = A" (E) 

for any measurabthg‘c N« Hence " < k“ It follows from (5) 

that at least three of the integrals in (11) are finite. Hence 

it is permissible to rea%range terms to obtain (9).
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For the equality-constrained voriant, (10) holds with 

equality. Also, by the minimizing property of the Jordan form, 

we have w+ 5_1',yas well as ¢ £ A". It then follows from (5) 

that all the integrals appearing in (11) are finite. Hence (11) 

holds (with equality) and may be rearranged to yield {(9) (with 

Squality). 

A7), 19), and (4) together ‘yield (6). JJ%”; L@ 

Next,,  we look for a condition unfler which the inequality 

(6) of this theorem becomes an equality. 

f¥§;_ufiefinition= Let measure A on (A x A, I x Z), and the function 

L 

p:A + reals, be feao;blo for the transhipment problem and its 
uvr‘i* 49 L 

dualfi respectively. P is a (transhipment) measure potential 

for A iff the following two conditions are satisfied* 

u"! ! =5 
A{(a]_.az) |p(a2) - p(al) < f(al.az)} o 0, <€»12) 

- and, when restricted to the subsoh {alp(a) > 0} of A, the two 

pseudomeasures, (A',\") and ¥, coinciae‘ 

This definition is meant ;a apply to both bounded and 

unbounded formulations, and.bofih equality~ and inequality- 

constrained variants, of the éranshipment problem. liote, 

however, that for the eguali§g~oonstrained variant, the second 

condition is satisfied trivi%lly ané/may‘be dropped ; measure~ 

potentiality reduces to (12) alone@;,(iéfi ééatos that there is 

no flow on the set of origih~aestination pairs for which the
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dual inequalityffiz) is strict. This and the other measure- 
potentiality ofindition generalize the complementary slackness 

conditions fqé transhipment., 

— Mm\\ e i { 

;%{-; Theorem: Loy measure A° on {A X A, % x I) be feasible for the 

transhipmént problem, and p tA + reals be feasible for its 

_\,«, x(”&ual. Mso let 
M # :1 h)\t\% her / 2 "i’q [ \‘Q&(' 

.- 
E B 5 o e 2y \ ‘g( i L { ‘55»* g %; 4 ?Y’ 5 \ s ]Akpgfidleck IA Fg,fixgn 

both o& well;defined and finite. Then p2 is a (transhipment) 

measuée potential for A2 iff 

o 
e 2 S AL 

o [ £ dr® = -! pe ay.—, £13) 
axa X AT A 

; f#i * gggggé Letngi.be a measure potential for A2, Reviewing the 

: prebeding proof, we find that the weak inequality in (7) is 

(’ff? satisfle& with equality,)because of (12). PFor the equality- 

Ml;b constrained variant this already yields (13), since (9) is 

1 also satisfied with equality. For the inequality~-constrained 

variant, the fact that (A',\") = ¥ on the set {a|lp(a) > §} - (zeoy 

yields (10) with equality on this set. Hence (11) and (9) are o 

satisfied with equality, since p= 0 off this set; this again 

ylelds (13). 

Conversely, assume (13). All integrals in the preceding 

9roof are then finite, and the weak inequalities in (7) and  
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(9) are satisfied with equality. But equality in (7) implies 

(12), while equality in (9) implies that (A',A") =¥ when 

these are restricted to {a|p(a) > 0} (a trivial implication in 
N the equality-constrained variant.) “}%f 

p*”w”' e vfirflW’i‘!   
:Thaoram: Let A? be a bounded measure on space (A x A, Zx 1), 

  

and p_=A > rcals a bounded functionzksuch that p? is a (tran- D .Y shipment) measure potential for A®. Then A° is best for the 

bounded formulation of the transhipment problem, 
onmse RS AT A    

. {ig Proof: ILet A be any other feasible solution for the3€ranshipment 

problem (bounded formulation). -We show that 

T e i b e o 
. . 4.4 

] £ dr® = *J pe du < I £ A, - (14) 
AXA N A A Axp ] 

T
 

N
 

N\,
 

/ 

all theso definite integrals being well~defined, (Here £ is, 
A & 4 A 

o#-eeacse@\the unit cost function, and y is the net capacity 

signed measure.) First, 

U5 s 2% 

SR
S 
i
 

5 
S 

A 
AN
 A 

2 
B
t
 

\“5‘1’\—\3 Ak : v, 

1 ] pe da', ! pe da" 15) < é o N A ! i A 

are both weli%defined and finite, aince‘pfi and A are both 

bounded. This yields the inequality in (14), by (6). +i5) 

(15 remains finite if A is replaced by A“,uand this, #egether with 

tha measurewpotantiality pramise, yields the equality in (14),
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by (13). Furthermore, this common value is finite. (143 then 

—
 

S 

implies that A? is best under (reverse) standard ordering of 

pseudomeasures. |} 

. These results apply to both the equality~ and inequality~ 

constrained variants, Note that the last theorem appltoé only 

to the bounded formulation of the transhipment problem} howevers 

In the unbounded formulation, the integrals (15) wi;l not 

necessarily be well-defined and finite for all feacible A, 

which means that the inequality of (14) cannot bé derived. 

In connection with tranahipment{potantialokone should 

mention the work of Martin Beckmann.2> This deals with 

commodity flow on the plane,xand makes essential use of vector 

analysis (gradients, curls, etc,) . Here "flow" refers to 

"continuous" physical movement —(as a flulq) and is not 

immediately reducible to the origin-destination form of the 

transhipment problem, Yet he arrives at a potential futction 

which--is similar to the transhipment potential.u One hopes 

that future work will produce some kind of synthesis of tfiese 

approaches. 

7.10. [Transhipment under the Triangle Inequality 

We would like to obtain results for transhipment analof 

gous to those for the transportation problem l~suoh as the 

existence of optimal solutlonsa theaeu*steaee of potentials 

associated with unsurpassefi solutionsrsatow These results,
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however, seem quite hard to come by without making special 

assumptions. 

In this section we shall assume that the unit cost fix 

  

function f obeys the triangle inequality: - 

£lay,ay) + £(ay,a5) 2 £laj,a5) 

for all‘al, a,, a3 € A. Intuitively this states that'there is 

no advantage to indirect shipmentgy'gb move fromlgl-to ay jone 

does not gain by going through a,, aAnd. Aie same is true for 

circuitgus routes involving several intermediaté points. goyfifi 

if ote‘oomparealthe transhipment and transpoxtation formulaZ ' 

tions; one sees that transhipment differs aésontially in that 

it allows suchlcircuitous.shipments, while the transportation 

formulation forbids them. Since, under the triangle inequalitg, 

this extra freedom seems to do no good, one would expect that 

  

optimal solutions to the transportation problem wew 

;0 pe optimal for transhipment as well. 

This expectation turns out to be correct, at least under 

certain limited circumstances.  The key to the following proofs 

is the consideration of the &oél function, the potential, We 

don't know if there is a moré.direot way of proving them. 

Lgiius start with a reiotively simple case. Given a 

measure space (A,Z,v), v houndad. and a point a, € A, consider 

the problem of d;.stnbuting a mass v(a) oonccntrated at the 

point a, over space A according to distribution v. As a 

transportation problem on the product space A x A the problem



§ - \ 
i \ } 
i E )} 

st 

i 

transhipment problem there are man 
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e 

, 7 29 
8 trivial; in fact, there is egactly one feasible solution,23 

given by (1) below, and it of-course must be optimal. As a 

y feasible solutions, but, 

under the triangle}%inequality, one feels intuitively that (1) 

should still be optimal. And so it iss 

  

ogti“wheoram: Given bounded measure space (A,Z,v), and point a, € Ap 

let £:A X A + reals be bounded, meaourable,;otey tfie triangle 

inequality; and let f(a ,a)) = 0. Let measure ;é;on (a x a, 

Z x I) be given by gJ 

(7700 .1) A°(G) = viol(ggya) €8} - 

(.10 % 

all G¢ I x L. Then A% is best for the fitanshipment problem 

u‘é a q _.?"‘ a 

| 2) 
of minimizing & 

il j £ dx 
\E’J Axa A 

over bounded measures A %fitififyin%f 3 

I ol 2 - 

k’ s Aum v o ’\’- T 
(-3—} 

/70 

(Here v. is the measure of mass v(A) simplyhconcentrated on the 

point fio?& 

"““"nnm#nmmm» 

wfi,fifjeflwwfiroofs One easily verifies tfiat A® is feasible for (3). 

™\ (D 
5 . ;’fi 

f Define the function p:A *;reals by 

p(a) s f(..ag'a;:)' . 

We widl show p is bounded and a medsure potential for A°., From
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the preceding duality theory this implies that \° is best. 

Bounded measurability of p follows from the corresponding 

properties of £. The triangle inequality implies that 

(2.10.,4) 
play) - play) £ £(a;,a,) —(4)- 

JL for any a,, a8, € A. Finally, _ 
A s 

13{& I"/ },;«;"‘? {{ y 

% 805 , €59 
v{?lg(§) - play) < f(agfa)}r,,flw       

by (1). But p(a,) = 0, and it is then clear that the set on 

the right side of {5) is empty: The common value in (5) is 

i Zero. This proves that P is indeed a bounded measure potential 

for A°, 144{ L8 

————— 

To mako further progress we must introduce topology. 
re— 

gMP;_,:._»}:'e:t‘:‘;ir;:kt:i.ornz Let measure A on (5 ”wfif I x Z);1 and the function 

p:A » realafi>be feasible for theg!equality»constrained) tranf: 

fig;fi shipment protlem and its dual, fiESpectivalyt ‘Let f be a 

- 0 | topology on A. lfi 

éfig Q?; 1J§ la a (transhipment) topological potential for A iff the 

T follow1ng oonflition is aatisfied=#:> 

> If (al,az) is a point of support for A, then 

p(az) i P(a}_) = $(§1;§2)~  
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("Point of support” refers to the topology T x T and~sfi§aa— 

field I x Z on A x A), That is, (4) is satisfied for all 

(al,a ), and is satisfied with equality for points of support. 

, ;!Ai" TR TSP / 

This definition is appropriate for the equalityuconstrained 

variant of the transhipment problem. (For the inequality* 

ah 
constralned variantflflextra condition is needed, na:aa»eaty‘a Flf a, 

suppoxts‘w - (A',A"), then P(?o) = 03 we sha&l not oiscuss this, 

since it not needed in what follows.) 
iR — 

¥ 

Cfi&,,'@haoremz Let p be a (transhipment) topological potential for A, 

, E;f for the equality-constrained transhipment profilem, and let 

< T x T have the strong Lindel8f property. Then p is a (tran- 

shipment) measure potential for A, 

fiwtww*”””flwfi;” The proof of this theorem is virtgélly identical with that 

of the corresponding theorem in the tiansportation problem 

(pase )fi\and will not be repeatga here. 

We are now ready for the next result, which generalizes 

o 
the preceding theorem at the co%t of attaching some topological 

strings. 

  

e 

. Theorem: Let u,v be bounded mé;sures on (A,5). Let T be a 

“ij. topology on,A, such that T g I, and T x T has the strong 

Lindelof pr?gerty. Let £: é x A + reals be bounded, continuous. 

2 measurable,if4obey the t:iangle inequality, and let £(a,a) = 0, 

all a ¢ A. Let measure fi“ on (A x A, I xI) be best for the
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transportation problem of minimizing (2) subject gb At =y, 

Then \° is best for the transhipment problem of minimizing   (2) over bounded measures ‘A satisfying 

A » At B oy -V, - 

wmm‘y,. 

»f?jpf Proof: This is trxivial for A = ¢, so we may assume A is notff 

  

empty. First ef-all, it is clear that A2 is feasible for the 

fi”fi transhipment problem. ' 3v 

(vfigj Since A° is transpott optima{,f < E?Jand'f is bounded 

continuous, it follows that A% has a bounded (transpottation) 

topological potential: a pair of functions p°, g“:&j* reals 

thoh are bounded measurable, and for which 

v (rvedly’ 
q®(k) - p°(a) < £(a,b), / 6 

all a, b € A, with equality in (6) if (a,b) supports A°, Now 

define the function_g:é + reals by   ; ; j";.}{fi-',»" 

p(a) = inf{p(x) + £(x,a)},. =N 

3 the infimum being taken over all x € A. (Note the distinction 
a 

between p and p°). We will show that p isnoounded transhipment 

topological potential for A°. j 

Boundedness of p follows from boundcghess of p® and £ 

A
R
 

Tk,
 T

BR
G,
 

(remember that A # #). 

For fixed x, the right side of (7) is a continuous function 

of a ¢ A, since £ is continuous. Then p, as the inf of a
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i collection of continuous functions, is upper semi+continuous. 

% Since T € I, it follows that P is measurable. 

Next, we will prove that p is dual feasible,xtfiatwis, 

{\")x!(’_’)-f‘f‘i 

play) - pla)) < f£(a,,a,) BT e 

for all 28y, 8, € A. For any x ¢ A, we have 

  

  

= / ‘ {/ /& ‘i’ 
}?(92) L pl(x) + g(firég’r“ i 49). 

% by (7). Also, by the triangle inequality, 

; 
. {9, 16./1 8 

’i; : Adding (9) and (10), and simplifying, wo;obtain 

i ?(-@2) = ,g(fill.a.'z) < Pn(x) - f(x‘a‘l) 

% Taking the infimum over X € A on the rightmhafié side, we obtain 
i, | (8. 

Finally, let (al,az) be a point of support for A°; we will ¢ 

show that (8) is satisfied witt equality. 

for any a g A, we have 

gaf:tjwe show that,. 

S
 

AR
 

A
R
 
A
R
 

ST 

% ; 
5 

(“irfcf;?.-fif J 

B2(2) 2 DAY daatiat 1) 

i The 1eft inequality in (11) follows from 5 

* 
p’(a) = P (a) 4 f(a,g) > P(a)l 

f The right inequality in (11) follows from taking the infimum 

over x € A in
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J 

= E*G (3;) + f(gfira) A FI' (;fl) £ 
s S 

““which in turn derives from (6). 

From (11) we obtain 

Q" "‘d i / ] “3;‘ TV lOer & 
24 ?{92) * }3(91) > q° (;&2) o (?1) = _f(?lrfiz)fi ~(12) 

The equality in (12) arises from the fact that (gl,a ) supports Q KAt 

A%, (12) showa that (8) must be satisfied with equality.   
This completes the proof that P is a transhipment 

topological potential for A°. Since T xff has the strong   Lindeldf property, p is also a transhipment measure potential 

e
 

for A°, Since p is also bounded, A° is best for the tranship< 

{ ment problem. LL?Q 'y 
wr 

  

We conclude by using this result to establish a theorem 

n the existence of optimal solutions to the transhipment 

problem, 

R 

Q}; Theorem: Let u/}h@ a signed measure on (A,X), with u(a) = o, 
‘; Let T be a topology on A such that T is separable and topologis 

(_fi cally complete,kan& £ is the Borel field of T. Let £:2 x A » 
- reals be bounded, continuouo, obey the triangle inequality, 

and let f£(a,a) = 0, all a e A, ‘ 

Then thoua?efiaets a best solution A2 ,to the transhipment 

problem of minimizing (2) over bounded measure A satisfying 
e 

“‘""A.’“A"“"Jt



Proof: Consider the transportation problem with origin and 

oooooooo 

  

v 

D 
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destination spaces (A, E,u*) and (A,X ,u'), respectively. By 

the results of sectlon '4 there cxm%ts a best solution, X%, \to 
\ this problem. (Note that u (A) =y (A) < =), 

The premises of the preceding theorem are also fulfilled. 

(T being separable metrizable, it has a countable basé,.hence 

so does T x T, hence T x T has the strong LindelSf }%rofiertx}&? 

Hence this A° is also best for the transhipment problem“of 

mxnimizmng (2) over bounaed measures A satisfying 
i 

  

It would be interesting to know whether the triangle 
inequality premise may be dropped from this theorem. 

7.11. The Skew Transhipment Problem 

fiatcflo return for a moment to tho ordinary transhipment 
((f i 5 “"w : 

problem, E—2) of section—6, with a finite number of loca- 
: , t( tions, By and #44 are the flows from location i to locafgon 

jr and vice versa, respectively. ’Definewyij, the net flow 
fromv§ to j, by 

(it ) 
v(fiié 

(i“! 2 = l,on-,&)n
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Wé note at once that vy, 13 need not be nonynegative, In fact ; u sw - 

—lfij = ¥yy for all i, 3 = 1,...,n. That is, if the numbers ‘ 
~$ij were arrayed in matrix form they would form a SkeW”QZflflgtric,ff 

matrix, e / 
{(The term "net flow" has been used above in an entirely : 

different soogéin';sjthe oet amount entering or leaving a given 
set of locations., It was represented abeve by a measuraqxll or 
Az, on (2,Z). Here it refers to a net movement on a givan set 
of Eflififl of locations. It will be represented belfiw by a signed 
measure ~¢or, more generally, a pseudomeasuro;«»on the product 
space (A x A, I x I). Hence no confuaiop ahould arise between 
these conoepts§@ ; / 

The basic transhipment constraint,- é&}{;f’fioction 6, takes 
on a simple form when written in terms of net flows, namo%#t 

f?::, & ) e VT Dot ek about the objectiva funotlonrfif%i of 
‘section—62- Can it be written in terms of net flows? We 
distinguish two'cases, depending{on the nature of the "grogs" 

ggow pattern (xi ). This oattcrn is said to have the no-cross=- 
'lfggling property iff min(xij, x, ) = 0 for all pairs (i,y) 

(i,j = 1,...,n)971That is, theta~never occurs a positive flow 

in both directions between any paix of locations (in particular, 
%34 =0, all i). 1In the no-cross~hauling case, it-is-easy to 

7 
n\ Aot see that (1) above can be solved for ®, namélgmixij = fiifi(yij'o)“~
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Hence, if we restrict ourselves to such flow patterns, the 
(L2 

objective functlonraéé%mof*seotion -6, can be writton‘ 

et fiinimize the sum of 

i\;f bi s 

£ max (g4, ) @ 8 

over all &2 pairs (i,3), (i,j = 1,...,n). 

If oross~fi%tling occurs, the objective function oannot 

be written in terxms of Sgij) alone., 5fi-thasothe§fhané, little 

is gained by allowing oro;;*hauling. For consider the follow- 

ing two possible situationss 

\T&% fiJ + gjl < 0 for some pair (i,3). Then there is no 

optimal solution to the transhipmant problem, because the cyclic 

positivity condltlonfi,%é} -of-section-6, is violated. 

5, ) £i4 * £55 2 0 for all pairs (i,j). Then there is no point 
- 

to cross-haulings If gij and gji are both positive for some 

pair (i, i), an equal reduction ;f both of these.numbers by 

min (xil' ®., i) preserves feasibility and reduces .transport 

cost — or at worst leaves it unchanged. 

The problem of finding a skew-symmetric flow pattern 

‘Sij = fyji) that satisfies (2} and minimizes (2) will be 

called the skew formulation of the (ordinary) transhipment 

problem. The intuitive advantage of this over the' ordinary 

formulation is that it automatically focuses attention on the 

flows without cross-hauling, which are the only interesting 

ones. Also it can be argued that the net flow (yij) is really 

what one is looking for in transhipment problems in any case. 

'/



  

751 

Ca n e 
. 

.(2) gives the inequality-constrained variant; the equality- 

constrained variant is obtained, of-course, by substituting 

P o “<“ in (2). 

It-turns-out—that all the arguments above carry over very 

neatly to the measure-thecretic transhipment problem. Thef‘ 

remainder of this section will be devoted to showing this in 

detail. First we need a few new concepts. “# 

Trangposition on a product space A x A refers to the interZ 

change of left and right. It will be denoted by o;attx **“; 

Thusfiif_g is a subset of A x 3, its?tté%%ane is the set 
il 

G* = {(a},a,) |(ay,2)) € G}, 

(Just "reflect" é[through the ”diagonal?@)c’similarly, the 

transpose of a function £:2 x A ;?fggls is given byffis 

g*(éli.@g) - g(.@gtél_')- y 

“We now want to extend thitlooncapt tqfset functions. PFor this, 

the following simple result is needed. 

Lemma: Let (A,I) be a measurable spaca. I£f Ge¢ I x I, then 

G* ¢ I x L. 

. Proof: Consider the c¢lass, é, of all G ¢ L x I for which 

G* ¢ I x L. We show that € owhs all measurable rectangles, 

and that it is closed under complementation and countable 

unions. This implies that =% x %L, and concludes the proof.
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Le e
 

1 - 

€ 

v t € ZS (ExF)* =F xEeg £ x £, hence EXx Fe 6. 

Let 6, ey
 (A x A)\G)* = (A X A)\G%; this last set 

belongs to I x I, since G* doess hence (A x AJ\G ¢ 6. 

Let G & G forn =1, 2,... . (G) U 8 Ueea)* = G * y 
' 

Gy * u...;,this last set belongs to I x I since each G * does; 
hence G U Gy Uees € G “/jJL 

ww”’é”’“\ i =" ?¥“ Definition: Let o:I x 3 =» extended reals be a set function whose 

  
domain is the product sigfiaufield I x I, The trafisgosevof g 

is the set function g* given by i . 

) 11}/ 
{bll { I‘ W) 

o*(G) = a(G") —— 4 

for all Ge I x %. 
o 

,«"’"’W{ 
: 

f 

\ This is well-defined, by the lemma just proved. It is 

easily established that o* is a measure, or signed measure, 

iff ¢ is a measure, or signed measura, respectively. Also, 

sfigma~£in1teness of 0 implies the same for o%, 
3 

e M‘M 

o\ G |Definition: Let o be a pseudomeasura on (Ax A, IxZ), The 2 \ 7| Definition 

N 

j{; tran anspose of ¢ is the pseudomeasure o* = (u*,v*), where (u,v) 

is any representative of g. 

s i e— 

| For this to be a sound definition, ¢o* must not depend on 

the particular representative of ¢ whieh is chosen. Iet 

(ul,vl) be another representative, so that;> 
e 

u+vlmv+ul
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— (equivalence theorem). This implies 
: tA 

- ¥ 
& 2 

u +vl :L,“+u1' 

by (4), so that (u*,v¥*) = (ul*,vl*), and the same o* results.zb 

Hence the definition is bona fide. 

Note that A* and o* remain defined on the product space 

(A xa, © xI), in contrast to A', A", Al' A, discussedJorew 

viously, which are defined on (A,3). Note also that'flouble 

transposition restores the original: (G*)* = G, (q?)* =g, 

etc, 

,/7 In terms of transposes we now define the fékew“ concepts 

needed for the skew transhipment problem. 
—— 

u%% Definition: Let g_ be a signed measure or psendomeasure on 

{)\ (A x 2, £xI). \Xfl'ls skew iff 

; Gt S 

Rt o*‘= -0 i =£5) 

For signed measure o, (3) states’that o takes on values 

of opposite sign on sets‘tfiiéh are tronsposes of each other. 

It follows that, if G ¢ I x I is a simgetric set ¢-¢5at;is, 

G = Gj&i then 61§) = 0, In particular, the universe set 

A x A is symmetric, so that o(A x A) = 0. Thus 'a skew signed 

measure must be bounded. : 

For skew pseudomeasures we have the following result.
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e 
] Theorem: Let ¢ be a pseudomeasure on (A x A, I x I). Each of 

} X the following conditions implies the other four: 

l?(__) 0 is skew; 

(ii) i 

)| N % : 
3 o ey 

m.—.‘- 

(i VY 

¢ and 0 are transposes of each other] 

¢ has a rcpresantative' (u,v) for which u = v¥* 8 
7 

¢ has a representative (u,v) for which pu + u* = v ¥ vk 

2430 (g)‘% ¥ u+ u* = v 4+ v¥ for every representative (u,v) of'bo. 
< o 

/M’l . { Proof: Obviously, (ii) implies (J,J.t)h and (v) implies {.;g)@ 
‘t "«“’ L 

’\) Y, 9 (iii) implies (i)® fex, letting (u,v) be the representata.ve 

y i/ of ¢ with property (1*1) , we obtain 

YL \ k 
F1 N 

) 

B 

\ 

?‘ Jfi;kww o* = (u*,v*) = (v,y) = =g, 

‘;{ 8 which shows that o is skewm 
\ e 
i i q‘ gg implies 1_)@ letting o = (u,v), we obtain N 

M | 
= (v,u), 4 
Pl 

2 - (u*.v*) = o* = -g 

P : 
i and (v) follows from the equivalence theorem for pseudomeasuresj 
i 

o (iw) implies (ii)» letting (u,v) be the representative of ¢ with 

e property (iv), we obtain (Mrlb) 

+ 
((c")*, (6T)%) = (u*,v*) = (v,u) = (07 ,07) 4.‘3 

The middle equality of (6) arises from (iv) via the equivalence 

theorem; the left and right equalities arise from two different 

ways of writing o* and -c, respectively. 

J}The left and right pairs in (6) are both mutually singular; 

for if (P,N) is a Hahn decomposition for o, so that 

 



S
 
s
 

e
y
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ot () = o (P) = 0, then (¢¥)*(u*) = (6T)*(P*) = 0; but {p*,N*} 
is a measurable partition of A x A, so the left pair is 

m;tually singular, By the uniqueness of the Jordan form, it 

follows that (6¥)* = ¢~ and (67)* = ¥, which is condition (ii). 
We now have a closed circle of implications. |||~ (/& 

B 

In connection with condition (1ii) of this theorem, it 

-should-be noted that (if I is nonftrivial) not all representa~ 
tives of a skew pseudomeasure satisfy u = v*, For example, the 

zZero pseudomeasure is skew, and its representatives are the 

pairs (u,u) for all aé§mc~finitc measures u. But u = p* is 

not true for all such measures. | 

We are now ready for the skew formulation of the trangl 

shipment problem. The latter comes in bounded and unbounded 

formulations, and each of these can be "skewed". The bounded 

problem becomes one of finding the best of a feasible set of 

skew signed measures (these must be bounded, as noted above); 

the unbounded problem becomes one o£ finding the best of a 

feasible set of skew pseudomeasures; 

jlfic shall formulate the skaw bounded problem first. 

Measurable space (A,I) is given, together with a sigma~finite 

signed measure p on it (net ccpacity), and a measurable function 

£:A x A + reals (unit transpcrt cost).’ The problem il AT 

=);&na a skew signed measure ¢ on gg X A, I x'%) satisfying 

{\"1.11,“‘2? 

o' < R 47
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and minimizing 

(7.11, 8 

[ _f §U » - 
-(.8;} 

£ 

B 

Here o' is, as usual, the left marginal of Oa ;ffll'isoan 

indefinite integral over A x Ajp. and "minimization" is taken in 

its usual meaning of (reverse) standard ordering of paeudoé) 

measures. WNote that the upper variation, a*. occurs in the 

ob;ective function, rather than o itself. _ 
Orabls andv 
(?Yr (8) may be compared with the skew formulatxon of 

the ord;nagz transhipment problem, (Z) and (3). Iu&oedq it is 

not difficult to show that (7) afld (8) reduce to (2) afid (3), 

respectively, in the special case when I is a finitewoégma 

field. The discussion there also provides a rationale for the 

particular form that (7) and (8) take. 

Now gflf the skew unbounded problem. For this we need a 

new concept, that of the marginal of a pseudomeasure. This in 

turn is a special case of the followinga, 
e 

§ 

“7fi Definition: Let (B,IZ',0) be a pseudomeasure space, (C,%1") 

~. ~ another measurable space, and g:B > C a measurable function. 
Réf» The pseudomeasure induced on (C,Z") by g from ¢ is defined iff 

the measures, 4 and v, induced from g+ and.o‘kwreepectively, 

are both e&gmawflnxte‘ In this case (u,v) is the induced 

-~  pseudomeasure, 

Starting with the pseudomeasure space (AxA, LxZ, o), 

the left marginal — if it'exists_—-is the pseudomeasure
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induced on the space (A,Z) by the projection g'(a',a") = a', 

according to this definition. Similarly, the right marginal 
is that induced by the crojection g"(a',a") = a". We shall 
use tbe notation ¢', ¢" for these respective marginals, so 

£ F" /fi that . P 

- S ‘ /%iy '::'74 (4 ) 
o' = [(5+, 'p {fin)j"ian = [:(a+)fl’ (Gn)ti P ‘&)‘ 

55 

Again, o' is defined iff (o*)‘ and (07)' are both aegmaffinite, 
and similarly for o", 1In the case where ¢ is a bounded signed 

measure, these marginals are all bounded; hence o' aaa o" are 

alvays well~defined. 1In fact, one eaaily verifjev Eaat, in 

thie case, o' and o" are bounded signed measures coinciding 

with the usual marginal concepts { 

a'(}_i:) =G (E x a), o"(E) = o(A x E), _ 

’ali E € I. Hence the ¢' in (7) may be lockeéfupon as a special 

| case of the definition just given. 

The skew unbounded problem may now be stated. It is 

precisely the same as the skew-bounded profllem, (7}L(8), 

except that ¢ ranges over the set of g%gglgseudomeesures for 

whxch o' exists and satisfies (7). (Also the given"net 

capacity" signed measure ¥ in (7) is replaced by the given 

pseudomeasure Py 

Let us contemplate these skew formulations., One possibly 

disquieting feature of-them is that left and right appear to
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be treated asymmetrically: ¢' must exist and satisfy a certain 

condition, but not ¢", But this is an illusion, as the follow- 

ing result indicates. 

c#: | Theorem: Let 0 be a skew pseudomeasure on the product space 

i (A x A, T xI). Then o' exists iff o" exists, and, in this 

case, 
4 {‘.74'///”}" 

g' = « g" 7 10) 
ok V,..««.v« f ‘ 

,Mr*:E;ew‘PrOOf: et E€ Z. Then 

A f Kt is) 

(6")'(B) = o*(E x &) = ¢”(a x E) = @)E) 

The middle equality arises from ot and o~ being transposes. 

?lThog we obtain (c )' = (g7)". Similarly, (¢7) = (o+)". Hence 

/vfizf the twotgazrs in (2) are interchanges of each other, and 

= o', o" ~(@if they exist) — are negativee-of each other. Also 

o' exists iff o" exists. M| [/ - 

Cf'\\ \I_LJ \;2163 ;iso holds in the special case where ¢ is a skew 

; signed measure, Thus in both bounded and unbounded skew 

formulations one could just as»easily have written things in 

terms of o* as of o', 

We now want to relate tfie skew to the nco}skew'fo:mulations. 

In discussing the ordinary transhipment problem, we noted the 

connection between skew flows and ordinary flows having the 

"no-cross~hauling" property. To carry this connection over to 

the measure~theoretic problem, we need a generalization of this 

propertys).
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e S 
ot 

‘P Definition: Measure A on (A x A, T x ) has the NO=Cross= 
fflf;; hauling property iff A and its transpose A* are mutually 
e singular. 

One easily verifies the followings If I is a finite 

%gma*field, this property in effect reduces to the one 

mentioned above for ordinary transhipment: min (3‘3.:3' le) = 0, 

Any translocation has the no- crces~hanling property Tsince 

has all its mass on a set P x N, and A* on the disjoint set 

N x §:Z£Ef§} being a partition of A). The converee,of this is 

false, and even in a three~point space ona can fiq&ca nons 

translocation with this property (exercise). 
RO T 

g?g Theorem- Given product measurable space (A x A, L x 1), let | 
be the set of all stgma-finite measures‘%;on it with the no- 

cross~hauling property; let Lllbe the set of‘those meeaeuxes 

-y whose marginals A', A" are eégma finite; 1et L2 be the set of 

 those L1~measures~$h%eh are bounded. Also let Y be the set 

pe
ss
sn
d 

h 

T 

§ Sy
 

of skew pseudomeasures ¢ on (A x A, & x f);‘let ?1 be the set 

of those ngeeudemeaeurea for which the’ left marginal o 

| exists; let Wz be the set of skew sigaed measures on (A x A, 

{ I x3x), 

Let g assign to each o ¢ ? its upper variation: 

(e izl + : 
glo) = o - @2y
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Let h assign to each A ¢ | the pseudomeasure (A,A%): 
oA 

B(A) = (A,2%) 139 

the three pairs ~| L and Y, Li and ¥y, and Lz and ¥,)~ and are 
;:, 

g Then g and h both establish 1=l correspondences between { 

| 
i inverses of each other: 

4 'a«i 
. ifi‘i}&":i"”j“fi 

g(h(l)) = l,l h(g(g‘)) » . 

Finally, fif o and A are correeponding members of ¥, and 

i mErT L 

o' = (A, A7) —— o ; 

s _Proof: First we show that the ranges of g and h are contained 
(e, in the proper sets. If ¢ %,?, the ttanepoae of ¢ is ¢~, and 

' of course c+, o~ are mutually aingular; hence ot has the no- 

yfiif;}A cross-hauling property:~1?(o) € L - If, in ad?ition, ge v e 

= ?':!’ then (c )' and (¢7)' are eigma~finite. Theglatter equals 

(c )" (ef. (11)); hence o has sigma»finite marginals: 

1' 

i
 

g (o) ¢ !1.f If, in addition, o & ¥, then it is bounded, so 

ot is bounded: glo) ¢ Lz. This proves that g maps things 

into the right sets. i 

R
 

st
 

R
S
 

If A e_L, then (A,A%*) is a skew éseudomeasurez h(A) & ?. 

Suppose, in a&diticn, that A ¢ Ll' so that 1A', A" are eigfle 
}— @ 

finite. For any E Q\ZJ we have 

N
 

A 

el 

A"(E) = A(A x E) = wg X B) = (A%)'(B). 

B
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HenceZEf = (A%)*, ea? the latter is a:gma finite. (A,A%) is 
the Jordan form of h(i), hence (h (A))' exists: hi{)) ¢ Wl 

If, in addition, A ¢ Lz, A ie?“ounded, so (A,A*) is a signed | 
measure: h(iA) ¢ ?2' This proves that h maps things into the 

right sets. 

. 
= e
I
 

—
—
 

S
T
 
A
 

It remains only to establish (1) and (5). ror aayf 

s et 
f: > f(h(h)) wil} i*) = A 

since (A A*) is the Jordan form of h(A). For any o é ? Z 

.
 

— 

\fig(a)) = (0%, (¢* )*) = (oF ’C ) =-lc'. 

“ since ¢ is the transpose of ¢ .| Finally, 

o' = (6N, 7))y 

€= (6™, wWwhn = (e am, 

, if a, A are coneeponding members cf ?1, L1‘ This yields 

  

This long theorem has a very gsimple interpretation. 

Compare the skew bounded transhipment problem, (7)~f9), for 

  

\k instance, with the 3ff* %i&fi¥ilf€* problem@ 
\vfi\hinci a bounded measure )\ aatiefying N e 

> A, < u 

" and minimizing 

N[ fa 
l\
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- If we add the additional constraint that A has the no-cross< 

hauling propeity, we find that the mappings g or h, (12) or 

(13), establish a lrl correspondence between the set of measures 

A feasible for this problem and the set of signed'measures o 

feasible for the preceding problem. Furthermore, the objective 

functions assign the same utility to corresponding A and o, 

since )\ = c+. Thus these problems are equivalent to each other 

in a rather strong sense. 

Similarly, the unbounded skew and non+skew problems are 

equivalent to each other in thisfisense,*if we add the "no= 

cross~haulingé constraint to the ncngskgw problem. The feasible 

sets in the unbounded problems are subsets of ¥, and |, 

respectively, just as they are subsets off?z.and ng\respeca 

tively,“in the bounded problems. ‘ | ; 

-Nete=that for the ordinary transhipmentfprcblem the 

mappings g andft ;ake fo;as we have alreafly’encountered: g 

becomes Xy j = max (Yij' g}, anél\fbecomes Yij = xij j ¢ 

Finally, we want to inVestigate the" effects of restricting 

attention to flows with the “no~cross~gauling‘ property. For 

ordinary transhipment we pointed out;thatf\if an optimal flow 

exists at all, then some flow withoot croe;—hauling is optimal. 

This property carries over to meaeare*theoretic transhipment. 

_glgirstéconsider the process of "reducing” the flow pattern 

(gij) by subtracting midtjgij, xsii from-xij and xji if these 

are both positive. This leads to the “no-cross-hauling® flow
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whose value at (i,j) is mexr}xij - xji' 0). The following 

concept generalizes this opgration. 
Lt 
1t 

.WMM 

é$¢~ Befiniticn, Let A be a sigma~finite measure on (A x A, I x I), 
g:fi_} The no-cross-hauling reduction of A is the measure (A, axy* 
b {That is, form the pseudomeasure (A,A%), and then take itefi 

upper variation.) 

  

J To show that (A,A*)+ does, infieed{‘have no cross~hauling, 

note first that (A,A*) is skew. The upper variation of this 
is obtained by applying the mapping g, (12), whoaefrafige was 

proved to lie in the set of % no-cross~hauling” measutes* We 

also have (), A*) £ A, by the minimizing propexty of the Jordan 

form, 
; 

We can,-in—fact, obtain an exact expreeeicn for the size 

of this reduction, which may be called the'”cross~haulinq"®. 

  

Definition: Let A be a eigmanfinite measure on (A xng,'z x I). 

  

«!a% The cross-hauling associated with A is the measure « given by . 

K o= inf (A A%®), 
e — 

b fi\ The following results show that these definitions capture quite 

well the intuitive meaning of these concepts., (Subtraction of 
- measures is defined in 

  

o\\s 

e, 

te ection 'l; if k is finite) 

this reduces to ordinary element-wise subtractiofi). |
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’5‘;3“'“"'"" e 

«:;i Thecrem~ Let A on (A XA, £ x E)—hcmmegmamffinite. The no=-cross« 
> hauling reduction of ) equals A - k., Also, A has the‘*no- 

cross~hauling(flproperty iff « = ¢, 

  

Proof: The no-cross-hauling reduction of A is the upper variation 
of the Jordan decomposition of the pair (A,A*), and this is 
known to equal ) - inf (x, A*),‘(ehaptefi;&a section"l). The 
second statement is simply a special case of the thaorem that 
a pair (u V) is mutually singular iff inf (u,v) = 0, which was 
proved abewe in eection 7. Here u = XA, v = \#, *,JJ%*‘1iZ§? 

«Rotei_hx_themwey7~that-this theorem hoios fofiflsgz,measure 

A, not merely for segmanfinite measures, %fletheg'enera:l!—eeee,.L 
(i,i*) refers to the upper variation of the Jordan decomposiZ 
tion of (A,A*), which is well-defined for any A on A x A, 

The crossuhauling heasure Kk also has the property of being 
symm etric»-‘— that-is, k() = k(G*) for any G.¢ I x I, (this is 
easily established from the fact that A and A* enter symmetri< 

cally into its definition.). This implies that the left and 

right marginals of ¢ are equal: k' = k", 

\> With these preliminaries established, we are ready for 

our final result. This generalizes the argument given for 

ordinary transhipment and says, in effect: flh looking for an 

optimal flow, ome might as well confine attention to flows 
without cross~hauling. The theorem applies to both bounded 

and unbounded formulations, and to both equality- and inequality=" 
constrained variants;?s
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B 

fiwv Theorem* If measure A on space (A x A, T %X I) is best (or 

sfliji unsurpassed) for the transhipment prohlem, then itaxkncwoross:“ 

hauling"’ reduction is also best (or unsurpassed) , respectively.t 

   , ¢ ‘ %?¥wgrProof: For convengence we use -f in place of £ in the objective 
I funotion; and treat the problem as one of maximization.. We 
Z\ shail also f£ind it convenient to treat the measures vhieh-are 

  

s discussed (amd which are all s&gmahfinite) as pseudomeasures, 

80 that they may be subtracted freely even though they may be ing 

finite. 

Let A be best for the transhipment problem. First ofiw&%&, 
g (\ ” ‘{P/’ 

(Aants 0anmt) = aoam = (o +fr:’>".. B+, tfls 

the equalities being understood in the pseudomeaeure sense., 

To prove (ip), we first verify that all eix measures appearing 

there are nigma finite. )' and 1“ axe-s&gmawfinite since 1A is 

feasible, Kk and (A, A*) are bethfifi A, hence their marginals are 

e&gma finite, too. The rightnhaed equality arises from k' = k", 

Similarly, (A,A*) and A differ by « (by the preceding theoramb 

and the same argument establishes the left -hand equality in 

(#33. Since feasibility depends only on the value of the paeudof 

measure formed from the marginals in this way, it follows that 

A+ Kk and (A,x*}+ are also feasible flows. 

Since \ is best, we must have (7. 117 

[(»;) a jc~g>,\§(>./+\m 4 (19)
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(Here “»* is the preferred-or-indifferent relation for standard 

order) The same pseudomeasure may be added to both sides of si 

(il) without disturbing the order relation., Let us add 4f dx 

to obtain 

[na0-0 » | oo (in) , K A ~ ; 

. 3 
But A=k = (A,A*)+, by the preceding theorem}” (17) states that 

this measure is at least as preferred as A. Since A is best, 

so is (X,A*)+. 

Next, let A be unsurpassed for the transhipment problem. 
6 

M is feasible, hence so is (X,A*)+, by (ifi). Suppose that 

(A,A*)+ is surpassed by some feasible measure v: £y bil) 
bl ) 

= 14 
[ o> [ enaaan®. i 

Adding fr(*f%SK to both sides of céZ), we obtain e 
3 ) \;fi‘;l o S 

2.0 
[[engora > [ ena.. (Lp) 

16 
Since v is feasible, the same argument leading to (#Ap) 

‘ |8 
establishes that v + k is feasible. A(l ) then states that A 

is surpassed by v + k. This contradiction proves that ()\,A*}+ 

is unsurpassed. [ [T @
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FOOTNOTES ~ CHAPTER 7 
  

1A. M. Faden, "The Abstract Transportation Problem," 
/t‘o 

nagee 147~l75\c£/Papers in Quantitative Economics, vol, 2, 

  

A, M. zarley, editor (Univecsiey Press of Kansas, Lawrence, 

1971),,i= a less advanced version of eections 2.3 tfixcugh 7.5. 

  

;m” & 

zs Vajda, Readings in Mathematical Programming (Wiley, 

New York, -2é—ed, 1962); G. B. Dantzig, Linear Programming and 

Extensions (Princeton Univexeity»?:ess, Princeton, 1963). 

  

,;iE3The measure induced by a‘siémamfinite measure is always 

abcont, even if not afiéma~finite. {hnr1finfi$ 

  

4There are certain complications if mixtures of equality 

and inequality constraints appear Within the capacity block, ( 

r-of-section-1l. We shail not discuss these. 

  

SFirst proposed by G, B, Dantzig, "Application of the 
iy b 

Simplex Method to a Tranaportation Problem,a chaptec 23 of A 

Activity Analysis of Production and Allocation, T. C, Koopmans 

(ed), (Wiley, New York, 1951), pages 361-362. 

  

.i/“



& 
..«-/; \ \g 

6§ 

  

(6 

General Topology (Van Nostrand, Princeton, 1955). 

For further information see, £oifle¥am§1e, J. L. Kelley, 

  

*i,;\7F°r topologies, the process of generation can be written 

in two steps, as just indicated. For sigma-fields it cannot be 
countable 

written in even a fimtee number of steps. In both cases, ~ 

however, the basic concept is the same: the interseotioniof 

all topologies (reepectively,_ sd:g:m-—fields) containing the 
' 

given class G. 

  

g 2' ' “Bone can show that this definition reduces to that of 

- discussed there @an thtervel oé 
chapter 5 for the special case where™(a,T) is the real line with 

the usual topology. 

  

g Ang A is the real line with the usual topology, one can 

show that its Borel field as here defined coincides with 
e o : 

“Borel field" as defined in chapter 2. The same is true for 

n-space. 

  

v Awaumbec—of results from the theory of weak convergence 

of measures are used in this part of the proof. On this theory 

see P, Billingsley, Convergence of Probability Measures (Wiley, 

New York, 1968), Cnaptor"§; and K. R, Parthasarathy, 

Probability Measures on Metric Spaces (Academic Press, New York, 

1967). 
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e 
4 ‘rinillingsleffi§§go~9, has'a~similar theorem, but with 

equalities in place of inequalities; a simplie twist of his 

proof yields the statement just made. : 
~ 

/:”), ( 5") { / 2.4 o ce A 2. oty G Lo ff—f{{;,;ww...i}g P @2t £ A y | SO S X 2 =t 3 e e . 

wwg{,_ieFor readers familiar with general topology the following 

-~ 

remarks will serve to";"placeii this concept. The strong (or 

"hereditary") Lindel8f property is implied by the possession 

of a countable base, and in turn implies the (weak) Lindel8f 

property that every covering of the space by onen sets contains 

a countable subcovering. One shows by countetexamplee that 

neither of these implications can be reversed. But in a 

metrizable space these three properties arexlogioally eqnivalent,} 
  

  

and also equivalent to segarabilitx:Q’Seefn. Wilansky, 

Topology for Analysis (Ginn, Waltham, Mass., 1970). This book 

  

ends with a remarkable table of implicationa among topological 

properties, 

y |,.)‘:;3‘ T’ S et 1% g do#€ not éuaVahTee, Dt 

(T' x T™\ES(Z' x L") nor need we make this stronger assumption. 

  

  G W 
h/‘lazszact, the single extra premise “that £ > 0 implies that 

A% = y", hence (see belowfllthat a wide-sensa topological 

potential exists. But the proof im this case is more 

complicated. 
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  H“" b o E (7‘,; 
j A 

|4 7"Ls Kantorovitch, “On the Translocation of Massas®, 

Comptes Rendus (Doklady) de 1l'2cadémie des Ecience;' de 1'URSS e 

vk, 37, fo. 7~ e[ 199-201, (1942) (reprinted in Management Science. 

5 1-4.)(0«::1:0%&, 1958), 

  

  

fin. orcien, ”Tho ‘yfi:anshipment troblom*, Mana ewmtt Scim 
P 

2 275#3850 Ayr& 1958* LJC )'\5 v &A()rh Oyd’hm 3’“ g}qs_ f } 5‘31 fl\ 

wmf& I{’)’RV\SL\\}OMQAT‘ 

< 

  

‘ w,,LflIqWe a-h-ai-}. not deal with nonlinear ohjectiim functions in 

this chapter, although some of ocur results do"l generalize to this 

case. Note thad a nonlinear objective can, still be peeudo-l- 

measnrelvalued, as in chapter 5 above. 

  

.:.afu..“ct. P. A, Saznnelaon?%:{ntertempoml /f»’rioe ,éqnilihrium: 

A Prologue to the }f'heory of Speculation ,‘ Weltwirtscw 

Archiv, 79:1815221, (1957 icC. K. Kriebel, *Warehousing with 

?I‘xanahipment ;liader fifeaeonal_ Demand,‘* Journal of Re émea-h Scienca,     

  

-“worden, 'm il.‘ranship:,a’ent /lgz:oblem"‘; p&ges 2834285. There 

are several a}.gorithmn for’ finding a shortest route, !er—mh 

G. B. Dantziq, “on the fihortest Houte Phrough a Network,® 

Management Soienoo, Gmfl/a‘?fi}fm. gana% 1960} 
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gc_‘%e@he most fruitful network problems have not been of the 

transhipment type (l):(fi) » but of the following form: C&iven a 

flow capacity on each link of a network, maximize the flow from 

a given source to a given sink. See L. R, Fofio, Jr., and D. R, 

Fulkerson, Flows‘in Networks (Frinceton Unige?oity Press, 

Princeton, 1962)., A measurentheoretic treatnent of these 
A : 

problems can be given, but we shall not do so in this book. 

  

QZgiThe terminology (but not the meaning) is from;Kantorovitch. ] i 

  

10, P, Beckmann, ®A fontinuous Model of fransportation,®" 
/ S & 4 

Econometrica, 20:643<660, Octobes, 1952f:“The Partial EquiS 
1 e J \ g D ¥ 

librium of a ¢ontinuons/finace,narket;" Weltwirtscggétiichoc Archiv;x\ 

71:73487, (1953} 
i 

  

"7af‘2gExerciee: _prove this uniqueness assertion, without 

making the assumption that {50} & % / 

  

g?"*,fem}_c.‘-l 1w, the properties of T i“?f;ly that (T x 77{ . % k 
hence the measurability of £ follows from its continuity, The 

same is true in the following theorem, 

  

e §‘§§We have been stating conetraints in the inequality form 

in this section. But ifjflgf is reniaced by"n* in these formulas, 

the éiecussion is still wvalid worc'for word, 

 


