
  

This chaptéf will take up two major topics: the set of 

feasible trading possibilities open to afi individual, and the 

equilibrium of markets w-in particnlar, tha real-estate market, _ 
; ?fi The first topic continues the faa$1bility discussion of 

#fi i;h chapter 4, budget constraints being special kinds of 

| ' /féf » institutional constraints. Budget conatraints merit special 

}¢/; treatment because of their peculiar form and great importance 

\d%: generally. ' 

VY Our aim in this chapter is to bring these concepts within 

our measure-histories-activities framework. We shail touch 

  

on only a few high points and sPedial cases., (A comprehensive 

treatment is out of the question, since most of economics 

could be encompassed in this chapter).’ 

N 

{f ! 6.1, Budget Constraints 

Consider the balance sheet of a given person, firm, or 

other agentk\at time t. The major items may be classified 

into ghzsical assets, flnancial asseta, liabilities, and net 

worth. Physical assets include all things owned by the agent 

in question, such as land, buildings, equipment, inventories, 

household goods, ete. Financial assets include all monetary 

claims on other agents, such as cash (2 claim on the banking 

system), accounts receivable, bonds, promissory notes, ete. 

(Corporate stock is a borderline asset. In closely held firms
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one can think of the stock as representing O A 

the corporation itself; in large public1y4ownea companies it 

functions more like a debt with uncertain face valueg\and 

should perhaps be glassified as a financial asseflflfl Liabilities 

are the claims agaknst the agent in question by other agents. 

Thus every liability on one balance sheet is matched by a 

financial asset on some other balance sheet, and vice versas 

The totality of all financial assets on all balance& sheets 

combined {(including government bodies, churches, universities, 

etc,, and all foreigners as well) should equal the totality of 

all liabilitieaf if no slipups in accounting have been made. 

" Finally, net worth equals the value of physical assets 

plus financial assets minus liabilities, It follows that the 

totality of all net worths on all balance sheets combined 

should egual the totality of the values of physical assets on 

all balance sheets, since total financial assets cancel against 

total liabilities. : 

A*iew commantpfion this schame. The neat dichotomization 

of assets becomes a little ragged upon examination. Actually, 

nearly all assets represent cléims of one sort or another~t in 

particular, claims against “t#éspass" in a generalized sense: 

;flo own a commodity means that no one else has the right to use 

it. It is a simplifying ideaiization to substitute the 

commodity itself for the bundle of rights and claims entailed 

by its ownership. mhase—asé:g number of "intangible" assets
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which do not fit easily into either the'physical or financial 

category \l» ECO:-W/, patents, franchises, e&sements; - but 

may be expressed in terms of claims and rights. “Goodwill" is 

not even a claim, but a reflection of the habits of trading 

partnérs. 

~There-are also a number of items not customarily included 

among assets whfish perhaps should be. 5These include government= 

owned resources which—are placed at qulic disposal free or 

for a nominal fee";;;is, roads, police and fire protection, 

the judicial systém.nahaa The person himself — [and perhaps 

somé dependenté}évmight be 1ncludaa;among his physical assets: 

)Ke owns his own body. ;. | 

Finally, there is ha 1mpor§§nt catégory of control of 

assets, as opposed to'ownership %f assets. This includes 
! 

rentals —~@£ land, labor, etc} a-and the helding of office,\and 

will be discussed further below. : ' 1 

Having discussed these complicatlons briefly, let—us ge to 

the opposite extreme and simplify the balance sheet for 

purposes of analysis. We assume there is Juat one homogeneous 

kind of financial asset «-call it "bonds }~«mh&eh accumulates 

interest at rate k(t) at time g.wklxnterest is compounded 

continuously; k(t) is assumed to be continuous and non#negativef?N 

C§> 5 Focusing on one economic agent, let b(t) bg his net 

i bondholding at time t. This is defined as £iganela1 assets 

minus liabilities. If b(t) > 0, the agent %fi guestion is a net 

creditor at time t; if b(t) < o,ga net debtor, (The sum of b(t)
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over all agents must be identically zero for any time g;. 

Three influences are assumed to change b over time: the 

accumulation of interest, thé sale of physical assets (which 

raises b), and the purchase of physical assets (which lowers 

b). Iet £,(t), £,(t) be the rate at which physical assets are 

being sold and purchased, respectively, at time t, in dollar 

terms.}NTThese are assumad to be continfious, nonigegative 

functions for the time being).” - 

" We then hgfie the differential equation: 

Db(t) = k(t)b(t) + £,(t) - £,(t) s> Kflil') 

The only term that needs comment in (1) is the interest term 

k(t)b(t). This has the sign of b(t), indicating that interest 

payments are positive for créditors and negative for debtors, 

so that (1) is correct for both these cases. Nete—that, 

.gealistically, there should be several other terms on the right 

;idez wages and rentals, taxes and trafisfers, etc.,  These are 

all being ignored for simplicity's sake. 

First-of-all, a simple transformation allows us to get 

rid of the interest term in (1). Define discounted net bond- 
~7 

holding to be the function b':T + reals given by 

/ },3 S 

- --f-e k(e)dt | (6:19) 
' (t) = blt)ej -~ —2) /Ztro 

/" The integral in (2) is the ordinary Riemann integral., If 
Ay 

t < 0, the standard\convention of elementary calculus, that
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'g\-‘ 1S % 'b "“) 

f;g- ~19J is followed. Similarly,/eae defined discounted 

sales and urchases, fl and fz' by (2) with £1¢ £, in place of 

b, respectifizly. (12 and (2) then imply that 

\ 

\_
n 

8 
Db (t) = £, (k) = £,(t) 43). 

80 that the interest term drops out. ;This simplification is 

useful, and we shall use discounted f#lues whergver possible, 

(If there are multiple interest rates, or if the rate varies 

with b, this simplification is not availablegh 

We have taken sales and purchaées to be ggggg.;h&éfi are 

continuous functions of Time. Let us now generalize this. 

Transactions occur not only (if at all) continuouslyfi\but also 

in lumps. To incorporate this possibility, we take sales and 

purchases to be (bounded) measures, Al and Az, on universe set 

T, Thus alcg) = value of sales in period G, for any Borel set 

,§'en the real line. We can use @ither current dollars or dis3 

counted deollars as our measurement units; for simplicity we 

use discounted dollars. - 

The differential equation (3) l%@r rather, its integra1f~, 

then generalizes as follows., For any two moments, t' and t", 

with t' < t", we have 

{Cw‘"l’i} 

) DIE™) = b(t') = A [e', £") = A (", "), 

Here [t', t") is the rime-interval between t' and t including 

the past endpoint t', but exeluding the future endpoint t“ 

b(t) is discounted net bondholding (the prime has been dropped). 
o o 

A
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W, 

Ehe:a~$s$a conventional element, involved in (4)., If a 

" lumpy”* trans;ction of positive measure occurs at the point t, 

it is arbitrary whether b(t) is defined Qaaac;E%;include or 

__exclude the transaction at t itself. According to (4) it 

excludes this transaction, and this makes b continuous from 

the pa;tk&but not necessarily from the'future.%” 

~het-us now resolve the sale and purchase measures -—-which 

~aae~@iven in dollar termg-? into prices and quantities. That 

is, total sales will be a composite of sales in different 

markets at different prices. But what is a market? At the 

least, to identify a market one has~ee know what is being sold, 

where it is being sold, and 3ggg,it is being sold, This gives 

a triple (r,s,t), and suggests that markets be identified with 

points of R x 8§ x ;. The set of all markets will then be a 

subset E, (Rx S xT), Point (r,s,t) will belong to E, iff 

the resource r is being sold at location s at time t. We 

assume that EO = (XS ® I, % Xt). 

5@:\w We shall firet make the cempetitive assumption that a 

single ruling price prevails in each m;rket. That is, there-is 

a function sz > réglsahé(r 8,t) being the price at which 

resource r is sold at location s at time t3 p is assumed to be 

measurable. In what follows we shall also assume ég to be 

noéinegative, although negative prices (for "illth", or noxious 

"resources") can easily be handled. Here, as above, we 

distinguish between current prices, P el i el B e e 

(those at which sales actually occur), and discounted prices, g': =
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- & 

™\ : |8 T t 
RN -f k(t)dt | ‘ o 

_P (r,a t) = p(x,s :t)\ @ ‘i 

¢ < 

The sales (or e§gorts) of tha-agent over the set of 

.markets will be given by a measureg Hye ON nniverse set E . 

is in terms of physical quantities, not dollar values;vand 

u]_{E n (F x G x HD is the total mass of resources of types F 

sold in region G in period H. The value sold over various 

resou¢¢e~types, ragicns and periods may now be expressed as an 

indefinite integral over universe set E 3 

i
,
 

» 
% 

ngkgul' - 5 

The value measure (3) is‘in either current or discounted 

dollars, depending on whathe:‘p is current or discounted prices. 

For simplicity, fet-us take {(5) to be in discounted terms., The 

relation between (5) and the value of sales measure 31 is then 

given by¢ - i 
\C\g ! }/"?) N 2 

{ ({,24 e / 

Aj(€) = | pduy /0 ., 6)- 
l? n (R x 8 x gfl 

gfi”4fi,h : 

for any G € I LE(G) simply states that the (discounted) value 

wLfi_total aales in time~perioé G is that over all Resources and 

all Space in that period. (If (5) is extended to universe set 

R X 8 x T by defining it to be zero on(g X 8§ x fihge, then A,
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is uimpiy the marginal on component space T of this extended 

maasure). ‘ 

Similarly, there will be a (physical quantity) gurchase 
G 

(or import) measure Wy OVer go, 1qbd1ng to a value of purchase 

    measure (5) over E,, whose relation to 12 Es given by (6) (ul-»ffigfi 

'being replaced by fimjen {(5) and (6),we§ -course) . : 

The analysis up to this point cansiats essentially in 

having set out a number of aucqunting identities, and no 

constraints on the actions of tm; agent have yet been mentioned., 

The problem may be expressed agffollows.' What combinations of 

sale and‘purchase'measures, (gi,.uz) arebfifiancially available 

to the agent? Or, in-short,;§hét are fihe exchange possibilities? 

— There are many possiblgfanswers to this quesfiion, depending 

on institutional arrangamegés 5 in particuiqr, on the structure 

of the capital market.‘-';'¥ ‘ ‘ 

One simple and popuyér ifthough not very realistic —, 

approach is tc assume pg&fact infbrmation, including a knowledge 

of the timé, te2, at'whiéh the agent in question will die. The 

| constréint-than-takesrthe simple foxm: 

(L. t.7) 
b(t2) > 0.- 7 

That is, the agent must have ;epaid ali debts by the time he 

-expires; ox,.mnra‘éxactly, the amounfi owed to him must be at 

least as large as the amount he owes to others at this time. 

Let—us express (7) in terms of the sales and purchase 

measufesq ¥y and Uge Consider the options open to the agent 
2
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at time t < t2, when he starts with an initial net bond% ~— 

holding of b(to), which may be negative (starting in debt), 
s, 

positive, or zero. Substituting from (6) and (4) into (7), 

   
- we obtain 

b(t,) + P;dul > ‘pfldué. v ‘ ~+8) 

& (Rxsx n:b 33))] N (Resx[t,,ef)) 
fii P \%F?f & ‘I Gt 

y%## hés a very simple intergretation. The rightwhand term is 

the discounted value of ali purchases gkda in the interval 

t, 2t < 53; the middle term is the discounted value of all 
ézles in that interval. (8) then states that the present value 

of purchases cannot exceed the present value of sales plus (the 

present value of) the initial credit balance. This is a direct 
qenaralizatién of the famiiiér linear consumer budget constraint:‘ 

T Y ZPy¥y teeot Pl | 

where the "income" term y may be iptarpxetad as net’aredit, and 

X; is net purchases of commodityv};%}if§i < 0>this indicates a 
s;ie rather than a purchase)’" - : 

The form of (3) allows a lumpy transaction to occur at the 

initial point, t » but not at the point of expiration, L2, 

This is an artifact of our definitionsfi ‘and could be altered 

if desired by a minor modification of (8).



536 

The constraint (7) or (3) is attractive because of its 

linearityfikbut rather tenuous from the viewpoint of realism, 

There is, first)a§=a&1, the éroblem of what to do with entities 

éhich do not have a natural lifespan, such as corporations or 

government bodies., But even apart from this, this constraint 

allows arbitrarily high indebtedness at any time befére te, 

which is clearly untrue of any existing credit system. 

A better approximation to fealifiy is obtained by introduecS 

ing collateral requirements., Thega allow indebtedness . 

(negative bondholding) up to a point determined by one's other 

assets. The other balance sheet'categories must now be taken 

into account. 

bet—us _suppose that the agent's physical assets have been 

appraisedgl;nd that v(t) is the value of ngsidal assets at time 

t. Also lét w(t) be his net worth at that time. The basic 

balance>sheet identity is 4 
(i-(,,‘f.'fj ) 

w(t) = v(t) + b(t). N 

This can be measured in either current or discounted dollars. 

A simple form of collateral constraint is then{ 

for all t ¢ T, where ¢ is some positive real constant. That 
S (d,,x.‘lg" 

is, one is—alliewed o go into debt up to some multiple of one's 

net worth. From (3), (10) can also be written in the equi< 

valent form



; e, it 

=b () iw —- 11) 
e 

all t, so that one can borrow a fraction of every dollar's 

worth of physical assets. 

. 88411 moxe realistic would be a conflitioo that takes' 

account of the fact that physical assets vary considerably in 

their ability to serve as collateral. Best of all is real 

estate, which is easily appraised, durable, and whieh cannot 

be absconded with.. On the other hand, "human capifial" 4%?he 

value of a person's own body as measured, say, by the discounted 

value of net future earningsBins poor collateral, because it 

is hagd to appraise,rand because its'mobility and long payback 

period make repayment difficult to enforce. VFor'this reason 

students find it difficult to obtain unsecured long-term 

educational loans. (finder other inatitutional conditions 

human capital could function well as collateral; th&ak—ef 

indentured servitude, for~examgle).“% 

This realistic complication could be represented by 

replacing the rioht side of (1l) fiith a weighted sum, sach class 

of assets multiplied by the appropriate’fracfiion corresponding 

to its collateral~-serving ability. 

Special kinds of‘eoonomic agents have special kinds of 

budget conditions constraining them. Government bodies are 

limited by legislative appropriations, banks by reserve 

requirements, (To express the 1at£er;onevmnst distinguish the 

various categorieo of financial assets and liabilities; it will
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no longer do to lump them together as "bonds®™ as we have been 

doing * ’ ; 

6.2, Rentals 

We now add the possibility of rental transactions to those 

of sale and porohaso. Rentals'are very important, much more 
T 

so than onounoo§é~qatuox £rom thelr modest share of national 

income. 

Abstraotly, a rental transaction ooours when one 

relinquishes oontrol, but not ow nexshig, o&er an object. The 

most important type of rontal.by far is the employment relation, 

in whioh the worker places himself =—(within limito)~2at the 

disposal of the employer without relinquishing ownership ovar 

his own bodys, thi#Qis, without becoming the employer's slave. 

Then we have real-estate rentals, leading to the ordinary 

landloxrd=tenant ralation. And thare are a large number of 

miscellaneous rental markotsgx for cars, furniture, machinery.‘ 

oustumes. ete,. : 

A number of poigis need clarification. Fixot, what is 

"ownership” and whaggis’*coottol*? We are not concerned fere 

with any strict 1eg;1 dofinitions, but with the functional 

concepts as they golate to the set of j;asiblo options open to 

an agent. _‘ 

To control:an object for a certain time-~interval, as the 

term is used above, means to secure the acquiescence of other 

people not to interfere with one's use of the object, or ee try
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to use it themselves. In the employment relation the “"object" 

is another person, and the relation entails a willingness to 

cbey orders within a certain “legitimato“‘range. 

Ownership may now be defined in terms of.oonirol. To own 

an object means either to have permaneot control of it, or - 

in case it is rented’outg#-to‘rgjaoquixe permanent control at 

somo stipulated future date. In brief, the owner of an object 

is the agent to whom control ultlmaéoly reverts. 

-As-usual, realistic complications cloud these neat con- 

cepts. Control is s Sauker of degrees Much of the legal 

systom‘consists of raatrictionsfon fihe uses to which an agent 

can put the objects he owhs~or"oents. Restrictions are 

especlally 1mpor£ant in the case of rentals, for the owner 

will rarely rélioquish control without stipulating limits on the 

uses to which the rented object is to be put. If nothing 

else, the owner has an intéfest io the maintenance of the rented 

object, since it will eventually revert to_his own use.‘ 

The essence of the rental relationshio, tnoo)is serial 

control. The ownerrconttaots with someone to give up control 

of the object for a limited tioe_in exchange for a rental pay- 

ment. (In tha employment relation, this of course is the wago@» 

There may be a whole ooquenoo of such renters with ;hom the 

owner contracts in tuin, as when a worker moves from job to 

job, or a gondlord rents to tenant after tenant. Another 

possibility » if this is permitted by the rental contract - is
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for the renter i¥ turn to relinguish control to althiré party, 

giving a subleasing arrangement; he in turn could rent to a 

fourth party, otofiz’ 

The same object may concurrently be changing ownership 

through outright sales; The times at-which ownership changes 

hands need not coincide with the times at-which control changes 

hands. Finally, ownership or conorol at any stage can be 

exercised jointly, with power centered in some committee of 

separate interests. The pattern of control can become rather 

tangled. 

lartnfl?%ttmifiing Gase the ownership relation rooedes ggtil 
e 

it essentially disappoars for practical purposes. ,,,,, Gfippoae there 

is an infinite sequence of ohangas‘ofwcontrol. In this case, 

there is no agent to ~whom- oontrol ultimately revarts, and hence, 

in effect _nO~ owner, whatever the legal sltuatlon;/’(nlso soe 

Let—us briefly consider the relation between re%tals ang 
Qcliom 29 

     services. According to our previous discussion 

a service activity is one in which the historios:gfiooh entexr 

into the activity are owned by different aqonts. Now if B 

rents an object he owns to A (the "object" may be B himself as 

an emplovee), and A uses this object( togetner with others that 

A owns) tolfgn an activity, we may speak ofagiu.provlding a 

service for A, Thus, a worker provides labor services, a landé: 

loxd provides housing services, etc. The "rental” and the 

*service" are just two aspects of the same relationi%the former
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concentrating on the trnnsaotionx£§¥oh‘orings the factors 

together, the latter on the activity in which the factors 

jointly partioipato. 

On tho—othafflhandfi\rental if;ggg'tho only way in-which 

diversely owned factors are brought together. The issue 

revolves aro#nd which agent is in oontrol of the process, the 

recipient of sexvice, A, or the prooider, B. Consider the 

sexvice of watch repairing{ Hexe;ohe ownexolégksurrendors 

control of his watch to the'ropaiiman, B. But far from 

raceiving a rental payment for this surrender of oontrolj A 

actually pays B for the service ‘xendered. 

The relation in whiohné_and B stand in this case is not 

that of employer and worker! or tenant and landlord, as in the 

case of rentals, but that-qfébailogmond bnilee,{r::sgggively. 

Without worrying about the legal niceties involved, let-us - 

refer to the general relation nh&oh obtaino here as a bailment 

relation. In ballments,_§ rol1nquishoa control of an object 

he owns to B, B performs a service which benefits the object, 

B returns the object to its owner A, and A pays B for the 

sexvice. In rontals,%it is ELwho relinquishes control togg. 

who uses the objecfi for.his own henefitq\ana again payslg‘for 

this service, 

Bailment relations are very common, perhaps almost as 

common as rentals. Most ropaii services are bailments, 

including "repairs” to A himself, as by surgeons and bar#ers. 

Storage services provided by warehouaes#jtranSportation services 

provided by postmen, ox by common carriers for a person or his
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goo&s,;aro other oxamplos. 

— The large publiolj;ownod corporatlon may be thought of as 
involvino a bailment relation,‘in wh&oh the physical assets of 
the corporation are turned over to t§§ control of management, 

by the stockholders oolleotivelyss‘}: 
~ We have so far divided oervio?s into rental and bailment 

types, depending on who is in congfol. But, as discussed 

above, control is a matter of dogrea, and there are borderline 
cases where one typo blends into the othor._ An unskilled 

worker and a surgeon both provfae sorvicos$ the first seems 

clearly involved in a rental relation, the second in a bailment. 

At skill levels intormodiate between these two the control 

pattern will shift gradually from one of these forms to the 

other. We thus get situations of shared oontrol/? 

Finally, consider social activities such as parties, 

picnics(fiboach ootings,;otcv, where the various participants 

provide each other withf*oompanionship" services. These do not 

fit either of the oatogories above, and control itself -@n.the 

senoo of a single agent coordinating the factors entering the 

activity, without ingorferenoe from any other agont%t%may not 
5 exist. / 

Having examinaé some institutional features of rental and 

related morkots,*&égQEs turn to the problem of the dotoxmina- 

tion of rental prices. | 

. Assuming oofipotitive markets, one's first impulse is to 

imitate the structure of the sales market and postulate a 
5 

/ 
i 

! 
f 
{ 

/



N 

543 

rental price ffinction, 7, whose domain is a subset of 

R X8 x Tjfi(r,s,t) is the fental prioe for resourcektype r at 
IOy FPes 

location s at time t. AT would ‘have the dimension of money per 

unit mass per unit Eiflg'(e.g.)wage in dollars per man-houry. 

land rent in dollars per acre~-year, ete.). 

This may be a fair approximation, and mnny rental markets 

appear to have a strocture resembling this. But it has one 

basic ahoxtooming,.nggglfiokthafi the rent does not depend on 

how the resource is going to be used by the renter. 'flow,gginee 

the owner will eventually regain control of his property, he 
tf~ oot 

will not be indifiereno»batween uses whiech leave his property 

dilapidated, which leave it unaffected, or whieh enhance its 

value. On the contrary, a premium would be required for him to 

rent to someone who will dilapidate his property, while he will 

be willing to accept a lower rent from someone who will return 

his property in improved oondition. Indeed, if the improvement 

is big enoughjhe will be willing to aoeept a negative rent - 

that—is, to pay to have his property used by the other person. 

“(In this case the direction of service is reversed, and the 

rental relation has in fact become a bailment relation). 
W 

Thusfika workexr would be willing to accept a lower wage on 

a job'whie?;afforde training opportunities than on one whieh— 

does not_!V If the training opportunities were sufficiently rich 

he might even accept a negative wage (we would probably call 

this "going to school" rather than "working"; the borderline 

between these cases is not sharp).
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"Dilapidation" and "enhancement" refer to the position of 

the rented object in Resouroelepace§4§, upon red@gion to the 

owner, But the same analysis applies to physical Space, 8. A 

car-rental agency will demand a premium payment from eomeone 

who wants to return the car at some out-ofwthewway plaee, 

“The potential renter, furthermore, may be concerned not 

only with the endstate of the rented object, but with the 

entirve time-path over which it moves and the activity in which 

it participates. In the employment relation, the worker will 

be eonoerned-with the pleasantness or unpleasentness of working 

oondiiions,\end require a premium for working under poor 

eonditions.\ The landlord may require that his premises not be 

used for certain disapproved activities, or at least that he 

be paid a premium if they ere.. 

Discrimination may be considered a special case of 

pteferenoee concerning alternative activities into which one's 

rented property enters, It refers to preferences among alterna- 

tive individuals or tyoes of people who—are participating in 

these activities. “Disoriminationi ger se refers to a 

preference for nonrassociation with someone, while "nepotism" reéug 

to a preference for associationffiz’we speak of this as a 

special case of preferences over activities, beoause the 

definition of "activity" givps the distribution of mass over 

the entities participating in it/ and so will specify the types 

of people involved. ©One may discriminate, in the first instance, 

with reference to -emets trading partner, and secondily, with
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reference to the;éeeoie:hewie assooiateéaoith. 

Discrimination exists also on the sales market, but it is 

probably more important in relation to rentelsefeéhe~£eeson—ie 

that the association between trading partners is closer and 

lasts longer when rentals are involved, and attraction or 

aversion is therefore likely to be more salient. For this 

reason we omitted any discussion of discrimination in connec~ 

tion with outright sales. 

 In summary, it would appear that any model of the rental 

market w%ich postulates:aerental function w(r,s,t) is inadequate. 

(The cases where such a rental function does obtain seem to be 

those where the uses toeuhiegfihe rented object will-be-put are 

S0 circumscribed;a-by custom or by explioit agreement — that 

one need not be concerned by their variation.) 

What, then, doee an adequate representation of the rental 

market look like? The following model inoorporates some of the 

considerations disofissed aoove. It makes rentals depend, not 

on points of R x § x T, but of (R x 8 x r)z. F°r‘tl < tz, 

n(§1,§l,gl,§2,g2,té) is the price to be;feid for attaining 

control of a unit of resource r, at location s, at time t,, and 

Eolinquishing control of a unit of r, at s, at t,. Typically, 

the mass will £low along a history whose graph connects 

q;l,gl,gl) a“d(¥2'§2't2):kff,that the "same" object is returned, 

but this formulation is somewhat more ggneral (for example, one 

may borrow a cup of sugar one day, and return a — presumably 

different — cup of sugar the next day). By allowing 7 to take 

on negative values, bailments as well as rentals may be encompassed.
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f:?”fiég‘éhe dimensions'“dollafi:p per unit mass%, just as 

prices in general do. ~e;a avoids eomplioafiions by taking these 

to be discounted dollors(y“(otherwiee, fieeie;;ople, one hofifiién 

worry about whether the rental is to be paid at the beginning 

or the end of the period,;or in periodic payments). 

If one abstracts from legal complexities, tax liabilities, 

credit considerations, control restrictions, market frictions 

and imperfeotions, etc., a rental transaction may be thought of 

as a combination of two sale transactionss The agent acquiring 

temporary control in effect buys the object at the beginning of 

the rental interval and sells it back at ohe end of the period. 

In fact,_if‘all the appropriate markets exist and the just= 

mentioned complications do not occur, one can give an informal 

argument for the following egualityp ‘Fot t <ty 

#9 | 19 (6.2.1) 
fl(£13910§lr§21_92rt2) - »P(Fl‘:?lctl) ». ;P__(Ezrflzhtz)' 3 

all prices being measured in discounted dollars. For if the 

left side were larger than the right, one could buy a unit of 

x, at (s;,t;), immediately rent it out, receive back a unit of 

ry at (s,,t,), inmediately resell it, and emerge with a 

positive profit., If the left side were smaller than the right, 

one could acgquire control over a unit of ry at (gl,gl), ims 

mediately sell it, then buy a unit of ry ati(gz,gz) and hand 

it over to complete the rental transaction, again making a 

positive profit. With perfect information, arbitrage assures 

that neither of these inequalities ebtains.



547 

() 6.3. Imperfect Markets 

fi§¥£o now we have been making the;competitive assumptionsg 
(i) The agent is faced with a price system P:E, + reals joieh 
does not depend on how much he buys or'selle,ogYii) fihere is 
a unique discount rate k:T + reals which does not depend on 
the creditor-debtor position of the . egent.f Wle now briefly 
discuss weakening one or both of these conditions., 

CXFL/Q;\ Let us first abandon condition i&?* while keeping the 

(
5
,
 

perfect capital market assumption (ii). ret My and u, be mek 
sales and purchases (in physieel, not value, terms). It will 

o p P’ 
be convenient to consider net,eelosfi_u w hl = Hge fgu is of 

‘course a signed measure, assumed bounded. Under the competitive 
assumption (1), the net revenue obtained from u will he 

290 s:é«:?‘ L% 

f(y) = ] 
E, 

oo 

P du. (3] 

Here p is assumed to be bounded measurable. Both p and net 
revenue oxe measured in discounted dollars. 

The function f defined'by (1) is lineerj fi;etéie, 

E(ut + u") = £(u') + £(u"), and f(cp) = of(u)r for any two 

bounded signed measures u', u" » and any real number “;flw‘ 

But for imperfect markets, net revenue will in general be a 

nonelinear function of net sales, and the problem arises of 

how to represent such functions in a convenient and plausible 
way.
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Of the many possibilities, we shall consider here only 
representation by densities., This is a natural generalization 

of (1) whioh appears to correspond quite well with the 

generalization from perfect to imperfect markets., 4 

—~ We define things abe&raetly. Let (A,Z) be a measurable 

space, and M the set of all o&gme~£inite signed measuree on it. 
Let g:A x reals + reals be bounded measurable, and o a fixed 

bounded measure on (A,Z). In terms of g and o, we define the 
function f: M' + reals by ' b 

fii} 2 15 | (6.%:2) 
£f(u) = IA g(a,é(g){?(da). . @ 

Here M' is the subset of M consisting of those signed measures \Nan 

whieh are abeolutelx.eontinuous with respect to a, and § is the 

density of u with respect to o: 

(. 2 %) 
Lo:i5.5 

s [tSN@“*" 3 

fixwéafi 

§ exists by the Radon-Nikodym theorem. It is not unique, but 

any two densities for the same y differ at most on a set of 

a-measure zero; hence they give the same value in (2), so that 

£ is well-defined. 

To see the connection between (1) and (2), consider the 

function g(a,8) = p(a)+6. By (3), (2) then reduces to (1) 
(with A in place of,EO):g/ But g in {(2) can also be nonflinear 

in &, which leads to a non+linear f£.
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The interpretetion of (2) is as follows$ g(e,*) is the 

function giving net revenue density in terms of net sales 

density, at the point a € A. Thus, foé"Ls (a) > 0, gla,8(a))/6(a) 
is the demand curve at a, and for §(a) < 0, it i_Ythe supply 

curve.fi\tIn both cases, quantity is the independent, ana prioe 

the dependent, variable.) All densities are with respect to a. 

!L, The interpretation of o depends on the”spaoe A. Suppose 

first thezlze are dealing with just a single oommodity, and 

that A is a bounded region of»physicalvgpace,ng (Net sales 

and net revenue may be thought of eo eteedy flows per unit 

time). Then the natural interpretation for a is,ggggl'measure, 

and g(a,*) gives revenue in dollers per acre (per year) in 

terms of sales in, say, tons per acre (per year)., For some 

problems this may be too reatriotive. Suppose, for example, 

there are oitiesyl{;epxesented as geometric points;ulat'whioh 

one can oarner positive revenue. Ordinary areal measure assigns 

measure zero to single pointe, which precludes representation 

in the form (2). This is eesily remedied. To areal measure 

gm_ se, we add a measure aesigning unit mass to any point at 

which a city exists, and let this sum be o Then representation 

by (2) is agein possible; if there is a oity at point,go, 

g(ao,') gives net revenue per year accruing at a, in te;os of 

sales per year at that poinfi. e 

» Next, let A be a bounded subset of Space-Time, S X T; we 

are again éealing with a single commodity. There is again a 
U(A 

"natural® interpretation for u,qnanoiy as the product measure
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formed from areal measure on_g_ano Lebesgue measure on T, 

iad»fgust as above, if markets are ooncentrated so that 

positive revenue accrues on a set of product measure zero, o 

may be modified to make representation in the form (2) peossible. 

——Lfinally, we come to the case we started with, where 

   
W en; ";eturalfiqmeasure o, because there lis nothing for_§ that 

corresponds to area for Spaee and ”q;entity of time" (Lebesgue 

measure) for Time. This creates no difficulty if there are 

just a finite number of resource-types, or even a countable 

number, say {51,.;2....}: for in this case one chooses a 

measure assigning a positive mass to each {;n}'L-say 2™® 2 ana 

then takes the product of this with the_?poo;-and,ghhp~meesures. 

And even in the general case there may be an a for which 

representation (2) is plausible. 

Nofie that (2) has the same form as the utility £unotion.of 

the allocation~of-effort proolem, ghaptex 5. Thus the problem 

of maximizing total net revenue_in.an imperfect market system, 

with a given endowment of goods, is encompassed in the results 

of that chapter. 

Hooever, (2) does hove one rather important shortcoming 

as a representation of imperfect markets. While it allows 

variable prices, each price depends only on the quantity 

forthcoming in its own market (all "qayss«elaetieitiea“ equal 

zero). In reality, ofi% would expect that a greater sale in a
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market would deprese price not only there, but in markets for 

similar resouroefitypes at nearby space~time points. We snail 

not go into the problem of representing this phenomenon. 

We now turn to imperfeotione in the capital market. It 

will still be assumed that there is %uet one type of financial 

asset}%~“bondsf[3'ao that the model remains highly simplified. 

But the discount rete_gfiwill now be “personelized?, andloooend 

on the creditor position of the agent in question (as well as 

on the time). A plausible oogyeowdo”this is to let k depend 

on b/v, the ratio of net bondholding to the value of physical 

assets of the agent. Thus tn;h‘personulfflaiscount rate at time 

t will be 

‘ 
ETLY. 

e k(g ble)v(E)) Gz 
& Sb 

‘ 

| & 

adse k will-<be a decreasing (or at least non+increasing) 

function of its second argument. This reflects the following 

real-world situation. First take the case of a creditor 

(b > 0, hence b/v > 0). As he extends more and more credit, 

the investment opportunities become progressively less 

attractive, so that k, the average rate of return, declines. 

Next consider a debtor (b and b/v < 0). For small debts one 

can rely on relativea and friends. Then one might try com- 

mercial banks. After ene#e line of credit is exhausted here, 

one might try the "friendly finance" companies. And if even 

this does not suffice, there are always loan sharks and
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racketeers (who have a comparative advantage in enforcing 

collection of debt). At each stage :niigaeréait rating 

becomes shakier, and lenders compensate by charging higher 

interest rates. Thus k rises as b/v becomes more negative, and -/ 

is therefore again a decreasing function of its second argument., 

The collateral oonstraint, fi%;)o£~oeetronwl, may be 

interpreted in terms of (4). Soppose there is some negative 

value of b/v at which k goes to +wa which is to say that no 

more credit is forthcoming from any eource beyond this point. 

é&é then gety a lower bound constraint on b/v, which in gigg is 

equal to =-¢/(l+c). 

With (4), one can no longer speak unambiguously of "dis~- 

counted dollars" ,Xbeoause the size of discount itself depefidz 

on the agent's aotions. The basic differential equetiontafiié 

—eof section—k, connecting bondholding and sales becomes 

: (6.3.5) 
Db(t) = k(k, b(E)/v(E))B(E) + £(t), +5) 

£ 

ifiifigg(e)~béfig the net rate (in current dollars) at which physical 

assets are being sold at time t (net rate means{sales minus 

purchases). In general, (5) will no longer be integrable in 

elementary form. 

V' (5), combined with ghvea Latalal snasiuion Bity )o Vit) i 
and either constraints {7) or (kfléq(ll)/ofibeeeeionot, then 

yields a system of conditions #&ieh indicate what triples of 

time-paths (£(t), b(t), v(t)) are feasible.
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Finally, let us combine imperfections in the commodity 

and capital markets. One additional problem now arises. 

Prices and revenues in commodity markets can no longer be 

expressed in discounted dollars; insteaq)we express them in 

current dollarsfig/ | / 

We héeééée complete our system oi;oonditions by expressing 

the current dollar net rate of sales, £(t) in (5), in terms of 

the signed measure of net sales, u.;;(Ae above, the universe 

set of u is E, = (R x 8 x T), the set of triples (r,s,t) for 

which markets exist; u is measured in mass units)) A measure 

o on E is needed to express net revenue in the form (2). For 

this, we postulate that a measure g on (R x S, 2 X z ) has 

already been arrived at, by some such process as disoussed 

above. The product measure of B on R x 8 and Lebeegue nmeasure 

on T, restricted to E ¢ Wwill be taken for a. 

B “‘“aau 
are not absolutely continuous 

  

with respect to a are diamissed at once as infeasible. For any 

other u, we form the deneity function § = du/da, and substitute 

in (2)4 '%;; éfih be expressed as an iterated integral, first 

with respect to 8 over R x's, then with respect to Lebesgue 

measure ovexr T. The firefi iteration is the one that yields the 

net rate of sales funotion: . V} : i{ 

N> T ' 
£(t) = (r 8,t, G(r, ,t)){ (dr,ds) 

{(rls)l(rlslt) € E } 

/" 

(b6 
{6)
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ey 
Here‘g'is net revenue density, per unit time per "unit s*, 

Performing the integration, we getrrhe net revenue per unit 

time, which is £(t). - (6) substitored.in (S) then yields the 

basic relation between net bondholding b(t) and net sales u. 

This ;tegether with the other oonditions mentioned after (5), 

then gives the set of feasible triples (0, b(e), v(t)). 

6.4. The Real-Estate Market ' 

The real-estate market distributes the control and owner+ 

ship of Space-Time among economic agents. - 

% That is, while a typieal commodity market is characterized 

by a triple (r,s,t), we ere now dealing with pairs (s,t). The 

real-astate market is then the ensemble of all these separate 

point markets. The "homogeneity"™ of S and T, as opposed to the 

"heterogeneity"” of R, oakes the erructure of the market here a 

good‘deel simpler thefilin the commodity case. 

There are a nomoer of different interpretations as to what 

exeotly is being sold or rented in theee'markets. Q\'R.eel estate““?“ 

i;or “land" f~re£eresembiguously to the fiarth=itself, with its 

soil, forests, weters, minerals, air, etc., to the products of 

human‘oonetrnctionfehroheere-more or less permanently affixed 

to it&(;ooildinge, roads, bridges,-eée.; Or to the Space~-Time 

continuum nhé;h rhey occupy. 

' One can distinguish conceptually between control of these 

various components. Control over a portion of Space=-Time is 

the right to exclude trespass by other agents, with their
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properties and associated activities. This is not quite the 

same as control over the use to which a building in the region 

may be put. In practice, of course, it would be inconvenient 

to have these rxights in the hands of agents with opposing wills, 

Henoe'oontrol is generally vfeted in one agent, although there 

may be separate markets for the components of a real-estate 

package/\ and ownership may be scattered among several agents. 

For most of our analysis it does not matter which of the 

various possible interpretations is used: whether the real= 

estate transaction is just for the Space~Time ”shellrfi or 

whether the constructed or natural contents of the region are 

part of the package. We shall ignore the ambiguity whenever 

the analysis applies to any of the interpretations. 

The real-estate market has ewo further simplifying 

peoularitiee as compared with commodity markets.' First, the 
P 

i 

"amount® of Space~Time anywhere is fixed. Second, the control 

-or ownership of each point (s,t) is usually in the hands of 

just one agent. This suggests tnat we represent the control or 

ownership of any one agent as a (measurable) euhset of.é x T, 

rather than as a measure over S x T, 

In more detail, we suppose that each agent i chooses a 

subset E; € (z x I ). The chosen subsets for different agents 

are disjoint, so that the collection of all the Ei’s is a 

paoking./'\;}Ei is that portion of Space~Time whioheis under the 

exclusive control (or ownership) of agent i, (Later we shall 

generalize to allow for joint ownership or control, but the 

model just given will serve for most of this section)
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As an example, Ei might be of the form F x G, where F is 

a region of Spaee and G is an interval of Time, say (tl, t,)). 

This means that agent i acquires region F at moment t, s keeps 
it until moment t, .at which timeihe divests himself of it, and 
has no other portion of 8 xT, 'fiore generally, E; might be a 
union of such "rectangles”, diféerent regions being held for 

different timelintervals. Thuo Ei might consist of pieces 

scattered all over the world, as might be the case if agent‘i 

is an international corporation. The size, shape, number and 
Y 

duration of omels holdings are all determined by the set E;. 
\ 

6‘?‘ \i 

possible sets E that can be chosen. Some restrictions hold 

-Let—us next consider feasibility restrictions on the 

for all agents, while others hold for selected types of agents. 

We first consider universal restrictions, 

A number of theee arise from the need for informational 

economy. This 1ead3;ro a restriotion in the variety of possible 

transactions. Thusfreal~estate transactions are almost 

universally of the reotengular form mentioned above: One 

acquires 4 paroel F for a time interval G. (This includes the 

case of outright;sale of a parcel. If the parcel is never 

resold, the timefintervalAg,extends to the infinite future.) 

There are usualiy further restrictions on F and G. For F in 

particular it is typical to partition a portion of the/éarth' 

surface .into lggg, with the etipulation that the lot must 

change hanngas a units if F is a lot, and_Fiithe region held / : - N\ 3
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by agent i, then either F ¢ Firor PN F; = 2. 

kjb\(As for the vertical dimension, one can imagine the lot F 

as actually representing a three-dimensional cone, withfepex 

at the center of the farth, and projecting throogh F at the 

fiarth's surface to infinity. But subsoil rights are sometimes 

transacted for separately, and it is not at all clear how high 

a person's air rights extend. Would someone have the right to 

build a structure on his property so tall that it interfered 

with airline flight paths?)™~ 

The available sets E would t?en ke restricted to unions of 

these allowable rectangles. i 

A good portion of the gartg%s surface is not available for 

traneaotions at any given timeégzoiélaimed territory, the high 

seas, and the public domain, inoluding the road and street 

system. / 

There may be maximal limits to the holdings of any one 

agent in certain regions, a result of land reform movements. 

As for particularistic restrictions on landholdings, these 

nave been applied historioally to aliens and certain minority 

groups,xsuch as the Jews in Russia or the Japanese in 

California. Private restrictive covenants will limit the 

market still further for certain oroups. 

We shall now go a step beyond our analysis of commodity 

- marketséu'whieh stopped with a discussion of feaeibility 

conditione;~ and investigate the full conditions of equilibrium



558 

in the real-estate market, This involves a diecuoeion of the 

preferences of the market participants, and the conditions 

under which a pricing system clears the market. We -shadl end 

with a proof of the existence of equilibrium under certain 

simplifying assumptions. 

Ideallgfofio'want’ a model that simultaneously determines 

the pattern of ownership over Space~Time, the pattern of 

control, and the pattern of land uses,ibeoauee these three 

systems are interrelated. An agent wants control of a certain 

region im—order to operate certain activities there. Which 

activities are feasible depends on afnumber of factors. Among 

these are technical knowledge, budgefiary‘limits, legal 

constraints-:zsuch as housing and zoning law% L activities in 

adjacent regions (in the case of neighborhood effects), and, 

in particular, the capital endowoent resulting from previous 

land uses on the same site, The desirability of various 

regions to an agent is a reflection of the desirability of these 

possible uses to him, 

As for ownership, there;is\&%opart from any "psychic 

income" received from having a stake in the land}é a compara- 

tive advantaoe from the agent's owning land that ha controls;’ 

because the inevitable frictions and inefficienoieslfifiiéh 

accompany the rental relationship are avoided. In the real 

world there-is a very close nseooiation;between the pattern of 

ownership and the pattern of control, which results from this 

phenomenon.
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The structure of equilibrium in the real-estate market 

needs further specification. We suppose that there is a 

perfect capital market, so that all prices and rentals may be 

measured in discounted dollars, Then we postulate that at 

equilibrium there will be a rental measure, u, over a measurable 

subset E of (s x T, Es x zt), with the interpretationt u(E) = 

rental (in discounted dollare) for the control of Space~Time 

+ "region" E g E_. 

Q/ V " A number of commente.' First, one should distinguish care- 
f 5_' A L\'\ 

o }  fully between regions ggglgg_and "regions" of Space~Time, which 

X are measurable supsets ong, and 8 x T, respectively. The 

,ylkj context will make clear which we are talking about, and quota- 

\,//'L?% Jdtion marks will not be used. 

g/ &flk f i Second, it may not be possible to assign a rental value to 

§§ Y \! }///all measurable subsets of E, in an empirically meaningful waye 

fifixya f/ If parcels are elweye treno;cted for as units, there is no 

‘ ff rental value for a fraction of a parcel. This difficulty is 

easily remedied: é;é simply aggregateg u to the appropriate 

/ eub—eégma-field;of Iy * I.. 1If E, is partitioned into 

: rectangles'g x G, F ranging over ;he minimal subdivision units 

and G over the minimal time intervals for which transactions 

occur, the apprOPriate ei§;e~field‘is the one generated by this 

partition. Since no difficulties arise, we suppose this 

aggregation has been done, but retain our original notation.
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The last comment is more substantive. By postulating u, 

we have willfully fallen into the trap we warned against in 

the discussion of rental markets.‘fThe rental for region E 

should in principle depend on thefactivitieeawhéeh thé tenant 

operates in E. If he returns itjwith a dilapidated capital 

endowment, a higher rental woulé nresumably-be charged in 

compensation. If Qt returns it in improved condition, the rent 

would be lower, possibly negatiVe (as when an owner turns his 

land over to a developer). The rental measure u, however, 

implies that rent does not;depend on land use. 

This is done mainly for simplicity's sake, but Qfifi*might 

justify it as an approximation under certain special conditions. 

One condition is that the activities contemplated have no 

"construction" or “mining“ components, so that‘alternatiVe 

activities would have little differential effect on oapital 

endowment. Once the structures are in place, alternative 

office activities, e manufacturing activities, or residential 

living activities probably do not make much difference in 

depreciation rates. The situation is different with farming, 

fishing)and forestry,kas well as mining and constructionfigg%kgg. 

A second condition (this is more dubious) under which the 

effects of actirities on rentals may conceivably be ignored is 

when the market is for Space~Time/gg£ gg as separate from its 

contents. The rental is then "groundflrent" only, and is 

presumably affectedllargely by the overall '"location" of the 

region in § x T,\and relatively little by the particular site
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characteristics such as the capital endowfient. 

‘We are also implicitly assuming awa§ neightorhood effects, 

since otherwise rentals would be affected by the activities 

operating in adjacent regions. | 

In'any case, we postulate p.” w and all other measures in 

this section are assumed to be finite, (A generalization will 

be discussed 1ater%fi Let us now go on to land values. For 

each'time>t, we suppose that there is an equilibrium land-value 

measure,‘ut, whose universe set, Ft' is a region of S, with the 

interpretation: My (F) is the eale value (in discounted dollars) 

of region F g,Et. 2 

Note that the land-value measures ut are over subsets of 

gace, while the rental measure u is over a subset of Space- 

Time. An argument similar to that for %fl#’ffi&emeetion 2 

3 
suggests the relation, for t o < € 

| 1 (1) 
wfE x teley <€ <)) =wy @ -w @), @ 

for any region F g S for which all these markets exist. jji;uégkb 

states that the value of a parcel at ty equals what you can get 

by selling it later at Y plus the rental obtained for the 

interval, when everything is measured in discounted dollars. 

This is not unreasonable, but it does assume away'market 

frictions, ignorance, psychic income €£rom ownership, etc. 

. immediate consequence of (1) is the following. ILet 

Space-Time region E be a disjoint union of n rectangles:
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“gj x {tlt 44 < tj2 i= 1,.40;n. One can attain owner- 

* ship of just E by 2n transactions, buying at t ii and selling 

& 

at ts,. 1(l)g:zstnen impliee that thejngg expenditure for the 

ownership of E is exactly the same as tne rental charge for E. 

We now discuss the concrete organization of the market. 

BEverything starts at time t , and there is an initial distribu=- 

tion of land ownershipg Aéent i owns region Fi' the collection 

of all the,Fi‘s being a packing in Speee. The real-estate 

market then operates to create two measurable partitions of 

,EO: a partition by ownership, and a partition by control — say 

E iswthat portion of Space-Time whieh comes to be owned by 

agent i, and Ei{that portion which comes to be controlled. 

Here E0 is the region of 8 x T on which transactions can 
cwiy 

occur. None of Eo is assumed to occur prior to timevto. We 
P S e 

shall also suppose that each ownership region Ei is a finite 

union of disjoint rectangles, as just discussed. The number of 

participants in the market will be assumed finite, except in 

one or two discussicns below. 

6.5. Real-Estate Preferences 

Now we come to preferences. It is assumed that each agent 

has a preference ordering over tffiples (E', E", x), where E' 

and E" are measurable subsets of E, (E' in the union of 

rectangles form) and x is a real n;mber. This triple repre- 

sents the situation in which the agent owns region E', controls 

region E", and has a net expenditure of x on real-estate
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transactions (in discounted dollars). 

This is a somewhat unusual set of‘objects over which to 

express preferences, but it is just the right tning for 

capturing the options available to the participant in the 

real-estate market. Note that budgetary stringencies may be 

reflected in this preference order=}'A;poverty-atricken agent, 

or one sailing close to the wind, will give relatively heavy 

weight‘to variations in x. ;‘ 

G the land-value anifrental measures, given;=juse 

what will be the net expenditureé of agent i if he chooses E' 
o 

to own and E" to control? The_énswer is 

3 :5; 
((9 iSE / ,,: 

X = u(E®) - gto(Fi); ) 

thit»ie, the rental for his oon%rol gset BE", net of the value 
Petalis y L 

of his initial holdinngi.Li(l) seems rather surprising, since 

it is independent of EF, Tb demonstrate (1), we think of the 

agent as making four traneactionsgg gé):selling his initial 

holdino) Qii) buyinng'j;kigi) rentinggéut E'\E" (the portion 

of E' he does not choose to control)j¢Z§z) acquiring control 

over E"\E' (which, togother with E" n E', gives him the get 

E" for control). The net expenditures for these four trane4/ 

actions are the four respective terms in 

? (é‘é),',”l 

“ug (Fy) +u(E') = W(E'\E") + u(EE'), - ‘2 
~o ] : 

which is the same afi (1), (If the "bases" of some of the 

rectangles constitfiting E' overlap F; at time tor then a part 

of (i) and (ii) ia a fictitious transaction in which the agent 
e
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sells to himself, Thialzofreouree, will have no effect on 

the sum (2)P)) | 

Intuitively, E' does not enter (1) because it is bought 

and then rented ewt (partly to the agent himself perhaps) , hence /1 
i) 

incurs a net expenditure of zero, hy t3) pf-the precedingsectien, 

This underlines the assumptions oehind that equation, which can 

be put roughly as followsp The;éattern of ownership really 

aoe%nct matter, because marketa;operate without friction and 

nobody gets any psychic income from owning 1andflgr~ se. 

We now specialize our assumptions concerning preferences 

to bring them into line w1th this approach; n%;glgn;we assume’ 

that each agent is 1ndifferent to variations in the first term 

of the triple (E', E", x). f This is a considerable simplifica- 

tionfi because it means that each agent has a well-defined 

preference order over pairs (E", x). Assuming ifigor Slmpllclty 

of notation if nothing else)i that these orderings may be 

represented by utility fltnctione, we have for each agent i a 

function ; _ 
(6.4.%) 

u; (B, x) =) 

‘giving ais preferenoee‘over combinations of E, the region of 

Space~Time that he controls, and x, ;&a net diacounted 

expenditures on reafleetate.étEJ; E" and x are connected by 

relation (1). 

The conditions for equilibrium in the market for control 

of Space~Time may now be stated, Given initial holdings F,
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at time to' and utility functions (3) for all agents, the 
\ 

equilibrium consists of (i} a bounded rentalkpeasure, ¥, on 

E,s (ii) a bounded land-value measure ut for the initial time"z 
M 

to' and (l i) a measurable partition (Ei) of E, among the 

agentsmi, and 

g : > F‘f e (&.S) 
Uy [E. U(E) = u, (gi)] \ wh A4y 

——— ¢ —— P 

must be maximized at E = E, over all possible measurable sub= 

sets E of E , for each agent i. 

Thatfii:, given the reievant prices for regions, no agent 

can choose a more preferred region than the one he actually 

has chosen, and theee chosen regions partition the market. 

Note that the market for ownersnig of real estate has 

dropped out of sight, except for the initial holdings. We 

shall in fact concentrate all our attention on the control 

market. v ‘ 

Even this simplified model seems still Eo: general to give 

intereeting results. We therefore consider a fnrther specializaZ 

tion of (3), with the utility function U; in the form 

(6i$:5) 
Ui(E' x) = Vi(E) - X TR —5) 

:] Ah chamns 
for all agents i. ,(5) represents the assumption of "constant 

marginal utility of money"skand may be taken as a reasonable 

approximation imthe-ease when real-estate expenditures are 

just a emall fraction of on='s total expenditures.
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t}.:f/..« L eA e 

A {5) leads to a great simplification in the conditions of 

equilibrium. Specializing (4), we find that the conditions 

for p and the partition (E;) are independent of the initial 

holdings F;. The conditions are that E; must maximize 

(Q,Sfit) 

v, (E) = u(E) ) 

over all meaaurable E c EO, for each agent i. 

In the special: utility function (5), v is a set function, 

whose domain is the-signa ~field on E . If,vin particular,_vi 

is a bounded gigned measure for each i, +then we cannorove the 

existence of an eguilibrium for the real-estate market. f 

~ ‘We-shall -do-this-presently, bat f3r~r let us contenplate 

the stated condition on V. and &iscues its plausibility. 

First, vy is allowed to be a signed measure, so that it 

might conceivably take on negative values for certain sets. 

This means that agent i would:prefer not to have control over 

certain regions. Is this realistic? Control, 1o fee-, is 

typically attended with some obligations or other disabilities, 

and these might occaSionallg outweigh the benefits of control. 

BExamples are legal liability for accidents, fex maintaining 

nuieances,‘and.éoi,paying property taxes (in the cases where 

these liabilities devolve;on the tenant rather than the landf 

lord), the onus of being % "slumloxrd®, etc. 

Thus, since it might have some applicationstland singe—it 

creazes no mathematical oomplicatione, we shedl keep the 

generality of using signed measures rather than measures per se. 

by
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Neta, however, that the equilibrium rental distribution might 

in this case also turn out to be a (proper) signed measure. 

More interesting is the additivitx condition on V.. 

Letting E and F be two disjoint regions, is it plausible that 
Lénfifi) 

: pespe P 
Vi(Eu F) =V, (E) + Vv, (F)@ (£) 

This saye, roughly, that the desirability of contrelling a 

region does not depend on what other reqions agent i controls. 

In generel,-{fi# will not hold in the real world. Fn-faet,. 

one can think of several situations where the left side of £;¥ 

should be smaller than tne right, and several others where it 

should be larger. The'”amaller" case arises because regions 

can be substitutes for:each other. ILet E and F be alternative 

plots suitable for reeidential use by person i. He might have 

little need for both eéuthem,%and therefore bée hardly willing 

- to pay more for E and F combined than for either ome alone. 

sAad,rin general, after a certain amount of land at the right 

places and times naa been acquired, an agent will not be able 

to make much use ‘of additional land. 

' Conversely, the left side of er will exceed the right 

when the regions E and F are comglementgg. They might be too 

small aeparately to accommodate a certain projected land use, 

but adequate together. In this case, agent i mioht be un< 

willing to'gay much for one of these regions without the other, 

but a good deal for both together. "Too small" can refer 

either tojéyace or Time or both. ihue, suppose E and F are 
i % 

both rect%hglee in & x T, They may be adjacent parcels over
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_ ec 
the same timeLinterval together adequate to adfiommodate a 

plant;;{or a complex of "linked" plant$~3;of efficient size, 

but too small separately. They may be successive time- 

intervals of the same parcel, each too short alone for a 

certain developmental project,kbut adequate together., In this 

case agentvi might be gilling to pay a premium to have a long= 

term lease encompassing both E and F. 

There are several realnworld manifestations of this 

effect. Plants buy up e%cess land in hopes of inducing "linked" 

plants to settle there.P‘ Large parcels tend to be worth more 

10, - 
per square foot than small ones, These phenomena would be 

hard to explain if-%fii-held. 

In general, the m_ggg of oné's region of control is an 

important factor in;its value to an agent. Connected, "chunky" 

parcels, if small,fitend to be preferred to fragmented or 

elongated onees' éfiemroasonmismthat the uses planned by one 

agent will generally have heavy transport-communication flows 

among. themselvesa\ the movements of the agent himself, the flow 

of goods in an integrated plant system, the flow of messages 

between headquarters and field offices, ete. A "tight" site 

pattern tends to save on these "connection" costs. 

~There—are certain exceptions, which however prove the rule 

that certain shapes facilitate interaction better than others. 

A multi+stage assembly line process (as in automobile manué, > 

f;cture) might be best housed in a long narrow planqsite. A
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similar argument has been applied to agriculturé1 in terns of 
e : | ' gase of plowing and communication with the world at largé%éV 

‘These examples are spatial, bgt similar argumenté apply 

to:Einqa For the same total durafiion, one connected stretch is 

generally prefe:red'tc a‘humber of small interrupted intervals. 

These arguments apply mainly to "relatively small" regions. 

For "large" regions, the substitfitabilit? among neighboring 

points begins to outweigh the’complementarity, and one prefer§ 

to have one's sites scattered, For-example, chain stores 

spread out rather than agglomerate. 

~ None of these "shage? effects would arise if the 

additivity condition 1#5 were valid. Nonetheless, we persist 

in assfiming it, as a mathematicaliy tractable first approxi- 

mation, -and one which compromises between the two gpposita 

tendencies we—have just discussed. 

6.6. Equilibrium in the Real-Estate Market 
  

We shalld state the prbblem abstractlys Givenvmeasurable 

space (A, Z)b\and n bounded signed measures% ul,,..,u do 

there exiet n measurable subsets, i,...,Efi, and a bounded 

>lgnmd measure u-;;;;;h thatx\ 

{;) the collectlon {hi,...,E } is a partition of z,\fugi 

mfi{}&fl for each i = l,...,n, L° maximizes 

W (E) - ue(®) 

over all measurable subsets E?
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The interpretation we have in mind ie that A is the subs 

set of 8 x T for which the real-estate mérket exists; u2 is 

the rental (signed) measure; there are fi participants in the 

market, and E% is the reglon chosen by agent i for his control, 

the net cost to him being u°(Ef), (1) is the same as§;15£1m§a 

—section—5 and is the utility level of agent i if he acquires 

region E. (We have changed the notation V. to ul, since we are 

assuming this functlon is a (signed) measure§ Conditions (i) 

and {ii) are then precisely the equilibrium conditions for the 

real-estate market. 

We shall prove the existence of equilibrium. iote Lhat 

the number of participants in thé mgrket.is finite, and ailse- 

that all the u )s are, finite. Tha first condiéion is essential; 

the second can be removed, but (1} then requires some re- 

1nterpretat10n. This will be &nne in,mNadflHv section ’qvv 

Our method of procedure will be indlrect, and we shall 

prove several other prapertias of the equilibrium. These ,—in 

faet, have independent econofiic meaningsi and are of interest 

in themselves. ;filsés:§his precedure&paves the way for the 

generalization to pseudomeasures which comes later. 

    

  

Recall that a Hahn decomposition of a signed measure u is 

a pair of measurable sets, (P,N),-wh&eh partltion universe set 

A, and a*e for which u(E) > 0 on all measurable sets E c P, and 

u(F) < 0, all measurable F ¢ N. We now need a generalization 

of this concept to several signed measures.
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et 
———— 

C;wafnefinition: Given measurable space (A,%Z), and signed measures 

(ul,...,un),’an extended Hahn decomposition is an n~tuple of 

’?:i&f measurable sets (El,...,En)§which partitions A, and for which 

(6.2 
u; (F) > uy (), “(2) 

on all measurable F g E;r@M i, j=1,...,n. 
e ... S 

That is, on E., gi\}s at least as large as any of the other 

signed measures pjjfij = 1""‘3{?“* 

The economic interpretation of the condition that 

(E{,...,E%) is an extended Hahn decomposition is that, on any 

measurable subset of Ei, agent i will at least match the bid 

of any other agent. This appéars to be a reasonable alterna- 

tive definitioh for a pattition being an equilibrium for the 

real-estate market. | / | 

This definition of egquilibrium looks quite different from 

the definition given by (1), For one thing, it involves no 

mention of any rental distribution p®. But our next resultq 

shows that, in ffiatflfih&—faéfi*\these two definitions are 

equivalent 
s IR S : 

*%L-;Theorémfi Let u2, and ul,...}un,\be bounded signed measures on 

P -measurable spacé (n,2), afié iet_(Ei,...,Efi).be measurable sets 

%mgy ;fiiéh partiticn’a. Then fi? satisfies onéiof the following 

[ - “ng onditions iff it satisfies the other: 

v - 6931 
L | u (B) = o (E) (-\ca—} 

)
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ov%r all E¢ I; 

*'(11) or all i, j = 1,...,n (i # 3§), 

, | (b.6.4) 
My (F) > uo(r) > uj(F)f - ) 

  for any measurable Fg Es. 

' - Furthermore, tiwrs es&ets a bounded sxgnedlufl satlsfylng 

one (hence both) of these conditions iff (E2 Jree++E2) is an 

extended Hahn decomposition for (ul,...,un). —— e 

    ‘“¢~1Proof= Let E° maximize (3), for all i, and take measurable 

Pg E° Then 

By (E) = ue(Eg) > u; (ES\F) - ue(ES\F). 

Simplification yields the left inequality ifi (). also, 

My (Eg} - u°(E§) > u (E° U F) - ué (E° U F)~§\ 

Simplification yields the right inequalzty in (4), 
S - 

L'%‘F(:omnarsealy, let (4) hold, and take any E € I. Then (3) is 
M= 

the sum offn terms: My (E n E%) - u® (E n Ev}, i @ Bsves ), 1 

  
5% Lw 

\ 

For all j # i, theseZterms are < 0, by the right inequality in 

{(4). Hence i 

: 4 (j(f?s{fl“; ) 
ui(E) - u®(E) <ui(En&) = W2(E n EY) . (5> 

i AlSO) 
. ! 

/ 3 i _ %(4 ) 
! 0 2 uy (E\E) - u°(E\E),
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by the left inequality of (4)., Adding (5) and (6), we obtain. 

Y, > ui(Lfl) - ul(E) < ui(E{{) - ue(E$), 

T T 5 } 

so that E% does indeed maximi#e (3). This proves thejequif, 
D 

§ 

valence of conditions (i) and (ii). oL 

f$$ Nextfikéuppose there is a p2 satisfying these conditions. 

¢ - The extended Hahn decomposition condition (2) follows at once 

from (4). ' 

Finally, suppose (gi;...,Efi) is an extended Hahn   decomposition for (ul,..,un). For u® choose the signed 
——— 

measure given by 

ue(g) = ul(E nlEi) +ooot un(E n E%{,J - 

all E € I. (@&fitu&s, 12 is the direct sum or patching of the 
J ; ! , ~ 

My respectively restricted to_g%, i=1,.0.yn). Then for   measurable F ¢ Ei' I R 

\ 

O 
it 

Y SRR = (B > w(E), '\‘Q . a— 

from {7) and (2). fThis implies (#. M1~ (J ¥ 
£ 
i 

  

'T%“ifi”¥3) is the safie as {1), so that ii) is precisely our 

original condition that p2 and (E{,...,gfi)iggfén equilibrium 

for the real-estafie market. We havé just shown that there is 

a u% such that this is the case iff (Ei,...,,fi) is an extended 

Hahn decomposition. Thus in this sense the two equilibrium 

concepts coincide. In addition, the result justfcbtained
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states a necessary and sufficient condition for a given signed 

measure p2 to be the rental distribution in the real-estate 

equilibrium,. This is (), and it, too, has a simple economic    
interpretation: "4fz,,_;-:w- the price at/ thch something 

sells must lie between the highest and secon@-highest offers. 

of the bidders in the market. 

We -sliadl now prove the existence of an.equilibriun_tJ This 

witi-be-done by proving that an extended Hahn decomposition,. 

(Ei,...,Eg)fihexists. The preceding theorem then implies the 

existence of a rental signed measure 12, and together these 

satisfy the equilibrium conditions (1) or (3). 

In facthe shall prove something stronger: Given signed 

measures Uysese My (not necessariLy finite,~or even a&qma 

finite), if each EE__ of these has an extended IHahn decomposifL 

tion, then so does the whole E—tfiple (ul,....un). To see that 

this implies the eiistence of a decomposition in the case we 

are considering, let uy and u. 
g 

Then u; - uj is a signed measure. Hence,qby the ordinary Hahn 

decomp051t10n theorem, there is a pair of measurable sets 

be bounded signed measures. 
Ry T 

(P,N).fwhish-partitions 2, and for which - 

= Wy (F) =luy(F) (2,200 
e .? - e —— n 

for measurable F ¢ P, F ¢ N, respectively. But this is pre- 
i e 

cisely the condition (2) for (P,N) to be an extended Hahn 

decomposition for the:pair (ui, uj). Hence such a decomposition



575 

exists for any pair of bounded signed measures. The premise 

of the following theorem is therefore fulfilled, and we 

conclude that a decomposition exists for any n-tuple of 

bounded signed measures. 

SR R 
qiwiigoorem: Let (ul,...,fin) be an n-tuple of signed measures on 

) space (A,Z)fl_such tfiaé each pair of these has an extended Hahn 

3;}5 decompositioz. ;Théo the whole n-tuple has an extended Hahn 

decomposition. 

   
g;, Proof: hBy 1nduct10n on n, The statement is true for n = 2 by 

assumption. For n > 2, Leemas suppose it holds for =Ly 
P"“"”“\% 

i}:fi and prove it for B 

: Thus, for (ul,...,un 1) there is a measurable(§~n~tuple 

(El"“' 1) which parfitions 2, and for which L 

uy (F) g_uj(F)Ld 8) 

For each i= 1,...,n~1 . there is by assumptlon an extended 

e
 

Hahn decomposmtion (Pl, N,) for the pair (ui. u ). Thus 

(G eq) s uy () 2w, (F) 9. 

  

    for measurable F ¢ Pi’ and, for F ¢ N b tfie opposite inequality 

U holds., Now define (Eir....E») by 

e 
Bjpn. By 0By -
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We have -new shown that (E{,...,Efi) given by (10) and (11) 

is an extended Hahn decomposition fo:_(ul;...,un). This 

completes the induction and the proof; “}#figggk s 

We have now proved the existence of equilibrium in the 

real-estate market with a finite number of participants. What 

1f the number of participants is infinlte? (Thls might occur 

with an unbounded Space or Time horlzon) 'flowrghere is no 

trouble extending the dofinitioh of equilibrium;‘and of 

extended Hahn decomposition,fto the case of an infinite number 

of participants with corresponding bounded signed measures W® 

This will involve an infinite measurable partition of R, tham 

pieces in 11; correspondence with the u, 73, and the relations 

(1) or (2) holding for each piece. In f&ut swe make this very 

extension later. 

But is it true thafi this equilibrium,,orvdecomposition, 

always exists? The answer %2732, as the following trivial 

counterexample demonstrates. Let the space A consist of just 

one point. Let Uyr Ugreee be an infinite sequence of measures, 
pg 1/ TwmflWKU(A)”].“rullfil Bises » %?1@1mwwmb%wxno 

equllibrium, and no extended Hahn decompositlon, exists$, since 

no matter to woat partlcipant‘g we assign the siogle point of 

A, he is "outbéd" by participant n+l. 

Let us turn briefly to the guestion of uniqueness of 

equilibrium, +® / ;
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/‘“""M 5% ; 

G~ Theorem: Let (ul,...,u ) be an n-tuple of 51gngd measures on = 

space | (A,Z), with extended Hahn decompositioq (Ei,...,Em); let éj/ 

%fif 
(El,...,E ;\Fe another n-tuple of measurablefsets Jhich 

f 

partitions A. Then (E ,...,E ) is also an thended Hahn 

decomposition 1f£ / 

(&) 
ui(F) » Uj(E) 

for all measurable F g 

   
R 

(E; n Ej)' &&i'j = 1;-«-;{10 

= (J”Proof: Let (gl....,E ) be another decompbsxtion, and take 

Tciz/ measurable F o (E& n E, ). Then My (F) > u (F) > ui(F), from 

| 
i 

\ 

E 
? 

(2), which yields (14). 

Conversely, let (14) hold, and take measurable F ¢ E,. 

flg 

pi(F) = ui(F N Ei)+a'-+ ui(F n Efi) 

  

   /\N/\_f’“\»’ '-M/‘v ({".(A’”,s 

=y (F n ES)4e.ot My (F n E2) 15) 

,E > 3 F 2 +oc'+ : ; 2 = : i’\j/ | > yj( n Ef) uj(? n E7) ug(g). [ 

| for any j = 1,...,n. The first and last equalities in (15} 

arise from the fact that {E ,...,EP} is a partition; the middle 
J./J&% 

equalitykfrom (14) and the fact that (F n Efi) < (Ek nE, ). the 

inequality in (15) arises from the fact that (Ef,...,E%) is an 

extended decomposition. : 

&ffils) implies that ui(E)_l uj(F) when F g‘Ei, so that 

    A manl : e % (Elf.gagg) is indeed another decomposition. 1H s 

«W’M i 
o - SIS e
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This theorem has again a simple economic interpretation. 

A given regionyglcon be under different controllers in two 

equilibria iff the§£ bids over this region are identical. 

Condition (4) for the rental'distribution u® then implies that 

u® is identical over F to th&s common signed measure. The two 

agents are then indifferent about controlling F, the rental 

just cance%}ing out the benefits they reeeive from this 

control. 

Thus, while multiple equilibria are possible, they are of 

a somewhat trivial character from a practical point of view. 

The extreme case occurs when all the ui’s are identical (all 

agents have identical preferences). égé easily verifies that 

__z.measurable partition into n pieces is an extended Hahn 

decomposition in this case, and, an equilibrium; the rental 

dlstribution B is this common sxgned measure, and all agents 

are indifferent among all possible regions, 

It is very common for gqulllbrma to satisfy one or another 

extremal condition wh&eh can be given a welfare interpretation 

of sorts. Our final result of this section is of this 

character, 

  

i 

¢ “éfi'xflTheorem: Let (ul,...,un) be an n~tuple of bounded ajigned 

measures on space (A,I). The n~tuple of sets (Ei,...,Efi) is 

an extended Hahn decomposition iff it maximizes 

(.é" 
badfe

) 

My ) et iy ) s)
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over all measurable n-tuples (El,...,En)'wfiiéfi partition A, 

   — 

<fiJA§;%§¥roof: Let (El,...,E ) be an extended Hahn decomposition, find 

QPX' let (El,.,.,E ) be another measurable n~tup1e~whtch partitions 

f’yfifi . A. Then 

  

  
  

w60 ) 
o 0 g My (E2 n Ej') 2 Uy (E2 n E;) =17 

for all i, j = 1,...,n, by (2). Adding the inequalities (17) 

over the 92 possible (i, j) pairs yields 

' 
{és:é}fitgf{i 

My (B +.. .+ M (ER) 2 uy (B )+.. 04 B (BL) oo “18) 

80 that (El,...,E ) does indeed maxmmize (16). 
K ’fifconverselY, let (E§,...,E2) maximlze (16), and take 

measurable F g EZ. Define By = Ei\F EJ = E? U F, and Ek E2 s 
R fl for all k # {']k.# jr k=1,...,n. Then the n=-tuple 

% (@1,...,En) partitions A. We then have (18), which simplifies 

| to ‘ 

(EP) * uj(E’) > ui(fl \E) + MJ(F? U F)rs\ 

{“E{? 
é and this in turn simpllfles to ui(F) > Wy (F). Thus (Ef,...,E2) 

é”:’ /3 
v - o | is an extended Hahn decomposition. JJ}‘ L 

{ . T o i e 

{‘ This again has a simple economic interpretation., If 
§ 4 p 

(E,/...,E ) represents the way dn-which Space~Time is 1 n ~ 

partitioned among theflg_agents, then (16) may be thought of as
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a kind of social valuation of this partition. It is the sum 

of the values widich each pagfiicipant personally places on the 
£ 

7 

region allotted to himselffi (These values are all measured 
ApAA I‘ 

in the same units, name&y,~discounted dollarsfkr 

e__%rfimfsw Thus a given partition is an equilibrium for the real= 

estate market iff it maximizes the social valuation of land in 

discounted dollars, as given by (16). This is a useful observac 

tion, though eee cannot draw welfare or policy eonclusions from 

it without further assumptions. | 

In all the preceding analysis it was required thet the 

n-tuples (El,...,En) form a Eartition of the universe set A, 

rather than just a packing. Ie other words, the entire region 

had to be allocateds fl%e possiblllty of leaving part of it 

vacant was not allowed. At first glance thls seems rather 

restrictive, especially rfi~v#ew—of—the“fact~that we allow 

elgned measures, SO that soge agents would prefezrggg to control 

some regions. In the real;%orld, would not a universally 

repugnant region be left u;controlled? 

But da—£aet—this apgerent generalizafiion is already conZ 

tained in the . preoeding model. We simply add a "dummy" 

part1c1pant n+l, with un+1 1dent1callz ZeXro. Lettlng(él,..., 

+l) be an extended Hahn decompositlon for (“1""'“n+1)' we 

find from (2) that all the 31gned measures ”1""'“. are’ggi;, 

positive over Bfi}l' while u; is noezoegatlve over B 

(i =1,...,n). The obvious interpretation of this phenomenon 

8
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is that E% is the region chosen by agent i (i = 1,...,n3, 

while §;+1 is the reSLdue whizh-is left vacant. All the 

preceding theorems remain valid for this s;tuation. 

6.7. Joint Control and Agent Measure Spaces 

We now consider a few real generalizations. In the 

above analysis each agent obtains exclfisive control of a 

Space~Time region. But in the real world there are numerous 

examples of joint control: partnerships, jo}nt ventures, 
o 

: At o, L 
conmittee management, corporate stockholders, ete. How o . 

represent»this? | 

It is not immediately obvioos how to “splitfi-a set E 

among several agents in proportion to their share of control. 

However, recall that with any set E ¢ jiis associated its 

indicator function IE.A + {0,1}, egfifii&gl (a) = 1‘if.a ¢ B, 

= 0 if a ¢ A\E. There is a 1sl correspondence between the 

subsets of A and the set of all 0 1 functions on A by this 

association. Thus, instead of representing.e real-estete 

- allocation by (El,...,EnfflhfifheSe fo;ming a pertftion of Aénefi 

we could just as welllhave repreSentea it by the corresponding 

n-tuple of indicators (1, ,...,I 3 :> 
2 “n_ 

  

. (6.7./) 

I, (a) +...4 I' i 
E (a) - Lot 

1 . n £ 

Indeed, (1) is just anothe; way of saying that {El,;..,En} 

is a partition.
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The advantage of using indicators is that it suggests,the 

proper generalization to joint control, Namely, with agent i 
. e e / 

Gs assoc1ated a measurable funceion hi:A > [0 1h"taking values 

in the closed interval of real numbers between 0 and 1. The 

intended interpretation isfifhi(a) igs the fraction of point a 

controlled by agent-i. These n.functions'fiuSt satisfy 

ey (7.2 
hl(a) +oeet hn(a) =1, ° ' 12) 

for all a ¢ A, since the‘total of all fractional controls must 

add to 1. My 
—-—4—“‘/) I - 

‘»Exclusive control is precisely the special case in which 

all functions hi take on only the values 0 or 1l.: They are 

then all indicator functions, and (25 reduces to (1). 

The entire structure of the real-estate market model 

generalizes in a corresponding way. Instead of preference 

orderings over pairs (B, x), as inéiéz)ofmseetion—E, the various 

agents have preferences over pairs (h, x). If p°® is the ‘ 

rental signed measure, the rental for the control pattern given 

by h will be ‘ , 
: 6w 

IA h4du£.f~ o 

The special assumptibn we made, that U; (E, x) is of the form 

ui(E) - x, where ui:is a bounded signed measure, now becomes
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again for a bounded signed u;. Market equilibrium is given 
: = 2 

by rental distribution p® and a measurable n-tupde (hl,...,h ) 

satisfying (2), such that no agent i prefers any control 

function to pI,_When confronted with pe°, 

‘f%" Wfien the only allowable functions h are indicators, every€ 

thing reduces to the original model with exclusive control. 

There is no difficulty extending this model to a countably 

vinfinite, or even: uncounteble, number of participants. In the 

former case we get an infinite series on the left of (2), which 

must converge to 1 for all a e A. In the latter case we use 

(a'the concept of summation of an arhitrary collection of numbers 
113 

    For each a € A, all but a countable number of the 

values h(a) equal 0, and thefremainder formlan infinite series, 

aéain converging to 1. : 

A slightly different a?proach uses the concept of a 

measure space of agente, (B 8! ,v)\é%' Here B is the set of 
= 

agents, It comes supplied with a eegme-field Z' on which is 

  

defined measure v. Intuitively,'v(fi) gives the “influence of 

the set of agents E. Tq'pin down this notion, we need a 

corresponding generalizétion of the concept of ailocation in 

the real-estate marketfih. In the finite case, this was an 

nwtuple of functions (fil,...,hn) satisfying (2). This may also 
e 3 f » be writt$n as a single function 

-
 % ";E kf‘} 

h:{lyo-o,n} X A = Ioll]t: ;‘t&')



;, 
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W 
For the set of tradershp, an allocation will be a measurable 

function 

(674%7'3;-,!' 

{}:Bx_A’* [0,1],- %) 

with the rough intuitive meaning: h(b, a) is the fraction of 

land at a € A controlled "per unit influence" of agent b ¢ B. 

This rather vague notion,iand the one above, are explicated 
N 

formally by the requirement: 

3 ()t 
J h(b,a)v(db) = 1, 6 il 

7 2 

o ' ‘ 

for all a ¢ A.3 (6) and (5) generalize (2) and (4), respectively,, 

and indeed reduce to them when B consists of just n points 

("agents"), I' = all subsets, and v is the;e;;;eggtien measure, 

The generality of the "measure space of agents" approach 

may be illustrated by the case where v is nonstatomic (ali 

singleton sets {bl} being measurable). Here no single agent, 

or even any countable number of agents, has positive influence. 

As PAumann points out;%}zthis is exemplified in the concept of 

perfect competition, where each agent has negligible influence. 

The obscurities that remain in the present formalism are 

matched by the obscurities present in that popular concebt. 

For each agent b € B there is a preference order over 

pairs (h(b,*), x). Here h(b,¢) is a function with domain F, 
" 

control is given by (3 

L per wunit influence | 
and gives the control pattern for agent b, The~rentaiflfor this - 

j)just as above. An equilibrium in the 

real- estate market coneigEE‘of a rental distribution, ug -
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‘ 48 Ji| 
which is a bounded signed measure over (A,Z)§¥-and&a measurable 

control function h? of the form (5),isuchfthat {6) is satisfied,xv 

and such that, for all agents b (except possibly for a set of 

7 -measure zero), ho(b,+*) is at least as oreferred as any other 

control h(b,+):A » [0,1] by agent b, 

This entire approach, using fonctions h £o represent joint 

control, applies just as well to.joint,ownershig. Furthermore, 

there is nothing that restricts its oge oo‘the real-estate 

market. Coneider, for example, the éistribution of physical 

assets among economic agents'at some:timeiinstantmp (“diStribuE 

tion" may refer either to ownership;or to control). In this 

case, the set 2 is a subset of R X;S, rather than of § x T as 

in the real=-estate market. For each agent i we again have a 

function h,:A » (o, 1], with the interpretation- hy (x,s) is 

the fraction of resourceitype x at location s controlled (or 

owned, as the case may be) by agent 5, et time t. 

One final fpoint. Suppose an agent's control pattern is 

giveo byigag » {0,X}. 1% there is gsome natural "quantity" 

measure on the space (A,I), tnyn the control pattern may be 

expressed in terms of a'measufie,‘rather than a point function. 

For example, let A g R x 8, and hy describe the control of 

physical assets by agent i at time t. Let y, be the cross= 
o 

sectional measure at time t (so that Wy is over (R % S, fi% 
/“ 

Z' x & ), and ut(E x F) is the total mass onresources of types 

e 
E in region F at time QL? gnd let ui be y, restricted to a,
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Then 

. “it = Iflhi%dué. 

el i o - 

an indefinite integral over A, expresses the control pattern 

of i at t as a measure: uit(G) is the total mass of resource-. 
type~location pairs in G controlled by agent i at time t, for 

all measurable Gz A g (R x S). 

\\ Again, let of be "areal" measure on (S x B, .o Bu). drg \0\/ 3 g t, 

8 is taken as 3-space, -then o may be fewr-dimensional Lebesgue 

measure, say in units of "cubic-feet-days".)/ let o' be a 

restricted to'fio, the portion of Space~Time which-is on the 

market. Then . 
: ‘\‘ 

: D Qi . jfihiAga" =3 
¥ : i . - — 

. a 
an indefinite integral over E,, expresses i's repl-estate 

control in measure form: ai(g)_is the amount ofgficubic~feet: 

daysfiEin region G confirolled by agent i, for all measurable 

E - ,.1::0 . (S . T). 
ol th ot 

This is all very well and sometimes useful., But it-sheuld 

-be-noted-that, in our entire discussion of the real-estate 

marketfi\it was never eaee necessary to mention or use the 

concept of areal measure. All that was needed to define an 

equilibrium were the preference orderings over pairs (E, x))&» 

or more generally,(h, x). &nd to prove existence and other 

properties of equilibrium, what was needed was a specialization 

of the form of these preference orders, HNone of this involves 

areal measure.  (Preferences among regions will of course be
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influenced by the areal capacities of these regions, among 

other factors. But this does not gainsay the fact that, 

once preferences are given, areal measure per se plays no 
,yw 

role. It is a £ifth wheel§¥. This point is important in conz 

nection with Alonso's theory, where areal measure plays a key 

réle. 

6.8. Comparison with Alonso's Theory 

One of the leading theories of the real-estate market, 

and deservedly so, is that of William Alonso. We shall now 

- G ; < ~ 
compgre his theory with the one presented above. Our conclus< 

ion will be that, when certain kinks dn—it are straightened 

out, it becomes a special_case‘of'our own. 

In his book of 1964 and preceding publications, Alonso 

develops his theory in the oontext of a featureless plain with 

a single point of attraction, which may be thought of as the 

central business district of a city:Q§y But his underlYing b 

real-estate model does not really depend on this context, and,. 

indeed, in a later-article he briefly indicates a generaliza3 

tion)%fiz We shall concentrate on the book, while stressing the 

general features of the theory. 

Two specializations may be noted at once. First, it is a 

theory of Space rather than Space-Time. This creates no 

difficulties of comparison when viewed formallys All the 

"regions" in our model may be thought of as subsets of S if
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desired, rather than subsets of 8 x T, 

Second,.Alonsole is a pure control theorys Only the 

behavior of p%tential tenants is analy$ed in detail, while 

landlords are essumed to auction off their land passively to 

the highest bidder. Our own theory has, in effect, made the 

same simplification, which ef-course loses a number of 

important real-world phenomenas dlscriminatlon, market 

frictions,bownership preferences, ete. Our "intermediate 

level" model, in which the preferences of agent i are sum- 
3D merized in a utility functlon, fi%& of«seetéeeqfi. of the form 

(6.3.1) Ui(E, x) > 

(where E is the region controlleds and x is total net expendic< 

ture on realnestate), does allow for one aspect of owner- 

controller interaction@ The formation of real—estate prices 

affects the real wealth of existing landords, and this "wealth 

effect" influences their preferences over regions (which in 

turn affects prices — we have a simoltaneous equations 

situation), However, we oroved no theorems at this level of 

generality,wbut passeigon to the "constant marginal utility of 
&7 : 2 & money" formulation, %5} of-section—5: 

S 

wivi(E’ T 

in which wealth effects disappear.
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Alonso comes up with a preference order for agent i of 

the form : 
{b.93) 

'gi (s,p) _ -2 

where‘iyis the point at-whieh he locatesh‘and‘g_is the rent 
¢ ) 

per acre that he must pay. \(Aetoallx, in the Thilnen context of 

~the model,_pi depends on s only through its distance from the 
2 - ; Ry, : 

point of attraction, so that {2) is a context-free generaliza- 

tion of what appears in the text. The same is true of all 
. . F . N o % g 

the other functions involvimg location, that-we write below.) 

The indifference surfaces of (2) are called bid-price curves. 
,i"f‘f wOAL AN j o % 

“Q§ (2) bears comparison with (1). It is,-im—faet, a sort of 

"single point" version of (1), the single location s contrast- 

ing with the region E, an&’the rent density p with total 

expenditure x. 
3 :}M <'[z'4v-u [ , : ’ 
@ 4{2) is derived by Alonso from an underlying preference 

ordering of agent i. This takes two forms,.depending on 

whether i is a consumer or a firm. We shall just consider 

‘the consumer case. Agent i is then assumed to have a preference 

ordering represented by thevutilityrfunction 

(6.7.3) 
Uj'_ (s, qr z), 3) 

where s again is location, g is acres of land controlled at 

location s, and z is all other goods consumed except land. 

Let m be the prices of the goods z, k(s) the transportation 

expenditure incurred by the agent as a function of location,



591 

and Yi the given income of agent i, ;The following budget 

condition must #ew be satisfied: 

. : | _ lo.:4) 
¥y ™ k(s) + nz + Pge— 4 

Now suppose s and p are given. Tfie maximum of (3) over pairs 

(aq, z) ohich satisfy (4) will then depend on (s, p). This is 

the function (2). assd | v 

Before continuing the analysis, it—should-be noted that 

our utility function (1) can be derived from en underlying 

preference ordering in a similar manner. We did not do so 

before ém=order to avoid distracting attention from the 
essential features of the reeleeetate market. ‘To-fecilitate 

comparison with {3y and’(4xneheve,'we postulate a single 

location s through whieh ell commerce between the controlled 

region gvand the rest of the world occurs: (This plays the 

samewffile as Alonso's “front door“; fSee below.) We then 

postulate a utility function 

q.5) 
U (s, E, 2), Q%gi} 

where E is the reoion‘controlled by agent i,,and z is all other 

goods, as above, béotually, 2 should be written as e signed 

measure over R x 8 X T, We do not do so in order to keep 

thinge as similar as oossible to (3) and (4{%* JAlso,. let ' 

be the agent's wealth in nongrealwestate aseets. 

Suppose neu.we-are gifienVE, the region agent i chooses to 

control, and x, his total net expenditure on real estate. The
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following budget condition is analogous to (4): 

- (C.86) 
Yy = kis) + wz + x) t6) 

All terms in (§) are measured in discounted dollars. The 

maximum of {5) over all (s, 2) satisfying (6)‘will then depend 

on (E, x). This is the utility function T . 

Let us now return to the Alonso utility function (3)fi{and 

compare it with our (5). The region p'in (5) can ofreourse 

be any measurable subset of the universe set. Thus.it can be 

the union of any number of disoonneoted pieces, each of these 

being of more or less arbitrary size and shape. By contrast, 

(3) refers to location "at" a single point s (or. in the 

Thfiaen context, "at" a single'distance from the point of 

attraction). Thus, there is no way of representing the 

preferences of an‘agent-contemplating multiple locations — say 

a family wanting both a town honse and a country housegkor 

wanting both a house and a business site. There is also no way 

of representing preferences_regarding shape of lot, as opposed 

to size, which is representequy qfiiz/ : 

A second point concerning (3) is logically more serious, 

because it involves an actual inconsistency.x If the acreage 

of land controlled is positive (g > 0}, it must be spread over 

more than a single point (and even over more than a single 

distance from the point of attraction). Hence there is no 

clear meaning to the concept of being located "at" the single 

point 8 (or "at" a single distance from the point of 

attraction).
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e e 
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— o 

Alonso is well aware of this problem of the "extended 

poinddk) Before looking at his methods for dealing with it, 

letLQS‘contemplate an alternative method. This involves 

postulating a measure space of agents, (B,Z',v), with YV non-~ 

atomic, é_la Aumann. ©One might argue zntuitively as followsg 

Since any one agent now has zero influence, he may be thought 

of as located literally "at" the single point 8, even though 

his "acreage per unit influence '3 9o, is positive. 

Whatever one things of this argument it is not difficult 

to write ous, formallytathe equilibrium conditions that resulth 

from it. Let p>:S + reals_be the equilibrium rent-density 

function. Each agent b ¢ B maximizes (3) over s, g, z, subject 

to condition (4) with p(s) = pS(s). (Subscript i is replaced 

by b in (3) and (é)f\: Let s(b), g(b) be the locational and 

acreage choices of agent b. Then we must have, for any 

region E { : : e 
5, voogs e 

&c;% q,dv = a(E). _ e 
{b|s (b)eE} 

iij states that a(E),fthe total area of E, must equal the total 

demand for land by those agents who locate in E. 

| Alonso does not take this. tack. Inflee&, the Aumann 

approach requires anruncountable number of agents, while Alonso 

always works with a.finite number. Instead, he makes an{gg 

_hoc assumption wiieh depend&fiessentially on the Thilnen contextidw% ./ 

namely, that (s, g) refers to a ring-shaped region of area 9
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concentric with the point of attraction, whose inner radius 

is the distance of 8 from the point of attraction\\ (/nis 

assumption is dropped in his Appendix B}. : 

The "extended point" problem causes one other bit of 

trouble. -Namely, since there is no single location g’"at“ 

which the agent chooses, there will in general not be any 

single rent density p(s) either. This means that the term‘pg 

in (4) must be replaced bfgan integral, giving total expendi-~ 

ture for control of the ring (s, q) chosen by the agent. (fi%is 

is done in his Appendix A). It also means that the derived 

utility function Ui(s, p)»é-whicn‘is (2) abewe L-with'its 

I’b:l.d--price level surfaces, has no clear meaning. 

Finally, infs;pendix B ef-hris—beolk, Alonso .postulates a 

more general utility function than (3) 4n-order to take account 

of shape and avoid making the ad hoc assumption just mentioned. 

The agent i chooses a point~location 8, called his "front 

doox", and a region_g:to oontrol. His preferences are 
b 

expressed by the utility function ! ¥ y/ 

o T I (b it . (m< g9 

.\q 0#) S?é%. Ir. £(a' (s,y)),Kay) , i] | +8) 

The g—argument in (39 has been replaced by an integral, the 

other two arguments s and z, remaining the same. 0 ié; as 
l 2N 4szp 

usual,Vareal measure. Nou]g can be expressed in terms of 

W 
region Eifg = a(E) = J 1 do 4 s0 that {8)| can be thought of as 

a generalization of (3) in which l has been replaced by a
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nonjconstant integrand. 1In this integrand, d' is the 

(Euclidean) metric on the plane,.and,ffis some positive, 

strictly decreasing, function. In effect, (8) makes the valuel 

of a pointJX inversely related to its distance from the 

agent's "front door"., | 

With this change, Alonso's model becomes a special case 

of our own, for'(a) is a sPeciaiization-of the utility 

function.iS).' The budget condition in both cases is given by 

{6). As_ describeduabeve, we can thus obtain the derived 

utility function (1): " u, (&, x), eto. » 

We now given an informal, nonjrigorous, argument to indi- 

cate how (&) gives information concerning the shape of the 

region E, Let rent density function p2:s -+ positive reals be 

given. Suppose s, 2z, and x are chosen in advance. Subject to 

these values, and to the budget constraint (6), we are to 

¢hoose E to maximize (@). Any conditions derived from this 

problem will be necessaryffor optimality in the original 

problem. Assuming (&) to be‘increasing in its middle argument, 
2| 

one easily verifiea tham this specialjproblem simplifies to: 

Maximize .,5 ) 

f f(d’(S.y))a(dy) 
B 

over E, subject to 3? i 

j fp?Adu = X. 
E =] . pesy 

““"\..fl%& 

Mo



596 

This can be turned into an allocation-of-effort problem sweh as 

~we—considered in;ghapter 5. Omitting details, the optimal set 

E® has the following form: 

' (. 39 
E2 = {y|£(d' (s,y))/p2(y) > c},,}\ 19 

for some constant ¢. Along the borderline of E®, the 

inequality of (9) becomes an equality. ' f 

Alonso derives this conditionigthat the ratio of £(d'(s,y)) 

to p2(y) is constant along the borderline. But at this point 

his analysis falters. Assuming rent-density p2 to be a 

decreasing function of distance from the point of attraction, 

he concludes that the optimal region is eggeshaped. (Recall 

that we are on the Euclidean planefi@;;But this is impossible in 

market eguilibrium, since the plane {-or any- circular disc on 

it ezcannot be partitioned into egg~-shaped regions. The | 

correct conclusion is that utility functions of the form (8) 

preclude the possibility that rent density has the property 

just mentioned. On the contrary,vthe real-astate market 

equilibrium (if it exists) must be such that, with the given 

p?, the agents choose regions which partition the market among 

Selve 
thenk 

In conclusion, in its most developed form, Alonso's model 

becomes a special case of our own. Earlier versions involve 

either inconsistencies or ad hoc assumptions. 
S P
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The following program remains to be carried out. For 

plausible utility functions U; (E, x), find the conditions under 

which a real-estate market equilibrium exists, describe its 

‘form, determine the equilibrium rental measure pu?néind any 

interesting extremal or other properties that the equilibrium 

possesses., : 

Among the plausible utility functions are those derived 

from an underlying utility.of the form {#), with budget 

constraint {6). Since Alonso's'exposition is flawed, it is not 

clear under what conditions an equilibrium even exists. More 

general functions than (8) should also be considereds For one 

taing, it seems unlikely that an agent with preferences 

represented by (8) would ever choose a region of multiple 

scattered locations, a very_common;real-world phenonmenon. 

Rather, he would choose a region tightly clustered around his 

A“front door"™. To generalize, 3§§fneedg the possibility of 

numerous "front doors?y or-perhaps an entirely different form 

of preference ordering. : v Yivo cages, Ty biveF 
This 

-Tne—oniywease—en—wheeh—ehe-program has been carried out , 

is where. Uy (E, x) = uy (E) - x, for some bounded signed measure 

My (agents i = 1,...,n), whloh yields the theory of section 6 

(snfl which ,—in-faect, we generalize in ke folleowing section). 

    

noemveryereaiisticrmasmens~previeesafiflflfiqtewindieeted TLL 

Second tase is e Thinen evu\'\"vw\m olfl 5’-7, Below,
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ji?\) 6.9. Pseudomeasure Treatment of the Real-Estate Market 

AN 
Let—us return to the real-estate equilibrium model of 

&sectionééjfl ?or convenience we repeat it here. We are given a 

: measurable SPacefi(é'Z)fl and n bounded Signed measuresdx 

'_;5 ul,...,un, one for each agent in the market. | 

fik;b_, Ajd . An equilibrium consists of a rental distributiongkui, which 

s is a boundedzsigned measure on (A,I), and an n-tuple of 

k maasurable sets, (El,...,E )/ 'H}&h parfiition A, and are such 

that E2 ; maximizes 

{‘v _ v (G.q.1) 
u; (E) - po(E) . -1 

} i%@ Y over all E ¢ %I, for each i = 1,...,n. The interpretation, of 
l ~\\ = ' | 3 & 

W course, is that E{ is the region chosen by agent i, while (1) 

. is the utility he attaches to the control of region E, u°(E) 

? \ being the net expenditure he incurs for this control. 

\€d We want to generalize this set}up in two directions. 

First, to consider the case of a (countably) infinite number 

of agents. Seoond, to consider what happens if u°, or some or 

i all of the My ’ are 1nfinite Leegmanfinite) signed measures. 

‘ Before launching into details, letmus briefly discuss the 

question of whether suoh generalizations have any possible 

applications:g (fie use the term "applications" as usual in a 

rather liberal sensel. Consider models with unbounded Space 

or Time horizons. vfin the "endless plain® of location theory, 

for example, where;the same patterns are repeated indefinitely - 

e (as in the Ldschianvsystemie,we may reasonably presume that the 
.i) f«‘x,‘
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number of agents, and total rentals, will be infinite. With 

an unbounded Time horizon we may have an infinite sequence of 

generations. Whether rentals become infinite with unbounded 

;§ine is more dubious (recall that everYthing is measured in 

discounted dollars, so that the present.value of total rent%ls 

maylwill be Einite even for unbounded Time). 

It is a little harder to find a rationale for the L7} in the 

preferences of the individual agents to be infinite. NonetheZ 

less, such a preference order might be reasonable for organiza€ 

tions such as corporations or governments which are potentially 

immortal,kor'whées'can extend their control indefinitely over 

infinite Spawe. Furthermore, there are other interpreggtions. 

If the i‘s are interpreted as activities or land uses rather 

than as agents, then the real-estate equilibrium may be thought 

“of as the result of a global competition among alternative uses 

for the allocation of Space-Time.fi In this case, under the 

appropriate'world~system§‘the uigmay well be infinite, 

"ietrus now proceed to the generalizations. An immediate 

difficulty arises. In (1) the meaningless expression «=-« may 

arise for certain values Of‘gj rflfiso)there may be several values 

of E yielding +» (or -)gin{l). Are these to be considered 

indifferent, or is it possible to discriminate among them? 

The reader familiar with ?hapter 3 will notice we have a 

situation tailor-made for thefapplication of pseudomeasures. 

Namely, we interpret(thevdifference in (1) in the sense of 

pseudomeasures, and, "maximization” of (1) as referring to one
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or another of the orderings on the space of pseudomeasures 

discussed in ohapter 3. 

. When this is done, itrturnSMouttthet the entire theory of 

se ction 6 generalizes directly from bounded signed measures to 

pseudomeasures. efirse (gith the exception of one,theorem)fiit o Lax 

generalizes from a finite to a countable number of agents., 

Things generalize not only theorem by theoremfilbut even proof 

by proof, sorthat ene might say that the natural realm in which 

the theory otie.fi is valid is the realm of pseudomeasures?%@’ 

'In what followa we shall makefstill a further generalizationcvw@\' 

¥We-shall take not ‘merely the differences ui - ul ,‘but also My 

and u° themselves, to be pseudomeasures. This may have direct 

appiioationfi%in case there are “infinitely dispreferred” as well 

as "infinitely preferred“ regions. However, our main object 

in doing this is tnat it facilitates the following development 

to pgfinge oompletely into the realm of pseudomeasures: Proofs 

are smootherp’theorems simpler to state (as well as more general} 

- of-course)., : . 

=g Before getting‘started, we need'a convention and one or two 
P 

definitions., > 

;jihe convention‘arises from our dealing with a countable,. 

rather than a'finite,pnumber of agents. Formerly, we had an 

n-tuple of signed:measureslinl)??i,un),land a corresponding 

n-tuple of sets (Ei,...,En),- Now WEFhaVe_a sequence of pseudoS 
A o : 

measures (wl, wz,...), and a corresponding sequence of sets i .
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,{»Méar (73 3“’( 

(E4» E5y...). These sequences are countablemn-that—eQT—eether 

iinienhfiggeeéinate. We now insist that these two sequences be 

  

of the same length: either both infinite, or hoth finite of 2"”"7’9—" ~ 
length n (so that there is in any case a l+l correspondence 

J 

between'tbi and‘Ei). Both these cases will be encompassedzgy the 

single notationk"(wl,'wz,...), (El, Ez,...)“@' These sequences 

are ofjfinite or infinite, but in any case equal, length. 

itfiow §§¥=the defipitions. We refer to the triple (A,I,¥) 

as a pseudomeasure space'iff (A,Z) is a measurable spacefifiand 

wfa pseudomeasure on this space. Sometimes we shall use the 

notation (A,Z,u,v) for the same thing, where (u,v) is any 

representation of the pseudomeasure ¥y as a pair of;o&gna~finite 

measures., 

s‘_w&“':““flm, = 

- Definition: Let (A,X,y) be a pseudomeasure space, and let E 1 be 

a measurable S“bift of A The restriction of ¥ to El is the 

pseudomeasure‘space (E ’ Zl, wl), where Zl is I restricted to 

subsets of E;, and ¥y = (ul, vl), here gy and v, are the 

restrictions of 4 and v to hl, respeotivelyx where (u,v) is any 

representative of Y. 

~——E PR 

&«—— That is, given ¢, ché%e any one of its forms (u,v); 

restrict the two measures to E,, getting ¥y and vl} and then 

¥y is the pseudomeasure to which the pair (ul, vl) belongs.
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It must be shown that this is a bona fide definition; 
?‘“w 

that~is the resulting pseudomeasure wl must be the same no 

matter what pair representing ¥ is chosen. This is sasily 

verified, The basic equivalence theorem forzpseudOmeasures 

states that (u,v) = (u',v') L{that-is, they represent the same 

pseudomeasure )~ iff 

©.9:2) 
u'i-\)'z\)*u'b.—»' ‘ fi) 

Now suppose w = (u,v) = (u',v'), so that (2) holds. Restrict- 

ing all me%sures to By, we obvieusly have \ 

= “1*“’:1"‘\’1"‘%" 
et e 

- 80 that wl = (ul,vll e (ni,uil:r‘Thus the definition is sound. 

-~ Sometimes we shell refer to V& itself, instead of 

(gl,zl,nl) as the restriction of ¢ to Eq. 

waxty we need the concept of a direct sum of pseudomeasures. 

-Fixgtgrecall %hat this concept means for measures. Let 

(Ei, Ei,vui),,i = l, 2,...,be a (finite or infinite) sequence 

of measure spaces, the universe setslgl,'sz,... being 

muatually disjoint. The direct sum of these spaces, written 

: " : ((’!!ff"}': 

(Eqr Zy0 uy) @ (Eyr Iy, uy) ®... 43y 

: o 
g}\or ® (nii E ’ ui), is the measure space whose universe set 

0?’1'3 = E, J ‘,2 Uees, whose ;-esgma-field eizi consists of all 

sets of the form Fl A Eziu..., where Fi € Xi, 1= 1, 2,44+, 8nd
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whose measure is given by 

o 'K»';, 

filiwvtgfigifiifiiflfl= Let (E;,Z;,9;), 1 =1, 2,.., be a (finite or 

infinite) sequence of pseudomeasure spaces, the universe sets 

.;gé%f Eir Bgreen being mutually disjoint. The direct sum of these 
2, % 

is the pseudomeasure spaceZ(o Esy taz., Piw ), where]eiE and 

\oizi are defined just as above, while[e fi’ 4@1 %i l 

(ui,ui) being any representative of wi’ d % by 25000 o 

   

  

VL e 

X“mk That is, for each Y, choose any one of its forms (uy,vy), 

take the direct sum of the sequence of measures Uys Ugpeoes 

and do the same for Vir Vareeei this yields a pair of‘measures, 

and in- is the pseudomeasure to which this pair belongs. 

=0 2 Again, it must be shown that this is a bona fide definition. 

e 
T 

“We‘note,lfirst of si.. that the direct sum of g&%§%~finite 

measures is a’ség%?—finite measure. To see this, take the 

direct sum in {3), with each ui,siQEa—finite. BEach Ei then 
w X 

P 
has a“countable measurable partition {Eil, Eiz,...} such that 

ui(Eij) is| finite, aill i, j =1, 2,.4. The collection of all 

  

the sets,EEfi is then a countable measurable partition of oiEi; 

furthermore, by (4), My coincides gith Biuy om Eij‘ Hence the 

latter measure is edgma-finite. i 
3\ { e 

This proves thet %he pair ($ ' Pi”i) does indeed 
Wy 

represent<a.pseudomeasure. We must now show that the resulting 

pseudomeasure is the same no matter what pair representing each
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component wi is chosen. To prove this, for each‘i.let 

(ui, v{) be another pair representing wi. By the equivalence 

theorém, : \ 
; : : (L9.5) 

% i 
ui + Vi & Vj_ * fli 15> 

for each 4 = 1, 2,i0s » Taking direct sums, we obtain 

u"fl <\ %\"’) ¢ 

! 

(Byuy) + ‘Flv ) = Byluy + Vi) (649,6) 
; ' 51 

Hhe o 
m (vy +u) = (eivl) + (@iui). 

<:?he middle egquality in (6) comes from (5);the first and las#i% 

equalities are easy consequences of (4). Hence, again using 
'A.f! 

the equx&gt?nce theorem, we obtaln 

; \ s 1 
b @iu’;. fi \’i) (}B U ’ @V )' 

Hence the direct suml$i®i isfifin&eedl:welliaefinefl. 

  

e ——— 

Lz Now, let a fixed measurable space (2,Z) be éiyen, and 

let'(wl, wz,...) be a sequehce of pseudomeasures on (A,X). 

For any corresponding sequence of measurable sets (El, Ez,._.) 

wh&eh partition A, we define a new pseudomeasure on (A L) as 

follows, VFirst, restrict each wi to its corresponding set Eig} 

(Recall our convention concerning equality of length of these 

sequences). Second, také the direct sum of these restrictions. 

The result is a pseudomeasure=wh&eh 15, intuitively, obtained 

by patching together pleces of the origlnal wi’s. We shall
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denote this pseudomeasure by Y, SO that 

% <© 1 ([n."?f}_) 

Vg = ”’1“31" ® (wzlfiz)' Baeey Ra 

¥, |E; being the restriction of wi to E;. 
(6! 

This construction bears a strong resemblance to tha 

l i 

~Hsxpresstcn‘ft&t*ef—see%ion—5~ Recall that i&éfi which is 

O
 

ul(El) Ftooot Wy (E ), was the social valuation of the allocation 

(E ""“En)’ each agent placing his owo evoitzflon (in dis_ : 

counted dollars) on the region he controls. (7) is the 

natural generallzation of»{&¥+ with everythlng now being in 

terms of pseudomeasures rather than fiumbors. 

The 1ast'theorém'of?gectionQé stated.that the n-tuple 

(Ei,...;EE partitioning A maximizea social valuation iff it 
A5 

was an extended Hahn decompositlon for the n~tup1e of signed e 
S 

measures (ul,...,un). Is there a corresponding generalxzation 

1nvolving (N ? 

The answer is yes, @mcvt&ed things are defined in the 

‘right way. First, we must generalize the decomposition conZ 

cept'to pseodomeasures. Second, we must Spccify(in what sense(s) 

the term "maximization" is to be’understood~ What ordering is 

befi,q referred to L»narrow ordering of pseudomeasures? 

standard ordering? etc., and is the "maximizer" greatest,;or 

merely unsurpassed? in—éact,,ge get a richerfikas well as more 

general, theorem by distinguishing these alternative meanings.
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g%afll“Definition:‘ Let (A,IZ) be a measurable space, and (wl, wz,-..) a 

sequénce of pseudomeasures on (A,I). The corresponding 

sequence of measurable sets (Bf, Em,...) is an extended Hahn 

decomposition for (wl, wz,.;;) iff {E“, EE,...} partitions A, 

-and; for all i’ j = l’ 2,..-, 

(L.4.%) 
(hy = vy 7(ED) = 0. ¢8) 

EG;E&a__‘m 

{ Here y denotes the lower variation of ¥, just as ¥ 

denotes the upper variation. () states that ¥; is at least 
A > 3 

as large as wj (in the sense ofvnarrow ordering of pseudof 

measures) when both are restricted to Ef. In the case when 

w. and Y. are both bounded signed meaSuresj {€) reduces to 
3 

t¢+-a£:5gn:§;;;64\hence this is indeed a generalization of the 

same coacept defined in gection”fi. 

~ Now let (wl, wz,...) be a sequence of pseudomeasures on 

measurable space (A,L). We consider all possxble corresponding 

sequences of me{%urable sets (El' Ez,...) such that {El, Ez,...} 

partitions A. With eacgkfuch sequence is assoc1ated a pseudo? 

measure‘w by the rule (7), giving us a set of pseudomeasures, 3\ 

W Let (Efl, ~2"") be one particular such sequence, with 

1ts agssociated pseudomeasure wE, € W 

*‘“*k‘ffi”%*’"—“" W7 

3 “\”‘; 
Vo 

- , 

f:)u#@m{”Theorem: Each of the following five statements implies the other 

four: 
e 

)g(i))(Ei, E%,...) is an extended Hahn decomposition for 
i > 4 + 

s 93
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o 

(ii)wafi.is greatest in the setigs, in the sense of narrow 

-ordering of pseudomeasures; 

{ Jg/ \ 
F (1id)) wE” is greatest in YE' in the sense of standard ordering; 

‘V(lV) ¢E° is unsurpassed in ?E' in the sense of standard 

ordering, 

”@“(v) wE‘ is unsurpassed 1n'Vfi, in the sense of narrow ordering. 

éfiw Procf. (ii) implies (iii) implies Liv) implies (v): These 

  

; follow at once from the fact that standard ordering extends 

(/“\ narrow ordering, and,the definitions of "greatest" and "un2 
J ) * ; 

;12’ surpassed??;'} 

Somo complete the proof, we show that gi) implies (i;), and 

(v) implies (1). 

|4 ——— 
| '2 let (i) be true, and let (Eys, E5yee.) be another feasible 

sequence., For any i, j = 1, 2,..., it follows from (7) that 
N\ . 

P E° restricted to E£ is the same as wi restricted to E#, and 

wE raestricted to Ej is the same as wj restricted to Ej Hence 

\?,V e ,4‘ f\(‘aquf) 

(wfia - ¥g) " (Ef n Ey) = Kw = ¥4) (B n Ey) = 0. ~9) 

s (The last equality in (9) follows from (8)f. 

Summing (9) over all pairs (i, j), where i, j range 
\%! 

independently over\l, 2,..., we obtaln ) 

N
 

e 
L 

A
 

> s T E) () = o0, 
3N ) 

whiah=$s; by definltlon, WE, > wé]ioarrow order) Since wE was 

e
 

S0 f\flc 

an arbitrary member of ?, wE“ is greatest under narrow ordering. 

W
 

(
T
 

&
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!. @f This proves that (i) implies (ii). 

Li—The last part is a little more difficult. Assume that (i) 

I ' is false, so that there exist indices m, ojfor which 

= L.q9:10) by = ¥,) (B > 0 | 0) 

We “sihrall now construct a feasible sequence (El, EZ"") whose 

associated pseudomeasure wE surpasses wEa (narrow order), 

proving (v) false. 

Let (P,N) be a Hahc decomposition for the pseudomeasure 

| S 0 ; o 
E_ AE!%QP/\EnaE-;U (Ef;nN?\\ji\ 

  

; (", (o 41l J 
E, = E% for all i = 1, 2,... other than %_iefi) 

\or i = n. 
    

  

/p
 

Note that m # n, from (iO). Hence (11) is welludéfinefi 
N 

and the seguence (El, Ez,...) 80 defined is measurable and 

partitions A. 
rLicdere acibn 

Vp derived from this sequence coincides with ¥_ when both A'E by 

are rSstricted to E . Also Y., coincides with ¥, When both are 
4 o 2 restricted to E2. Now @fi N N is a subset of both E, and_gm. 

Hence 

S (Wge = ¥g) (BR 0 M) = (4, - v)) (B2 0 N) (6.9.12) 
| 2) 

= ey - v 7B > 0.
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: 5[/5 

/?; V 

5 t§~w“‘The first equality in (12) arises from substitution; the 

second from the fact that (P,N) is a Hahn decompoaition of 

E \W the inequality is (i0). o 

Xlgz\ A Cfgs implies that wE, z by (narrow order). It remains to 

show that wE > wE., which will prove that ¢E° is surpassed, We 

do thlS by proving that 

©.2.13) 
(Vg wEe) “(g;) = 0 {33) 
\VAI'Q ».;(v‘ C 

for all i =1, 2,040 & ;(13) 13 in fact immediate for all i 

A
 

S A
 

A 

other than i = n, since, when restricted to gi,,both by and 

wE‘ coincide with‘wi, hence with each other. ' 

This leaves E_; we consider’ its two pieces, E—'and 

e ; | 
(E° N Nae separately. xOn Ea, wE and wE. again both coincide 

with wn.. on (Efi n N, wEg.cdincides with w@' and wE‘with'wgf 

- Hence 

s »T:‘KQ,,E - Vgo) T(ES N N) = (¥, = ¥) (EE 0 W) 

S (b =) () = 0.~ ‘ 

Hence (13) is true for all i. Adding ov%rfii, we obtaic;> 
e 

> (g - %,F(A) =0, 
‘ = 

which is?vwE > Vpoe Combined with Vge Z wE' we find that wE' 

is sugpassed, so (v) is false. ,Hénce (v) implies (i), and—the 

| proof-is complete. J4fiz 17!@ 

£
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Thc ;orresponding theorem ingectionéé/» asserts the 

equivalence of (Efi,_g@,.,.) being on extended Hahn decomposig 

tion and maximizing My (Eq) +ooa¥ un(En). These statements are 

specializgations of (i); and (iii) or Tiv), respectively: The 

maximization refers only to "standard Sraering in the realm 

of bounded signed measures -chat~oa, based on the value 

assigneé to the universe set A. By adding the specializations~ 

of statements {11) and (v) we get a stronger theorem in the 

realm of bounded signed. meagures. Thus we find that an 

extended Hahn decomposition maximizes social #aluation not only 

on A, but onqggggxlmeasurable set simultanoously, this follows 

from (i)%s implying (id). 

To the five logically~equivalent statements just mentioned 

two more can be added; ;2§§§§mfiany of the five statements 

.impiies, and is implied by, the coo%iiion‘that "ng is greatest 

in the set W undex any extended ordaring of pseudomeasures” 

This is the first statement; the second is obtained by 

W(‘_j;;placing "greatest" by “unsurpassed“' These may be inserted 

in the chain of implications betwcen‘statements (iii) and (iz); 

this follows from the fact that any extended ordering is an 

extension of standard ordering. 

The economic interpretation of this theorem is the same as 

in section 6. It expresses the extendad Hahn decomposition 

property as an extremal property. :Since, as will next be shown, 

a sequence (§1,.§2,;.;) is such a decomposition for (wl, wz,...)
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iff it is a market equilibrium, it also will have demonstrated 

an equivalence betweeo market equilibrium and the maximization 

of social Xaluatioc)just as ingcection%G. 

Let us mow return to the coalwestate market, We now have 

a (finite or infinite) seguence of agents. A market ecuilibrium 

will consist of a corresponding sequence of measurable sets, 

ggi, B°,...b and a rental pseudomeasure, Y2, on (A,I). Here 

_E%-will-oficcouxsa‘be that region falling to the control of 

agent i, and these sets must partition A. Agent i will prefer 

region Ef at least as well as any other region, given Y°. 

— But here a slight problem arises. How should the pref- 

erences of agent i over regions be represented? In the bounded 

signed measure case, agent i had the utility function 

(c.a.14) 

Uy (B) = uy (E) = ue(E). +34) 

In the general case one naturally expects utility to be pseudos: 

measuré:valued (and to reduce to (14) when all pseudomeasures 

are in fact bounded signed measures). One's first impulse is 

to assign to set E a pseudomeasurc restricted to E& fiut this 

will not do: ‘Pseudomeasures are cofiparable only if they are 

defined on the éame measurable space. Thus if U; (E) were a 

pseudomeasure with universe set E, no two regioo; would be 

comparable. 

xfi fl“;> This difficulty is easily resolved: -Namely, with region E 

/22{7” we associate the pseudomeasure 
(o115 ) 

[(y; = ¥2) |E] @ [0 (A\E)]. =~ @)
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~are over the space (A,I). wi isrmof"cour$e4 the generalization 

612 

:’} 

) 
This is the direct sum of (wi - w°) restricted to E, and the 

zero pseudomeasure restricted to A\E / All pseudomeasures (15) 
agie =L e 

of “i“ and may be thought of intuitively as giving the value to 

agent i of the various regions, gross of any rental outlay. 

(More exactly, the_pseudomeasurei{wi]glslfll(A\E)] gives .i's 

gross evaluation of regionvgfi}; 4 

ankegsilg ?egificS'that,éif wi and J° are bothlbounded ’ 

signed measuies;mfihan (15) un@ér sfiondard ordering in effect 

reduces to (14), with My = wi+;jmwl-, we = (po)* - (¢~) 

w{%h;%;io,flboth {15) and (14} determine the same prefierence 

ordering over regions in this case). Thus (15) seems to he 

the natural generalization of (14). 

Consider the result of adding Y2 to (15). It is 

Y . !/(mq,lfic ) 

[v; |E] & [pe)(A\E)]. = 116} 

The verification of (lé)freats on two obsetvations. First, 

that 

i 
(et 

Vo= 1vlEl @ [v] (AR)] 

ks EYis an identity for any oseudomeasure, in particular for 2. 

Second, that 

(g8 wi(m ® (V2] (A\E)] %%(Hwi - v2) |E] @ {o[(A\EH) 

0% ) :j(wflm ® waA\E_)Q. 

~. which again is a special case of a theorem concerning sums of
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direct sums. The verification of (17) and (18) is left as an 

exercise. The corresponding transformation of (i4) is 

| ; (©.9.11) 
uy (E) + u®(A\E). (x2) 

- New, since (15) and (16) differ only by aiconstant, they 

determine the same ordering over regions E, whether we use 

narrow order or standard order (or any other partial order on 

the vector space of pseudomeasures fi%éeh is determined by a 

convex cone). This follows from the fact that, for anygthree 

_pseudomeasures. L w P w L\over (A,E«’/> 

¢ > w igg w % W° ? W +*¢° 
oty 

i 

where )fi stands.for any such partial ordering.‘ 

.4. Henco the utility oégrécion § for agent iflcould just as 

well be given by (16) as by (15). f(Similarly, in the special 

case of bounded signed measures, fii(E) given by (19) yields the 

same preference ordering over regions as Ui(E) given by (14)). 

Now let (El, Ez,...i-tegether with ¥°, be J real-estate 

market equilibrium.. This means that, for each i, Ef maximizes 

(15){ or, equivalently, (16). ;But what does "maximize" mean? 

Does it refer to narrow or sténdard ordering, and does_@i 

maximize in the sense of beifig greatest, or merely unsuroassed? 

Our preceding theorem fnrnishes a complete and satisfying 

answer to these questions@‘*fiame&y. fior the utility functions 

(15) or (16), all of these sepnes of the term "maximize" are
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equivalent: Ef maximizes in one of these senoes iff it maximizes 

in any other'sonso. Furthermore, by the.same theorem, a 

necessary and sufficient condition that Ei maximize in any 

(hence all) of these senses, is that the pair (Ef, A\E}) be an 

'extended Hahn decomposition for.the.pair of pseudomeasures 

(b0 ¥2). 

i The preceding'theorem refers to sequences of pseudomeasures,w 

5 
z 

(wl, wz,...), and corresponding sequences of measurable sets, 

(El’ Lz,...) whieh partition A., ‘The statements above are | 

nothing but the special case in which these sequences are merely 

pairs. Thg statement that’ (El, A\Ei) is a decomposition for the 

pair'(wi, ve) comes from the utility function (16). If instead 

¥e use (15), we find that, equivalently, it is an extended Hahn 

decomposition for the yair (wi_- 2, 0). Furthermore, it folzl 

lows at once from the definitions that these statements are 

true iff (Ef, A\E]) is|a Hahn decomposition for the pseudos, 

measure wi - e, Thus‘we have seven or eight logically equif: 

valent oonditions on the set Ef. 

With these preliminary conments out.of the way, we now 

ot : : 
state a result whieh directly generalizes the first theorem of 

b, 
fiZC);fl section 6, 

i?fi;“, - Theorem: Let'(wl, wz,..,) be a sequence of pseudomeasures on 

— space (2,I), and let (Ei,igg,...) be a corresponding sequence of 

—t {neih . 
measurable sets whiéh—partition A. Then pseudomeasure Y°
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satisfies one of the following two conditions iff it satisfies 

s __fé the other: 

?(i) Fox each 4 = 1, 2,...4} (Ei A\E°) is an extended Hahn 
fl,./ 

mdecomposition for the pair (wm, P2) j 

  

% ; fifi e (i) ;for all i, =1, 2,... (with i # j) we have 

(L. 9.20 

(b; IED) > (xpflgg) 2 0y |ED ) 

%fnatmis, when all are restricted to E% the three pseudol 

  

measures are narrowly ordered as 1ndicatoa) 

Furthermore, -there exists a W;Jsatisfying one (hence both) 

of these conditions iff (flf, E%,...) is'an ertended Hahn 

decomposition for (wl, wz,...) 

  

-7fifilfiwproof: Condition (ii) may be rewritten as{ 

(b.9. 21, 
by = v @D = ol - vy (ED = 0, (213 

éi) while condition (i) is 

Wy = 7@ = e - v E = op +22) 

both holding for all i, j, i # j. The left conditions in (21) 

and (22) are identical. The right conditions are also identical 

except for the interchango of indices i and j. 

T
S
 This proves 

; conditions (i) and (11) imply each other. 
% L\;i T 

LAANQXt' suppose P2 exists satisfying these conditions. From 

{(20) we obtain



  . 
R
S
t
 

g
 

N 
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3 (4. 23) 
(¥ = ¥5)7(B§) = 0 {23) 

for all_i, j (with i # j). But (23) is exactly the condition 

(8) that (£, E§,...) be an extended Hahn decomposition for 

(er wz.-..}f , 

Finally, suppose that (fii,_E%,...) is an extended Hahn 

decomposition for (wl, wz,,,,), Let §° be the pseudomeasure 

| - (G924 

We then obtain 

(V2 |ES) = (v, |[ED) > (v, |EQ), ' {9\4% Rt R L 
for all i, j = 1, Riene. " e equality in (25) comes from (24); 

the inequality is the same as the decomposition condition (23). 

Since (25) implies (20), the proof is complete. L%ff L8 

     
According to the discussion preééding this theorem, condi- 

tion &i) holds iff Ei maximizcc the utilit¥;of agent)i,-(lfi) or 

(16), for all is that-is, iff| (5§, ES,...), combined with P, 

is a real-estate eqnilibrium.g Hence thiégtheorom states that 

the condition of being a reai~estate equilibrium is logically 

egquivalent to being an extended Hahn decomposition,afor a given 

seguence (wl, wz,...). . ; | : 

Furthermore,~(20)vgives a necessary and sufficient condi- 

tion for ¥° to serve as thé rental pseudomeasure for the given 

eéuilibrium (ES, Eg,..,)._ The economic interpretation of (20)
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is the same as inaoection'G: For each E{, P lieienffween the 

highest bid and all the others. This generalizes {4}-ef 

section—6- 

Our next result generalizes the "uniQueness“ theorem of 

2§ectio§fib concerning decompositions of (@l. wz,..;). In view 

of the theorems above, this also fixes the extent to which 

markot;eqnilibriafifiand maximizers of "social valuation"t are ) 

uniqne.    

  

gfg. Theorem: Let (wl, wz,...) be a sequence of pseudomeasures on 
i . ) “ 

space‘iA,Z), with extended Hahn deébfiposition CE°,N§§....): let 

  

?;} (§l, Ez,;..) be another sequence of measurable sets 

o’ partitions A (and*héiigg the same length as (Ei, E%,...)). 

Then (El,_gz,...) is also an extended Hahn decomposition 

iff i 
; (.9,26 

& 14y = vy Ef0E) =0 o (24) 

X for all &, = 1, 2,:.. &F 

  

Mff”fffi Proof: Let (E., E,,...) also be an extended Hahn decomposition, 
fl | G s ‘l 2 . . = - 

so_that (wj - wi)f(Ej) » 0, akkd, 4= 1, 2,.0. » This oan 

also be'written}tifiwi - ?j)+(Ej) = 0, A¥SO}(¢i - wj)—(Ei) -9, 

:ff\\ since (Ef, ESyees) is a:decomposition. ‘Hence 

:E% 160 ; i AR 1) | 

) i . = o b ! ot 2 imo ; 2 = A lv; = ¥y] (Ef n Ey) [toy ¥y (EE 0 Ey) + (b - 9y) (ER-0 Ey) 

» “(rme 
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for all i, j = 1, 2,... . This ylelds (26). 
G 

“ 

i Conversely, let (26) hold. For all i, k=1, 2,..., we 
EL, 

obtain 

= , _ Ged 21 
(b = ¥) (B2 n Eg) < oy - 4 [ (B n E;) =0, t27) 

from (26). Also, for all i, j, k=1, 2,+e4, we obtain 

S
 

s
t
 

s
t
 

e 
—
—
—
—
—
"
 

# 
S
 

o a
3
 

  
  

  

; £ - (6 4.,3%) 

| (w}_fl ‘- ‘1»’3) (EI: n Ei) & (w]_: ¥ ‘I’j) (,QB) = 0, +428) 

,é since (@ir.Efia--.) is a decomposition:’::y 

| <:But also 
o | 

(B = 9307 2 Wy = W)+ iy = b) T 29y 

is true for any three pseudomeasures wi, wj’awk' (This follows 

; or o & seuJ.ow‘e.t-swe, 
from the minimizing property of the Jordan dfisgggegitignic ) 

From (27),u4£fi$+can§ (29)f;we obtain 

e
 

N’i - ‘pj)—(Efi N Ei) = 0, 

! for all i, j, k=1, 2,... . Finally, adding (30) over all k, 

g we obtain . 

TSy - ) T(Ey) = 0, 

§ : “Wall L, j = 1, 2,..., S0 that (Eyr Eppees) is indeed another 

& = ¥ 
extended Hahn decomposition. | J# 

  

—% e (.i4) # 

o Lflfi;"(ZE) is a direct generalization of i4) ofrsactignkfigivmhe 
~ ¥ XA -/ QAN LA LAV ' " Y . 

economic interpretation of {(14) disecussed-in-that-section 

carries over to (28).
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Our finai result generalizes the existence theorem of 

‘sectionbe. We have saved this for last because it is the only 

'result~2%;ch demands just a finite number of agentsp Every 

other result generalizes to the countable case. Indeed, the 

counterexample already given in section 6 shows that a countably 

infinite number of pseudomeasures z not have an extended Hahn 

decomposition. 

CI$ Theorem: Any n~tuple of pseudomeasures& (wl,...,w )L_on space 

/JJ} (A,Z) has an extended Hahn decomposition. 

M ; 

gggg;* ‘By induction on n. First, for ns= 2, 1et'(P N) be a Hahn 

} decomposition for the psoudomoasure wl - wz. Then 

(¥, - Wz) (P) = 0, and also 

Wy - ¥ = (b = vt = o, 

so'that (P,N) is also an gggggégg Hahn decomposition for the 

patt (4, ). 
. ext, assuming the statement holds for n-l, we si¥a¥l prove 

/q/"/N 
- 

/ it for n. We have, then, a measurable| n-l tuple, (El,...,E l)f 

which partitions A, and for which 

i {(6.4,3]) 
(""i i ‘«Pj) (Ei) =0, 31) 

for all i' j = l,q{.,?“ln 

For each i = l,...,p-l,dlet Q?i, Ni) be a Hahn decoméosif 
7 

tion for ¢, - Y_, and define: SRR i n ; (b 4.5%)
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fOr ’é." = l’u s 0 ’;1“1' and 

40 ‘ {4"4“?5“’3"3){ 2706 T # 

E;; = (B nN) U (By N NZ)L..,U)(AER__]. n Nn__l).,_- «(33) 

| We shall prove that (Es+¢.,B2) is an extended Hahn 

decomposition for (wl,...,wn). It clearly:partitions‘n. 

For 1 # n, j # n, we have 

(“’i o3 d’j)‘(E{-fl) = (q)i " ‘i’j)-CEi) = {, 

| Wy = Y TED) € Ghy - v ) TRy = 0,   

S
 W
 

both from (32). i 

; It only remains to show that 

g . i (¢.4.34) 
; (b, = ¥;) () =0, - (34) 
| B - A 

§ for all i # n. 

5 For any i, j = 1,...,n-1 we have 

; | (b.4.35) 
£ (lpj s ‘pi) (Ej N g{') = 0,0 =35 

from (31). Also : : 

. e, 4.3¢) 
- P.) (E N,) < (v = (N 0 s - | (w? wj) ( j n MJ) < (v, wj) (—j) = {36) 

(35), (36), and (29) imply that 

; (G . T -5 

| Adding (37) over all j = 1,...,n~lfland noting_(33)r we obtain 

(34). This shows that (g{,...,fi%) is indeed a decomposition for 

(greees¥,), and completes the induction and the proof. »l}{gféf‘f 

e
 

o
 

W"—"’M‘!
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i 

}qhfii Appendix: The Vector Lattice of Pseudomeasures 

We sHall-briefiy indicate some algebraic consequences of 

the results of the last sectiony——These—are*retegateéwto an 

appendix because they are not applied in this books but they 

are of interest for the further mathematical development of 

pseudomeasure theory. 

Consider the vector space of all pseudomeasuresfi\yhhon 

measurable space (A,2)., Let {wl,...,wn} be a finite nonfiempty 

subset of ¥, and suppose that wo_has the following properties: 

53 wo > w o for all i = 1,...,n fhzfi refers to narrow order 

throughout this section);cv & 
s s, > 
B 

(il) for any vy, 1f v o> wi for all i = l,...,n, then ¢ > w . 
."l' 

e 

CF%;-QiDefinition: Such a pseudomeasure y, ( if it exists) will be 

called the supremum of {wl"“’w i Similarly, a w satisfying 

i,Lfif 3 (i) and (ii), but with “>“ replaced by i'<"‘,, will be called the 

5 infimum of {wl,...,w }. We-shedi-make the usual abbreviations, 

_sup and inf inf for these operations. 

    

; rk‘iflj‘{wl,...,w } has at most one supremum. ,for,,if w&, o“ both 

satisfy |(i) and (ii), then @é > wg > Wé- Hence w‘ = w", since 

narrow order is antisymmetric. Similarly, it has at most one 

infimum. 

Theorem: Any nonfempty finite set of pseudomeasures, {wl""'wn}': 

on space (A,Z){\has a supremum.and an infimum. The supremum is, 

-$m—faes, given by 

 



      

    

    

  

o
 
b 
R
 
O
 

o 
DS
 

I
 

Proof: 

there is at least one pseudomeasure of the form (38). 
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éiBJ 0 

’ 55 ‘ ((ifi,"?s 4 ”3 

iy & W’flE:t) 6...0 (v, |ED), £38) 

where (E},...,EZ) is any extended Hahn decomposition of 

(Wyseeerdy). The infimum is given by ' 

(L4.59) 
39) . §EE{‘¢11~-or'wn}fi 

We know that an extended Hahn decomposition exists, so 

We also 

(El,...,E ) e-where\kEl,...,E ) is a measurable n~tuple~whieh 
L 

partitions A. 

In particular, take the n=-tuple (BreeesPyens,P), with the 

universe /set in place i, the empty set everywhere else. The 

pseudomeasure of form (38) corresponding to this is simply wi. 

Hence w ¢~ & 1= 1,...,n,e 

Next, suppose v > w a&%ei = 1l,...,n, for some ¢;% This 

lmplle;}(¢ - w ) (E ) = 0, i wrl,...,n. Now wb coincides with 

p; when both are restricted to E§. Hence (y - wo)-(Ei) = 0 
. 

for all i. Adding over i, we obtain (y =- ¢°)'(§) = 0;— 4 € 

e:xpz_wo- it 

Cohis proves that ¥ is/indeed the supremum, 
vy = ] 

‘{ Let woo abbreviate (3?). We then have ~w0° 3»'wi’ all i, 

and if ¢ > =P, all i, then ¥ 2 =¥, o+ These are the same asé > 
"\
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X @ /\ 
: woo f_wi, all i, and,‘if o w< wi' all i, then =y < woo' which 

in turn is the same as (1) and (1 ) with signs reversed. Hence 

Yoo is the infimum, lJJégéwA' 

T s 

A number of corollaries imglicit in this theorem illuminate 

tne concepts of the preceding'iggigga First, the supremum is 

defined for a set, while the expression (38) is in terms of a 

particular ordering (wl,...,wn) of the elements of this set. 

A moment's reflection shows, however, that the ordering is 

irrelevant. Indeed, a peimutation of (wl,...,fin)_leads to a 

corresponding permutation of the decomposition~?E§,...,E§). 

This leads merely to a change in the order of the summan&e in 

(38) , and -this-yields the same pseudomeasure. 

second,-even though there may be many extended Hahn 

decompositions for (wl,..,,wn)} these all.must yield the same 

pseuaomeasure {38), since the‘supremum is unique. L 

a??fiiz; Sup {wl,...,¢ } is exactly what was referred to £L3Z§;- 

e v AR e i e as»the social valuation of the real-estate 

equilibrium. This provides a concrete interpretation. 
\ ¢ 

The fact that the sup and inf always exist means that ¥ 

b 

is not only a vector spaceklfut a lattice (with respect to 

L2 b 2 0,,, L iii/‘ narrow ordering) . 

%h;gpuaafiu- We conclude with some (fairly difficult) exercises: 

A 
t#? Show that, for any two pseudomeasures wl’ wz € g,
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{Here the total variation lwl - wzl is of course a measure, 

which may be identified, as usual, with the pseudomeasure 

(lv; = v,l, 0) o ' 
(Hintiq_the Hahn decomposxtion of wl - wz is the same as the 

extended Hahn decomposition of (wl, wzi) 

a6 If wl, wz are measures, show that these operations 

coincide with the ordinary sup and inf of measures (defined in 

-ehapter-3., section M 

Addd) Show that W under narrow order is in fact a distributive 

lattice; theewe31 for any three peeudomeasures Yar Vor Yo =y 

; 
inf{wl, sup{y,, “’3}}"‘ sup{i;}_f{ibl, Yo}, infly,, w3}}o‘ 

: y ‘/ . ‘ ';;. v 

and a similar equality holds fortginfg and “sup"’interchanged. 

(Hint: First do the special case wl = 0; take a Hahn decomposiZ 

tion of wz - ¢3 and do each half separatelyfiu 

4 fiw) Under standard ordering, show that ¥ (partitioned into 

indifference classes) is not a lattice,iunlees I is a finite 

eeé%e~field. Ia fact, show that *1' wz have a least upper 

bound under standard order iff they are comparable under 

standard orderiii.eteviff wl - wz is a signed measure). 

ot 
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FOSTHOTES - CHAPTER 6 

VQ"‘-lIf Az = 0, &iven (4) states that b is a distribution 
/‘mm 

  

d?& function for Al,flin the wide sense. This isfigo because}b 

: A{we have defined distribution functions to be continuous from 

ffif\\ below, which in this case means: from the past. 

. 
\;}“2The real-estate market is especially rich in having 

diverse agents with interests in the same parcel: owners, 

developers, builders, tenants,‘holders of easements, government 

agencies, eke. See R. Turvey, The Economics of Real Property 

(Allen and Unwin, London, 19575 Qfiéés 4;5: and W. L. C. 

Wheatonrw“Public and Private Agents of Change in Urban 

Expansion“f.invfixplorations‘into Urban Structureq M. M. Webber #L ol 

et al)} (t}nivm of Pemm Bress, Philadelphia, 1964), 

77y fhges 171 175. ' 7 7 (¥ avvis 
L Ko 2 el e T 

= y 

, %&*~wv““?he separation of ownership and control" as a social 

problem was first broached in connection with corporations. 

E See A. A. Berle, Jr., and G. C. Means, The Modern Corporation 
  

and Private Property (Commerce Clearing House, New York, 1932). 

Oour analysi%’indicates:this separation is a universal 

phenomenon. It iw truw "et, in the corporate case, there are 

special institutional obstacles to having the assets revert to 

the control of their 1egel owners. But compare this situation 

with the case of self-perpetuating boards of trustees or church 

1 

hierarchies, where there are no legal owners at alll 
  

\_.1\;/ T ‘Eg‘cf ch‘mh’f H C B)qck B'qcks Lavw 

D\(,rbnav W P ):l Cc St. P ( st VL:'M z'\wwa,_ vorpeny o %w 
"Mm_, 154¢), "’”"Qfi of Hee “‘““‘“?S described o thi 

Q GYT\L\Q 15 flu\\'e lolu\T\u.l w\{’l 1Lc, ome we Qave U\S\h“). 

  
4 e ———— 

e S z . Tl 
 



bl 

s ; 
5%? See G. S. Becker, Human Capital (Nag%eeai Bufie&en&f 

Economie Resgareh, New York, 1964), chepees~2, for an extended 

analysis. 

o 
!\amA o e (D) 

Q%SEEG. 8. Becker, The Economics of Discrimination (Universéey 
1 

of Chicago Press, €hitago, 19&), ; 

  

““tfie'EofiVérse“of”this*stutementiiemielsfio 
i 

  

tnb\spaee ofkngfnded'signed nig 

J 
-~ 

    

Noé'aii lineer funeticns 

moasSUres ‘“cer 

  

9 qStrictly speaking, (1) is not a special case of (&), 

because the function g just given is not bounded, and because 

2) is valid only for the subset e, T -4 ¥ N {N’l*)fi"h«c 

  

?..sbne could insert an intermediate step here, deflating by 

a price index P(t) to get measurements in "constant dollarsfig 

For consistency, one then Heefte subtract the "rate of infla- 

tion§¢ Q?(t)/P(t)throm (4) to get the "real" rate of discount. 

rnc then proceede as a‘eve, with "real" or "constant" values in 

place of "current“ values. 

' flr« figJ. R. P. Friedmann, The Spatial Structukte of Economic 

Development in the Tennessee Valley (Univeaeé&y—ei.Chlcago Press, 

Chicago, 1955) .;egee 35, 42-43.
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(. e 2 

o 15 
~ (55 &, This is a special case of what we shall call Thiinen 

systems, which are examined in great detail in chapter 8. 
0 

ggeew Alonso, Location and Land Use (Harvard Universéey 

Press, Cambridge, 1964). The heart of the theory is in 

_Chapters 3, 4, 5 and appendices AfirB. W. Alonso, ®a 

,Reformulation of Classical Location Pheory and Zts Relation 
(407) 

to Xent Theory“, Regienal Scieuee Associaeien Papeesfi%igfl%ifi‘ % 
(vw 

44, 1967, at page 41, 

  

gi@fi:r;Shape is considered by Alonso in Appendix B of his book. 

We discuss this below. 

  

&l There is one minor exception to the statem;nt that this 

section generalizes 6 6. The existence theorem there is wvalid 

for arbitrary signed measures, not merely smgme~fin1te ones, 

Since pseudomeasures generalize only ggggg—finite signed _ 

measures, this theorem is not completely encompassed in the 

present results. The existence theorem is also the exceptional 

theorem mentioned above; 

  ~ 

k.1\, (10 
v ““?Recall that, for any pseudomeasure ¥, |y| is a measure 

called the total variation of ¢5 and is equal to w+ + P, 

  / A\/! h;)/.brjh »“! 

gf”“ZQC. Birkhoff, Lattice Theory (Ameaeeen Mathematrcai Society 

Collog§&um Pub%%cateens o le25., Providence, ReXod éhxkfleifi,1967). 
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flO {2( The premium is known as "plottage veluefg A. M, 

Weimer and H. Hoyt, Principles of Real Estate (Ronal& New York, 
J 

—4&h-sd, 1960), ?e§e32857:286. 

> 
E'Hfi;@z,fic P. Barnes, ‘Q'Economics of the fLong-lot Farm,¥ 
i 
Geographieal Review, 25 2984301, (1935; m.;’chioholm, Rural 
  

Settlement and Land Use (Hutchinson, Londen, 1962), -pége 156. 

  

“e#-. 1z ul,...,u ‘are all sdnesta finite, there is an 

affernative —-*-k but less straightforwardg- proof based on the 

Radon=-Nikodym theorem. Cf. the proof‘_:.-‘:‘of Theorexn 2. 0of L, B, 

Dubins and E. H. Spanier; How to ¢ut a fake }"airl;fi Amm 

%atnemmm Monthly, 68 1”17, Ll%l)g reprmtedv insReadings in 

Mathematical Econonmics, /.\P Newman Eea 3 (Johns Hopkins Press, 

Baltimore, 1968)4 vol. l% / 

53% ‘a‘rhe first use of this con‘éept is by R. J. Aumann, 

*parkets with a fontinuum of ;l‘reders,"’ Economettr;.cak 32":39-,50 ’ 

(Janga-ry-Apr:ti, 1964),.,1 reprémeed in :;Readlngs m.u.:memm 

Heononies, ’}. Newma.n (ed 5) M’H@kmm Press, 

Baltimore, *&»%s&fia-ve-hm—:&—v An extensive literature has grown 

up since then. 
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