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OR - 
THE ALLOCATION OF EFFR¢T 

\ : ’ . : . 

'5.1. Introduction }jj 

Consider the following problems. 
L 

  

[ éné’haéqa certain sum of money, and a number of projects 

\ in which to invest it. The return from each project depends on 

%, 
i 

i 

the amount invested, and the problem is to split the money 

among projects so as to maximize the total return. 

; 4 (k%) The return from an activity depends on the amount of time 

devoted to it. Split the 24 hours of a day among activities so 

as to maximize the total return. 

7 ~{iii) The expected return from oil exploration depends on the 

2 
.f/fig\ . region explored and the intensity of search effort in-that 

L ,‘4’" ..re-gjm-' Allocate a given total searching effort so as to 

i 
maxAmize the expected total return. 

4+ 44v) The crime rate in an urban district depends on the district 

and the number of policemen patrolling it. Distribute the 

police force over Space so as to minimize total crimes. 

:wév) Again there is a range of possible activities. Some are 

productive, earning money but with a disutility attached to 

participating in them; some are consumptive, yielding utility 

for the spending of money. The problem is to maximize total 

net utility, subject to total spending being egual to total 

earning. L S0 
All ef these problems have the following formal structuret ——
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Here fi%(x) is the return from allocating an amount x to project 
/«{ {5 i 

1‘ 1(2) gérthe fundamental "budget" canatraint, stating the 

total amount ene—has available to al;ocatgs X can be time, 

money, effort, resources, 2;%. The’“prcjects” i= gg.%g'can be 

regions of Space, periods of Time} activities, e&aa!rwhe | 

individual X; may be requiraa to be nonfnegative, but not 

necessarilyfifl In problam'iufi, far example, ene could measure 

the amount devoted to activitymg by the money spent; in the 

case of productive activities this would be negative. ?otal' 

spending equal to total earning is then represented asg X =0, 

The return functions_fi can also be negative. 1In problem iégfi, 

‘éetwaxampéqwafi(f} would be minus the number of crimes in 

district i with x policemen assigned there. 

Problems of the form (l)”(&) are among the simplest and 

most ubiquitons of all pseb&ams One popular definition of 

economics , -in—faet, takes it to be the study of the relationship 

".+. between ends and scarce means which have alternative uees,“;f 

which may be construed as the study of problems involving con€ 

straints of the form (2). Though this seems rather narrow, it 

indicates the pervasiveness of this condition.
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Our aim in the first part of this chapter is to study 

problem (1)4(2) under conditions of extreme generality. More 

exactly, we -shall assume that the set of possible projects 

forms a general measure space, @md not just a finifie set. Such 

generalization is clearly in order for many gréfilems. The 

distribution of resources over Spaee or g&ua is over a 

i continuum., The number of possible alternative investment 

opportunities will often be infinite)@/ 

Our results will generalize existing work in several 

diressiongd - 
;‘ig) very weak restrictions on the nature of the payoff functions 

£5 
e 

< (ii) . very flexible feasibility conditions, including the 

possibility of negative inveatmentss 

'* €££§) no restriction that the measure Space- be over n-space, 

or that it be nofliatomie; no topological or metrical conditions 

imposed on igj_@mafif ' 

= {iv) pseudomeasuéenvalue& utilities. 

All -of these generalizations are of interest for one 

application or another. , 

41094§§é;;£§§¥:handfi\we use just one constraint, while other 

formulations allow several. 

\\ e 

&<y (j& | 5.2. Formulating the Problem 

We start with the following ingredients: a measure space 

(A,E,u), where y is s&é&a~finite, and a measurable function
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fffiA X reals -+ reals. 0Jhare the real numbers are concerned, 

measurability refers, as always, to the Borel field). 

The problem is to find a measurable function 6' A + reals 

?#fiieh.maximizes the utility function 

(&2, 1) 

u(s) = [ £(a, S(a){u(gg) | w 
A 

over a certain feasible set of such functions §. 

The expression (1) is an indefinite integral yielding a 

signed measure over the space A, or, more generally, a pseudoa; 

measure in case (1) is not well defined in the ordinary sense. 

(1)615 always wellndefined as a pseudomeasure, because u is 

aig;anfinxte and tha integrand f(a, 5(a)) is finite and 

measurable. (Measurability follows from the fact that it is the 

composition of two measurable functions: a-« (g,&(a)), and £ 

itself)) 
Wé use standard ordering of pseudomeasures to rank 

alternative functions 8. 1In the present case, by the standard 

integral theorem this means that 6 is at least as pieferred as 

§, LE2 ; = 3 F 

’ \"4 w \C‘,% { 

*‘. 

- 

(€22 

[ e, @ - f(a.azca>{}ug§g) @) a L= - - g 2 

\~¥’ t 

is well-defined as an ordinary definite integral, and is > 0, 

This is possible even if (1) is not wellfikefined in the ordinary 

sense for either 61 or 62. If (2) is not weliidefined,—ehen 51 

and 62 are not comparable under standard order, The possibility 

of non%comparability makes it important to recall the distinction 

b 
between a given feasible &* being best (6*\2}6, for all feasi}le



    
418 /\M" 7 ' A 

6), and being merely unsurpassed (there is no feasible § » &%), 

' If the integraly (1) &5 finite for all feasible}’ §, ~then 
standard order reduces to the ordinary comparison of definite 

integrals, and there is no need to bring in pseudomeasures. 
—w (The reader who is troubled by pseudomeasures has 

the option of adding conditions insuring that (1) is always 
,\ Canv 

finite.} fie:wxii then obtain a special case of most of the 

following theorems. Here, as elsewhere, the use of pseudo? 

measures simplifies and generalizes, by enabling us to drop 
S 

1 

superfluous conditions,) 
(1) 

The utility function 1) - is a 

  

special case of (l) efi—tbfswscefi#eas Let A consist of just n 

points, z = all subsets of A, and u have the value Jone on each 
— 

point (é§¥MH¥at¥on measure#). In this case § is juat an _n=tuple 

(51,...,8 ),(&}a,fita)) for the i#th point a may be written 

f (61), and the integral (1) raduces to the finite sum #@4«0& 

sactiunalfl 

A, f, B, and § may be interpreted as follows: A is the 

setagf alternative "projects" among which we are allocating, 

and may be a set of locations, times, activities, etc. For 

fixed a € A, f(a,*) is a real-valued function of a real variable, 

which gives the "payoff density" yielded from the "investment 

density" & (a) applied to point a. u may be areal measure over 

‘Epaee, or timéimeasure ovey E#H?i or some other measure such 

that (1) gives the utility. If it has a positive value at a 

single point, then in general a non+tzero payoff may be obtained 

from that point. Finally, ¢ gives the density of the distribqg 

tion of the resource, money, time, effort, etc. over the 
-
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alternatives of;§. That is, the distribution of the resource 

being allocated is given by the indefinite integral over A: 

(g’t:l'"f)) 
]m 8,\ glfi o= v =3 

fifia—fiat We have said nothing about the feasibility conditions 

for § (axcept that it must be real=-valued and measurable). We 
saall always require th%t (2) be a finite sigqad mehsure:-t§i£7 

“is, any feasible § satisfies the conditiond 

L7271 £ 

SRS [ ¢, dp g £ - oy ¢ 4 

    

Kow consider the apparently much‘mora specialized condition: 

B2 2w Wl &,13.5) 
j éfd.u = Bifl "'"5'}' A Y ON 

\ 
4 7 E f}_z“f,/l A 

gf§:;3 r“ Condition (5) seems very narrow. Only axamgie fifia&94L4$fiL 
o ones-we -have-discussed satisfles it (total earning = total 

spending, so total net resource endowment X = 0). The others 

have positive total resource endowments. However, we now show 

that any allocation problem satisfying feasibility condition (4) 

can b 

nen 

e converted into another allocation problem satisfying (5). 

C#& Thecrem: Given A, I, My f, M, where (A I,u) is a measure space, 

n sigma»finite, £: A X reals - reals measurable, and M a set of et S 

measurable functions §: | A + reals, all satisfying (4), the 

problem being to maximize (1) over § ¢ M. 
WA 

\ 
e
 
R
 

A
o
 
o
 
F
s
 

e 
T3 

4P
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Then tfi@@@’éxl st/ A', X’, u s f' M \satzsfyinq the same 

aonditions, and for which (5) is satisfiad for all §' ¢ M' 
47 such that there is a 141 correspondence between M and M* wh%eht 

VAL 

preserves preferability relations. 

~(That is, iélsl' 6, € M correspond to 51', 62' e %f, 

respectively, then 61 » 6 ié%’ l' »n' 82‘. Here the praférence 

relation » comes from (2), while »' comes from (2) with £', ' 

substituted for £, u);; 

  

| Let 2z be an artificial point not belonging to A. Define 

//\A' = Ay {z Jp 5t - {6l g A" and G\{z } e L) 
fr?« e & LA 

‘!:‘%z}'p e td((_""_) if 2o € E;fl MNtor 
(u? G)uu(G\{z})+1ifz a@ e / 

\“
 

  

f'(a x) = f(a,x)x’all ac¢ A, all real X3 
  

   
  

, i'(z 'X) = 0, all real 

\ Tg'“"'VM‘ is the set of all functions §': A' + reals whose restriction 
\ A S 
\ /1% to A belongs to M, and which satisfy 

\ 6 
- 53 ] " 
T 5L Lo g % 

6 (2g) = - 8"\au., 16y | A 
Note that 6'(2 ) 1s finite, by condition (4). e 

— Now u' rastricted to A caincxdes with u, and p°* {z } o= 1. 

Hence, for §' ¢ M‘ 

[//-\\\( ’W w2 ”‘}':J,, lq{> 

5"‘ d‘u' = { G'rdu + 5'(2 )H,{z } = 0,"\».) , — A b — —" 3 Al = 

A
T
 
D
R
 

s 
v 

from (6). Hence §' satisfies (5).
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The correspondence between 8' and its restriction t6 A 

is lll between M' and M The éefinitions of f‘ and u' imply 

that preferability is preserved. ‘Lj4f”,£fjfl 

  

Briefly, the new problem is obtained from*fhe old by adding 

a point 2 to A, making {z } measurable, giviag it measure one, 

setting f = 0 on it, and giving any § a value on z, that just 

cghcels the surplus or deficit of {KSRQU on A, (A procedure 

similar to this is very common in finifie problems, where it 

takes the form of adding "disposal adtivities?@ "slack 

variables"fl,) ete,) 

This result is very useful; because condition § ; is 

mathematically convenient. Our standard procedure will be as 

follows, The heavy mathematical work will be on problems with 

the special condition (5). Having obtained a result, we then 

go to the general problem. This is translated into a problem 

satisfying (5) by means of the recipe in the proof just given. 

The result is applied to the translated problam,;and usually 

yields a‘more generai theorem for the general prgblam. 

4 -&;%iéa now turn to a more specific system of feasibility 

conditions, Let two measurable funations,Qp, c;fih + extended 

reals, be given, as well as two numbers, L and L-, which may 

also be infinite, 1In terms of these, the feasible set consists 

of those functions § fi&ggg are measurable, realavalued, vinnkeh 

satisfy (4), and whieh also satisfy the two conditions 

G31) 
b<é <c, : +h
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and. aj @ WD 

L ] 6 du { Lml«:, w 

2 W 

L
\
 s o
’
 

= 

That is, for all a ¢ A, 6(a) satisfies the dofible inequality 

b(a) < 6(a) < c(a), and in addition its integral satisfies the 
double inequality (8). kllowing‘p, ¢, Ly or L@ to be infinite 

A Q‘,_y,.'\ 

is simply a device for removing some of these conatraints; For 

\\\\\\ 

leftvhand inequality in (€). 

This system of constraints is very flexible, For-exampte, 

if the density 6§ must bz its nature be noqfnegative, this may 

be indicated formally bé\setting b to-be identically zero. &n 

the—eehamubanqiLif there is no lower limit to & at any point, 

set b identically equal to =, 2 tota1 resource constraint 

that must be satisfied with equality las in é#% efi~g§§%g:§§§ 

eedimg—sectien) is indicated by setting L, a’§9f and both 

equal to total availahle-ggg resources. ;he function ¢ is an 

investment capacity ¢onstréint, limiting the amount of resource 

that can be squeezed into the various subsets of A, The 

function b is an investment requirement constraint&“in that it 

places a lower bound *Kpcsmtive, negatxve, or 3eroym-on 

investment over the various subsets of A, 

This is the feasibility system wh&ah will occupy most of 

our attention. ye now prove a result whieh specializes the 

theorem abOVegflshawing that this problem can be transformed 

into one with a simpler system of constraints. 
e ————



    

‘\
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o G 
=] EESQEE&’ Given measure space (A,Z,u), u sigma-finite, measurable 

~ 
functions fsvfi X reals = reals, b, c:Cfi.* extended reals, and 

extended real numbers L ‘ Lii consider the problem of s 

maximizing (1} over those measurable real-valued functions 38 

3 satisfy (4): (7)' and (8 ) . 

  

Then %heravexist A, BV, b, £, b', cjj with analogous 

properties, from which the following problem is farmulateds 

Maximize (1') over measurable real-valued functiena o 

satisfying (5') and (7'), (The primes indicate that £', b', c', 
QuAe- , ete., is ta be substituted for £, b, c, ete,) There is a 1+l 

correspondence between the feasible sets of these two problems 

which preserves p#@ferability relations. 

Before going on tfl the prnaf, note the effect of this 

theoremy The constraint (8) is eliminated and replaced by (5), 
14le 

so that;llnstead of bein;]ES?fina& to the interval [L, L9, 
!‘ N 

5 .du must be zero. This is very ¢onvqn1ent mathematically. 

RS 

"“T~2§:z Prcef: Take an artificial.point,ze not belonging'to_g, and 

| 

define A', L', u', and f' exactly as in the proof of the 

theorem above. Let b’ and c' be the functions which—are 

identical to b and ©y respectively, when restricted to A, and 

for which = 
\?; 

(513‘4) 

b'(z ) @ ~LQ h '(z ) = =L+ ““49). 

We show that with these definitions, the feasible sets of 

the original and transformed problems are in lgl correspondence. 

With each §: A » reals, feasible for the original problem,
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associate the function &‘{Ah' » realslégiéh coincides with § 

on A. and -which satisfies (6) for 6’(5 )¢ Any such §' is 

feasible for the transformed problem‘ -fb@$ €5 ) follows from 

{6) just as in the preceding proof. Also, (7') is satisfied 

for all a € A, and as for z_, the condition 
s 

(5" 2.10) 
bilz,) ¢ 8% (2 ) <.e'(z) fro) 

is an immediate consequence of {8), (8) , and (2). This proves 

8' is feasible for the transfqified problem, 

Conversely, let &' be transformed-feasible. TIts 

restriction to A is then feasible for the original problem, 

since (8) follows f‘rom(: LU) yand (5'), and the other feasibility 

conditions are obviously satisfied, Furthermore, the function 

6“{;§‘ + reals associated with the restriction of §' is &' 

itself; this folldws again from (5'). We have proved that the 

original feasible set is mapped onto the transformed feasible 

set, 

fisaligg if two functions 61 and 62&}are unequal, their 

extensions are obviously unequal, This proves we have indeed| 

a 1;1 correspondence. That preferability relations are 

preserved follows from the waye&anmhiahwf' and pu' are 

defined. |H-// ' 

,pflne final preliminary point. Given a measure gpace 

(A Z,u), recall that a condition is said to hold almost evegxfi 

whexeklor for almost all a ¢ A, iff there is a set E ¢ I of 
& \ =t =N mam
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measure zero (a null set) such that the condition holds for all 

ag E, (The case E = ¢ is not excluded; here the condition 
would holfi for all a e A?jl) 

s e 

- Now 1et 61, &, ‘UA + reals both be feasiblefland be equal 

almost everywhere: u{alsl(a) # Sz(a)} = 0, Qne~easé%ymaee& 

that 

ffi§(§,61(§)%u(43) - Ifi§(§,62(a)&u(da) 

and : ; (&34, : 
: = 

51 N‘ j'\‘s 2 /\SH o % 

8o that 61 and 62 yiela the same utility function and same 

resource distribution. - Xn effect, 51 and 62 are two different 
(+1 representatxons of the same ssc:ll.ut::!.fa»n.,;2 . ane eould 

systematically ignere exceptions to rules .whieh occur within 

null sets only. fl¥e§«exampie, the constraint (7) could be \ 
- 

weakened tof{ ). 
ML A 

% 

“Sbla) £ 8(a) s cla) b(a st B ) 
\ 

‘for almost all ae A, w1thout altering the problem in any 

essential way* In any case,-ene should be prepared to find 

the following discussion welifiseasoned with the phrases 

"almastseverywheref, "almost all", 

5.3. Sufficient Conditions for Optimality 

A feature that characterizes a very wide class of



426 

optimization problems is the r%’le played by "multipliers® or 

"shadow pricesfiq“‘i}. These are numbers associated with the 

constraints of | the problem from which special conditions are 

formed, either necessary or sufficient for optimality, and 

which someti‘mes allow 5&% to transform the original problem 

into a newpfiglmpler%gpgébiemm‘x 

—~These "prices” éze espécially useful in economic and 

social science problems,;\ because they not only expedite the 

solution . but suggest institutional arrangements Qfit&é will 

lead the éézonomy to carry out the solution in practice. 
~ot-eltlort 

In the —resouree allacation/\problem we would expect that a 

N;\\“priée'"“ could be associated with the total resource constraint,, 

in such a way that someona“ taking account of thew.;"cest‘i‘ of the 

resources allocated to the various‘ projects e és well as the 

W"‘payoff“ from these projeets) £ “would be led to the optimal 

solution., -In-reality a number o_f qualific_ations must be added, 

but this idea is a red thread whiwoh runs i:;:kaugh the following 

results, : 

We first give a very general condition wiieh guarantees . 

that a feasible solution is best. Nete-that we are dealing 

with a utility function that—-is. partially ordered, so the 

conclusion that § is best is much stronger than the conclusion 

that it #& be merely unsurpassed. 

    == | o 
(#f}'"’rheorem: Let (A,Z,u) be a measure space, u sigma-finite; let 

f{\_}_\ X reals + reals be measurable, and let | be a collection e 
Wl



427 

of meflsuxable function 8: A + reals such that 

20 T (| CGRa1) 
§,du = 0 1> 

A 4 v st 

for all ¢ efim. Let 82 ¢ M be a function, and pfi:é real number,. 

  

    

; e ;}\ such thatfixfor all § ¢ M, 3 

: % { 503D £(a,8%(a)) - pos2(a) > £(a,8(a)) - po6(a),. 2 — a— - v - — «\ 

{ for almost all a ¢ A, g o 

§ Then §° is best for the problem of maximizing 

| L CEu3) [ #8040 RSN % 7 

% over § € M. _ (fléximizati@n refers to standard ordering of : o2 : 
sl pseudomeasures, here and throughout this discussion). 

; % { #% / P 
= f«; Proof: We must show that&‘for any feasible §, N r* 
\ ‘ ) X "2«/' : : 

i 

<<§~'1)""{j 

;M. ] E;fagé‘(a}) - £(a,s8(a)) n(da) (4) 

E | 
ot is wellndeiinad as an ordinary definite 1ntegra1, and is > 0. 

From (2) we have 

g £(a,86%(a)) - £(a,8(a)) > p°ls°(a) - §(a)] 

g almost avarywhara. By (1), tha integral of p'[é“(a) - §(a)] [EE} 

i is zero, and this fact is all we need. ,44f* difié[ 
i 
Z @/N %& 

| Here P® is the shadow price, and (2) asserts that, for 
\ 

each a € A (except possibly on a null set) , the investment
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density 6°(a) is chosen to maximize £(a,x) ~~?{§ over the 

f&fiflehmflmmlwafif meflmJMmgwwthwwf 

density, and the second reflects the "cost" of using up the 

resource, (Wote that either f or p?, or both, can be 

negativef}\ < 

( 
We can easily derive a generalization of this result. 

ve 

gqu§>Theorem: Let A, Z, ¥, f\andEM be as above, except that the 

feasibility condition (15 is replaced by the weaker confiitiong\ 
ey 

y 

  

“fiflN\\ | L : 3.8 
{ D ‘ : ( 3}%,5;7 / I 6Aau B m \~_J : s e 

be 
for all & ev@. Let 8“ € M be a function, and p- a real number,- 

\l\ \ AAAN, 

such that (2) holds, and also 

, 67 (0> (57360 
p2 ¥ [ (62 = §)du > 0 (6) 

TR A 

¢ ) 

7 

N’ 

for all § ¢ }|. Then 8° is best for the problem of maximizing 

{3) over § ¢ /. 
™\ W, 

R e, 

www“"ff";rocf- We take an artificial point zo and transform this problem 

into its equivalent on A' = Ay {z } (see section 2). This 

given, and we need merely verify that condition (2) holds 

’”35} translated problem is in proper form for the theorem just 

</ 

\ almost everywhere on A U {z }. By assumption this is q@@a on 

i ' A, For the point : z, ve hage that f£(z )') is ideg?ically ze&c, 
E 5 ‘v; { ‘:i'; 

p 6'(2 ) = - 18, du, and similarly for 63'(2 €°)§for the 

A 
\ point z, is then precisely the condition (6) . e [T PR A 2 —
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The extra condition (6) thet—is imposed|is easy to inter- 
14 

pret., If pm is positive, %hsa ther;7is no feasible § for which 
e | Tk AT 
;ig 8 &u > f §2 du. In cammofi\banse terms, this states that if 

rthe resource is valuahle, as much of—it as possible should be 

allocated. similariy, if pfi is aegative, the "resource" is 
) 

illth rather thanrggalth, and as littla ef—it as possible should 

be used. F;nallgi if ?) 82 d#visymeithar the highest nor the 

lowest possible value attainable, then {&) implies p? = 0, In 

this case the resource is a "free gaod\ksand for each a € A we 

simply choose 53(5) to maximize §{§{§) over attainable invest- 

ment levels x without worrying about resource cost. 

We can also find a sufficieat condition for 82 to be the 

unigue best solution. But onalhaa‘%e be careful in inter- 

fiketing the caficapt of "uniqueness™ here. Acaerding to previgus 

discussion we may identify two functions, 61 and Gzréwhéflh.ara 

equal almost everywhere. Let us say that 61 and 62 are 

essentially distinct iff p{a|s;(a) # 8,(a)} > 0. Then, in line 

with our discussion, we say that 82 is the unigue best solution 

iff §° is best and there is no essentially distinct § whieh is 

also best.w:> 

~>There may obviously be more than one best solution. For 

example, if £ is identically zero, then any feasible solution 

is best. N N 

We now give the unigueness condition. Going back to the 

    

  

first sufficiency theorem, suppose that all the premises hold, 

and(kjn addltlcn, the following: ibr each § ¢ M whiah is 

essentially distinct from §2, there is a setrE of gositmve 
A
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maaaurehlsueh that (2) holds with strict inequality for all 

8 € Eg. ‘Then 82 is the unique best solution. 

The proof is simple. Reasoning‘éas% as before, we find 

+hat the integral (4) is positive, not me:ely naéi?egative. 

Hence 62 » § for all § fizmressentially}distinct from &°, 

fifi@his uniqueness condition immediately generalizes to the 

case where (l) is replaced by (5),, Let all the premises of the 

second sufficiency theorem holdh énd, in addition,the following: 

?or each § e‘ftwhiahuia essentially distinct from 82, either 

there is a set E; as abovefi or (6) holds with strict inequality 

(oxr both). Then 82 is the unigue best solution. 

The proof cdnsists'in translating this problem into the one 

in which (1) holds, then applying the E; condition to this 

translated problem, In doing so, note that the singleton set 

{g } has positive measure? u'{z } = 1. This shows that strict 
-a. 

ot inequalmty in (6) for all § insures uniqueness. e 

/K Flnallj, we mention a much weaker suffic1ant condition for 

82 being best. In the theorem above p3 is chosen in advance 

and (2) must be satisfied for all §. But it suffices that,) 

for any feasible S\thére exisEP; p2 (which may be different 

for different 6's) such that (2) is satisfied for this p® and 

8. This variable p° lacks the appeal of the shadow price 

interpretation, however.
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{;f;? 5.4, DNecessary Conditions for Optimality 

V'The sufficient conditions we have just stated are very 

convenient to use where they hold, Unfortunately, it is easy 

to find problems whose optimal solution does not satisfy any 

such condition; tfliéiis, the stated conditions are not always 

necessary, 

Here is a simple example. Let A consist of two points: 

A= {51;52}; I = all subsets, u = 1 on each point; let the 

payoff function be given byi"g(§1c§) = fiz, §(§2,§) = ~2x2; the 

investment function is given by (xl,xz), with the constraint 

_ . 0 43 
X) + X, = 0. Thus the problem is of the finite form (3)+(2)! 

of-section-l: 

~Maximize ‘ _ 
5 2 @ 1) 

- 232 - —3)- 

subject to 
(E+2) 

3.‘,1 + Xq ® 0“"9:‘..., -2} 

The unigque best solution is cbviously'gl =X, = 0. Now the 

2.0-) 
sufficient condition(iafl~e£msoet&enm3 requires that there be a 

real number p® such that (for point al) 

0 > x* - pex 
~ for all real X Ohviausly there is no such pé. (eé:éfiémeéhGQ 

-hand, this example does not violate the weaker condition 

mentioned at the end of &he«ptaeeé&ag sectlon )
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We shail now investigate necessary conditions for 

optimality. Broadly speaking  these have been found more use- 

ful than sufficient conditions; because it is hard to find 

simple sufficient conditions»fihidh cover a very wide range of 

problems. -Also, gstablishing necessary conditions is, by-and- 

large, much more éifficult than establishing sufficient condi- 

tionsgm\(Compare the length of proofs in this section with 
that preceding). 

The classical example of a necessary condition is that a 

funetion'maximized in the interior of a domain have a derivative 

of zero at the maximizing,paint, if it is differentiable thera. 

Necessary conditions in general are used just as this one A%jf%/ "y 

Hamely., one narrows the search for an optimal solution to those 

(hopefully few) pcintS*Jhi;h satisfy the necessary condition, 

and then trfies by other means to test these directly for 

optimality. 

D We shall concentrate on the special class of allocation 

problems diseussed above, where the feasible solutions are 

those wirieh kfie between two functions, b, c: A + extended reals, 

and wkichfintegrate ‘to zero. Afterwardg, some of the key 

results will be generalized to the problem where the constraint 
1€ , = 

S Ty (S ’ ' 
;’Q i ] 65\‘3}‘ s Lg‘ =i 

replaces the condition that the integral be zero. 

A;numbar of preliminary concepts and lemmas will be needed 

before we can get down to serious business.
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+ fhe supremum of a set of extended real numbers,—it—will 

be-recalled, is the smallest extended real number nctriéss than 

any of the numbers in the set (it is the "least upper bound® of 

the set)., The supremum of a funfition; gg'A > extended reals, 

is defined to be the supremum of its range) {g(a)!a é A}. 

égi:as use the notation g[E to rapresent the restriction 

of 27?0 the subdomain E g A, The supremum offig!g is less than 

or equal to the supremum °f!§ itself, How suppose the domain 

fi_of@g is the universe set of a measure space (A, Z,u). We congidet"all-passihle 
restrictiqfis‘glfi such that u(fi5§)fé Offig 

and take the supremum of eaeh'éna. The infimum of tgéy;:sulting 

set of extended real numbers is called the esaential supremum 
  

of g. To put it anoth@r_wagfi\the essential supremum of g is 

the largest extended reai number_g such that x < sup {g(a) |a ¢ E} 

for all E € X such that u(A\E) = 0, 

One special casé may be noted, If u is the identically 

zero measure, A igself is a null set, and we may takehggs @, 

The range of gjfi is then the empty set @#. Applying the 

definition of supremum literally yields sup ¢ = =, Thus the 

The essential infipum of a function q{/A + extended reals, 

with respect to (A,Z,u), is defined analogously. Just switch 

the words "supremum" and “infimumf@xand the words "greatest" 

and "laast\, in the preceding discussion. Or, equivalently, we 

could define it by the rule: 

A essential infimum of g = ~essential supremum (-g) > ) 
—A 

\ 
e
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WQ shall use the standard abbreviations "ess sup", and "ess inf" 

for these concepts. 

; { 
The following result, whose proof is omitted, wit}h be 

needed later. 

gqxw'fliammaz Given measure space (a,Z,u) and function g{aa + extended 

reals; let {Aa, Ayss0+)} be a countable measurable partition 

(or even just a covering) of A. Then B / D { 
4 ‘,V‘}‘ g"pfi‘;‘; 

{ ~ A 74 t«gp {5&"&*:‘}} 

ess sup g = sup{ess sup(g|A ) L{i =0, l,0eef 7/ (8) 
m‘. 

& : 

; {‘f;' oo ) 

ess inf g = inf{ess inf(qt,hn)ln =0, 1,.._.}%\ ) 

 Here ess sup(glA ) refers to the function gIA and the 

measure space (A ,zn,u ) » which is the restrictxcn of (A ,u) 

to A . Simzlarly for ess inf{glA ¥ 

ifi«w&&igbe note& that meaaurahility of g is nowhere mentioned. 

Indeed, these concepts are perfectly well—defined, and the 

lemma;éorrect,%for any function‘g. measurable or not. This is 

impartant,,becausg;the functions g and_g yhich we define below 

are not necassarily measurable. 

mext, let f be a realavalued function whose domain is an 

interval of real numberfit {b,c1¢ \TThe endpoints of the interval 

may or may not be inalufled. and we may have b = ;3 <¥4“k oy 

continuous at the point X, € [b;g] iff, for any sequence 

Xys Xppeee of points of gb,c} whose limit is x_, and any number ol 

€ > 0, there is an integer N such that, for all)g > Npe 

1
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V (£14.$7 
-e < gggb) - f(xa)_Q Sfil “5) 

Now (5) is a double inequality. ’If'we drop the left=hand 

inequality in (5), keeping evarything else the same, we get a 

weaker concspfig ‘S is then said to be lower saqilgontinuaus at 

£ to take a "sudden" jump downward, but not upward, at;fiaa 

(Continuity prchibitgw*suddenfiviumpa in either dixectivg§x} 

Functicn%fi is continuous, or lower samiibentinuaus, iff it 

is cantinuéns, or lower sem{icentinuous, at every point of its 

domgga; respectively. | 

/L/;inpg;f : There is another way to characterize lower $em§5¢ontinuity 

M/i/”’fj¢ %hiéh is more useful (though less intuitive) then the definif 

tion just given. An open interval of real numbers is an 

intarva{4§g§ containing its endpoints (this is the same as an 

gggg}é&ggfian the real line). An,agen set on [b,c] is the interf 

section of {E{g] with any union of open intervals. Then 

f{:;p.c] + reals is lower samizgontinuous iff {x|£(x) }“X} is 

an open set on {y{g]&\for all real numbers y. We omit the 

proof that the twq-lower semgicantinuity concepts ave the same. 

We shall need the following result. 

  

!?f}»iemma: Let £ ::{;_: ¢l + reals be lower semfl:ccntinuous,, with b < e. 
T\'\Q.V\ : 

i«r" "’trés 2 

(B sup £ = sup(£|E),, 6) 

where E is the set of rational numbers in [b,c}, 

 



nw 2 

Cple— 

| 
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Proof: Obviously, sup £ > sup(f|E). Conversely, for any number 

y < sup £, the set {x[t(x) > yl is open and nop+empty; hence 
-~ 

/) : 
there is a rational number x  belonging to it: £(x ) > y. J44f'£;i? 

Next,/ we need several concepts related4tcgrbut more 

general than, the concept of derivative of a function. Let 

§;~Ib,c] + reals again have a real interval domain which may 
N S 

or may not include its endpoints, and let x be a point of the 

. domain # c. 

M 
R 

;434'Definition: The lower right derivate of f at the point x is the !,»i 

., 
N
2
 

| F 
limit, as ¢ goes to zero from above, of 

{«‘5”};7) 

gx_g{tg(x*x) - £y |0 <y < E} g 

" That is, given € > 0, we find for each point y in the open 

interval” (0,e)% the value of [£(x+y) = £(x)]1/y < (which is the 

average slope of £ from x to x + y)Q-and take the infimum of 

this set of values. Having done this for each € > 0, we take 

the limit as € =+ 0, 

This concept is well-defined for any real-valued function,@‘ 

and any domain point except the right endpcint{ c, but it may 

take on an infinite value. For first-ef-alld the infimum of any 

set of real numbef%;is some extended real number, so (7) is 

wafihdefined for fixed e > 0. Furthermcre‘one sees that (7) is 

‘nonrdecreasing as e -+ G;Fhence has a limit in the extended real 

numbers. This of course contrasts with differentiability, which 

is not a universal property.
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We shall use the notation D £(x) for the lowgrrright 

derivate of f at x. If the right endpoint, ¢, is part of the 

domain, we shall make the convention that_p*fi(g) = -, 

Similarly, for all domain pointsfl_y, other than the left 

endpoint, b, we have (/¢ Yol . o 

?**flvbefiniticnz The upper left derivate of £ at the point x is the 

»flww;h“k-uw 

[ 1 “?} i 

Wi 
A 
% 

N\ 

limit, as € goes to zerc from above, of 4 

SPE{[f(x) - £(x=y)1l/y l 0 <y=< e}. 4 £8) 
N 

An argument similar to #figfi;ne just given shows that this 

is always weliidefined in the extended real numbers. We shaldl 

use the notation D £(x) for the upper left derivate of £ at x. 

If the left endpointi\yqfiis in the domain, we make the con- 

vention that 9‘?(9) = 4o, 

~ ©{0One may also define the upper right derivate: replace 

"inf" by "sup" in (7): and the lower left derivate: replace 

"sup” by "inf" in (2)3 but we do not need these concepts. A 

function is differentiable at interior point x iff all four of 

these guantitiés are equal; their common value is then the 

deriv%fié of £ at;§)§§<: 

Naxtk\we need the following result concerning atomic 

measures., 

P 
e % 

J2/ 

i 

cjkag Lemma: Let (A,I,u) be a measure space, with u atomic; let 

(?1' fz,...} be a sequence of measurable functions on A, taking
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values in the extended real numbers. Then there is exactly 
{ 

7S 
3 one sequence of extended real numbers (xl, xa,...) patisfying 

Y pl "h (“ } d 1l 3 6 
§ fx} (?) = Mx& wa 

{.- & 

/""/”/‘ ”’“\) 
By definition of atomiarg axactly one of the two yf! 55;” 

numhars, 

  
for all nB;L, 2;#:; #0 

    [Proof: T S 

u(E) , u(A\E) is 29:0, far any choice of E ¢ L. It—is 

fleafi fih&t there can be at most one sequence of numbers | 

E satisfying (9), hence we must show there is at least one. 
{ . 
E Take any measurable function £, and consider the 

supremum, xa, of the set ef numbers x satisfying 

/ :D ; (S .00 

g;>i ,n{glgla) < x} = 0. £30) 

If x> =, také a sequence (x ) rising to x Since (10) 
et 

holds for eaeh o it holds for X, itself. It also obviously 

holds if x = uw. Now consider the condition 

{ ga&i‘a b 

u{alf(a) > x} = 0. €31) 

This obwviously holds for X, it x, a = « B X, < o, take a 

sefuence (x } decreasing to 05,\{11) holds fcr each such 

X ? 3g (sinfie the complement of the set in (11) has positive 

measure). Hence (11) holds again for x . 

that 

We have thus shown 

(b %.i2) 

12} 

g
 ulalf(a) # x )} = 0.
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Now for each f let x, be the corresponding number 

satisfying (12). The set {alf (a) # x for at least one 

A= s ss0x) ds the union of the countable collection of null 

  
sets ({alf (a) # x }), n=1, 2,..., hence fis itself has 

measure zerq, Therefore its complemant is not a null set. 

But this is exactly the statement (9). 'LP#? zjgfifi 
Pfinwfl-— , 

Let us now get down to business. The allocation problem 

will be determined by the measure space (A,%I,u), the payoff 

function E{:§_XS;éals + reals, and the lower and upper capacity 

functionsfikp,_g{:g -+ e@xtended reals. 

We mafie the following convention. If a specific point 

aée é_ia chosen, g(g,-) is a function of a real variable. In 

referring to it, we shall always take this function to be 

restricted to the interval [b(a), e¢(a)l. (The endpoint_p(i) 

is to be included iff it is finite, and similarly for g(g)). 

Thus the statement that gtg,-) is lower sefi{}éontinuous refers 

to this function with the domain {y(fi),_g(5)13*~gimilarly for 

derivates of this function; in particular we have at the endfi 

points that D £(a, b(a)) = +» and D f(a, c(a)) = -, 

To explain the formulation of the following result, recall 

that,ksince u is e&éi;wfinite, there is a countable measurable 

partition/ {A_, Al,...} of A, such that u restricted to A_is 
7 gt = =% 9. 

noncatomic, while each A , n = 1, 2,..., is an atom (& Ehe o 

nf’ 

restricted to A is atomic) .’ . AG is the nonfatomic part of A, 

=yl SR 18 ’.43«. 14/ "f _,“\ selg and f\flnghe atomic part. [l porhi Eest n s, 

[ 9 

(We do meY @6Sumy That alems are ¢ I 7 cont ““‘Yqéfl DOWV 

cu woutd §9%7JVKV some 06 L 4 Csllo W”“fl P}Du £ )
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~ We postulate that the given feasible density 69 is i 5'9j 

unsurpassed in the allocation pxoblem. N@fiew&hah.this is a 

W%Eker assumption, and therefore yialds a stronger result, than 

if we postulated that 6° were best. 

The following is called a lemma rather than a theorem 

because it lacks immediate intuitive appeal., The result is 

quite powerful, however, and implies all the other results we 

   

.  Obtain in this section. 

o 
G »i¥i | Lemma: Let (A,I,u) be a measure spacefikwith M fiiéma~fiaite; let (o mrtane i , 

g:ila X reals - reals, and b, c: A + extended reals, be 

measurable functions. Let feasible 82 be unsurpassed for the 

) problem of maximizing 

pES e e Elap 
[L{f~gia’f 7 I’gtfi,a(fi))u(Qa) 3 

subject to 6{2% * reals being measurable, and satisfying 
; (S.40) 

bgséce () 
and s A . SN 

e o (&et015) 
84\ L 6,8 = 0., {15 

Lat.Ag, A\%g be the nonratomic and atomic parts cf‘},w_ 

respectively. Let f(a,*) be lower semircontinuous for all 

! 
g Define two functions g, h: A + extended reals as follows: 

—— \./""" 

; . ( g(a) = sup{[f(a,&.‘!(a) +y) = f(&,fi.‘!(a})]/y},i “16) 
 — FeNt—— & = sum e = - - g oy 

[~
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the supremum being taken over all yzgn the open interval b 

(0, cla) - 82(a)); 3 4 N 
, (2 _fi’ 

Sk - ) h(a) = inf{[£(a,se - £(a,82(a) -y (7 h(a) = inf {[A“fi (R = Ein ‘f’\,f’]/z}m 

the infimum being taken over all y 

(0,62(a) - b(a)). 

For a € A\Aekéf’\ 

in the open interval 

g(a) = D f(a,82(a));} 118)- 

y | ;,f’;i W § ) 

E(g) = E-g(é’ég ‘E:))'Ws (199 

Then, for any pair of disjoint sets G, H ¢ I, we have 

(v, e 

ess sup(g|G) < ess inf(n|H). (20) 

;q$; Proof: It suffices to prbve (20) for the special case where 
W 

G<§ A’l H‘s A-p for ipee. m, n = Q l; 2¢wo¢ * 
‘..,,.'fir-" 

for,\suppase 

this has been proved,ZEnfl‘Iet G, H be any disgaint measurable 

sets. By assumption, we have 

ess _sup[:;;l (6 n Am)] < ess in_f&;l (H n WARS] 

for all g; g = 9, 1; 2,*‘& » Then{ by {3) and (4), 

___‘:,_.._.‘_‘_,, 'x’P“ 

- ess aup(g!fi} =jsup éss sup(gi(G n A ){] 

\L}) 4 

1 i 
{ 
{ 
i 

£ inf|ess inf(hl(fl n An){] = ess inf(h|H), 
B 

i &
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}%/ince Ena), m=0,1, ..., partitions G, and (H n A, 

he 0, 1, .«: , partitions H. Thus (20) would be provea in 

general. ‘ 

® __  There are four cases to consider: il 
- 

e 
R
N
 

A
P
 

lig_«(__'z:) Gg A, ;_icfse; [ & -’ 
*\3 ©(ii) GeA,HcA form nygo0; 

LH‘(i:fl} Gg v?‘zg’ Hg _{\9 for m # 0; 

N ’{'b(f?} Gg Ae. Hg An for n # 0. 

jiIn each case we sha¥l assume that (20) is false, and show 
ommam—ta— ‘)\\ 

  

+hat there is a feasible 6TM\ 9 surpasses 62, giving a con® 

tradiction. 
— ‘_"&H)(’:\ 

11 G g A, Hg A j}i‘? Belady [ 
i 

  

b For each positive real number y define the functions M 

g,s h,t A + extended reals by vy af -.31 X | [4:/ P v“,.z 

i A S MW 
gt = fEasc@ +y) - tlasc@))rs Vo 

LI il TN V 

[ T if ec(a) - 82(a) > y; = =» otherwise. 
L - - S - T e J 

N A 

byta) = fe(ass2(a) - £(as2ta) = )] A 
. e t22) 

S if 82(a) = b(a) > y; = +» otherwise. 
- N o % — 

\\"‘ Al 'fié These are all measurable functions, since f, b, € and §2 
A e o are all measurable. Furthermore, WLU‘\ "CSTVNTCA To Ao) /‘Lcw’ 

i (ertadd. T 
- . _gy 3 /B = inf h, >~ (a3 

the sup and inf being taken over all positive real y.
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We now show that (23) remains 

true even if X_marely ranges over the positive xational numbers. 

Take a point a E.fig';and cansiderggy(g) as a funation'ofjgf 

with domain the open interval (0, g{g) ~ 82(a)). Since f is 

lower sam%icantinucus, it follows easily that the y-function 

gyfif) isPower sem%j?ontinucusff (%sa the definition given by 

the right half of (5)). If c(a) > 82(a), it follows from (5) 
that (23) is true for‘g when the supfiemum is taken over the 

positive f?tional values of y. If c(a) = &Sggl;this>is still 

true, the two suprema both being =~», This proves the contention 

for 9. 

As for h(a), we consider h (a) as a function of Yo with 

écmain (0, 82(a) ~ b(a)). éfiemthen verifi&és that minu% h (a) 

is lower semifcontinuous, §a9~then verifies as above that 

8sup (fipy(i)) is the same whether taken over positive real y or 

positive rational y. But sup (~h {a)) = ~inf (h (a)) = «h(a), 

which proves the contention for h‘ 

xow,léssumxng that (20) is false, choose a real number x 

satisfying s 
| (S 34) 

ess sup(g|G) > x > ess inf(h|H),-- 24} 

and let : i 1 ' T 

jaG' = G n {alg(a) > x},[Ju' = H n {alh(a) < x}po— 

and 0 j 
R (£ 4 25) 

Gy = gn lalg, (a) > x}; 8y 1= B n {gl‘hy(g) <zl 25) 

for all positive real y.
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- 

Since we are operating withinflga, (23) is true for y f(‘ 
'LV6 

ranging over the positive rationalsg Hence 

G'uuc; Qf H'nuay, 
~ A, 

the union taken aver‘tfié positive rationals. G' andgn';;gs 

unions of a countable number of measu:able aets,Agrerthemselves 

maasurablé. Also u(G') > 0, u(H') > 0, for if not, (24) would 

be false. It follows that there must be positive (rational) 

numbers§%gl an&_?zfflauch that 

(&1 426) 
uigy ) > 0 ,lue, ) > 00 e 

since a countable union of null sets is a null set. 

Now u, being sig;a finitegkand non%atomic on Gy + takes 
1 on all values bé%ween 0 and u(G ) on this set@\éimilarly for 

71 / 

HY « Hence, from (26)‘¢we can find measurable subsets 
RS 
G" ¢« G, and H" ¢ H_ such that 
5 ¥ Y2 

o 
sl { 54,27 ) 

\ ¥YH(G") = you(H"), & 27 
RS 1 'd 

with this common valuéjbeing positive and finite. ' 

We are now ready to construct another feasible density,a 

622, which will surpass é8°. %et J 
#At, 

=N 

\ §22(a) = 5‘(a) + Yl f a e G“{w« 

’A‘”f 6°°(a) = 6‘(&) - yzf\?f a ¢ H"; '1237 B 

@622 (a) = 6£(a)z§\if ag@G"y m", )



  e 

© | 
] ‘[_fca,wcan - £(a, 5‘(&))}1:(6&) [ 
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Lx Note—that this is well-defined, since G and H@’hence G" 

and H”} are disjc;nt. First we verify that §2° is feasible. 
=1 

At is realdvalued and measurable. Also, 
0 

& |+ 

] (822 - 8%)du = yy u(G") - yu(u") = 0,7 
A el 2P0 

! 

from (28) and (27)., Thus it satisfies condition (15). 

    

Next, if a ¢ 6", then g Y (a) >x > ~©, by (25). Hence s 2y 

¥y < c(a) - 69(&), by (21). This means that adding yl to &2 (a) 
s 

on G“ does not violate the feasibility candition 6(&) < g(a). 

L Lk Similarly, if a ¢ H", the%lhy (a) < X < », by (25). Hence : 2 e, 
2 v 

¥y, < 82(a) - b(a), by (22), so that sufi}racting ¥, on HU does 

not violate the feasibility condition 6(&) > b(a). Thus (14) 

remains satisfied, and §2° is feasible. N 

y Comparing utility from 6°° and &°, we have . ’-[ 

3 ‘@1’\ ’1W' 1% i 
% ‘ 

Guylgyfdu ”§[ éyzézégu'fika 

f 
>:. 
b 
i 

from (28), {al)jana (22), 
/: _ 

15Y | > lgs { }’y; 

f"\ N 

’%! . Yy Xdu 4 IH"EYZ %\ 
z u/ é‘*fl L 

% 

‘since G" gzgga\and H" Q°§§i‘ana u(G"), u(H") are positive, 

=X yu(G") - x gzu(§“) = O0py 

from (27). Thus 633;15 preferred to 6% under standard ordering
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N of pseudomeasures. The denial of (20) thus contradicts the 

premise that §° is unsurpassed. This establishes (20) for 

i " fgr RS 2y , T @, -- 
&F, C ¢ Ay He A, where m, n# 0 ::iM B 
<ft As above, we assume (20} is false, s0 that 

   

(5.4,29) 
ess sup (g|G) | > ess inf (h|H)._ t29)- 

S For this to hold, G and H must have positive meagure, so that 

they are atoms. Applying (9) to the function géél restricted 

to G, there must be a unique constant, e_, such that 
L‘ 9 . 

| 

ét :;r"fh 0 } 

u(s n {alc(a)’-_.\s:(
a) = g }) > 0u G 

'Rsl?g;m,% 

Since c-62 is non-=negative, €g 2 0+ In fact, e > 0; P 

‘! '¥ cla) = é62(a),|then g(a) = D f(a,8°(a)) = -»; hence - 

would imply ess sup g!G) = =, contrary to (29). A similar 

argument shows that there is a unique positive constantfl n " 

i 2] e such that % rla 
P : 

~ o ! (5-4.41) 
uE}_ n {3!63@)\:5(? = neg > 0 63 

Label the sets in (30) and (31) by G', H', respectively. These 

are subatoms of G and fi. 

- A measure %h%ch is atomic and fi%’nflwfinate is bounded, so 

that % 
~~/«a > p(G') >0, o » H(H ) 5 0.
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Now take two saquences of positive numbers, beginning with 

e' refipeatively,xaa& decxeasing to zerxo: 

ee > gy > €y Peany %§9~e§_“ ofgj 

> fle > nl > nz .00y ;’__{'E nn = ‘Qr\é’“m 

P 

and chosen so that 

g u(G') = n u(E") 32} 
= S— 

for all n > 0. 

\9‘}'- 'dfi{sider the segquence of functions c__}tfi r D= 1, 2,000 

given by (21), all restricted to the domain G'. The condition 

Eh < 9 guarantees that these are all finite. Similarly, 

consider the sequence q% s 2™ 1, 2,..',7given by (22), all 
Lo 

restricted to the domain H'., Thase are also all finite, 

since o <n 
=0 

ApplYlng (9) once again, we find there must be two unigue 

sequences of constants, say Sy cz,...fi and bl' bz,..., such 

that 

: J [:} i\b»' 5‘2 . ’3.: "") ) 

u@_‘ n {519@ (a) = cnjfor a}.l/)n =1, 2,...fl > OJ +433)- 

X & )'jg-f-u = : ._ 
e 

and- 
' U < ($4.34) 

u[g' n {alh, (a) = b *fcr allén.u 1, 2,...{] » 0. 134) 

These constants must be finite.
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Label the sets in (33) and (34) by G", gffi‘reapectively. Also 

let 

7 5,4.35 ) 
€, = lim inf ¢ = lim inf g_ (a), and {35} e = — 28, 

and 
w 

<~5' L{ . "’5{'}) 

///// lim sup b_ = lim sup h_ (a).- 36)- 

Lotan 

, (3%) is valid for all a € G", (3¢) for all a ¢ H". We also 

have 
(5. 45D 

lim inf 9, (a) 2 D f(a,82(a)), and (37) 
76~ PR e 

and sl A 
- «;"D;‘t,‘}{} / 

lim supflyfif(a) £ D f(a,82(a)), (38) 

), @ re o e 

for a ¢ G", q‘eug“,*respectively. 4(37) resfilts from the fact 

that D_ is the Yimit of infima faken over entire intervals, 

while the left side of (37) is'fihe limit of infima taken over 

subsets of these intervals (nqma%y the points ¢ ). A 

similar argument establishes (38) . 

Now the right-hand sides of (27) and (3€) are nothing but 

g and h,:reapectively. Henée e 

Rl {: - e 
}“ffi;fgo > ess sup (glefi)ia'Lss sup (g|G) 

> ess inf (h|H) = ess inf (h[H") > b {* 

from (35), (37), (29), (36), and (38).
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Since ¢, > b, -there must exist an n'|such that e > bn“ 

We are now ready to construct a feasible density 6°° which 

surpasses §2, Let 

  

I 100 ] ! 0 i‘ 

s so¢(a) = §°(a) +e .b»ifiif ae e 
U "y e (S o) 

§22(a) = 8°(a) = nn.;}sif a¢g H" e o) 

5§22 (a) = §°(a),, ’«,if agG"y H", 

| fThis is feasible. First of-ail, 
i fu* 3?3 . (fifl ¢ 

[Acse-“ - 62)du 1= eLuu(E") - novu (") 

\i‘~ from (3&). Secondly, for a ¢ G" L(a)wm; < §2(a) 

§ > }5 /= gfi,u(g') - nn‘u (i{') = 0, 

= 
+e = ¢fa 
L0 - (h..) ¥ 

80 the Jupper beund eonstraint § < ¢ remains satisfied. Similarly, 
; 7> s // W.w, 50(3)&1} > 8°(a) @ng = b(a)‘ for a & H“, so the lower 

Ly 
£ bound constraint 8 > b remazns satisfiad. This-provas feasibil=- 

ity. 

Comparing utilities ; we obtain s b 

¢ o] et ! b gk el e 
5 { Ef(a,é—_fi (a)) e f(a,fi“(a) )]u(da) Ignah'ggfiquu e ]H nihnn’ 

from (40), (21), and (22), /7// 

= SprSpnu(G") = ngbyau(E)
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from (33) and (345 

~ 
b,ni~ (Efi.u(Gf’) Ll Hn;uffl”)} = 0, o 

since ¢ v > by, u(G") = u(6'), u(") = u(H'), and all terms 
are positive. Thus §°2° is preferrved to 62 under standard 

yfi, ordering of pseudomeasures. The denial of (20) again leads to 

7 : g ‘ ?p\\;\\\acntraéiction 

M S (oo 
g#*? w(;;,§; G g Am’ Hg %g' m¥ 0 'j 

i~ ( 
The proof for this case cemhines the techniques of the 

two preaeding,paatfi, and we ahallméust outline the procedure, 

As before, we assume (20) is false. Let x be a real number 

satisfying 

: { : (;\5“:4—-,11.; !} 

ess sup (g|G) > x > ess inf (h|H) .. ) 

Reasoning as in‘fiaégwgi), we can find a positive (rational) 

urmb such| tha H.) >0, wh H,. H h. (a) < x number y, uMEX & u{/fi§? » where By - n {?nggt) <}, 
and‘gxé is givenA%y (22) .’ 

Next, we f£ind the number €g and the set G' as in pamt (ii), 
(30), and again take a positive sequence decreasing to zero: 

. 99 > 81 > 62 >-:0F lim €n = 0.7 

) 8 005 ; 
As inhiii), we find a unique sequence of real numbers, 

Cys Cysees, such that u(e") > 0, where 

I 
G" = G' n {aige (a) = cn\fcr al;wg w 3 Boesale 

a e
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(c€. (33)). cContinuing, we find that (cf. (3@)) 

; (S14:42) 

lim inf e > ess sup (g|C).. ~(42) 

Now choose n' so large that 

J (8.d43) 
© { . Y A, * yzu(}}yz)/u(g b, 143) 

for all n > n' This can always be done, since lim €, = Q,\anfl 

the right side of (43) is positive*kwiu(s") is finzte, since 
g 

f,f(g«,re{g.— 

is sfigmmafinxte and atomic on G" (42) and (41) imply that 

there is an n" > n' for which 

Cgw> Ko {44) 

Since u is:s&gma~finzte, and ncnfatomie on Hy ¢ it takes 
2 

Hence there is a measurable 

- subset H" ¢ &§%xsuch that 
- -v;" .»2 \ 

Equit (6") = y u(H") . +45) 

since € u satisfies inaqualiéy (43). The common value in (45) 

is positive and finite. 

We now construct a new feasible density 62° as follows: 
MY 90 o 

i §22(a) = 82 (a) 7'324%?flif aeg K“i” 
i 

ol 
822 (a) = §°(a)s, FAE a g ey A",
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A‘ ?f 

Wf 
To show feaaibility, we have, first,of=eil, 

2. 

gq I (§°° - 6.)&611 = S/finU(G ) - qu(fi ) = Or——\s 

F &P ] 

from (45). Arguments already given in-pe§e§ (1) and (ii) show 

that the bounding constraints b < § < ¢ remain valid for §ee 
) 

,éencefi it is feasible. Comparing utilitiess 
O " 2> g 12 | 44 | 275 20 1 2b 

fA[g(g,ss.e(gn - _f(_a,s“(g))}rg(_c}g) - Ig..%'tg/é%w“‘rm - f Jahy @ 
— 

s ) 
> g uCoui(G") - y, X u(H") 

‘n 

Z'G 136 
N i 

> x (e, wu(E") - yzn(fl")l - 0. 
v W J 

from {(21), (22), (25), (44), (45). Hence 6%° is preferred to 

82 under standard ordering of-pseudomeasures. This contra- 

7 diction establishes (298) for.part (111). 

C)f" . i/fi;,fi (wrdg =8 

; '~5,_,MAGQ§B,H5;A,XI#O°E 

o This is completely symmetric with paxt (iii)- One f£inds 

£ BB, 

a set G, as in-pase (i), a sequence b;, bys... as in'pnit (ii), 

etc. Details are left as an exercise. 
    

      

  

.0 Y&% Thus (20) has been verified in all four special cases., By 
{0, o 

o the argument which begins this proof, (29) is now established 

in general. The-proof-is—compiete. ‘L$%”f [T 
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;fiLThis has been a long and tedious proof, and the result 

itéelf does not look prepossessing. A few 1ntuitive remaxés 

may be in order, then, to indicate ggat the lemma says, and 

why it "should" be true. 

The funatian_g represents, roughly, the return per unit 

increase in investment at various points of_g.:fThe function h 

represents, again réughly, the loss in returnséex unit &is& 

investment. If (20) is violated for a pair of disjoint sets 

G, H, this means there are subsets G', H€', of pcsifiiv& measure 

such that g on gf is higher than h on H'. ‘Then, if we 

transfer some mass from g"to*g', the net gain on the latter 

set outweighs the net loss on the former, resulting in a new 

feasible dénsity=wh&éh»surgasses §2, The main burden of the 

procf just given,-in-faet, is to find the appropriate subsets, 

and the appropriate mass to transfer. 

We stress the generality of this result. The only 

special conditions imposed on A, £, ¥, b, ¢, or f, aside from 

measurability, are that u be s&gma-finita, £ real, and f(a,-) 

lower semijpantinuous for a E~§9~ 

conditions, and will nearly always;be satisfied in practice. 

mhese are very weak 

: $ 
Our aim now is to use this result to derive the exéptance 

3 of a number that behaves somewhat like a shadow price. 
- AR i 

fi%imml;égggiz Let gg,zfu);:fitip; ¢, and 82 satisfy the conditions of 

: é§¥ preceding lemma, with 62 unsurpassed for the problem of 

ifil}f maximizing (13) subject to (14) and (15), Let the functions 

\ g,dp{ZEA* extended reals be defingd,las abovai by (lé)i(l?). 

i
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Then there exists an extended real numberfi pj’and a set 

E € E, ‘such that - 
,/ 

  

e 
g 

'1##'“3 is either an atom or a null set, and 
(/:;,lh‘v;é } 

{ii) g(a) < p2 < h(a) ; e 

for all ae¢ A\E. 
s S 

"ifgwhis may be expressed by the statement: Except for at 

most one atom, (46) is true almost averywheruf; 

F— Proof: Let fiéeplglgfifi.} be the decomposition of A into nont 

. 7
% 

      S R 

atomic part;gé and atcmsmfil.‘éz,... « Let gf = ess sup gL§h$\ 

hg-w“gfis inf hlah,f&br n=20, 1,... « The preceding lemma 
= i g M - 

L 

then states that 

g < n® ; 
- - 

for allm, n =0, 1,... such that m # n. It gives no informal 

tion if m=n, since then thera is no disjointness of A m? 2 
-=...., 

First let us suppose that 

m n ’{‘51”" “ ?;r} 

8sup g- < inf h- . 8 

Choose any number p2 between these bounds. Then (46) is true 

for allfg € A except possibly for a null set E, ¢ A, 81T 
- 

nh=0,1,... . Hence (éfi)fis true everywhere exceptffor the 

set E = y E « Since E is a null set, the lemma is established 

if (48) is true. 

Now let (48) be false. There must be a pair of indices, . 
' 

m' and n' for which ¢g© > Q&', By (47), these indices must be
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But then, for all m # n', n ¥ n', we have 

i - (5 444) 
o< W2, . -449) 

. 

equal: m' = n', 

< ? 

g% 5.hfi < 

by (47) again. Hence, if we exclude the set A /5 (48) will be 

ré-established for the rest of A, Thus (46);&111 be true 

almost everywhere on g\Afii, 

It remains to prove only that the anomalousdgfli must be an 

atomm\tfii£:%s, that_g' # 0. Suppose on the contraiy that 

ga > pg. Choose two real numbersgflg, vy, so that 

¢® > x>y >nf, 

“and let 

/B = A n faln(a) < ylo,    6 =2 n {algla) > x},| 
A 3, e 

} ‘%”é 7t " As in part (i) of the preceding proof we conclude that G 

and H are measurable sets. If u(g n H) = 0, then 

5 4.¢8) 

cas sup (51 @) = o > 19 = ess int GlGRGY]. 50 
The first equality in (50) is o@tained by noting that the 

essential supremum of g °n,§QAi$ the same as on ¢, since 

90 > x. This in turn is the same as on G\H, since this just 

removes a null set{iéimilarly for the last equality in (50). 

But (50) contradicts the preceéing lemma, since G\H and mne 

are disjoint. | 

If u(G n H) » 0, we can sélit GnH into two pieces of 

positive measure, F; and F,, since p is nontatomic on Ry. But
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then 

°ss sup (g|P)) 2 x >y > ess inf (a|Fy [ 

This again contradicts the preceding lemma, since ?l and Fz are 

disjoint. Hence n' # 0, and the offending set A ,mmust be an 

atom. VL$1 L] 

,wwflflflfljflnwa The exceptional case, where (46) fails for some A y/pwill 

rg(a ) = +1, h(a ) = =1, so {46) cannot be true for a 

be referred to as the case of the anomalous atom. Here is a 

trivial problem in which it arises, Lefi4§Aconsist of just one 

points A = {go}. of measure one; let the payoff function for 

this point be g(x) = lxl; thé bounds satisfy b<0<e. 

Because of the integral constraint (15) there is just one : 

feasible > hence optimal - solution; n;;a%ywéffig = 0, The I JY@Q) 

space consists of one atom, and«ene,vexif§eu easily that - 

o’ 

The anomalous atom situation is related to, but not 

identical with, the well=known case in which there can be 

"inereasing maréinal returns"” on (at most) one alternative 

project at the optimal allecation;§/ This occurs in the example 

beginning this section, (1)#(2), in which the second derivative 

is positive on point a,. But this latter situation involves 

"second-order” conditions, while the anomalous atom involves 

"first-order" conditions. 

The number p of this lemma will turn out to behave much 

like a shadow price. 1In this connection it is desirable that 
it 

it be finite. This is not guaranteed, andAia not always
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possible to find a finite P satisfying (46), but there are 

several simple conditions whiah imply that there is such a 

real number. 

One such sufficient condition is that the anomalous atom 

Case occur., TFor then the inequalities (49) let in daylight 

between sup g and inf hfl (both sup and inf over n # n')fi and 

allow us to pick a real number between them. 

A second condition wh&ch insures that the p P in (46) be 

finite is that 

G+ 51) 
[9 n {als2(a) < c(a)a >0/ B 

_” ~/Lflb 1 

: 
[7’;}’ (‘j*‘f ‘ Lo 
i i 

o=t 
', ( sf; 1 H"'g’:fl:v / 

u[fig n {als2(a) > b(a)g} > 0. 152) 

That is, there is a ncn%atamic sat of positive measure on which 

§° is strictly below its upper bound, and a similar set on 

which §° is strictly above its lower bound. For, from their 

d&finitiong, g > =® on the set in (51}, and h € «» on the set in 

(52). Hence _ 

I “wflgeipf.llg &£ o 

and P is finite. 

E&t‘flfi now introduce a differentiability condition. We 

make the following conventian. First, let b(a) < 6°(a) < c(a) 

for a certain point ae a, \f(a,') is said to be differentiable 

at the point §2(a) iff
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P Gu'ls 
lim [f(a,82(a) + - £(a,d82(a) 53) L [tlasse@ +'9) - 2,2 @)]sy 

exists. (fihis is the usual definition, except that the values 

#» are possible. These occur with a vertical tangent at 

62(a), +» if £(a,*) is increasing at §2(a), -» if it is 

deereasz.ng) Next, if 6°(a) = c(a) we, say that f£(a,°) is 

ww}fferentiabla at 62(a) iff the liMLt (53) exists when y*@ 

through negative values, ggg this limit = =-w, Finally, if 

62&23 = Q(g);ye say that ggg,-) is differentiable at §2(a) iff 

the limit exists whanflg*fi through positive values, and this 

limit = +», When £ is diffarentiahle ,the value of the limit in 

(53) is called the darivativa, and denoted D f(a 6°(a)). 

The next result seems sufficiently intereahing to be 

labeled a theorfih. 

- Theorem: Given measure spaca (A, sU), s#éma~finite, and 

measurable functions f: A x reals -+ reals, b, c: a + extended 

reals, with £(a,+*) lower semiwcontinuous on the non-atomic part 

of Ay }mt §2 be unsurpassed for the problem of maximizing 

| ftasa )Iu (da) 
265 

over measurable fufi?kions 6: A *Leals wh%eh satisfy 
A 3
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| , C19) 
/ Let g, h- A= e%fended reals be defined as usual by (16) - Zfid 

i‘-g_ . In addition, let there be a set E of positive measure 

such that f(e,-) is differentiable at 6° (Va) . for all a ¢ E. 

G Then 

‘:fi:l >D f(a.é’(a)) is equal to a ccmze.tan*!:,r p,m » almost every, 

where on E , and 

%) “?:t is the unigue number wh-ieh satisfies 
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, gla) < p £ h(a) 54} 

fi almost everywhere. 
.{l, '-56’4 ,‘,a 

,,wf??{»x Proof: Let {_Ag, Aysr Bysees} be a decomposition of A, with p non:{: 

: fl | atomic on}e,%and atomic enMAr{; B - 1, 2,44 « Binee u(g) >0, 

04 ";,4 uw(E N 2a) >0 for at least one value of n =0, isos & 

Firat take the case when u(E n A)fi,) > 0 for some n' # 0. 
”'”“I 

_:DF(Q’ Then, for jany a € A+ for which @F(a éE(a)) exists, we have 

.ébi} ; --er 135 . fib s «,f,) 

e gla) = D £(a,82(a)) = E}E(e,éfi(a)) 7( D f(a,8°(a)) = h(a), 

from the definitions of these functions. (If 62(a) = c(E_), the 

i common value in (55) is =w; if sk?,(e) = b}ia), the common value 

is 4m). ‘ 
Now Df(a,8°(a)), as a function of 2 with domain E, is 

measurable :fz,a,ince it is the limit of a sequence of measurable 

functions gy {given by (21)) ’j;@r hy/i given by (:22):[1;\ as y; + 0 

through pos:.ts.ve values. Also A ;\\:hence E N Ay is an atom. 

Invoking the lemma (9), we find tha“\ t\| Df (a, ;(a)):thence g and 

-)\is equal to a const:ant, p_,, almost everywhere on E n A O >>
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It follows that 

ess sup (g|A,) = ess inf (h|A ,) = p° 

Using the abbreviations ¢” = ess ?“‘_“_P,..‘(?Mn) ) B2 = ess énf'“(hlénh 
i 

it follows from (20) that, for all ny # {1;} n, # n', 
55 | N s S o] 

) B n' gi \ !g,w ($74.56) 
g L Wk = pl wm g% £ By, {5%) 

80 that 
n n (= %5 

sup g = p® = inf h°, 57 

and (54) is true almost everywhere. 

Next take the ease when u(E fl*éb) >0, For any ?,5,39 

for which Df(a,82(a)) exists we have 

3 \f_: .53 & 

g(a) > pf(a,8°(a)) > h(a). - ~+58) 

for, on Ag, g is the supremum of the functions gy while Df ds o 

. is their limit a_swa and h is the infimum of the functions ) 
| 2 (68 by while Df is again their limit as yp0. It follows from (§9) 
that g_g > I}_O.. But from the preceding lemma 46), ‘ the opposite 

inequality is also true, so gQ = hQ (= p®, say). Itfihen 

follows from (38) that Df (a,&" (a)) = pl‘ almost everywhere on 

Ay 
Also, the same argument (56) establishes (57) again. 

Hence (57) is established in all cases for a unique number pz, 

and (54) is true for this number. The arguments just given 

show that Df(a,8°(a)) is equal to this numfi‘er_‘p& almost everyS 

where on En A for all n = 0, 1,..., hence almost everywhere
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ffgf; on E. K" (i 

Note that the anomalous atom case cannot arise here. It 

    

is precluded by the condition of differentiability on a set of 

positive measure. This theorem yields a thi;d simple 

sufficient condition for p® to be finite,«egggiggxthat there be 

a set of positive measure on which Df(a,8°(a)) exists and is 

finite. ¥or Df(a,82(a)) = P2 almost everywhere, and the 

condition just given insures that p? is finite. 

;”fl_,_—~—;9 Finally, we want to show that p_ acts as a shadow prices 

¥ , thet-&s, that 62 (a) maximizes 

(’.5’, ¥, <49 

f(a,x) - p°x 59 

  

over all real x satisfying b(a) £ x g;?(e)flAfer almost all 

a € A. Here (59) may be interpretea as giving the "payoff 

deneity“ f(a,x) minus the "rescfiree coetf,'g%§* 

We make a special convention ee to the meaning of 

u“maximizaticn" in case pi ig infinite in (59). Namely, if 

gfi, = -», then "maximizing" w mean%’)t"aking X as large as 

possible, so that x = c(a) is the maximizer of (59) (if c(a) 

is finite). And if gz = o, thenh§wmust be taken as small as 

possible, so that, if b(a) is finite, then x = b(a) is the 

maximizer, 

For finite p2, the condition that 6°(a) maximize (59) will 

be recognized as the suffieient condition for optimality given 
(3.2 

o, by 12}, of—section-3, specialized to the particular feasibility 

o~ 

conditions of the problem we are studying in this sectian;@//-:§;~
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3.3 
This suggests the qguestion: floes {2) ef-sectien=3 still 

suffice for "beetness“ if the p® appearing in it is infinite, 

and we interpreefikmaximizationfimEccording to the convention 

just mentioned? The answer is yes, for any arbitrary 

feasibility conditions that include 

\5’3 20 L (.‘5'-4'-(0‘3) 

6,\6.11 = 0#;%\ '(%6% 

A 

wa , 
-Tet-us demonstrate this. The feasible set, M. consists of 

o 
measurable functions Sz:é + reals, all of which satisfy (60). 

The sufficient condition is thatfixfor all §, 

’ (50 %61) 
£(a,82(a)) -~ p282(a) > £(a,s(a)) ~ p°s(a) ~{61) 

for almost all a € A. Using our convention, if p? = += , (61) 

reduces to 
; {y;f;q,_{‘ 22) 

82(a) < §(a)e 162) 

But (60) implies that 

ol 2° jo ¥ (:3 ol ) 

A K By 

and this together with (62) means that 6 = §° almost everywhere. 

Hence 82 is best because the feasible set is trivial:’;é@afit- 

,éfem—afl&i-eeta*:fif is the only feasible solution. éimilarly, 

if p? = ~», (61l) reduces to (62) reversed, and the same 

argument applies. This completes the demonstration. 

Nw;iw%e are thus on the verge of establishing a necessary and 

sufficient condition for optimality. One consequence of this
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will be that “"unsurpassed" and "best"™ solutions coincide for 

this problem. PFor, starting from an unsurpassed 5€fiwe derive 

a condition &heeh suffices for §2 to be best, 

Now to establish the shadow price condition (59)} For 

this we need an extra condition on the atoms of y. The trouble 

is that g and E_axe defined on the atoms in such a way that 

they depend only on the immediate neighbexhocd of 82(a), wherees 

(59) asserts something about the entire xenge [b(a), cla)l. 

The assumption of eeneavifiz will bridgerthe gap. | 

We define thie{abetraetly. Let £ be a real-valued 

function whose domain is a real integeal Iy,gji(findpoints may or 

may not be included, and b =c is peeeiblel; £ is said to be 

concave iff, for any numbers x, y in its domain, and any number 

t in the interval [0,1], we have 4 

4 

& 
’if g(;{}z + (1-t)y) gtr;flx) + (=t)£(y) l é 

A concave function may he,ehown tc be continuous, except 

possibly at the endpoints of ies domain, where a "sudden" down=' 

ward jump is possible. Thus e concave function (defined on an 

interval) is always ;gggg‘gggéwccntinuous. We also state 

without proof the following Qell»knewa facts about concave 

functlanezioq s /A 

    

cm\ Z £ix+y;) "‘,f(,‘:‘_‘? X e £(x) - £(x-y,) (7 4 Lo 

3 S T 10400 s 220 5 ) ~64)- 
Y



464 

X% 30 

for any poeitive)b;eal’yl, Yo and real x such that X = Yyr X, 

and x + yJ are in the domain of £. (Our special conventions 

concerning D and E" insure that (64) holds even if x is an 

endpoint of the domain,) 

{ et us return to the problem in hand., In stating that 

f(a,*) is concave, we follow our standing convention of taking 

the domain of this function to be restricted to [bfa), c(a)l, 

(5(§) to be included iff it is finite, and similarly for g{§)). 

The following theorem may be taken to be the main result 

of this section. 

  

\ Ry 1 m: Let (2,2,u) be a measure space, with u sigma-finite; 
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Theorem 

Fnad ~\ § 

let f:va X reals - reale,Kp, c:Cfiv* extended reals be 

measurable; let f(a,*) be lower semitcontinuous on the nons 

atomic part of A, and concave on the rest of A; let &% be 

feasible for the problem of maximizing 

Qj{%éfifi 

].fi(e,s(e) u(da) {65) 

over measurable functions 6::é > realsjwhich satisfy ‘ 

“ Govved 
b<s<c £66) 

G B3 Ewen) 
’ ] ek B 67) 

A 

{ 
i " Then the following conditions are logically equivalent: 

,g;g£) 82 is unsurpassed for this problem; 

(ii) &2 is best for this problem;
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TH(iii) 'there is an extended real number% p2, and a null set E, 

‘sueh that §°(a) maximizes 
1 
A 

& +i6%) 
£(a,x) - pox : o8 

over all real X in the closed interval [b(a), c(a)]l, for all 

a g A\E,   - >3 . 

      

$ 
i 
& 
1 

-zntfzi‘fz';":_'?roefs (iid) impli.ee (ii) is already contained in the sufficiency 
: @ ,@3) 
0 theorem m-\fié} of-section—3, plus the argument of (61})= (éB). 

M»LL&.@\k 

{(3i) implies (i) by definition. It remains to show that (i) 

implies (iii). ' 
Let {Ae, 1,..,} be a &eeompesition, so that p is non% 

atomic and £ gfi.ower semi~continuous on A, while u is atomic and 
o 

f concave on each Ay h £0." 

-Ftrs-g»we show ;.hetz concavity precludes the occurrence of 

i fomalons s i (M), Sloges oy sven B Flost ot el 
9|3, is measurable:(g is given by (16),’ (13;)Wm 

(21) is uen'-inereasing in Yo for fixed a ¢ A, Hence the 

lower right derivate D f(a,&“(a)), which is g(a), is the limit 

of any sequence g (a) e Yy going to zero through positive 

values. §lAn isgi@g the limit of a sequence of measurable 

functions gZ !Afi,t and so is itself measurable. A similar 

argument establishes the measurability of h!A (fl ’i?fi given by 

(17§ oy T : 

The lemma (9) then implies that g and h are constant 

almost everywhere on An. These constants must equal gn ¢ the



) 
A 

et 
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essential supremum °fe§l§n' ané(gg, the essentialvinfimum of 

hla,. 
" There is a point a € A such that g(g) = gf and_y(e) a‘§§, 

since these relations hold ;imost everywhere on<§n, and 

u(a)) > 0. But g(a) é h(a) equal D_£(a,é2(a)) and 

E~§}g,52(e))fi #sspectively. (éiyxmifiale,;phengimplias that 3 ] ) e 
g? < hn 

Thishtrue for every n = 1, 2,... . We also have qa g*hg 
B4 B 

from (46), |and g“l Qfiz for all n,; # n,, from (20), Hence 

sup gw g_inf_h? (botfi taken over all m, n = 0, 1.,.), and (46) 

' is true almost everywhere, There is no anomalous atom. 

Thus there is an extended real number, p°, such that 

g(a) < p2 < hia) 469) 

for almost all a ¢ A. We’ now show that this‘gfi satisfies the 

condition (iii) almost eéerywhere. 

q Firetjsuppose pe = wwm, Then g = -» almost everywhere, 

from (69). Let g(a) = - fcr some a ¢ A\Ae lf(e,is is theni gfge 

concave, and it fallews that there cannot be any positive ¥ 

satisfying (64), le t, lThat is, 62(a) is at the upper limit: 

6‘(a) = c(a). If g(e) = -x for seme(a in the non<4atomic part 

o’ then it follows from the definition of g, (16), that §°(a) 

is again at the upper limit., Thus §° = ¢ almost everywhere, 

But, by our convention for p2 infinite, this is precisely the 

conditien that 82 maximize (68) for@gi = =, almost everywhere. 

Hence (iii) is established in this case.
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Next, suppose p° = oo, Then_E = +» almost everywhere. 

An argument similar to»tfiemene just given shows that 62 = b 

almost everywhere, which is the condition for éiié) to be 

satisfied when p2 = 4w, 

It remains to establish (iii) when‘giflis finite. In this 

case, the condition that J2(a) maximize (68) is equivalent to 

the following double inequality: e 

,\ 17 4, { Ui = £(a,8%(a) +y,) -£(a,8%(a)) o f(a:f3°(a)) - £(a,82(a)-y,) & 470 
¥y st Lol Jase 2 Jm 

; - | 
which must hold for all positive y; such that 62(a) ¢ ¥, g cla), '~ 

1S 

  

  

and for all positive ¥, such that fizie) . ¥y 3{?{5). We now 

show that (69) impliee (70). 1If a¢ g\gc, then f(a,*) is ccn? F 

cave, and the implication follows at once from (64). 

%iz}z ' Finally, let a¢ A s g(a) is defined by (16) as the 

supremum of the 1e£t-%§£§g—£n (70), as ¥y varies over the o open 

interval (0, c(a) - 82(a)). Slmilarly, h(a) is, by (17), the 

infimum of the right te#mgkéé-(7d), as y, ranges-over 

(8,6“{§) - b(e))‘ (69) then implies that (70) holds for all 

interior points ef [b(a), e(e)]. But it must then hold for 

the endpoints as wellimheeausefif(a;'), being lower semi- 

continuous, makes no suddenvepwara jump at b(a) or c(a). This 

establishes the implieation in general. 

Since (69) holds for almost all a ¢ A, so does (70). _This 3 

i completes the proof that condition (i) implies cendition (fii) l%flx T
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\;lféee, under the special assumptions made concerning f, a 

necessary and sufficient condition thei feasible 6° be ung 

surpassed, or best, for the problem ef maximizing (65) subject 

to (€6) and (67), is that ahasne.atfie a "shadow price”, p2, L 

under which (except for a null setj, for each "project" a ¢ A 

separately, 82(a) is chosen to maflimize the "payoff" f(a,x), 

net of the "resource cost" pox. f 

This resule_is important. ffirst of—adl, it suggests an 

efficient method for finding afi optimal solution (if there is 

one). Namely, choose an arbitrary number P and, for each 

ace¢ A, choose 6-(&) to maximize f(L,x) =~ px over the feasible 

interval [b(a), c(a)l, dieregarding the tctaq resource 

constraint (67). If, by chénce, (67) is satisfied by this 

process, we have found an eptimal solution. If not, adjust 
§ : 
S 
A 
[ 

g How should p be adjg%ted? It is easily seen from (68) 

B 

i 
ptoa new-valueflyg'%“and;%ry again. 

that the maximizing valqe of x is a negiincreasing function of 

P (We are implicitly éssuming, for simplicity, that there is 

a unique maximizer of §€8) for each p and a € A). Hence, if 

total resource aveila@élity is exceeded by the trial solution, 

raise the tentative efiadow pricef p, and lower it in the 

opposite case, Thisi;imple monotonic relation between p and 

total resource demand makes it easy to "zero in"™ on the proper 

P (againh assuming fihat there is an optimal solution). The 

necessity of the shedow price condition also guarantees that 

we will not overloo& the optimal solution by this procedure.
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| 

Furthermore, the shadow price cofifiition suggests 

institutional arrangements for arrivieg at an optimal solution. 

For example, if one overall organizetion is responsible for 

this allocation, separate divisiane’might be responsible for 

separate subsets of pfibjeats ae 5; The *head office"umight 

dictate the tentative shadow pride to the divisions, note the 

consequent resource demand, adju&t the price accordingly, etcfiv/ 

Going a step further, the free market itself is an institutional 

mechanism for carrying out the;price—adjustment process 

discussed above. 

\At> Two special cases in which the results of the preceding 

theorem are valid may be noted. The first is when u is non& 

atonic (as well as a&gma~£inite), and f£(a,*) is lower semis 

continuous for all a ¢ A., ‘The second is when f(a,+) is concave 

for all a ¢ A (with no aséumptiene on u other than aigme- 

finiteness). The valldifiy of the first case is obvious: gince 

4 has no atomic part, nd concavity assumption is needed. The 

validity of the second iellows from the fact that a concave 

function is lower sem;écentinuous, so0 that if g(a,') is concave 

everywhere the premisés of the theorem are certainly fulfilled. 

Finally, we rece%l that the condition (67) is much less 

narrow than it appeais. We can in—faet formulate an apparently 

much more general th;oremtwhich falls out as an immediate 

corollarys
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cp—| Theorem: ILet all the premises of the preeeding theorem be ful- 
wb 

filled, lexccpt that the £¢as1bility eénditi.on (67) is replaced 

by ' 

i flwq} 

e 1S 

(Here x. and L°® are two extended t:bal numhetm f § du is still 

required t:o\ be finite, howmmx!) 5 ‘l'lmn the fellowing are equi~ 

  

# yalent: 

/,g' (i) | 8° is unsurpassed for this problemn; 

(ii) 6% is best for this prablem* 

faii) there is an extended mal number, p°®, and a null set E, 

such that 82 (a) maximizes 

f(a.:gzs - pox 

over all real x in the elesad intnwal bla), c(a)] . for all 

a & A\E. 'Furthemore. it J’¥ 88du > L . ’t\:hen p2 20, ané if 

‘} s!du < Le, pe < o. 

Preof: (ii) implies (1) b‘ definition, ang (uu) impiigg (ii) by 
Hw;. 

: suffieieney theorem aiready given (2f. (3)+ {fi i autttonSh, 

To show that (x) implies (iii) we add a point 2, o A and 

transform this prohlex;\ into one of the preceding type by the 

recipe given -abeve itt seei:ion 2. 

The \;ingleton set {z } is an atom, since u' {z } =1> 0. 

f(z %) iA identically zero, and this is a concave function 2 

S0 the premises are: ‘fulfilled on A'= Ay {z }. By the
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preceding theorem, -there exists a number; p!, such that 

§2' (a') maximizes (71), for almost all a' € A'. 1In particular, 
14 

i it must ‘maximize (71) for a' = za, sinae u{z } >0, Since 

ggzo, ) is i&eflficelly zero, (71) redeces to:~ 

{ = § CATES 

./ - 
o ) / 

& § { ; J 

;§;§Lf \ Now, if p2 > 0, then the maximizer of (72) is as small as 

; possible: 6°'(z ) = b'(z )s Butgirecalling the translation 
i (24 ) o 
i recipe, ¢$4fe£~eeet&ene24 this is simplyf{" 

'!C’ e 54/; ' ( &%) 

% [ §9du = ~Lo2. i 
NN § 

¢ . ¢ 

| Similarly, if p2 < 0, then we muat have 6‘(2 ) = ¢! (2 ); 

    

@q)ajamy . , 
i which is to say, bfi ) 0?‘W “T*””“““““i”' ’ 

? AP W (£,4.94) 
: - ] _fig‘u L mL - <74) 

A 

(3‘ ) LAANAG ‘ adis 

(73) and (74) give the two extra conditions on p..,L?F?ZDfi" 

ffl<fifi” § 
; wgpw*“”f Thus, if 6° is optimal for this more general problem, we 

* get a shadow price condition of the same type as above, with an 
D ¥y 

extra sign condition on 2,‘depen&ing on where(!aééflfidu is 
g - 

located in the interval (L ,Lwl The /economic interpretation 

of these sign conditions is the same as in section 3,



77N 

rWP\’ 5.5. Existence of Feasible Solutions 

472 
.
 

Up—to now we have been examining conditions which imply, 

or are implied by, the fact that a given feasible solution &% 

is optimal. We now take up a different task, that‘cf proving 

0 + ) ) thet an optimal solution exists for a given problem. First 
VA 
/L /« n we start with the simpler task (éimpler,_shateesevfor a given 

Qyj problem) of proving-that at least one feasible solution exists, 

Even this is by no means trivial for the problem with which we 
(4 .66) L, (4 

have been dealing, characterized by constraints erfifl aéd 9649 O 

  

(%rfw'fiheorems Let (Ap :u) be a measure space, with yu s&gmaufinite- 

let b, c:A + extended reals be measurable functions., The 

followxng conditions are lcgically equivalent: 

_D ! % 
B /Qi) There exists a measurable function §:A + reals|such that 

1L = W) 

A b8 gem 2 

ok ,—"f 20 | L g e ) 

Ao ‘ | (5. <. 2) 

: Ifid"“% 12) 
Al 

€ (ii) b<c b<» ¢ > ==, and > 

| o (20 ] : g 

6 e SRR Ly (6 
#@fi“ioij,cw* 13) 
[ 1A A 
s 

»”¢%~4jprcof: That (r) impliea (:1) is obvioue. Conversely, assume 

(i}) / First, because M is sigma finite,fl%here.exisfia a 

  

ositive measurable function k:A + reals such that pesjsive i A
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gr.gfw; 
| k,du > 0 X4 

IA —KEH 2 ‘:K 

1 

  

If /«u 0, take k = 1 everywhere. Otherwise, let 

i?l’ Gz...;} be a countable measurable partltion w1th 

o > u(qn) > 0 for all n. On G let k be equal.to the constant 

l/iggufgni}. This function fulfils the atarea conditions, 

Nex;(,define the median function,f@&ias the one whieh 

picks the middle in size order of thraefextended real numberss 

thus m(3, =2, ®) = 3, n(-w,®, 17) = 17. etc, 

Nexr* for each real number x, define the function 

:A + extended reals by 
o i & 

*x 

;i»éf_zgx (a) = m(b (_gf. cla) ,xk(a)) .- 
¥ 

4,}* 

- Because b < ¢, one gindq that 

/ (6:5:6) 
B max [b, min(g; xk)] = min[max(b, xk), c].:~ {5) 

fi '''''' 
émfl'g) 

|y ie thus meaeurable, and also xeal=valued, since b(a) 

and c(a) are nevgr both infinite of the same sign. We now 

1 
e 

show that, if '53;: 
i 
i 

15 i 

oo 
f:? i 

4 - I A‘ 

:’20; 

7 s 
(5,540 

b,du < 0 < I LK ‘6> 
A 

  

s?{{ 

/ 

then m_ will be a feasible solution for (1) and (2) fcr some 

real number x.'“ 

    

| B N 1€y 23 s e 
d ~4If (6) is false, then either |f, b.du = 0, or fA c, dn = 0, 
i - o 
i In either case we get an immediate feasible solution. In the 

L— g
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first case, fcrieaamp%e, set §(a) = b(a) whenever b(a) > =, 

an@,en the null set where b = =», choose § = min[c,fi]. Hence | 
g finding a feasible solution in case (6) will prave the 

§ theorem) . 4 
| 32 o 
! First of all, by (S), ' 4 

D 14 

Next we show that % 

——— 

g - o 
A My n du exis@fiZand is finite for all 

. 

  

& 
real x. We have ; & 

-(c” + |xk|) < min(c, xk) < m, gfmax(p, xk) < b+ |xk] .. = m—— - g — ‘f; Mo e T et «\ 

3_‘{: 

& 

4 [ il s s 11 
Also, _5[ | (2" + |k | )au > 5, anti.] b + ‘xk[)'\du Wy 

Al 5 A . 
& 

  

'becaua;ch (3) and Qé), Which shows that} mfigu is finite. 
’M DB - | } W 

Next we show tharflf Km Qu, as a function of xl)is 

continuous. Leé? 1; Xy4ee+ be a sequence, either increasing 

or decreasing, wh?ee limit is the real number X. By the 

% monotone convergénce theorem we have 
70 | 22 el 

L 12> | el fa 
eaf 

  

j' 

proving centinuity. 
] E,@“fi’ ;,%Wawaf; 
g s xfgxl,rxz,... is a sequence increasing to +=, then m, 

  

e 

incredses to ¢, so 

1



  

§lim [ ‘ du = I [e,du > 0. 
iy a"*" | 1€ 

e 
—
—
—
—
—
—
 

ny 

If %5/ X594+ is a sequence decreasing to -w, then mx 

decreases to b, so i S
 
A
 

220 : pr t.‘{:) @,e?} k,:}'{w 

;um ~du m‘l Ib du < oe 
i 

§ { =y | ] 
f 

;*c! @‘3" 

  

| 

(Both these reauits are agaia byéfianctone convergence, 

The inequalities are from @y g~ S < o 
»f’ / 

IA! ndu is positive; 

and for auffi&}ently small real &, it is negative. Since it 
25 ctinek wf 

i? contlnucus, there must the@f be an x~-value for which, w 284 e 

f m »du = 0, and this m, ie,feaaib1e¢ Hence (11{7implies 

% 
i 

£ 
i 

z 
§ 
i 

i 
i 
i 

i 
£ 
i 

  

Hence for sufficiently large real Xy 

: fi; m LH‘*" ox 

  

As usual, this thedrem has an immediate generalization@ 

QQ; jTheorem: Let (A, P M) be a measure spacefi\with u s&gmaufinite, 

  

N let b,c:a » extenflea reals be measurable, and let Lye L2 be 

Fykzgaj = tgg extended r%zéflnumbera, The following are equivalent. 

A 4 (_iif “There -ea-a-ees & measurable function S $A -9 reals, euch that 
V t;‘? i 
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This is an easy corollary of the preceding theorem, by 

the now familiar procedure of transforming this problem into 

one for which (2) holds. We leave the details as an exercise, 

(4*) 5.6, Existence_of Optimal Solutions 

:r"” 

We now come to the much more difficulé problem of proving 

the existence of optimal solutions. A number of assumptions 

will be made which are more reairictive than those made ap—%e 

: now, In particular, the bounding fanctiona,LQ andwcggwill 

yr have finite integrals, and the paynrf functions §(§.'f will be 

continuous .(as usual, this referefto the interval [b(a), g(g}li: 

Even so, much work is involved, _ 

We shall first prove existence under the assumption that 

u is nefl&?temic. The baaic procedure is to fina‘functions 

satisfying the sufficient condition for eptimalitytkand then 

show that one erutneee is feasiblefi Next we go to the 

opposite case where uis ségma-atcmic, using an entirely 

different procednre. Finally, we combine these results to 

prove exintence under general (a*qmawfinite) U 

Standard ordering of pseudomeasures is still used for 

oxdering afiilitiea, and existence is proved for best solutions, 

= 

(# Theorem: Let (A,Z,1) be a measure space, with u sigma~finite 

(:) and non;atomic; let b,c:A + reals, and £3:A x reals - reals, be 

measfirable; let g(a,‘) be continuous for all a€ A Assume 

J
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b < ¢, and let L be a real number such that 

%3 & ;,‘3 | ,‘3 i ;':3 ejf - 
! i ¢ | | 4 (s 6.1) 

=w < | | bady L <Ll cxdu € o &) 

U N S 

5';*“ Then the prcblenia #aximize % 

\\ [};‘g. 

I,}g (a,8 (a))u(da) 

~ over measurable functions §:A » reafe, subject to 

& 6. 
b <8 <cy ~2)- 

-and=to ‘ {20 $ 2 

| &.6.% 
{ 4@ = L, <{3) 

has a beet solution. 

wa””’/”;roofs For each a ¢ A. and each extended real number P let 

? 
i 
% 

{ 
| 
i 
i 
§: 

— ) 
O AN 

be the set of real numbers x whieh maximize the 
sy a ’p 

expression ;’ : . A 

¢ (Seed) 

9 = RN £(a,x) -px () 

- .f e o . 
} 

31&“’} ” 

   
~"over the clcaéd interval ([b(a), c(a)l. "By our convention 

concernlng.infinxte p-values, we have E’i“ = (b(a)}, and 

-Ea = {c(a)}. Since (4) is contintous in x (for finite P 

and theflmaximization is over a closed bounded interval, the 

eets%§é,p are in all cases nonrempty, clcsed}and bounded. 

Henc§¢rhey themselves have a minimum value and a maximum value 

fogfall (a!g). Define the functions B,Y:A x extended reals -+ 

reals by
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| § b 
8(a,p) = min E fi%{rw 

. 

v(a,p) = max E_ . Y e &rP 

Let =» < p, < p, < @, We have the following chain of 

relations: 

p 

an,
 

c(a) agv(a,m) = B(a,-=) > y(a,p,) -?‘-,:319'5’13 & 

2 T(acpz) 2 Bla,py) > Y@’?); B(a,») = b(a) . 

; The equalities in (6) follow figémmrayw = {b(ai}i 

-gahnw’“ {g(g)}. The middle inequaiity in (6) is the only one 

that needs proving. in—iaeee irem the definition of E 

have 
—ap " 

AR ‘ 

£la,Bia,py)) - pyBlaspy) > £la,v(a,p,)) = pyy(apy), 
and ' 

Adding these two inefinalitiee and simplifying, we get 

3(a,pl) > Y{a,pg).; This establishes (6). Thus, for fixed 

a¢€a, gla,*) an& v(a,*) are nonnincreasing functicns, 

Nextfikwe ahcw that y(a,+) is continuous from the left; 

Ehatflra, if 91' Poress is an increasing sequence whose limit 

is By (possibly +®) , then the limit of y(a,pn) is Y(a,p ). 

First letfipQ be finite. The sequence ¥ Y(a,pn)xzs ncnmfl 

increasing, hence it has a limit Tk Y(a,p ) %eJmuat show 

-that thas is an equality, and to éo this, it snffices to prove 

tharflya maximizes (4), since Y‘?i?e) is the largest number 

A
T
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7 (._& x‘-,,’é;‘ 

vwhiech does so. g 

Now (4) is jointly continuous in X and p (a ¢ g}isifiired), 

hence - > 

Lo £(a,y) ] = ) o lim a - f(a - DA = e¥n) = Pp¥y Yo ngc - 

For any x € [b(a), e(a)] we have f(a y ) - p y > £(a,x) - p X, 

s:i.::m::.e-z'_;1 maximizesfi?. I{ence,;\hy (7) . 

12 24, ‘ 3 

£la,y) = poy, 3:,‘15..m§ [£(a,x) = enxl = f(a,x) - p_x. 
e ! *&:_4 

& 
& 

af 

Thus Pa maximizes (4) for p ané s SO Y(a,p} is continuous from 
e g 

the lefh for any finite p. 
& 

Next let Po ™ ¥ Sfince f(a,*) is continuous on the closed 

bounded interval tb(a), c(a}], it has a finite upper bound, N, 

Then for any c(a) > x 2 b(a) + ¢, we have 

p{x - b(a)] a pa >N = f(a,b(a)) f(a ,x) - f(a,b(a)), 

80 that f 
i 

é
 

: 

,\
}“

 

/ flaba) - pbia) > e - px., TRPE X 

;14128)!shcwéj;hat no auch X can maximize (4), hence y(a,p) < 

E(a) ffi. Thus if Pye Porese increases without bound, y (a{pfi) 

apprcaches b(a) = y(a,»). This proves that v(a,») is S 

ecnninuoue from the left. A similar argument shows that 

» fiia.-) is continuous from the right.
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% 

L? Nextfi we show that, for fixedgg, Y(a,n) is a meaenrable 

function of a. We split A into two measurable piecéa and 

consider each separately. On the set {a|b(a) ,zc(a)}. Y(*,p) = 

b = ¢ for any p, and so is measurable. 3 f 

fiew-coneider the complementary set E # {a{b(a) < c(a)}. 

To show that Y(-,p) is measurable, it aefficee to show that 

the sets E n {alv(a,p) < y} are all measurable as y ranges over 

the rational numbers. Mow, for figed 8y Po (4) is a continuous, 

hence lower semifcontinnous, fungéion of x. Hence its 

supremum on any interval [b,c] (with or without the endpoints, 

and b < ¢) equals its supremfim over the rational numbers on 

':am(*é‘ = § 

that*intervé‘k One then verifies that, for any rational y, 

v-'%i 

  

EN {a|y(a,p) <y} = }g ; ‘ 706 
A2 & { 24 230, N~ e 

&egg{f(a x)*- px|x rational, x < y} § T 4ed 
E N | 
= /> sup{g(a,x) - px|x rational, x > y}) o | v A | 

  

£ 

In (%) a and p are held fixed, and the two sups are taken 

over x as lndicated. For this formula only, we define f(a,x) 

to be - ifi;fiqis not in the closed interval [b(a), c(a)], and 

note that!ffor fixed X, the function g(',r) thus defined is 

meaaurabie.‘ In verifying (9) there are five cases to consider, 

depen@ing on whetherhg is in the interval :P(a), c(a)], at an 

endpoint, or on either side of it. the—thatvghie interval is 

ncfi%degenerate for a e{a, hencefalways contains a rational 

pcint. We omit details.
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Since the rational numbers are countable, the two sups 

in (9) are over a countable number of measurable funetione, 

hence are themselves measurable functions of a on E (p,y fixed), 

Hence the right side of (9) is a measurable setfi Thie proves 

Y(',p) is measurable, A similar argument prgfiea that B8(+,p) 
o 

4  is measurable., n # fg .ii;amw-ww' 
"‘%% iz‘ z& ffp ;‘%’ 'Y Next, consider the integral UA_Y(agé)u(da) as a function 

— 

of P+ For an§zwf < ip £ = this ia welkidefinedrxan& in fact 

finite, by (6) and (1). It is alec;nogiincreaaing in_g, since 

YTa;fi) is nonwincreasing for each’a € A. Using the monotone 
= 

convergence gheorem, it follows from the 1eft~1@ntinuity of 
o f S 

y(a,*) that gyla,~Au(da) is aleo leftmccnfiinnoue. (?ake af o R 
sequence pl, Porese increasing tp Po 7 then y(a,p ) + Y(a,p ) 

;7 313 
g left:kontinuitY' mcncaene convergence then yielda 

if }v(a.p ),\u(da) > IA (Bopg) u@a} )-\ 
) & 

5 A similar argumegt shows that}iaifi(a.~)u(da) is ffinite, 
L...—- nonwincreaaing, and right~ccntinunus.§ 

We are now refidy to construct the optimal solution., Let 
a% i g J 

£ i""’e 

(ALY 
E; = eup{, Y(aep);u (da) > L} £ by 

    

w e
 a @ “
 Y(a,'%u(da) is continuous from the left, it - \ S— 

‘ a?\'j | 

{ . st z§< e el i | I 7(5.19")/;{4(‘3?’ 2 L, ' 133)- 

follows thar 

T
 

EN
 

SR
 

s
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} ) & &4t ; 

if p® > ~o, (11) is also true if pi = - by (6) and (1). 

Next? we show that 
Pre 2 

  

© 

J B(a,p®)u(da) < L.~ 
a b 
- 

If p® = +», then (12) follows from (&) and (1). I§f§° < o, 

then, for every p > p% we have 

qfi 79 | a4 10 y 

u B (a,p)u(da) 3.[ v(a,p)flu (da) & 1., >- 
{ 

g 
o i 

: 3§3 # 
Alz) then follows from the rightwcontinuity of ffom (£0). 

Il 

f B(a.')u(da). : 

% This p° turns out to be the shadow price of the optimal 

solution. 3 

Now consider the indegfnite integral 

[ tridiee) - stapr ., 

R
S
 e

 

This is finite. Al@g, since u is non}atcmic, (13) is a nony 

atomic measure. génca it takes on every value between 0 and 

its value on A, inclusive of these bounds. 
Q 

W G iGiu) 
L~ I B (a,p?)u(da) 34) | g 

i 
I 

Now 

e
 
—
 

  
5 lies betWeen these bounds, from (11) and (12). Hence there is 

a measurable set F such that {14) equals the value of (13) at 

F, | This yields
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(6€.15 ) 

[ y(a,p?)u(da) + I B(a.pf)u(da) = L. 115) 
- A\F) N 

7‘ / 
We now claim that the function 8°:A + reals uhieh,coincidee' 

e 

e
 

—
—
—
—
—
—
 

q
m
—
 

  
with Y(-,P_) on F, and with B(+, p°) on A\?, is best. For,;l 

N 

it is measurable and satisfies (2), since both Y(-,g‘) and 

B(+, p°) satisfy these conditions. Also ir:satisfies (B)Zbe 

(15). Hence 82 is feasible. Also it satisfies the sufficient 

condition for "bestnessfk;since bothflyfa,?S) and 8(a,p®) 

maximize (4) for P = p‘. ,ka{fjfiiyf 
& 5   

[ 
tj:jf:;%:figy We now remove the condition that u is nonfatomic. In its 

2 -place, however, we are obliged to add a further condition on 

f,-namo&y that lg(e,§)|<ifgga), where 6 is some function with 

a finite integral. One consequenoe of this new ‘condition may 

be noted: It guarantees that the utility function is a 

finite signed measure for all feasible 6. Hence standard 

ordering of pseuaomeasures reduces to the ordinary comparison 

of definite integrals, and the distinction between "best" and 

"unsurpaasedflfAisappears. To emphasize this point, we shaidil 

write the néility functions in the following theorem and proof 

in the fgrm of definite integrals. 

  

fifiL, Theorem;‘ Let (A,IL,u) be a measure space, with uAsigmawfinite* 

'Ig let bpe-A + reals, and fiA x reals + reals, be measurable; fel 

7 

3 

LV 
Y 

gga,-) be continuous for all a ¢ A, Assume b <c, and



[ QO . (g b 0%) 
| o <;] bans<os| canca e g I A - 

J gos / | Also a;sgme there—is a measurable function @:A - reale such g P> | > i 

9:5; that f |4, du is finite, and 
: ‘Jg = : 

(5.6 ) 
[£(a,x)| < 8(a),~ +h 

for all x ¢ [b(a), c(a)]l, a ¢ A. 

Then the problem@‘kMaximize 

Wir | & { (S k.1 € 
1 1 i o 

At 02 o 

=5 [ £(a,8(a))u(da) €18) [ AL 4 

over measurable functions 62§f+_reala, subject to 

b/ 8 < ¢/ £19). 

ke ?33 ,!5,9 | : iy )€ B (2,6, 2 ] §,du =0, (20) 
Q« :{’,, { e 

. . has best solution./ 
e, :,t'i' 
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o 

    

Mafl"““f””_;:;ofz This proo£ is divided into two parts. In the first, we F 

s
 

  

- 

  

assume that u is-aégmanatomics thae~ie, there—is a countable 

measurable Qartition {Al, Agsees} such that u restricted to 

each a in atomic. 

bounfied on each A 5 

Since p is also aigma»finite, it must be 

Firat Jwe ahow that total utility depends only on how mass 

is distributed among the atoms, and, given this, is 

independent of how mass is dietributed within the atoms., That 

is, suppose é and 62 are two densities such that



| ‘¢a zfif; o 2V s 

! 144 % 6}-;‘3'&1 = !A 152"‘&1 = ) o~ ‘ffl-)“ 

| e d 
| eay,\for alln=1, 2,,,. . Then ' 
{ f 2‘\; \Q‘a :R 

(e 4 g =y 
§ {%} i : ! (5l 22 
g J §4‘5(51 81(a))u(da) = ;Lif(?'%‘?”fl(fié) (22) 
i \ AT ¢ 
1-2‘ 

E 
3 ¥ 

  

G, . ? To show this, we invoke the lemma, 49} of ehe—ereeeding 

seeeieea stating that 61 and 62 must each be equal to constants 

almost everywhere on any atom: say 61 = dl ¢ 6 = d2 on A 

almost everywhere. From (21) we obtain dl u(A ) QZQZQu(A ) = A 
Kr‘ which means that dip = dz for all n. Hence {' P ai%ost 

K™ 

everywhere, so that (£2) is of-eourse correct. Thus utility 

ol depends only on the sequence (Xl.,lz,...),_and is in fact 

% given by ' 

' 90 *+ 9,05 +ees e g 
1 where e P _ \W/\,}f’[ ‘{i S 

In ) = [An%f(a, /u 8 (@) an 

  

   

  

3&515 reduces’the problem to two simpler issues. First, 

for what sequences (Al, Az,...) are there feasible densities 

é such that (?1) is satisfied for all n=1, 2,...? Second, 

among theae:feasible sequences is there one that maximizes 

(23)2 
g 

i 
i The first question is easily answered. Integrating the 

constraint (19) over A , we obtain 
N — 

e
 

Y 
A T
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L
™
,
 

.
 

- 
e 

u U 

< < & -(-2-5-)-' J 
n —— 

’flfflwfiflwflwfllzq i (¢ ws f 
or all n, where b = /gx\b \Qu, c, = f%h ¢, du. Furthfigmgre' 

k 

,,../ { 

w/ 

..
..
,y
nm
.,
r 

i 

the constraintftza) 1mp1ies that ‘ 7 

| 

g N i % B, 426) 
&‘}‘ 

‘ 

ml‘(zs) and (26) give necessary conditions for any feasible 

sequence (Al, Az,...), Conversely, they are also sufficient 

for there to exist,a feasible §jy1e1ding this sequence, For 

if (25) is satisfied, one easily seces, %hat some weighted 

average t b + (1=t )c = § w1££ satiafy (21) for n. The § thus 

constructed automatically satisfins (lfi),xand satisfies (20) 

because of (26). fif . 

We have thus reduced theeproblem to one with a countable 

number of unknowns: Maximiae (23) over real sequences 

(kl, Az,..,) satisfying gfiS) and (26). 

Let AE = (A%, A%,,ji), k=1, 2,,es, be a sequence of 

these feasible sequenées, auch that the value of (23) approaches 

its supremum as ke».' We first give a standard argument to 

show that there is a subeequenoekl 1lkkk9,..., such that, for 

2 all n = 1, 2,..¢, the sequence ln r An ress has a limit A£ 

First, the sequence li, Ai,... is all contained in the 

§ closed, bounded interval [by, ;1. Hence there is a conZ 

vergent subsequence, By the same argument,fthere is a subE 

sequence of this subsequence such that the Az values converge. 

! G o
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Continuing, we get a sequence of sequences, each a subsequence 

of its predecggegf theAnfth subsequence having convergent ln 

values. Finally, one takes the “diagonal"i%féne g&}h eerm ;f 

the gfirh subsequence, This yields a subsequence conyerqing 

for all n =1, 2,... G fi_: 

We now show that the reaulting limiting seqfience %m;@Uflféfii 

(A£s 2$,...) is optimal, First we prove feaeibilitya (33) is 7 

satisfied by xs, since it is the limit of axaequence in that 

interval [?n ]. -Neariawe nust show tha£ 

Af o+ XS+, =§a., —27 

Ny %4 Let AN7, A rese be the snbsequenoe converging to 

A“ ';\( }&i‘ X% peew ) . Think
 Of Nfi[ 

A *fikifi +eoe Sl 

hk/.\ > 
as the integral of a funceion X2%{1, 2,...} + reals, all 

subsets of the positive integers being measurable, and having 
(O\lV{hV\ 

  

: measurei vi{n} = l%for alln =1, 2,... , We 

also havetrfor all i an& all n,“x 

S | < Poal *jeal 
by (25); ané,%he sum over all n of [bfi' + Lgn! is finite, by 

  

(lé). hence we may invoke the dominared convergenco theorem,‘ 

and aesert that the limit of the sums in (28) as kiem is the 

sum of the limits. But all sums in (28) egqual zero, by (26).
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Hence (27) is true. This proves that )A° is feaaihlefii 

It remains to show that (Ai, Ag,q«.) maximiee§‘(23) over 

the set of feasible sequences, (25)%(26). Firefijwe show that 
the function _9, 9iven by (24), over the domain (25), is 

continuous. Let Al, 12,... be a sequence of numbers with 
,,,,, 

   limit A, all satisfying (25). Since f(a; 
o a 

liM'f(a, A= /u(A )) = f(a, lfuifi )), 

‘) is continuoue, 

  

for all a ¢ A . Also |f(a, lk/u(gi))l £ 6(a), and 

(5:60249) 
{29} 

  

by (17). Hence we may invefie the dominated convergence theorem 
& & 

again, and assert that & 
\‘ ;’? 

¥ J g fi% g, (1) = ACYE 
& 
£ 

F 

  

Hence is continuona for all n=1, 2,... . Mext, for each i 

think of the sum th 

f k'i ki (& &5 

£ 
& 

i" 

" as the integrai of a function with domain {1, 2,...}, the 
cownt, 

- measure on tnie space being ehohennmeee%ien-meaeure, as in (28), 

. We have, for all i and all n,Yfi 
) £k Féf; \ 

f} \J5g) 5 
I (A Y 

   



e, 

b
 

e 
o 

B
 

S 
o 

I
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5&’&, 
from (24) and (?9). Also 

Hence we may invoke dominated convergenee yet a third time, 

and assert that the limit of the. euma in (36) as kiem is the 

sum of the limits. Now A i s Afi for all n, as ki « By the 

continuity of g it follows that f’ 
o r 

159 mmg (A 1 = 9,08, 
& 

for all n =1, 2,... . Henfie the limit of the sums in (30) is 

9 0D + g (08) 4ees o ) 

But the limit of the sfi&e in (30) is also the supremum of (23) 

over all feasible (11, 12,¢..), by the construction of the 

original sequence of sequences, A ¢ A teee « Hence (31) is 

the maximum of (23?, and (A, A%yeee) is optimal. Any feasible 

§ yielding thisfieequence via (21) is then a best solution. 

This comp}étee the first half of the proof. 
= \. 
“’7»‘ B 

ZflfWe now drop the restriction that p be eigma~atomic. Since 

M is e&gnawfinite, there is a countable measurable partition 

{a ' Al,a;.} such that u is non&atomic on A, and atomic on 
0 

each a 4 Dml, 2,000 & gt 

‘& |V FRepralns: 
Let =/, b du and e = [, ¢ du) Let A_ be a number gl O e s T e 

witn
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(5.6.%" 
b\ <c¢ s Dot Ag £ 5 =32} 

Consider the problem of maximizing (18), with AQ in piace of A, 

over measurable functions §:A + reals aatiafying,(igj and 
2l 67 i 56, 5%) | 4 SAREY 

14> j 6 du = A & “433)- 
e A T 0 

  

The preceding theorem»< —¥ states that there-exists a 

best solution, §° , to ks problem, sinoe B restricted to AQ is 

non+atomic. FPor this best solution r%e utility function has 

    

the value fifd 
: 7\ LS V* G il 

(r ol ] £(a,82(a))u(da) .. {34) 
\\o/ g 2 RyT N 

Now 6‘, hence (34), defiends on Ag. flfietwaa write g 9(19) 

for the value (34) as a fifnetion of Ay. The domain of g is 

  

9' ¢ ]. Also, beoausé of the Special assumption (17), we 

interpret (34) as a (ginite) definite integralfi\hence g is 
" 

rea1~valued, rather Ehan pseudomeasure—valued as in the 

general case., éf 

Consider nqw the problem of maximizing 
P 

£4 

éfi (fis) + gl(xl) T ~135) 
J 

over all aefinences (Ae, Ayeese) satisfying 
5\ 

&;;‘ s o, &) 

by £, £ ¢, “(36) 
e



491 

W X 
\ 

1erd for all &”x&! 1' 2,:.-; and 

Pl 
3resg / 

| 
Q§é3¥M ,’g'; ; 

ke + Al +o00 = OQ”HX'x % 

Here An' bn’ Cpe and e feg n=1, 2,...‘have exactly;tha same 

  

meanings as before, while xg, be, ce, and gé have j&st been 

- defined. X flfi 

}é%“ /,//”ffiffi If (A§, }i,...) is an optimal solution t@ 635) 7(37), we 

////// can construct an optimal solution, 82, to the original problem 

(18)'7(20) as follows. on Ab, let 42 ea&ficxde with the 

optimal solution to the non+atomic pnéblem (?2) ={33), with 

parameter 19 = AE. On A/ " for n >‘%, choose any feasible 8 

satisfying (21) for Aw, The regfiltlng function 8° is clearly 

feasible, It is also optimagfl since the utility function (18)   
for any feasible § does nofi exceed (35), where the Ay ¥s are 

determined from § by (2%} for § = 62, the utility functinn is 

equal to (35), which Lfi the maximum of its possible values. 

It suffices, t?%n, to show that (35)5(37) has an optimal 

solution. New t@?@ is of exactly the same form as the 

problem of max;gizing (23) subject to (25) and (26), with one 

possible axcefition' We do not know whether the functian qg 

is continua s. If this could be shown, then the first half 

  

of this pfibcf demonstrates the existence of an optimal 

(Ae kgy...), and we would be finished. 

We now show that ge is continuous. As a first step we 

show it‘is concavégl. Let Ll’ Lz,_ps satisfy 

4 
§ 5
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11 i S o -2\ I b A VL } 
/ =5 Y 
(Sl 5% ) 

A € L, € L, € L. < ¢ du, AT TR X SH £ &y 2 3=, S 2 2 
*o 0 

and let Gi A + reals be the optimal solution fafi the parameter 

Li (i = 1, 2, 3). The proof of the 9receding %heorem shows 

that these optimal solutions have shadow pr@fies. Hence for 
;l’** 

65 there-exists an extended real number, gf, such that 65(a) 
&7 maximizes 

S5 i 
@ i 

¥ 
fa,x) = pex ¢ 

> 13‘” { ,.,; 4 A7 

» over x ¢ [b(a), cla)l, far almost gfil ae¢ AG’ p- must be 

finite; for if pf = +w, then 65 ,,,,,, b almost everywhere on Ac 

which contradicts (38); similagiy 65 = ¢ almost everywhere on 

AQ if pe = =», again eontrad%fiting (38). It follows that 

  

£(a, 85(a)) - p%fi%(a) 2 £(a,8§(a)) - p°sg(a) A ¢ ool 

   almost everywhere on %fiffifi = 1,3). Integration over Ae 

yields § § {;fi 

5 gg -“g g ‘Ty) 2 P2, - Ly) 

(i = l; 3}; 80 ?hat 

  

for alligé < L2 < La, a condition equivalent to concavity. 

%fi%ce a concave function is continuous at all interior 

pcifi%s, the only thing left to prove is that g, is continuous T
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! 

lat the endpoints, be and ¢ Because g is concave, to [ RN TSy ey o 

{eatabllsh continuity at be it suffices to prove that i 

& : 
i 

  

  

{:b .59 
(h ) = 1im g (L) 399 s Ly 

sl & ; for any one sequence L3+ Lys«ss converging @é be. 

§ ~How we rawlntraduce the function v(afp) given by (5). xn 

3 the preceding proof it was established ahat, for fixed a € A 
_ o’ 

v(a,p) has the limit b(a) as P, A%so, for fixa& p,'y(o,p) 

s measurable, and 

  

    

3 ‘*[ Ifi : Y (arp)fi};fi da) h-i);fi 

.gm% as a functien of p, approchzs 

{ v‘" . N =7 

,"‘x Lz; Y (a,=)u (gfi) b b, du = be 
;r’; (74 .9 y he 

i as pow, 

  

Now let Pye B&,-.- be a sequence increasing without bound, 

and fieflne Ll, g@,.., by 

»\tfi?! Al § “* ‘A 

A O 6. 40) 
AN I = [ Y(a:Pk)u(da)fx\    ~0 

The seque e Ll’ Lz,... then converges to b 9 Also, 

Q@%\) 5901y w_j Srieguifnin) o,
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L1 

This follows from the fact that the function 6°(a) = Y(a,pk) 

has the shadow price Py v and satisfies the resource eoastzgint 

{40)» hence it is optimal for Ly e Now for each a e & 
0 

A'-;;E £(a, y(a.pk)) = f(a, b(a)}r\ 
\ 2%/ k~+ 8 

by the continuity of £(a,*). Hence, by (%55, we may apply 

the dominated convergence thaoremfi‘and @gnclude that 

  

L) = dia. wiaibctibar . o B i i "9( ) IA (a, (a» );y(,,_g) ge( 9)‘ 

'T 

fl‘f" 3 

This proves (32) for the saqu@fiee Lys Lz,..., and establishes 

the continuity of g       at be.%*Continuity of g at %9 is proved 
& 

] by a similar argument, wifih B(a,p) in place of Y(a,p), and 
15" 

w, &f 

% 
;
E
%
 

This supplies tgfi missing link in the proof, and we 

    

conclude that a basfi solution 62 exists in the general case,‘444$§23ir 

— & 
As usual, qaere ig an immadiate generalization. If (20) 

in the precaulfig theorem (or (3) in the one before tuafi) is 
"H 

replaced byfiffie condition 

i 
f}’ 

(Eibd ) 
41y 

  

® & * * a @ 

finite, and (16) J.n the nrpceulng / S@ 

Lueogéfi (or{(l) in the one before twat) is replaced by the 

coqfi;ticn
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Y 7z ! | l > 

W\ | 

5 

\V 1 -® < - L0 ¢ g 1 D - IAEAQ‘“ Le 20 ¢ IA c\du - I, <=0 
s o 

then there still exists a best solution in thasejféspeetive 

cases.,. 

The proof$Nwhich consists as always iq transforming this 

problem into an eguivalent one in which fze) and (le)fifior (3) 

and (l)f huldfik}s left as an exerciae¢ 

We now give an example of a Eroblem not having an optimal 

solution. ILet A = {1, 2, 3,...}, I = all subsets, p the 
(o Winl \n 

aaamefiagien-measure; b(n) = Oiind c(n) =1lforalln=1, 2,... » 

The payoff function is¢” f&g.x) = mx/n + The density function, 

fl ...... 

satisfy _ : F 
& 

& 
& 

éfrs ‘1) 4o 6(2) *aee = 1, 

W .e i % 4 = 
One easily vérifies that all ef the premises of the 

preceding theogé; are satisfied (take e(n) = l/n in (17); 

1L = L% = 1 ifi (41)) with one excep igfi. f qgu = ¢(1) 

+ ¢(2) +...¢= o, 

Ther??is no optimal solution to this problem, since any 

given fgfi;ible solution can be improved. To see this, let § 

be feagiblehQand choose any n for which 653) > 0. Alter § by 

rep1§ékng §(n) by 0, and 6(g+1) by 6g9+1) + 8(n), everything 

elsé the same. This remains feasible, and the change in the



§( ..«%‘ 1) 
ot 

utility function is fl¢g$ 

  

> 0, so érié non%Optimal.' 

S This example gives a certain insight 1nt0 tha role of the 

fxnitenesg\aonditian on J§ b d% and f a,d 

; f\}5'7' Uniqueness of Optimal Solutions jfif 

  

By @uniqueness” we mean the pgfiéerty that there is at 

most one optimal solution, (The‘éi inary word “uniqueness" 

sometimes carries the connotat&bn of “exactly one”; but we are 

not here concerned/with axisténce, only with @naQiauplieatien 
of solutions)\ s 

A 
As xn*aur“graviafis fifiseass&on, we identify any two 

,—e“ 

densities whieh—are unéqual only on a null set. Thus, to say 

that there is at mflsg one optimal solution is to say: xe &, 
and 8, are both optimal solutions, then ufa!fil(a) # 8,(a)} = 0. 

We need twognew concepts for the following result. 

gi Dafinitien: fxmeals + reals is strictly concave  iff, for any 

  

two distinct ‘real numbers, %X, y, and any 0 < £ < 1, 3:7 
S ,;':‘;‘ 

h..&» Tel) 
} fg £(tx + (l=t)y) > tf(x) + (1-t) £(y). ( 1) 

   

   

   

  

= Tfiis is a bit stronger than concavity pex se, because of 

the striet inequality in (1). 2 linear functian is concave 

bu’ not strictly concave.
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T Definition-x&Let | be a set of real-valued functions, all with ,<"! 
i 

domain A. fim is convex iff, for any 61, 62 € Mk\and any 
f:& 

  

0<ct <], the function té, + (1--1:)«5 belongs to M,_ i 
Mx’ example, the feasihle sets we have been 8ea1ing with 

throughout sectioas 4, By and 6 are all convax‘ 

Utility ordering is still that of stanfiard ordering of 
~ pseudomeasures. The distinction between ‘best and unsurgassed 
must again be stressed, because it is @eritieal in the 

following result. : fffi 
e A;“ 

,fr“ . Theorem: Let (A,Z,u) be a maasur:@f space, with p sé:@a-finite. 

Adet f A X reals <+ reals be megfiurablefi and such thai:, for all 

a¢€a, f(a,-) is strictly cgncave. ,x.’et M be a convex set of i 5 7 p real=valued measurable fi}fictions. 

= _Then the problexq,g; \,‘ffifiaximize 

f’ 
: 

{4‘;“;'?‘ ot 
fff(a; §(a))u(da) - § 

£ 

over § ¢ M, has fi most one best solution. 

\\M 

"'Mflf Proof: lLet 6 jgd 6 both be best. Then, for any § € M we have 

211 \vy B 

[f(a,éi(g)) - £(a,8(a)) ju(da) > 0/S AL - g 
1 

  

(i » 2). Adding thase two inequalities, we get 

/Ef(a §,(a)) + :E(a 6 (a)) - Zf(a,S(a))]u(da) >0 (\ L‘
%;
‘"
 

"
o



ST 

  

‘ My/l = 

Now consider the function &= ’36 + 355 A8 e M, by 

convexity. For this §, the integrand in (2) is nfiver positive, 

and is in fact negative on the set (alfilfa) # fiz(a)}, by 

strict concavity. Hence this set has measure zero, which 

establishes uniqueness. |} //if fififl 

It is not true that there must ba at most one unsurgassed 

solution, as the following countereiample shows . 

Let (A I,u) be Lebesgue{mea%fire on the real line. Let 

f(a,x) = -x + 2x if a > 0,%f(§fix) = nxz - 2x if a < 0, and let 

M be the set ‘of constant funs?&ons whose single value lies in 
y 

the closed interval [-1, 1].‘ M is obviously convex, and one 4104~ 

  

____.',-e    
that f(a,-) is strictly concave for all a¢ A. 

Now let Xy0 X b§ twc numbers in [=1, 1]2\with Xy > Xy, 

and let ui, wz be Ehe pseudomeasures obtained by substituting 

the correspondin%fifunctians in (2). %’f(a,') is increasing for 

a > 0 and decreasing for a < 0p heaee (¢l - wz) is a multiple 

of Lebesgue méasure truncated to the positive half-line, while 

(wl - wz) gis a multiple of Lebesgue measure truncated to the 
i 

negativegfia1f~line. It follows that 

# 
{.‘Jth'ig} 

/ (g = ¥)T(A) = (b = ¥,)7(A) ==t 

Henice all feasible solutions are unsurpassed, because, by (4), 

no two of them are comparabled)
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r‘« \,\/' 

ix 5.8. Police, Criminals, and Vietims 
\ 

We shall now apply the preceding theory to theifirablem of 

the spatial distribution of crime. Afit&u&%vafihempfeaant 

saction goes beyond the simple optimization framewcrk of the 

rest of &k&s chapter, in that several differsnt populations, 

j\ with diverse mctivesfi are interacting. Thus we are in a 

1}Q${%g §fi "game" situation, and\what is optimal for one agent may not 

\ ,§<2y be optimal for another, 

Q There is a population of potential victims, a population 

\¢ of potential criminals, who commit crimes upon the victims 

\Fié g?en the opportunity presents itself, and a population of 

- ¥ fifigolic emen, who try to prevent criminals from perpetrating 

fifif their misdeeds. , 

/ ‘g ’ — The three populations inh%bit the measure space (S,Z,a), 

a being ideal area over Space, S. If Ve €, andmg are the. 

l;i densities of the three respective populations (density with 

| respect to o), the density of crimes at location g_is given by 

a function hity 
L2y & s 

£(v(s), c(s), pls)) 5 

109 \L | 
and total crime is then given by |/ &f do. We would expect £ 

to be an ingcreasing function of v and ¢, and a decreasing 
o 

’b@"? k "“"‘i 

function of p. 
o 

Consider, for illustrative purposes, the crime function 

£(v,e,p) = vee ™, 2y
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z/f“ 
A sem1+plau81ble rationalization for (2) might run as follows. 

For p = 0, a crime occurs if there is an "encounter" Hetween 

a potential victim and criminal, and, with "random" mavements,j 

the frequency of encountérs should be proportional to the 

product of the densities, ggag Nextfikguppose«t&ut the commis% 

sion of a crime is inhibited if a poiiceman is present within 

a certain "surveillance radius". If policemen are randomly 

distributed, the probability of no policeman being present 

within the critical radius declines exponentially with police 

density, and this gives (2). (Units,of measurement for Ve G 

and p may be chosen to avoid multiplicative constants, as in 

(2) )y 

Whatever one thinks of such arguments, it ig still 

illuminating to discuss the consaquences of (2) i1::»!:,, more 

generally, (ILV~ under various behavioral assumptions. We 

assume that victims and police distribute themselves over Space 

g0 as to reduce crimes, while criminals distribute themselves 

80 as to increase crimes. 

One further objection to this set+up should be mentioned. 

Shouldptt these population distributions be inteég?hvalued{ or 

finitely concentrated? ; in-which case they are unlikely to 

have density functions. The answer is that ¢, v, and p are 

best thought of, not as densities for cross-sectional distribug 

tions, but for the ti§é;averages arising from the random 

perambulations of the populations. Thus a measure u, where 

u(g) is the expected number of people of a certain type in
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region_g, can very well have an areal density. 

Before launching into details, let-us briefly consider 

some specific interpre}ations of this general model. "Crime" 

is a rather heterogeneous category, and not all types of 

placey-there are numerous “"crimes without victims“lgé gambling, 

traffic in drugs, prostitution, etc. In some of these cases 

the frequency might be described by (1) and (2f§ 5J%g£$;;amp%e, 

“random" encounters with streetwalkeréyl-but one would not 

expect the "victims" to be motivated to reduce the incidence- 

/. Unect 
of such "crimes"., Secondly¥, there are crimes whieh do not 

—— 
o 

require a specifiéwiencountat* for their commissiofia;éagnteré‘ 

feitingfi_or ant{rtrust law violation, for-instance. 

Burélary, larceny, iabbery, and rape are examples of 

types of crime*gfiieh-de not have these disqualifying features, 

and their incidence might be approximately represented by a 

function of the form (1 ). ©ne might want to rfifinterpret 

Vi & 0r p in same‘éf these cases., For example, in burglary 

the spatial distribution of (movable) wealth would seem more 

relevant than the spatial distribution of people, so v shouldv 

perhaps be taken as wealth density rather than population 

density. 

><.l Certain non-crime situations may also be represented by 

this model. Consider military attacks against targets 

(installations, opposing forces, civiliansfi ete.). Letting v
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be the density of targets, ¢ the density of, say, bombing, 

and p the density of "defense equipment{, the above model 

might then predict the volume of destruction in terms of these 

three distributions. \ The controllers of B and ¥ are motivated 

to reduce destruction, the controllers of 3{t§ increase it. 

Hence we might expect to find the spatia;féistributions here 

similar to those whieh resulékfrom crime incidence. 

Again, consider the follcfiihg fifiitationmsnob" situation. 

There is a "high-prestige" and a ?Iéw»prestige“ population. 

The high~prestigers want to avoi&}contacts with the low= 

prestigers, while the latter want to increase contacts with the 

former. Interpretxné““%gminals and "victims" to be the low- 

and high-prestige populations, respectively, and "orimes" to 

be contacts between thegfiwo populations, we get something like 

the model above?“\XThe‘police might enter as harassers of the 

low=-prestige pupulation in its attempts to increase contacts).» 

4urfi$§eughcut“thtsmbook7 -our aim, is to develop and explore 

theoretical models, not to tailor them closely to any 

particular real;world situation. (For crimés-auch an attempt 

would in any case be difficult, because of the spotty quality 

of most crime datafi,;l 

We now return to the formal model, which has not yet been 

completely specified. For simplicity we assume that the three 

populations are mutually exclusive, and that no transformation 

from one to the other is possible. ™{Thus we ignore the 

possibility that victims themselves can inhibit crimes by
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surveillance, the possibility that some criminals can be 

xictimized by other criminals, etc.).r 

Two cases will be explored. In the first there are no 

police (the anarchistic,;or "Wild West" case))and the two 

populations, victims anducriminals, are freely mobile over 

Space. In the second case, the distribution of victims is 

fixed, and the remaining two populations are freely mobile. 

~=(This might occur, for example, if crime is of minor importance 

so that it exerts no locational pull on the pop;iation at 

large. Another interpretation is that the population distribus 

tion of victims adjusts very slowly compared to the other two 

populations, so that it may be considered fixed in the short 

e 
A given population tries to reducexfifi?r increaseéfi;crime. 

What does this mean? There are (at least) two intergietations: 

the individualistic,‘and the collusive. If criminals act 

collusively, -for-example, the entire body of criminals 

distributes itself so as to maximize total crime; if they act 

individualistically, then they will move from places where the 

density of crimes per criminal is low to where it is high. 

Similarly, if victims coll&ide/they will distribute themselves 

to minimize total crime; if they are individualists, they move 

from places where the density of crimes per victim is high to 

where it is low. For some crime functions f the resulting 

distributions are the same under either assumption, but in 

general they will differ.
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For the polica'the most plausible assumption is collusion: 

fhey are distributed by central headquarters fia minimize total 

crime, For victims the individualistic agsumption is more 

plausible: Each potential victim moves to reduce the 

incidence of crime on himself. For criminals, both possi=- 

bilities are plausible, depending on whether crime is “getty?, 

or "organized” by some criminal mastermind. 

We shall analyze just three of the many possible combina- 

tions:~\ 
P i 

‘ffigi) no police, both victims and criminals are individualists; _ 

(ii) no police, both victims and criminals collude; 3 

—{iii) vietim distribution fixed, both police and criminals 

“*'«%kcollude. 
L=> Co 

s .'r'):(n ‘6 ¢ 

_g:realsg + reals, -namely; f£(v,c) is the crime density at a 

Wgéé}:with no police, we have a crime density function 

location, if victim density there is;g and criminal &@nsityi§. 
Cinite All functions are assumed to be maasurable,-eeal-fia&ued* and 

non+ynegative. We also assume that 

i(flyg) = f(Vlo) = 0y 

and that the right~hand partial derivatives le(o,c) and 

nzf(v,fl) exist for all ¢, v > 0./7(We are uétj 

N o \1-\ 
the notation 

  

D.£(0,c) = 1i £( - £(0 Yo by£(0,c) firgwl vee) - £(0,0)1/ 
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To avoid trivialities, we assume that the total popula- 

tion of victims, V, and criminalsg_g,vare fixed positive real 

Cfisfjik//n numbers, as is the total available area, ®(S). The constraints 

on the density functions, v and ¢, is that they be noh*negative 
T % /! i 

real measurable, and satisfy 

i b c\\ e =G (&7 6.3) 
i I Va b lg k[ 1 do = c‘ . 43 ds 7\ & / 

——-—-&“"""""‘"“" 

g%g; Definition: The pair of feasible densities ve, c%:8 + reals is 

a r 
J “ 1 

"i)j 
\ o~ 

N\ an individualistic equilibrium pair iff there is a null set 

E¢ I, and two real numbers( kv' kc‘i 0, such that,wfor all 
i 

    
5 /127 \@b {5 .74 

££X££%%%§%51§Ll/= v&@if ve(s) > 0, ) 

(£.¢.9) 
el s"”s”fi cHILE e2(s) > 0, 45) 

(65.9.¢) 

f(O, c'(g)) > oh\if ve(s) = 0, {6) 

(5.8 
sz(vfi(fl).:fl)!g,?éifiif c®(s) = 0. —7) 

I oo i 
M“” ; { 

The intuitive meaning of (4)x(7) is as follows, We 
A 

7@" ?}\ interpret the "incidence of crime" on any victim at location s 

e
 to be the crimes per victim at that point, which is the left 

side of (4), if v(s) > 0, If v(s) = 0, the natural interpreta- 

tion is le(o, c(s)), which is what crimes per victim would be 

for ah“lcw~density ‘migration there. \(4) and (5) are then
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precisely the conditions under which no potential victim can, 

by moving, reduce the incidence of crime on himself. 

Similarly, we take the "gain from crime" for any criminal at 

location s to be the grim@s per criminal at that point, which 

is the left side of (5) or (7), for c(s) > 0, ec(s) = 0, 

respectively.\ (5) and (7) are then the conditions that no 

criminal can gain from moving. As usual, we allow exceptions 

on a set of measure zero. Two density functionsfihyl anduyz, 

which differ only on a null set, are taken to be identical, 

and 31milar1y for < and Sy ' 

%j,“w~ (11)*Now let—us go to collusive criminal-victim interd 

action. The set of feasible densities is géain given by (3). 

| Definition: The pair of feasible densities, v°, c2, is a 

:zé} collusive equilibrium pair iff 

%%\%T ot | Z 2 
£(v°, c’%ga is unsurpassed in the set of pseudomeasuresf /@ 

ng(v°, c)dq, ¢ ranging over the feasible criminal densitiesj&aaé' 

S / 4 >\I (ve, c®)da is unsurpassed in the set of pseudomeasuresgi 

J £(v, ¢®)da, v ranging over the feasible victim dansities“y\\ 

””’#’fl”fl":f That is, given the distribution v2, criminals arrange 

éhemselves over Spaee so that no other arrangement of criminals 

leads to a distribution of total crimes surpassing the one 

resulting from c2; conversely, given ¢®, v® is chosen so that 

minus the distribution of total c¢rimes is not surpassed by that
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resulting from any other victim distribution. The reason for 

the "minus" is of course that victims are trying to reduce 

total crime, which is equivalent to trying to increééé minus 

total crime. 

'éfieuhas¥te‘invoke pseudomeasures cnly'if the total crime 

integral can be unbounded. For the present application we may 

safely assume that, for any f arising in practice, all 

integrals are finite. Nonetheless we give the more general 

definition above because the results obtained are valid for it, 

and no extra work is involved. 

If all integrals are finite, the above definition may be 

restated in simpler form: The feasible pair (v%, c¢®) is a 

collusive equilibrium pair iff 

1%, \ R £ 2.9) 

e \\{\\gjv_,c)da Q\j \§<v’ c,)da < j \<:v,c )da ga&} 

'8 

for all feasible v, c. The left inequality in (8) states that/g 

given v;,‘m is ;;osen to maximize total crime; the right 

inequality states that{églven c?, v2 is chosen to minimize 

total crime.~ 

(\’”YZ§”;$i recisel the saddlepoint condxtion'which consti~ £ p ¥ p 

tutes an equilibrium in twe-person zero=-sum games. Since both 

sides are colluding)we have; in effect, just two decision 

makers,; and the whole problem may be thought of as a game 

between a maximizing player, a;amg and a minimizing player, 

Crim,
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Vic, the payoff to Crim under the strategy pair (g, ¢) being 
o~ 

A — \\j \§(V, G) dao 
g “ e T o RS 

The éifference between (4)7(7) on the one hand, and (8) 

on the other, is that in the former the individual victim or 

criminal does not take account of the effects of his moves on 

the gains or losses of his “colleaguedgé/ In this respect, 

the difference is vaéuely similar to that of & competitive vs. 

monopolistic industxy,‘respactively. To put the matter in a 

slightly different{ and slightly inaacurate,vway,‘under 

individualism average gains or losses are equated over Space, 

while under collusion marginal gains or losses are equated. 

Consider the very simple crime function 

(&, 7:9) 

f(v,c) = ve 92} 

(which is (2) with p set equal to zero). One easily verifies 

that the pair of uniform distributionsfigyA 

') 
5. ¢ 8) 

ve(s) = v/a(s))le2(s) = c/a(s) (10) 

(almost e;erywhere) is an equilibrium pair under ggggquw 

definitions%% &gv = C/a(s), k, = V/a(S), (¢) and (7) are 

satisfied with aéuality, and (8) is satisfied with equality 

for any feasible v, ¢, total crime being YC/G(S))- 

One also suspects that (10) is the only equilibrium pair 

under either definition. A non-rigorous argument would go as 
e
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follows. Suppose ,<say, that v were not constant almost 

everywhere. Then the criminals would all crowd into the 

region where v was densest. But then victims would nof be in 

equilibrium, since they could move into the region vacated by 

criminals. A similar argument applies 1ffl£{were not constant 

almost avarywhere.;éf 

Our aim now is to generalize this argument and make it 

rigorous, We prove this separately for the individualistic 

and collusive cases. Each of these cases has its own 

appropriate class of functions for which the statement is 

proved, and (9) belongs to both classes. 

  

c}i  Theorem: Given measure space (38,I,a), with « > a(S) > 04 positive 

- ) real numbers, V and c» and a measurable function £:non+ 

_negative reals? » nonsnegative reals whieh satisfies: 

L.~ 
Joe 

,(1)\f(v,c) = 0 iff either v = 0 or ¢ = 0 (or both); 

(il) \the right—uanu partial derivatives D f(a,c) and D f(v,O) 
W —— 

7 (g§§st for all real v, ¢20, and, if v > 0, then D f(v ) » 0; S 

“w(:iih £(vx, Cx)/x is a strictly increasing function of x 

(x > 0). 
Ao i S 

st e T RIS AR e 

£ Leaf b Y 

    
Then (10) is the unique individualistic equilibrium pair. 

;»m 

Qfls Proof: Gne verifies at once that (10) satisfies (4) (7) almost 

%fi everywhere! (4)- -(5) follows from the constancy 0f{§° and c°®, qfi%@ 
_%f =) 

‘xéfi? while (6)~- ={7) are trivial becauseev° and c°~are positive, 

Hence it remains only to show the uniqueness of this solution. 

 



510 

1 Let (v®, ¢%) be an individualistic equilibrium pair, and 

let E = {s|ve(s) > 0} F = {s|c®(s) > 0}. 

kg = 0. 

Suppose first that 

It follows that a(E n F) = 0, for‘otherwise {5) would 

be violated, since f(v ¢) >0 if v > 0 and ¢ > 0. Also;wa 

must have «(E\F) = 0; for otherwise (7) would be violated, 

A
L
 
S
 

since D,f(v,0) > 0 on this set. But this means that a(E) = 0, 

which implies the feasibility condition (3) is violated for 

ng' since V > 0, We have a contradiction, and it follows that 

kc > 0. 

This implies that a(F\E) = 0; for otherwise (5) would be 

violated, since f(0,c) = 0. Hence a(E n F) > 07 for otherwise 

a(F) = 0, violating (3) for c¢®. Now for almost al; pointsfimo,\ 

rrrrr — (5 8.0t 
V\°mc}'\""3‘@i 7,‘6“(5> = £(v(s), c®(s)) = kc®(s) 1) 

e 

from (4) and (5). Since a4(E N F) > 0, there exists 8     

  

e e 

satisfying (11). Hencéakgg\flp.- It follows that a(E\F) = 0; 
“V 

for otherwise (4) would be violated, sinoe f(v,o) = 0, Also 

  

a(A\(E U F)) = 0; for otherwise (6) would be violated, since 

le(0,0) = 0, 

We have now shown that v° > 0 and c® > 0 almost every% 

where; hence (11) is valid almost everywhere. Integrating 

{11) over S, we find, from (3), that Vkv = Ckc. Hence 
(f-) ¢ 1k) 

V..°/V = c!/(} 
m 

‘almost everywhere. Letting x(s) be the common ratio in (12) at 

the point &, we find/ from (11) that
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£(vx(s), cx(s)) e Ak, 
x(s. /= Ckg 

almost everywhere. The middle term in (13) is strictly 

increasing in X, hence there is just one solution %2: w2 and 

¢ ¢® must be constant almost everywhere, which yields (10). H’f T 
S -~   

We now give the corresponding result for collusive 

egquilibrium, 

   

     
The unigueness, rather than the existence, of 

equilibrium is the more interesting condition, and that is 

whrat-ie established in the following theorem. 

gwéjviheoremz Let (S,2,a) be a measure space, with « > a(s) » 0, and 

ff“fi o non-atomic; let V and C be positive real numbers; let 

measurable function f:non-negative roalsz + reals satisfy 

} w;“m, Li}l);for any fixed real e >0, f(v,c) is continuous in vfl\and 
|3 = differentiable with respect to v for v>o (notation- 

le(v,c))fia 

(11))for any fixed real v > 0, £(v,c) is continuous in c, and 

differentiable with respect to ¢ for ¢ > 0 (hotation* 

(iii) for any fixed real ¢ > 0, sz(v,c) is strictly 

increasing in vj 

§ (iv) for amy fixed real v > 0, Dyf(v,c) is strictly increasing 

in c. l 

  

Then (10) is the only possible collusive equilibrium pair.
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c;*frm‘Prootz Let v2, c® be a collusive equilibrium pair. |e® is then) 

~ \ unsurpassed for the problem of maximizing 

; 5 ,' (&, %l d) 
[ #6e o, el tas) ~t24) 

% b 
| ovor the nontnegative densities €:S + reals satisfying 
x 103 

| f ¢ da = C, sinc;Zg_is non+atomic and f(v,~) is continuous, 

all v > 0, we have as a necessary condition for this that 

“there exist an extended real number, k, and a null set E ¢ I, 

] -such that, for all s ¢ S\E, c2(s) maximizes 

Q”tfl
 ¥, '—i‘f‘

} 

£(ve(s
), x) - kx 

, g over nontnegative real x (sootion'4=ahnvo). 
Einile 

The "shadow-price" k must, in fact, be wealy For if 

k = «», (15) has no maximizer, while_LI.E = +w, ¢® would be 

zero almost everywhere, which violates /g ¢® da = C > 0. 

| Qf}' 

b 
We now show that, if s,, 8, € S\E, and v°(s;) > v2(s,), 

then : 
{;;’, & .i0) 

either c®(s;) > e2(sy), or c®(s;) = co (azl = 0., 116) 

| Condifion (26) will be domonstrated by eliminating two possibilitiesg 

T gosaabilihz #fi): e2(sy) = ¢°(s,) > 0. Since (15) is 

differentiable in x, the derivative must be zero at these 

respective poinhoj ‘%h$t~is, 

Dyfivelsy), o2(sy)) = k 
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(i=1,2). But D,£(+,c’) is strictly increasing (c' being 
the common positive value of c?(sy) = gi(sz)); Hence at least 
one of the two equations in (17) must be invalid. 

] %§% Eossibilitx,fi%%#: ~9!(52) > gi{gl). Consider 

(5,%18) £(ve(s)), x) - £(v2(s,), x) ~t18) 
~—t e 

T AANM (A pnn as a function of the non-negative real variable x.‘;{ls) is 

continuous, and has a positive derivative for all x > 0. 

Hence - using the mean value theorem ~ (18) is strictly 

J ,fiifj 
[V ;}"":E; ¢ 
~ P 

f(‘?f(?l-), cfi(sz)} - f{}{fi{oz), gf.(?z,} \L\\l 5 

& 14 AT ) 
> gfveay, ootsp] - gfvesy, e*(s))], a9 

increasing in x. It follows that 

T
 
R
 

AT
 

S 
TH

I 
R
 

3 
A
 
T
 

R 
B 
R
S
 

ps
 

T
R
 

(NI
 

NS
 

Also,'since_g;(gi) maximizes (15) for s = 8y (i =1, 2), we ‘ 

get 
fr eI 

%%5! At ) 77 -Q) ’Eéfii (5,8.20) f{v.!(sl), c.?.(sl)} - ke®(s,) > f(v!(ol), c:(sz)} - ke (s,), +20) J 

and also (20) with subseripts 1 and 2 interchanged. Adding 

those.thrae inequalities (l§fi¢(20) and simplifying, we get 

the contradiction 0 » 0, This eliminates possibility §£§} and 

establishes (i6). : 

This entire argument may now be repeated with the rSles of 

_zi and ¢ interchanged, the only difference being that ¥ ia 

maximizing the negative of (14), Sinco«91[~§(y,o)] is strictly 

decreasing in C, we obtain the analog of (16) again, but with
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one inequality sign reversed: - 

g — If 8y, S, € S\E' (E' being a certain null set) and 

f c2(sy) > c%(s,), then 

(s %.21) 
either v(s,) < y&(gz)g or v®(s;) = vo(s,) = 0. 21) 

s
 

Finally, suppose there—are two poxnts Byr 8, € S\(Ey E') e 

suth thaéwvm(sl) > v“(sz). We cannot also have 52(31) > om(sa), 

for then (21) woulél}ond to a contradiction. Hence c&(gl) = 

g:gsz) = 0, by (16).' For anjiLther point s ¢ S\(Ey E'), 

choose Sy Or 8., depending on which si\zotisfies v:}si) # vo(s). 

T
S
 

TP
 
N
S
 

s 
O
 

The argument just given then shows that c2(s) ;70, Hence,rif 

v® is not constant on S\(Ey E'), ¢ is identically zero ofl]this 

set. R
N
 
T
N
 

H 

— 

Since E U E' is a null set, this gives the contradiction \ 

ol2 Y= : S S ————roi, o 

. ] c? da=C >0, 
8 = j 

R
 g SRS e 

" Hence v9,is constant almost everywhere, A similartargument 

shows that ¢® is constant almost everywhere. 

i the proof. _l*{f 74 

R
 
T
 

A 
S
I
S
 

/ 

This-completes 

This does not prove that the pair of uniform densities 

(10) ég_a collusive equilibrium pair: There is the possibility 

S e = A = s, 

collusive equilibrium pair is not difficult. 

\ 
] 

Note-that, under 

the premises of this theorem, the shadow price conditions are 

both necessary and sufficient for equilibrium‘éogyoqsc”)
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Hence (10) is such a pair iff there are numhexs~§l,and>k2 

such that c/a(S) maximizes 

@5@23?) 

£(V/a(s), x) = kyx ~22}) 

over x > 0, and V/a(S) maximizes 

(5833 
~£(x, C/a(8)) - k,x “23) 

over x > 0. If these conditions (22) and (23) are added to*tho 
premises, we may assert that the pair of uniform distributions 

is the unique collusive oquilibrium pair, 

o “There—are some real-world situations which illustrate 

Cy,;\ these resulto, at least approximately. The policy of dis=- 

persing population to reduce losses from air attack is an 

example. If carried out to the limit, both targets and 

attackers would be uniformly distributed. In a uniform 

environment, a predator and a prey species would tend to become 

uniformly distributed. The distribution of Christians and 

%ions in the Roman arena must have been roughly uniform. 
&,,.__ 

victims is given and fixod, whixe police and oriminals are 

“o{iii) 2Now we introduce police. The distribution of AT 

freely mobile. The former try to reduce, the lattorNinorease, 

total crimes. As the crime density function we take 
>, &.14) 

flv, ¢, p) = g(v) @e}",.._ {24) 

i Fe. where g is strictly increasing, non+nogativefiand roaizflalaad* 

This is just a #}ight generalization of (2). One can obtain
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results for more general functions, but (24) leads to a very 

simple and elegant equilibrium with some provocative implica~ 

tions. 

In the following result, premise (256) is introduced to 

avoid an uninteresting complication; it is quite weak. Also 

premise (25) could have been deduced from rather weak assump~ 

tions, but we take the simpler course of assuming it outright. 

All logarithms are £o base e. 
   

gfiwL;Theoremz Let (S,X,a) be a measure space, with o > a(s) > 0; 
let C and P be positive real numbers ; 1et vi8 + non=negative ;‘-.V. ‘-»,; 

g 2 X 2 3 

7:£2; reals be measurable, with f vhoa >0 (i.e‘ there are some 

victims); 1et q:non*negativé?reals *+ non=-negative reals be _ 

strictly increasing, Assume- 

Léjl) there is exactly one number L satisfying 
nmjg L§ 155 

(& 25) 

ix % : ¢ fiSIg vlS))>L}{ ------ ] 
(‘: 7. 24 

g N (11) ;or this L, a{slg(v(s)) = L} = 0. 12fij' 
? 
| 
jflwflffif“““fierhen there is exactly one collusive equilibrium pair 

(c~,p°) for th; problomgx flaximize over ¢, minimize over p3 
L 

> [ glvis))e(s)e p‘s/é(ds) 

‘Here c¢:85 + reals and P:S + reals must be non~negative measurable, 

and. satxsfy
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. g a0 w0 

\3’\\5 o i {”’: €.371) 

j ¢,da = C, \l [ p da =P, —27) 
s g ¥ | s - Aee . 

- 

Apart from a null set, c? and p°® have the following form: J§ 

Af gtv(s)) < 1, then eo(s) = po(s) = 0., (28) 

If g(v(o)) > L, then 

  

Vana 

€« #219) 

c:f (9) ws c/a{S]Q(V(s)
) 5 @ 

P2 (=) %-}gg E’(V(S”/E‘j*w 
ran 
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only possible collusive equilibrium pair, Let c2, p2 be such 

fi?é;_:yroof' Let g(v(s)) = h(s). First we show that (28)(30) is the 

a pair. The conditions for t@o existence of shadow prices are 

satisfied, sihce b(o)xe’pg(g)gis concave inig, and 

~h(s)c9(s)o"3 is concave in x. Hence there are extended real 

numbers, k_ and ko Such that (except on a null set), c2(s) 
maximizes \ 1 N 

A\ Lgi."E‘.,(s’ (£ .9.31) 
Vi n{s)e"B=\3x - x x 131) 

over x > 0, and p2(s) maximizes 

- (5, 7232) 
~h(s)e2(s)e™ - k x ~32) 

o 
over x > 0, gfiff 

We shall once and for .all g;éifide the null set on which 

(31) or (32) is not maximizofify Thus, “"all s" means "all s in 

the complement-of this oafigg "there is a point" refers to the
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complement, etc., 

Firat,;gc < =, for if not, then c2(s) = 0, all s, p 
& violating (27;. Similarly,mflp o, ' fif 

NGXt',kc > 0, To see this, note that the assum§tions on 

v and g imply that {s|h(s) > 0} has positive meagure. If 
k. < 0, then on this set (31) would be strictly increasing in 

2, hence have no maximizer. -gf 

| | For  / 
Next,wgp > 0. fihflgzgisstacisaaéa\igfi@(o)-w 0, then 

e 

g“(s) = 0, sinoe k >0 in QBl)j] From#i27), there is a point 

_§i for which o‘(sl) > 0; honce |also h(sl) > 0, Now if kp <0, 

then for point 8 {32) would be strictly increasing, hence 

have no maximizer. 

If c%(s) = 0, then g&(s) = 0. This follows from kp >0 
st 

‘in‘(32). If c2%(s) > 0, then (32) is strictly concave inm§¢~ 

hence has (at most) one maximizér.' This maximizer is zero 

iff the slope at x = 0 is no@&positive. Thus we have 
. 

(s) = 0 ifé}h(s)c‘(s) < kpf“7 ~£33) 

the s\ope af &’o is Posfl"ve 
If (33 )—fails, the maximlzar of (32) is obtained by setting the 

Tkusf derivative aqual to zero. s i h(b)C’(S) > kp, 

then 

(., 1.53) 
(w2 B L 

p2(s) = log E}(g)e?(o)/kp}.\ Taay 

Noé the set {s|p°(s) > 0} has positive measure from (27). 

HenoéJoP(s) maximizes (31) on this set. Substituting from (34) 

into (31), we find that ¢ (s) maximizes
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"*
e:
p 

s % 

over x > 0, for any g such that p_(s) > 0. Sin§£ c®(s) » 0, 

the bracketed expression in (35) must be zero:r 

:?‘ 
o™ G ey 3 

ct(s) = k p ke / (36)- 

so that ¢® is constant on the set {s|p® (5; > 0}). 

Next, the two sets {s|p°(s) > 0} aufl {s!h(s) > k /c’(s)} 

are the same. Hence, from (34) and (2&), 

'/!1 : [09 f [ b‘-/ ; : % 5 

log (h(s)e® (s)z/kp)a(ds) = P, 437 
: 5 4 lLr 

& {s|h(s) >k§,/c‘° (5)) 

From (37) and (25) we obtainflwf/ci(o) = L, if po(s) > 0O, 

  

so that, from (38), 
{5 A DT 

f‘ke = Lo fl+ae) 

Substituting (38) and (3@) into (34), we obtain 

pi(s) = lgg{?(s)/Ll Ru$39) 

wherever p2(s) > o)(oo that h(s) > L on this set). 

Now consider the maximization of (31). If c°(s) = 0, 

“then p°(s) = 0, and the fact that x = 0 maximizes (31) implies 

h(s) < k.. Hence, from (38), 

if S!{s) = 0, then h(s) < L.
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// Next let c2(s) > 0. The case where p2%(s) > 0 alégké;s 

already been discussed, yielding (35) and (36). Suppose 

gfi(g) = 0, The fact that x > 0 maximizes (31) yieldfixf 

h(s) “wfio “_F' But from (26) this occurs only onfififoet of 

f measure zero. 

  

!
:
 =
4
 

R We are now finished, For the two setafi&{slp‘(s) >0, Ao lenels 0 

o
~
 ;c°(9) > 0} ] and {SIp‘(s) = 0, (s) = 0} togothor sihanet s; & 

get F, 
except for a null]set. On #he—Iht#ee, g(v(s)) = h(s) < L, and 

¥ P (Lon Lello] 
on t%%—é%éaeo, g(v(s)) >mL. » (30) is ‘the same as (39). Also,   

s
 c® is constant on the set {glq(v(gj) > L}, and zexo off it, so 

(29) follows from (27). 

¥ To show that (”8)-(30) aotually gives an equilibrium pair, 
A 

ene need only verify the shaéow price conditions (31) and (32) 

S
 X 

\ 
} 

p' since thése are sufficient for unsurpassedness 
\Lfi AP 0K 

(in fact, for bestness) +(e®, p?) given by’ (28)5(30) do 

for some kc' k 

indeed maximize (31); (32)h respectively, or kc = L, PR \ 

k, = 1c/a{s|g(v(s)) > L}. Verification is leftmas an exercise:lifggzfi s
 

S 
S
 

e 
_— 

The equilibrlum solution (28)»(36) may be characterized 

  

Py {\ as follows. There are two radically different regimes, high= 

/// density fégime,lg (characterized by victim densities satisfying 

g(y) >.§),;and a low-density réglme,izg. In £ggima II there are 

no polloo, no criminals and no crimeo._ In fggime I, while 

densit§ of police rises with that of victims, the density of 

criminals is uniform; so is the density of crimes, as one 

verifies by substituting (29) and (30) into (24).
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This leads to the surprising conclusion that the most 

crime-ridden victims are those living at intermediate densities. 

Fors‘aince crime is uniformly distributed in régime I,*crimes 

per victim must be inversely proportional to the denaity of 

victims. Starting at the highest victim densities;'crimes per 

victim rise as victim density falls, reaching a paak and then 

suddenly falling to zero as the critical densmty is passed and 

régime II is entered. :f 

Here is another slightly paradoxical @mplication. Suppose 

there is an antkjcrlma drive, and the totél police force, P, 
=S 

is expanded. Since the integrand in (%5) is non+increasing in 

L, the new equilibrium L must be lower. Total crime -- which 

equalsngla-does indeed fall. But . in the process the critical 

victim density falls, andugggimoiz"u-which is {s|g(v(s)) > L} = 

expands at the exponse of fégiyg II. People who were living 

at densitios just below the oid critical density will 

suddenly find themselves egéulfed in a crime wave, crimes per 

victim jumping f£rom zeroféo the highest level in the system. 

All this is the resultfifi% increased law enforcement! 

The explanation,’of course, is that the increased "heat" 

on criminals in the old régime I induces them to disperse 

into the greener pasturas" of régime II. 

= The “spillbver“ effect of law enforcement in one community 

on the crime;éoto in neighboring communities has been 

recognized.ffxt is sometimes claimed that better law enforce= 

ment decreases crime in neighborin communities‘é3{ This may 
/é' " : X
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be true with respect to the apprehension of wanted oriminalgf} 

But insofar as the police serve the function of deterringfif 

potential criminals from committing crimes, the argumgfi; just 

gi#en indicates that better law enforcement may wel;flncreaso 

crime in the environs., ,:: 

This sort of two-;ggimo equilibrium is by;fio means 

unusual in game theory;;4’ But we would expogi any such effect 

to be blurred when applied to the real wo;la. In generalaaaé 

does not find the intermediate density géoking of crimes per 

victim as predioted by this model (bank robbery may conform 

to this pattern, if one dofines “vicfiim" density properly). 

Instead, the usual pattern is for,cfimes per victim to rise 

with size of place, and to be inversely related to distance 

froa}éentral-city. iflhere are; however,7many exceptions, and 

different types of crime haye distinot patterns;%§/ 

There—are,—of course, ohy nomber of ways iauwhfiehfiéhe 

preceding model could have gone wrongfi The three populations 

are not fixed in size and not homogeneous. The crime 

function may be misspecified. Movement costs have been ignored. 

Finally, the motlfétions of the three populations may have been 

misspecified. In particular, it is not at all clear that 

police are allooated to minimize (an index of) total crima.igé;}/
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1 lL. Robbins, An Essay on the Nature and Significagpa of 
— S 

Economic Science (Maomillan, London” an ed, 1952), pgye lé. 
dé‘) 

(a 2Some work has been done in generalizing &;§é(2) to a 

continuum. The calculus of variations may b%fgpplied in some 

special cases. Work beyond this point was-gogun by Bernard 

Koopman in 1956. See J,. Dobuenin, “Optlmum pistribution of 

Effort: An %xtension of the Koopman fiasic Theory", Operations 

RfiS‘fiiflh@ 9: 1~7, @anuaay—February,fllSfiy Another exposition 

may be found in 8. Karlin, Mathemfitical Methods and Theory in 

Games, Programming, and Economifls (Addison-Wesley, Reading, 

Mass., 1959), Volume 2, Chapaer 8, where the connection with the 

Neyman-Pearson lemma is stnéssad. Also see M. E, Yaari,\*On 

the Existence of an thimfil Plan in a ¢ontinuous~rime Allocation 

Process,™ Eeonometriog, 32:576u590. @mtobea; 19699 For some 

more recent work on nho Neyman~Paarson problem, see R, L. 

Francis, “On Relationships,éetween the Neyman-?eaxson Problem 

and Linear Programming pa&es 259n3737§£»09timizinq,Methods in 

Statioticsfi‘J.fi$. Rustagi, e%goer (Academic Press, New York, 

& M, g/ 

  

o 
y: 

Lo 3To e precise, we never choose € larger than g;x. This 
Vi 

insurea that x + y remains in the domain of f, so £(x + y) is 

welifidefined. 
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40n derivates see E., J. McShane and T, A. Botts, Real 

  

alxsia (Van Nostrand, Princeton, 1959), pages 110~111. 

  

& SG. J. Stigler, The Theory of Pxioe (Macmillan, New York, 
# A :i"" 

,'Arev. od., 1952) p&gea 119~ 120; 

  

/t,«iiwv 7 

;fikse} is even a bit stroager than the sufficient condition 
(3 23 
#). In (59) , the null sefi for which §°(a) does not maximize 

: (3.2 
is chosen once and for all. But the null set for which {2) 

fails depends on 6§, and conceivably there is no null set E such 
1?«» 

that tzi holds for all 8 and all a ¢ A\E. 

  

[’.ng. G B.}bantzig and P, Wolfe,‘*whe Decomposition 

Algorithm for‘fiinearv?rograms,f Econometrica, ZSf 767fj78, 

(October 1961) v 
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:éisThe concavity and continuity of g _ are of some [}& 2 

independent interest, yielding a "comparative statics" resylt 

for the preceding theorem, as the parameter L varies igfiQB). 

  

"gTwo similar cases come to mind. The law ofl“&ass action 

in chemistry takes reaction rate to be propoational to the 

concentrations of the reagents. In the Lo%ka—volterra theory 

of predator-prey interaction, encounter frequency is again 

proportional to the product of the sp&oies densities. A. J. 

'Lotka, Elemants of Mathematical B§#§QEZ {Dover, New York, 
F 79z 7 

__fi 

loSee E, M, Sohur, Cr%fif; fikthout Victims (Przntice~flall 

Englewood Cliffs, N.Y., ;QGS). 

7 
4 

& 

& llU.s. Presidenfi*s Commission on Law Enforcement and 

Administration of Justioe, The Challenge of Crime in a Free 

50cietx (Duttong New York, 1968); M. E. Wolfggng, yrban 

Crime", :éhlgtnhuameé The Metropolitan Enlggh, @f/Q. Wilson, ed{) 

(Harvard Hniigfséty Press, Cambridge, 1968) esgee&a&iy'pagess 

253:363,f276:281. ' 

  

w&) zinciéoatall¥4 using this argument as a guide ‘ohe can 

easdily develop a dznamic model of redistribution of the two 

populations from a nogfoquilibrium position. Ve oh&ti not go 

into this. 
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  - 

Games of Stratzogx (Prentice-Hall, 

e 

'1 See, e.g., M. Dresher, 
‘*»ix/ 

Englewood Cliffs, N.J., 1961) %5-124-3.27. 

{18   ( E. H. Sutherland and D. R. c:;essey, Principles of \1/ 
; 

Criminologx,; (Lipgincott, Philadolphia, ’7th edy 1966)} =pa§e-s 

1377191. £ 

& # 

P 

\'.\,"";'wOn alternative c:ritzgria for the distribution of police, A 

see C. S. Shoup, “Standfirds for I}istributmg a érae 

g’\d’ /Gevernmrxtai- Servioe:a Crime #revent:.on," Public Finance,-. 
e 1 19 lg{ 383-$9fi.\ 1964 ; find his Public Finanoe (Aldine, Chicago, 

(& 1969), ‘pages 115%§18. 
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