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5.1. Introduction p }}

Consider the following problems.

AR m—

) énefhaéua certain sum of money, and a number of projects

\ in which to invest it. The return from each project depends on
i
\

the amount invested, and the problem is to split the money
| among projects so as to maximize the total return.

% 4 %) The return from an activity depends on the amount of time

devoted to it. Split the 24 hours of a day among activities so

as to maximize the total return.

7 :4idii) The expected return from oil exploration depends on the
bg’“‘\ - region explored and the intensity of search effort iQQEQEt
(:é;j region. Allocate a given total searching effort so as to

4
maxAmize the expected total return.

4 {iv) The crime rate in an urban district depends on the district

and the number of policemen patrolling it. Distribute the

police force over Space so as to minimize total crimes.

rs

s 4v) Again there is a range of possible activities, Some are

productive, earning money but with a disutility attached to

participating in them; some are consumptive, yielding utility

for the spending of money. The problem is to maximize total

net utility, subject to total spending being egual to total
N earning.

All ef these problems have the following formal structure’



415

N

%aximiz&
_/" (\S’.J,f i
513;1) toaet fn(_{c&) “<1)
subject to 2
' ‘ (et 92
B sbE., . A @)

ﬁ,\

Here %%}x) is the return from allocating an amount x to project
x‘}f}Z){;;'the fundamental "budget" canstraint, stating the
total amount ene—has available to al;ocate; X can be time,
money, effort, resources, 2;3. Tha’”proje;ts” i= ;g.%g_can be
regions of Space, periods of Time} activities, e&naﬂrwhe |
individual X; may be raquirad tc be nonfnegative, but not
necessarily,‘ In problem'iué, for example, ene could measure
the amount devoted to activity@} by the money spent; in the
case of productive activities this would be negative. ?otal'
spending equal to total earning is then represented asf X =0,
The return functions_fi can also be negative. In problem iéé&,
‘éewmaaamgiawai(f) would be minus the number of crimes in
district i with x pelicemen assigned there.

Problems of the form (l)”( ) are among the simplest and
most ubiquitons of all paeb&ams One popular definition of
economics , in—fact, takes it to be the study of the relationship
".s+ between ends and scarce means which have alternative uees,“%f
which may be construed as the study of problems involving con€

straints of the form (2). Though this seems rather narrow, it

indicates the pervasiveness of this condition.
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Our aim in the first part of this chapter is to study
problem (1)7(2) under conditions of extreme generality. More
exactly, we-shall assume that the set of possible projects
forms a general measure space, amd not just a finiﬁe set. Such
generalization is clearly in order for many Qréblems. The
distribution of resources over Spaee or g&aa is over a

% continuum, The number of possible alternative investment
opportunities will often be infiniteﬁg/

Our results will generalize existing work in several

directions:

e

—{1) very weak restrictions on the nature of the payoff functions
¢f{;;
3;235) - very flexible feasibility conditions, including the
péssibility of negative investmentss
.;.iii}) no restriction that the meaéuté spage- be over n-space,.
or that it be nuﬂ&atomia; no topological or metrical conditions
imposed on itﬁlgﬁigi |
— {dv) pseudomeasu;euvalueﬂ utilities.
All -of these generalizations are of interest for one
application or another.
-v0ne§§a;;¥£;¥:han§ﬁ\we use just one constraint, while other

formulations allow several.

\ }m\‘& .
59”1,(5* | 5,2. Formulating the Problem
‘) o

We start with the following ingredients: a measure space

(A,E,u), where y is s%§;a~finite, and a measurable function
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.§{“ x reals + reals. (Where the real numbers are concerned,
measurability refers, as always, to the Barel field)‘
The problem is to find a measurable function 6- A + reals

*%ﬁi&hhmaximizes the utility function

(Gaa1)

u(s) = I £(a, sga)){u(@) A )

A
over a certain feasible set of such functions §.

The expression (1) is an indefinite integral yielding a

signed measure over the space A, or, more generally, a pseudogl

: measure in case (15 is not well defined in the ordinary sense.

e G

(l) is always wellndefined as a pseudomeasure, because u is
aig;a~£in1te and the integrand fla, 5(a)) is finite and
measurable. (Measurability follows from the fact that it is the
composition of two measurable functions: a-« (g,&(a)), and £
itself))

Wé use standard ordering of pseudomeasures to rank
alternative functions 8. 1In the present case, by the standard
integral theorem this means that 6 is at least as pieferred as

Y
62 it e - \q% ’ k“P!{ :
[A [ria s, (a0 - g(;.aztgoﬂngga) U2y

ram

\o

is well-defined as an ofdinary definite integral, and is > 0.

This is possible even if (1) is not wellﬁéefined in the ordinary
sense for either §, or §,. If (2) is not well~defined, -then 8§,
and 62 are not comparable under standard order, The possibility

of noﬁ}comparability makes it important to recall the distinction

b
between a given feasible 6* being best (6*\2}6, for all feasiyle

\f yor B (t/(,f,,»zf r/ pe N~ éx,{/i )
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4

6), and being merely unsurpassed (there is no feasible § » §¥%),

If the integralf (1) &X finite for all faasiblg}bﬁ,@thea
standard order reduces to the ordinary comparison of definite
integrals, and there is no need to bring in pseudomeasures.

—w (The reader who is troubled by pseudomeasures has
the option of adding conditions insuring that (1) is always

ﬁ C v
finite,: Eo—wiil then obtain a special case of most of the
following theorems. Here, as elsewhere, the use of pseudo?
measures simplifies and generalizes, by enabling us to drop
N

superfluous conditions,)y

.

Clel)
The utility function 1) -of-the-preeceding section is a

special case of (1), ef—thts~se@h&ea: Let A consist of just n
points, I = a}l subsets of A, and u have the valug(gne -on each
point (éﬁﬁﬂﬂzat%on maasure#), In this case § is just an _n=tuple
(51,...,6 ),(w}a,afa)) for the i#th point a may be written
f (61), and the integral (1) reduces to the finite sum 114~1ﬂ?
sacxinna&ﬂ

A, f, M, and § may be interpreted as follows: A is the
set Zf alternative "projects" among which we are allocating,
and may be a set of locations, times, activities, etc. For
fixed a € A, f(a,*) is a real-valued function of a real variable,
which gives the "payoff density" yielded from the "investment
density" ¢§(a) applied to point a. § may be areal measure over
_Spaee, or time‘measure over g#n?i or some other measure such
that (1) gives the utility. If it has a positive value at a
single point, then in general a non+zero payoff may be obtained
from that point. Finally, § gives the density of the distribqg

tion of the resource, money, time, effort, etc. over the
-
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alternatives cf;§. That is, the distribution of the resource

being allocated is given by the indefinite integral cver_%é
£ ay)
bl v <)
%&a—ﬁar We have said nothing about the feasibility conditions
for § (axcapt that it must be real-valued and measurable). We
saall always require th%t (2) be a finite siggad m&hsure:~%§i£7
“is, any feasible § satisfies the conditiond

i 2y
) 20 &

(&)
[ é, dp
g

< » (i =3 4 '('4")»

kow consider the apparently much‘mora specialized condition:

\?’“‘5 2e) U§ é;_),..,”t )
. j}; é“‘?u i ﬂ‘m £5)

\ . ' / f,_;,,/,,,

* A di @ O
D [ Condition (5) seems very narrow nly axamgie ﬁ;a&e£—¢ha-
— ones-we-have-discussed satisflas it (total earning = total

spending, so total net resource endowment X = 0). The others

have positive total resource endowments. However, we now show
that any allocation problem satisfying feasibility condition (4)

can be converted into another allocation problem satisfying (5).

\—n_.»m"_\%%“

{#& Theorem: Given A, I, M, f, M, where (A Z,u) is a measure space,

n sigma»finite, £f: A x reals + reals measurable, and M a set of

e AL WA,

measurable functions §: A + reals, all satisfying (4), the

problem being to maximize (1) over § ¢ M.

LNV
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Then tﬁ%@@ wxlat,A', E’, u', f' M'ksatisfyinq the same
aonditions, and for which (5) is satisfied for all §' ¢ M'

such that there is a 141 correspondence between M and M* wéieﬁ

['7¥
preserves preferability relations.

= (That is, igiél, 62 € M carrespond to 51’, 62' (3 gr,

respectively, then 51 » 6 ié%, l' »' 52'. Here the praférence
relation » comes from (2), while »' comes from (2) with £4, w'

substituted for £, u);;

§§?$m““”r§roofé Let 2z, be an artificial point not belonging to A. Define

—.

/é‘//\A"”\AU {Z }; ' = {G!Gﬁ A. and G\{z }6 Z}*‘

a 22
( G) = u(G\{z }) + 1 4if | GAEED = /

A%

T (o) £ (a x) = f(a,x) W all a ¢ A, all real x;

: i'(z 'X) = 0, all real >)

\ u;*'VM‘ is the set of all functions §': A' + reals whose restriction

'\ AN

\ I3 to A belongs to M, and which satisfy

_:*
i.'y’ 1

v 8.7
2

Note that 6'(2 ) 1s finxte, by conditicn (4). 5

S Now ' restxisted to A ‘coincides with y, and u'iz )} = 1,

—

Hence, for §' ¢ M‘
L{\‘»\& ’W v\ lq\b

i ] §' du' = I 8%, du + &' (2 )u'{z_} = 0,~_
| Al —8 -9

i —

3 —

from (6). Hence §' satisfies (5).
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The correspondence between ' and its restriction té A
is 111 between M' and M The iefinitions of f‘ and u' imply
that preferability is praserved. ‘Ll+f/,£gj§

Briefly, the new problem is obtained from*ihe old by adding
a point 2, to A, making {z } measurable, giving it measure one,
setting f = 0 on it, and giving any § a value on z, that just
cghcels the surplus or deficit of {KSkgu on A. (A ptocadure
similar to this is very common in finiﬁe problems, where it
takes the form of adding "disposal aétivities?@ "slack
vari ab].es;‘;),) etc,)

This result is very useful} because condition g ; is
mathematically convenient. Our standard procedure will be as
follows, The heavy mathematical work will be on problems with
the special condition (5). Having obtained a result, we then
go to the general problem. This is translated into a problem
satisfying (5) by means of the recipe in the proof just given.
The result is applied to the translated problem, and usually
yields a more general theorem for the general prghlam.

-&E%iéa now turn to a more specific system of feasibility
conditions, Let two measurable funations,~p, c;jﬁ + extended
raals, be given, as well as two numbers, L and L-, which may
also be infinite, 1In terms of these, the feasible set consists

gt

of those functions § uh*eh are measurable, reéikvalued, virkeh

satisfy (4), and whieh also satisfy the two conditions
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and. '~ﬁ 20 D

L ] § ,du < L +2)
N W

That is, for all a ¢ A, 8§(a) satisfies the double inequality
b(a) < 6(a) £ c(a), and in addition its integral satisfies the
double inequality (S). Allowing b, ¢, Ly or L% to be infinite

S( ‘ {i_\;“ a)
is simply a device for removing some of these conatraints; For

;;;;;;

leftvhand inequality in (€).

This system of constraints is very flexible. For-example,
if the density § must bz its nature be nogrnegative, this may
be indicated foxmally bg\aetting b to=be identically zero. @n
ﬁhe—eeaam-banégkif there is no lower limit to 8§ at any point,
set b identically equal to =, 2 tota1 resource constraint
that must be satisfied with aquality las in %#% eﬁ~g§§%g:§§?
eedimg—sectien) is indicated by setting L ”,PQf and both
equal to total availahle-ggg resources. ;he function ¢ is an

investment capacity constraint, limiting the amount of resource

that can be squeezed into the various subsets of A, The

function b is an investment requirement constraint&iin that it

places a lower bound wwpcsmtive, negatxve, or zero>~ on
investment over the various subsets of &,

This is the feasibility system wh*ah will occupy most of
our attention. We now prove a result whieh specializes the
theorem abovegﬂshawing that this problem can be transformed

into one with a simpler system of constraints.

(2:8)
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im} Theorem: Given measure space (ﬁ,z,u), u sééz;*ﬁinite, measurable

7 functions f{lﬁ X reals » reals,nb,‘a=:él* extended reals, and
extended réal}numbexs Ly LY, consider the problem of :

! maximizing (1) over those measurable real-valued functions 8

L et

2 satisfy (4), (7), aad (8).

Then %heravexist A, BV, ut, £, b', cj] with analogous
properties, from which the following problem is farmulateds
Maximize (1') over measurable real-valued funct;ena §*
satisfying (5') and (7'), (The primes indiaate that £', b', e*,
etc.,{éa to be substituted for £, b, c, etc ) There is a lwl
correspondence between the feasible sets of theae two pxablems

31&? which presarVQs p#ﬁferability relations.

Befora going on tﬁ the praaf, note the effect of this

theoremgy The constraint (8) is eliminated and replaced by (5),
1ale
so thatﬁ‘lnstead of bein;]ﬁf?tinaa to the interval [L » Lm],

!‘ \

5 .Gy must be zero. This is very ¢anvqnxent mathematically.

RS

" ! GHW} Prcef: Take an artificialfpoint,zo not belonging'to_g, and

define A', L', u', and f' exactly as in the proof of the
theorem above. Let b‘ and c' be the functions which—are
identical to b and ey respectiVely, when restricted to A, and

T

_ § .

BV for which i ng,q)
© Bhis, i - -8 i @' (zg) = =L =9)-

~

3 We show that with these definitions, the feasible sets of

the original and transformed problems are in lél correspondence.,

With each 6¢ A » reals, feasible for the original problem,
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associate the function &‘{:é‘ * realsléﬁiéh coincides with 6
anﬁ§.aand-which satisfies (6) for 5’{;Q). Any such 8' is
feasible for the transformed prablem§ i%ﬁ@ga(Sf} follows from
(6) just as in the preceding proof. Also, (7') is satisfied
for all a ¢ A, and as for z_, the condition

P

(S 2u0)
b (z,) < 8'(z.) < e'(z.) fro)

is an immediate consequence of (6), (8),and (9). This proves
§' is feasible for the transfciﬁed problem,

Conversely, let &' be transformed-feasible. TIts
restriction to A is then feasible for the original problem,
since (8) follows frogf«iﬂ);anﬁ (5'), and the other feasibility
conditions are abviogsly satisfied, Furthermore, the function
6“{;§‘ + reals associated with the restriction of §' is §'
itself; this folldws again from (5'). We have proved that the
original feasible set is mapped onto the transformed feasible
set,

figaliy; if two functions Gl and 82§;are unequal, their
extensions are obviously unequal, This p;oves we fhave indeed|
a 1%1 correspondence. That preferability relations are

preserved follows from the way -in-which £' and u' are

defined, L*f'ijéf !

R
ot T W SR >

' -l Y. P
B we

f§§ :; ,pane'éinél preliminary point. Given a measure gpace

(g,Z,u), recall that a condition is said to hold almast_evezyg

whexeklor for almost all a

€ A, iff there is a set E ¢ I of

\
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measure zero (a null set) such that the condition holds for all

ag E., (The case E = ¢ is not excluded; here the condition

would hol& for all a é A?M,D

e s

. Now let 61, &, UA + reals both be feasiblegland be equal

almost everywhere: u{alsl(a) # Sz(a)} = 0, eégiéaai%ymsees

that
L';E(‘a.éltg)),\u(é_ig) - Lf(g,éz(a) Ju (da)

anéd ' : (3K;,sg
| 8, & J §, 4 ‘
= TR £
A I.N‘n N 2&»}”""

8o that 61 and 62 yiela thé same utility function and same
resource distribution. - In effect, 51 and 52 are two different
reyresentatxons of the same solution, é&é& @na eould ‘
systematically ignere exceptions to rules.m%éeh occur’ within
null sets only. 5¥e£«axam§1e, the constraint (7) could be

-

weakened tof{ ).

o
%

“=bla) < §(a) < cla)
= = = = )

\a

~ for almost all a ¢ A, without altering the problem in any
essential.Way. In any case,néﬁg“shauld be prepared to find
the following discussion weliiseasoneé with the phrases

"almsstseverywheref, "almost all".

5.3. Sufficient Conditions for Optimality

A feature that characterizes a very wide class of
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optimization problems is the ggle played by "multipliers® or
"shadow prieesf; These are numbers associated with the
constraints cf‘the problem from which special conditions are
formed, either necessary or sufficient for optimality, and
which sometimes allcwldne to transform the original problem
into a newp’simpler, pxeblem
~"These "prices" are especially useful in economic and

social science problemsﬁkbecanse they not only expedite the
soluticngkbut suggest institutional arrangemantsagﬁiéé will
lead the é&oncmy to carry out the solution in practice.

In the rescuree. allocatigg—ggigzém we would expect that a

price could be associated with the total resource constraint,

in such a way that someone taking account of the ”cnst” of the
resources allocated to the various‘projectsﬁl-@s well as the
‘"payoff" from these projects>£fwould be led to the optimal
solution, -In-reality a number of qualifications must be added,
but this idea is a red thread whieh ruﬁ%ﬁigkough the following
results,

We first give a very general condition wisieh guaranteefm'
that a feasible solution is best. Ne%em%hat}ge are dealing
with a utility function that-is. partially ordered, so the

conclusion that § is best is much stronger than the conclusion

that it &+ be merely unsurpassed.

> M’ ; R
€¥¥L”§"Theorem= Let (A Z,u) be a measure space, pu sigma-finite; let

f: A X reals + reals be measurable, and let M be a collection

Al
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of me%suxable function 8: A + reals such that

2o T (" 2i1)
" §,du = 0 1)

s

P —

for all ¢ ¢ M Let 8° ¢ M be a function, and p- a real numbarrk
such thatﬁxfor all § ¢ M,

; : (&%)
£(a,62(a)) ~ p6°(a) > £(a,8(a)) - p6(a),. )
— o~ - PN aa— — ‘”w\
{ for almost all a € A.
! Then §2 is best for the problem of maximizing
i i (5.59)
[ £ea,8 @40 =3

over § ¢ th (ﬁéximizatiéﬁ refers to standard ordering of

pseudomeasures, here and throughout this discussion).

+| Proof: We must show that&‘for any feasible $, ;ﬁ .
| aSien | i f
-* o ]

4 (§3d)
§?:§:§ E;(acé‘(a}} - £(a, 6(a)i}u(da) 14)

is welladafinad as an ordinary definite intagral, and is > 0.

From (2) we have

£(a,6%(a) - £(a,6(a) 2 P82 (a) - §(a)]

almost averywhare. By (1), tha integral of p'[&‘(a) - §(a)]
is zero, and this fact is all we need. L%f* Mi[@[

:-—ﬁ-é""ﬂw st ﬁiw
L e

§"“ Here p“ is the shadow price, and (2) asserts that, for

X

each a € A (except possibly on a null set) , the investment

'R

e
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density 6°(a) is chosen to maximize f(a,x) - pﬂx over the

- —

feasible investment levels x. The first term gives the payoff

density, and the second reflects the "cost" of using up the

resource, (iote that either f or p®, or both, can be

negativef&x

(

We can easily derive a generalization of this result.
Ay : /

qz““‘; Theorem: Let A, L, 4, £ \anglf M be as above, except that the

feasibility condition }13 is replaced by the weaker conﬁition@\
-y

o\

e

: ($0 3.5
< » 15)

for all 8§ ¢ M.
LEN WAA

such that (2) hclds, and also
S a9 (536
P2 ¢ [ (62 = §)du > 0 (6)
T et BN [

w

hA
Let 6“ € M be a function, and p~ a real number

for all 8§ € [|. Then 8° is best for the problem of maximizing

{3) over § ¢ /.

x ‘\ W,

.

w,»«ﬁigﬂﬁﬂgroof: We take an‘artificial point 2z

2, and transform this problem

e

into its equivalent on A' = Ay {3, } (see section 2).

almost everywhere on A U {z }. By assumption this is q@@e on

: A, For the pcint z, we have that f(z ,-) is idegﬁically ngo,

5'(2 ) = - f 8 du, and similarly for 63'(z ) [
Al

This
f*i>} translated problem is in proper form for the theorem just
= given, and we need merely verify that condition (2) holds
|
\
\
i

(O)Qfor the
Jo point z, is then precisely the condition (6). o T8

—
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The extra condition (6) thet—is imposed|is easy to inter-
pret. If p2 is p?sigiffixgﬁea thé§g7is no feasible § for which
:EJ § 634>\f §2 éu.ﬁ In cemmoﬁ\banse terms, this states that if
:the resource is valuabla, as much of—it as possible should be
allocated. -similariy, if p& is negative, the "resource" is

»,,:ry-

illth rather thanrgéalth, and as 1itt1a ef—it as possible should
be used. Flnali;i if ?) 82 dQ‘isT“eithar the highest nor the
lowest possible value attainable, then {&) implies 9? = 0, In
this case the resource is a "free geo&\kﬁand for each a ¢ A we
simply choose 53(5) to maximize gggcg) over attainable invest-
ment levels x without worrying about resource cost.

We can also find a sufficient condition for 82 to be the
unigue best solution. But ona,haa=%e be careful in inter-
ﬁreting the caﬁcept of "uniqueness™ here. According to previaus

discussion we may identify two functions, 61 and Gzrﬂwhiﬂh,ara

equal almost everywhere. Let us say that 61 and 62 are

essentially distinct iff u{a|é,(a) # 8,(a)} > 0. Then, in line
with our discussion, we say that 82 is the unigue best solution
iff 6° is best and there is no essentially distinct § whieh is

also best. Ty
i

,,There may obviously be more than one best solution. For
example, if £ is identically zero, then any feasible solution

]
is best. )

We now give the unigueness condition. Going back to the

first sufficiency theorem, suppose that all the premises hold,
and{&jn addltlon, the following: ﬁbr each § ¢ M whiah is

essentially distinct from §2, there is a set_Eﬁ af positive
L €

A
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maaaureklsueh that (2) holds with strict inequality for all
8 € Eg. ‘Then 62 is the unique best solution.

The proof is simple. Reasoning‘éas% as before, we f£ind
that the integral (4) is positive, not me:ely noéi?egatiVe.
Hence 82 » § for all § e;mressentially}distinct from &9,

ﬁﬂ?his uniqueness condition immediately generalizes to the
case where (1) is replaced by (5)f, Let all the premises of the
second sufficiency theorem holdﬁkéné, in addition, the following:
?or each § ¢ N which-ie essentially distinct from 62, either
there is a set By as abcveé or (6) holds with strict inequality
(oxr both). Then 82 is the unique best solution.

The proof cdnsists'in translating this problem into the one
in which (1) holds, then applying the E; condition to this
translated problem, In doing so, note that the singleton set

{z,} has positive measures u'{z } = 1. This shows that strict

sa.

ot inequalmty in (6) for all § insures unigqueness.,

e

/X Flnallj, we mention a much weaker sufficxant condition for
8% being best. In the theorem above pB is chosen in advance
and (2) must be satisfied for all §. But it suffices that,)
for any feasible S\thére exisﬁpg P2 (which may be different
for different §'s) such that (2) is satisfied for this p® and
8. This variable p° lacks the appeal of the shadow price

interpretation, however.
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Necessary Conditions for Optimality

/The sufficient conditions we have just stated are very
convenient to use where they hold, Unfortunately, it is easy
to find problems whosa optimal solution does not satisfy any
such condition; tha%—is, the stated conditions are not always
necessary.

Here is a simple example. Let A consist of two points:
A= {a;)a,}, I = all subsets, u = 1 on each point; let the
payoff function be given by:” f(a;,x) = ﬁz. fla,,x) = -2x%; the

investment function is given by (xl,xz), with the constraint

: ‘ (.Q) Q )
Xy + X, = 0. Thus the problem is of the finite form (B~ 63%
of.-section-1:
~Maximize y 7
2 2 & 1)
By o= —3)-
subject to
(& w1)
Ry + 2y = 00 -{2)

The unique best solution is obviously Xy = Xy = 0. Now the
B0

sufficient condition(iﬁﬂ~e£nsaet£enm3 requires that there be a

real number p® such that (for point al)

0> x?

- pex
for all real x. Obviously there is no such pe. (6n—the-other
~-hand, this example does not violate the weaker condition

mentioned at the end of the~peeeeé§ag sectlon )
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We shail now investigate necessary conditions for
optimality. Broadly speaking these have been found more use-
ful than sufficient conditions} because it is hard to find
simple sufficient conditions»ﬁhidh cover a very wide range of
problems. -Also, gstablishing necessary conditions is, by-and-
large, much more éiffieult than establishing sufficient condi-
tions,m\(Compare the length of proofs in this section with
that preceding),

The classical example of a necessary condition is that a
funetion.maximizad in the interior of a domain have a derivative
of zero at the maximizing,gaint, if it is differentiable there.
Necessary conditions in general are used just as this one Asjf%/ "y
Hamely., one narrows the search for an optimal solution to those
(hopefully few) pointS*éhﬁéh satisfy the necessary condition,
and then trﬁaﬁ by other means to test these directly for
optimality.
f;pﬁ'W@ shratl concentrate on the special class of allocation
problems discussed above, where the feasible solutions are
those wirien kﬁe betwaen two functions, b, e: A + extended reals,
and wﬁtnh»integrate ‘to zero. Afterwardg, some of the key

results will be generalized to the problem where the constraint

1< : st
: ;“g ij 65\6‘}‘ f.. I’g'
. 5

replaces the condition that the integral be zero.

-

Agnumbar of preliminary concepts and lemmas will be needed

before we can get down to serious business.
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. fhe supremum of a set of extended real numbers ,<it-will
be-xecalled, is the smallest extended real number natriéss than
any of the numbers in the set (it is the "least upper bound® of
the set), The supremum of a funﬁtion; K'A -* extanded reals,;
is defined to be the supremum of its range) {g(a}!a é A}.

#Eiias use the notation g|E to represent the restriction
of g to the subdomain E g A, The supremum of g|E is less than
or equal to the supremum 0£Zg itself, How suppose the domain
ﬁ_of%g is the universe set of a measure space (A,Z,u). We
acnsideznall-passihle restrictigﬁslglﬁ such that “(555)35 6;;%
and take the supremum of each éna¢ The infimum of tgéy;:sulting

set of extended real numbers is called the essential supremum

of g, To put it amoth@r.wagm\the essential supremum of g is
the largest extended rgai number x such that x < sup {g(a) |a ¢ E}
for all E € X such that u(A\E) = 0,

One special casé may be noted, If u is the identically
zero measure, A igself is a null set, and we may takehggw ?.
The range of g}§ is then the empty set @#. Applying the
definition of supremum literally yields sup ¢ = =», Thus the

essential supremum of any function g is/’invéﬁié“éééékwggﬂ

The egssential infiﬁkm of a function g{:%.¢ extended reals,
with respect to {5;2,#), is defined analogously. Just switch
the words "supremum" and “infimumfg3and the words "greatest"
and ”laast\, in the preceding discussion. Or, equivalently, we
could define it by the rule:

= essential infimum of g = ~essential supremum (-g) oo~ |
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M
We shall use the standard abbreviations "ess sup", and "ess inf"
for these concepts.
: {
The following result, whose proof is omitted, wit}h be

needed later.

;quw'Viamma: Given measure space (A,E,u) and function g{aa + extended
reals; let {Ag. Aysee.} be a countable measurable partition
T (or even just a covering) of A. Then ?¥ 2
,I{x‘ ‘ t@ﬁ (5.4
i ess sup g = sup{ess sup(glﬁn),y =0, l"‘t} 7 fsé

(&4 4)

ess inf g = inf{ess inf(g|a)[n =0, 1,...}. (@

 Here ess sup(glA ) refers to the function g|A and the
measure Space (a ,En,u ) » which is the restrictxoa of (A I,u)
to A . Similarly for ess inf(g[A Y

iﬁwﬁ&&aube notei that meaaurability of g is nowhere mentioned.

Indeed, these concepts are perfectly well—defined, and the
lemma, correct, for any function 9, measurable or not. This is
important, because the functions g and h which we define balcw
are not naeassarily measurable,

mext, let f be a realmvalued function whose domain is an

interval of real numbers, [b,c]. ‘TThe endpoints of the interval

N

,J AN ( 0. ,44 g

may or may not be included, and we may have b ”;9)‘ is

continuous at the point X, € [b,c] iff, for any sequence

Xys Xppees of points of {b,c} whose limit is x - and any number

e > 0, there is an integer N such that, for allug > N

\

b

) L

P

S

Y i
r
|

\\



435

y (5:‘{.&“‘)
-g < gg;c?) - f{xg)rvq- 1N 45

Now (5) is a double inequality. Is ?vwe drop the left=hand

inequality in (5) + keeping everylthing else the same, we get a

weaker concapii; £ is then said to be lower semitcontinuous at

£ to take a "sudden" jump downward, but not upward, at Ky
(Continuity prohibits ™sudden® jumps in either dimctionﬁ“;,}

Function f is continuous, or lower semi-continuous : 1££ it

is continuous, or lower semi;%gontinuous, at every point of its

dcma;.n'; respectively.

—>  There is another way to characterize lower $emi£¢ontinui.ty
whieh is more useful (though less intuitive) then the definif

tion just given. An open interval of real humbers is an

ixxtarval{ez:a_g& containing its endpoints (this is the same as an
open gjﬂ.ﬁgﬁon the real line). 2n ,cgen set on [b,c] is the interf
section of {E {93 with any union of open intervals. Then
fs:g_b,c} + reals is lower sam{igontinuous iff (x|f (x) > .X} is

an open set on {_lg,q} ;ﬁ\for all real numbers Y. We omit the

proof that the two iower semﬁjcontinuity concepts ave the same.

We shall need the following result.

&ffPNLemmas Let £ ::{p /¢l + reals be lower semij?centinuous, with b < e.
Then : » $i6)

[ B sup £ = sup(£|E),, 18

where E is the set of rational numbers in [b,e},
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»M-ﬂ.
P\ Proof: Obviously, sup £ > sup(£|E). Conversely, for any number
,xig} y < sup £, the set {x|£(x) > y} is open and nontempty; hence
\J o gy i . ;? B
there is a rational number Xo belonging to it: g(xo) > Ve JJ%‘”LJi?

,»*”’);—’?i“‘

i Next,/ we need several concepts related to, but more
general than, the concept of derivative of a function. Let
.
h
£: [b,c] + reals again have a real interval domain which may
N —

or may not include its endpoints, and let x be a point of the

. domain # c.
£¥{1"Definition: The lower right derivate of f at the point x is the ;,Eg

| A
|

limit, as ¢ goes to zero from above, of

‘;5;4.7)

D) }n,__:‘f{fa-?(x*y) - £(x)1/y | s s} Rica

== et is, given ¢ > 0, we find for each point y in the open

intervaiﬁ%b,é)ffﬁhe value of [£(x+y) -~ £(x)1/y ~which is the

\2
N

average slope of £ from x to x + y}J-and take the infimum of
this set of values. Having done this for each € > 0, we take
the limit as € + 0.

This concept is welikdefined for any real-valued function,{
and any domain point except the right endpcint, c, but it may '
take on an infinite value. For first-ef-alld the infimum of any
set of real numbef#;is some extended real number, so (7) is
well-defined for fixed ¢ > 0. Furthermore ome sees that (7) is
‘nonrdecreasing as e -+ 6; hénce has a limit in the extended real
numbers. This of course contrasts with differentiability, which

is not a universal property.
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We shalkl use the notation D £(x) for the lower right
derivate of £ at x. If the right endpoint, c, is part of the
domain, we shall make the convention that~p*§(g) = -,

Similarly, for all domain points,uy, other than the left

X

q**ﬂwnefiniticnz The upper left derivate of £ at the point x is the

endpoint, b, we have (/¢ Yol . o

. s ‘/quv[{;‘{: Z04,8)
S“E{[f(x) - f(x-y)l/y ! 0 <y< e}. N (8)

) limit, as € goes to zero from above, of v,

-

“”””éhwl' ““““ Wi;Margument similar to #ﬁglgne just given shows that this
is always weliidefined in the extended real numbers. We shald
use the notation D £(x) for the upper left derivate of £ at x.
If the left endpcintixy{wis in the domain, we make the con-
vention that 9“5(5) = 4o,

- ©{0One may also define the upper right derivate: replace

“inf" by "sup" in {(7): and the lower left derivate: replace
"sup” by "inf" in (2){ but we do not need these concepts. A

function is differentiable at interior point x iff all four of

these quantities are egual; their common value is then the

aemag“’ of £ at x3Y

Naxtk\we need the following result concerning atomic

L 2 neasures,
\  i—
o Lemma: Let (A,I,u) be a measure space, with u atomic; let

g
r %

(;1, fz,...) be a sequence of measurable functions on A, taking



‘
z
:
i
!
£
i
¢
§

_[Proof: By definition of "atomicro exaetly one of the two b
\

X, ¥
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values in the extended real numbers. Then there is exactlx

S
one sequence of extended real numbers (xl, xz,..;) patisfying

ne

Y i 6" )
£,(@) = x “for all n =1, 2,,..} # 9

/"”/”/‘
numhara, u(E), n(B\E) is 29:0, far any choice of E ¢ . I&t—is
gleaﬁ ﬁh&% there can be at most one sequence of numbers

satisfying (9), hence we must show there is at least one.

Take any measurable funcﬁion fﬁkgnd consider the

supremum, xa, of the set of numbers x satisfying

; (CRYNTY
,--v{#l?(%) < x} = 0. 410)
If x> ==, také a seguence (x ) rising to x Since (10)

et

holds for each X0 it holds for X, itself. It also obviously

holds if x = ww.

Now considerx the condition

§: ga&i‘a £}
ul{alf(a) > x} = 0., “x1)

This obviously holds for x_ if X, *»

Ky « If X < o, take a

se%uenca (x ) decreasing to x 03,‘{11) holds for each such

(sinﬁa the complement of the set in (11) has positive

measuxe). Hence (11) holds again for x

o We have thus shown
that

45 %.i2)

ulalf(a) # x } = 0. ~t2}

i

jf‘ﬁ o
vV -
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Now for each f let x, be the corresponding number

satisfying (12)., The set {alf (a) # * for at least one

%

P R %5 21404 ) dn the union of the countable collection of null

&

sets ({alf (a) # x }), n=1, 2,..., hence ss itself has

!‘4

measure zerq, Therefore its complement is not a null set.
But this is exactly the statement (9). ’Lpﬁ? z:#ig
8 .

Let us now get down to business. The allocation problem
will be determined by the measure space (A,%I,u), the payoff
function g{:@_XS;éals + reals, and the lower and upper capacity
functions, p,_g{l@ + extended reals.

We m;;e the following convention. If a specific point

§  ae€ %ﬂis chosen, 5(9,-) is a function of a real variable, 1In
referring to it, we shall always take this function to be
restricted to the interval [b(a), c(a)l. (The endpoint b(a)
is to be included iff it is finite, and similarly for g(g)).
Thus the statement that g(g,-) is lower seﬁ{icontinuous refers
to this function with the domain {y(ﬁ),_g(5)13*;;imi1arly for
derivates of this function; in particular we have at the endﬁ
points that D £(a, b(a)) = +» and D f(a, c(a)) = -,

To explain the formulation of the following result, recall
that,ksince u is e&éi;wfinite, there is a countable measurable
partition/ {A_, Al,...} of A, such that p restricted to A is

77 © -8
non-atomic, while each A ¢ D= 1, 2,044, is an atom (that_is

<

restricted to A, is atomic) i)AG is the nonfatamic part of A,
: — T

Y ; , e

Ee N e O LA i T Aol Sl
and g\ﬁsfyhe atomic part. | @C( K % St n R

(\/\/Q ')\D ;A;)\t‘ g;;,ggA\,VQ TE,\Q*”““ a“g,ﬂ,‘ﬂ' oL o8 m 7 tond ¢ Q| Y;Eiﬂ 90)\/\}

s §Pqﬂ{7 Soe ol a@ /o vmg pmaa)
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- We postulate that the given feasible density 689 is i 5’33

unsurpassed in the allocation problem. Nﬂﬁawﬁhahsthis is a
Tt

weaker assumption, and therefore yields a stronger result, than

o

if we postulated that 6° were best.
The following is called a lemma rather than a theorem
because it lacks immediate intuitive appeal., The result is

quite powerful, however, and implies all the other results we

.,  Obtain in this section.

o £ ‘ (i;m
-i%iw% Lemma: Let (A,I,u) be a measure syaceﬁkwith W sigma~finite; let
o mreane i ,
g:i:a X reals - reals, and b, c: A + extended reals, be
measurable functions. Let feasible 82 be unsurpassed for the

’§;Jé problem of maximizing

P
p N\‘; B (5"» e
[ L?"” [ L= [fg(g;ﬂ@)u(@a) 3)

subject to 6{2% + reals being maasurable,;ana satisfying

(. 414)
b<é<e 14>

and FrasA B

L e 4 ( §et41.3)

| 81 IA 8, duy = Oﬂ\ {153

Latlkg, E\ﬁg be the nonratomic and atomic parts of A,
respectively. Let f(a,*) be lower semiycontinuous for all

a & Aea
Define two functions g, h: A + extended reals as follows:
—— \_/"""
For a & A . J
gr\ i , (& 'Q%
g(a) = sup{[£(a,62(a) + y) - i(a,&ﬁ(a))]/y e (16)
- s ® ou ~— = . -

= N
¥ ' i ' i \‘ 4
o A 1 sad "
o N

.

PR EREA
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the supremum being taken over all yz:.n the open interval

(01 ?_(a) - 63(3)).] ; ; }lg
g o ; (gl o
o~ ' {\.,5.*’}4”}
h(a) = i?f{[ﬁ_ig,ﬁzt_a)) - £(a,82(a) - y)]/y}hm ("
the infimum being taken over all y in the open interval
(0,62(a) - b(a)).
For a € A\AQAW
Ly )
gla) = D £(a,8%(a))j -
v (&5 42 9)
h(a) = D"£(a,82(a)) . (19)
Then, for any pair of disjoint sets G, Heg I, we have
| ;;w, 20
ess sup(g|G) < ess inf(n|m). (20)

It suffices to prbve (28) for the special case where

W
Ss A, BEg A, for mn, n=0,1, 2,... . ﬁer,\snppose
R

this has been prcved, an& ’Iet: G, H be any dis;aini: measurable

sets. By assumption, we have

ess _sup[g{ (GnaAa)| < ess inf@l (H n «»An;]

for all m; X} = 9,- 1; 2,*‘* ° Th@ﬂ' by {,3) and (‘}),

A Jk~¥* X
Jl,\ ess aup(g!G) su;; ess sup(gl (6na ))]
v V‘i 1%
< inf ess inf(hl(ﬁ n An’ ):[ = ess inf(hlli),
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}%/inc:e«. (6 n A, m=0,1, ..., partitions G, and @ n A),
n = 0, 1, ..: . partitions E* Thus (20) would be proveg in
general. |

* __  There are four cases to consider: »

1 eea, B
(

<)

<l

I§ | i) SsA,Beh form ndo; )
% > '%ﬁﬁi@}} Geg A, K g'§9 for m # 03
} ,{,b({::}?) Gg Ae. Hg;An for n # 0.

o

‘L&In each case we shail assume that (20) is false, and show

+hat there is a feasible & surpasses ¢2, giving a con®

tradictxan.

¢} For each positive real number y define the functions N
@ ’i’ krg
gz ,‘hy. A + extended reals by . P f
g 47T N Wl :
gl = [Elsc@ +y) - tlasc@))rs Vo,
5 P tﬁ}

if c(a) - 82(a) > y; = == otherwisej'
~ \/ - ¥ (N

-~ Ve
hota) = [glase @) - £(a820a) - )] L Gt
; Vi 22)

D

\ if 82(a) = b(a) > y; = +» otherwise.
L I A bt

g

\vi 3 b M-;y These are all measurable functions, since £, b, ¢, and 82
\ —
3 are all measurable. Furthermore, When "51?&“’-4 To AO) /-uw’
~j§ “;\),;)f L,I" ;‘L“:},/; e

g = sup gy y|/m = inf b /> (23)

the sup and inf being taken over all positive real y.
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We now show that {(23) remains

true even if y merely ranges over the positive xational numbers.
Take a point a ¢ Ag, and csnsiderggy(g) as a function of y,
with domain the open interval (0, gfa) - 82(a)). Since f is

lower semg;cantinuaus, it follows easily that the y-function

gy(a) isPawer sem%j?ontinuousff (%se the definition given by

the right half of (5)). If c(a) > 82(a), it follows from (6)

that (23) is true for g when the supremum is taken over the

positive rational values of y. If c(a) = 6°(a) this is still
W Filios — -— :

true, the two suprema both being =, This proves the contention

for g.

As for h(a), we consider h (a) as a function of y, with

——

&cmain (0, 82(a) - b(a)). éﬁemthen veriﬁ&és that minus h (a)

is lower semifcentinuous. éas_then verifieés as above that

sup (ﬁpy(g)) is the same whether taken over positive real y or

o,

positiv; rational y. But sup_ (~h (a)) = ~inf (h (a)) = =h(a),
which proves the contention for h.

xaw,léssumxng that (20) is false, choose a real number x

satisfying 3
, (L4 24)
ess sup(g|C) > x > ess inf(n|H),.- e
and let ggﬁ( ' y;?'
jaG' = G n {alg(a) > x}lﬁ;ﬂ' = H N {alh(a) < x} o
and g2 2 :
|| L& 4 B
Gy = & n falg @) > x}, K, = B0 {ahy(a) <x}p,  t29)

for all positive real vy.
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0 ® 4

ranging over the positive ratianals. Hence

Since we are operating within A , (23) is true for y fﬁ
| g

w

G'uuc; o H'nuﬂy,

e A,

the union taken cverhthé ﬁositive rationals. (G and H', as
unions ofva countable number of measu:able aats,AgreAthemselvea
measurable. Also u(G') > o0, u(E') > 0; for if not, (24) would
be false. It follows that there must be positive (rational)

N
{éﬁ‘%:l@ )

ugey1> >0,/ Mgy ) > 0 @26

since a countable union of null sets is a null set.
Now u, being sig;a-finiteﬁ%and noﬁ?atomic on Gy + takes
1 21
on all values bé%ween 0 and u(G ) on this set¢\similar1y for
¥

f

HY +« Hence, from (263,¢we can find measurable subsets

T2

G" @« G, and H" ¢ H_ such that

i ¥ ¥
e e (5.421)
| Yqu(G") = you(H"), : 21y
| T

5 Mk
with this common valuebeing positive and finite. '

We are now ready to construct another feasible density,a

T

622, which will surpass &°.

) 820 (a) = 62(a) + y 5
" o0 qa) = 62 (a) = yzl\§.f ag H"f" ‘t28)
@ 622 (a) = 62(&){§\if ag@G"y mu", )

O
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v* Note—that this is well-defined, since G and Hé’hence G"
and H”) are disjcxnt. First we verify that §2° is feasible.

=1

At is realdvalued and measurable. Also,

0
% | 2

;]A(sve - 80)du = yyu(e") - ypu(E) = 0,
1
|

from (28) and (27)., Thus it satisfies condition (15).

Next, if a ¢ G", then gy
g ¥y

¥y < c(a) - &9(a), by (21). This means that adding yl to &2 (a)

s

on G“ does not violate the feasibility condition G(a) < g(a).

e
Similarly, if a ¢ u", the%lhy (a) < x < », by (25). Hence b i
2 -

¥y, < 82(a) - b(a), by (22), so that suﬁ%racting ¥, on H' does

(a) > x > -», by (25). Hence

not violate the feasibility condition 5(&) > b(a). Thus (14)

remains satisfied, and 8°2° is feasible,

Comparing utility from 8°° and §°, we have : }f-lyi
% \ } v |7 T
il§ d } i
] [%(a,6°°(a)) - £(a, 5°<a)>]u(da) IG"ylg A ~%f Yahy du.M>
i f
from (28), {Bl))ana (22),
§ ~ . «},/
\SY | > sk = T
/ b
> if y, X ,dp j ¥, %,8u
i gnﬁ - ?—_/ ‘ : ‘E Ejg 3/ N 3

‘since a" ¢ ggb and H" 3 §§A and p(G"), u(H") are positive,
¥4 = S I i .

= x y;u(G") - x You(H") = 0,

from (27). Thus 533;15 preferred to 6% under standard ordering
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of pseudomeasures. The denial of (20) thus contradicts the

premise that §° is unsurpassed. This establishes (20) for

G < A H e A
-9’ =2

.!'.-%.b \"‘"‘) 2

=6 Ay He Ay, where m, n # 0 ::XN

<ft As above, we assume (20) is false, so that

ess sup (th) > ess %Egi‘é!g)wﬁ%‘ ‘%ﬁﬂim :

S
For this to hold, G and H must have positive meagure, so that
they are atoms. Applying (9) to the function 9452 restricted

to G, there must be a unique constant, €., such that

3 9 \
f\ X {I:)ﬁ%.‘.{;!
H(G n {alc(a) - 6°(a) = ¢ }) > 0y 136)
¥ o S % 0 ’} i s 4
S (2 fok 00k
Since c¢~82 is non=negative, by 0. 1In fact, e 0. For if
2= A g

cla) = 63(&):Ythen g(a) = D f(a,8%(a)) = ~»; hence ¢_ = 0
ol .. SN Fagr © Zgtol

<]
would imply g§§‘§upw%gis) = =~w, contrary to (29). A similar

argument shows that there is a unique positive constantﬁ nen
AN

such that tﬁw'é 4
_}f

~~ el é (5430
. -] [y £ L 2 .
u{é n {31&-(§)\’,E(i} nei} >0 ~ .

Label the sets in (30) and (31) by G', H', respectively. These
are subatoms of G and H.
© A measure ﬂh&ch is atomic and a%’na~fin1te is bounded, so

that G
*~/& s p(gj) >0, > u(H') s 0,



S

TSR RS

447

Now take two sequences of positive numbers, beginning with

AN A
€., R ,.respectivaly,\ané-decxeasing to zero:

9 o~

Ee > 81 > 82 Se00p :!-i!il‘ en = Oj‘m

S

B

= ne > ﬂl > “2 Pasey ]‘:3',!9 nn SQI":}-W,

g

and chosen so that

, “ CAELY
e M(G') = n u(H") 32

for alllg > 0.

ﬁgikv ”Hsider the segquence of functions géy, nw= ) 240009

given by (21), all restricted to the domain G'. The condition

Eh < 9 guarantees that these are all finite. Similarly,

Lo

restricted to the domain H' Thase are also all finite,

since U <7

-0’

Applying (9) once again, we find there must be two unigue
sequences of constants, say Sy cz,...ﬁ and bl' bz,..., such
that
, ) J (5.4.%%)
u@' n {gxlg,%gg) *gn%_ﬁfor all/)g =1, 2,...£] >0, 33)

X) oA £« N BN
o, , (= %.3%)

u[g' n {alh, (a) = bn Afor alﬁépvu R 2,...2] > 0.’ 134)

and-

These constants must be finite.
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Label the sets in (33) and (34) by G", gﬁcdraapectively. Also

let
(&.4.35 )
G, = lim inf ¢ = lim inf g _ (a), an& 135}
Smr i < — Jeg
and B =
/:L// (5 4.56)
J2 b, = lim sup b = lim sup h_ (a).. 136)-
I - n - 2 6 nn 2

(35) is valid for all a ¢ G", (3¢) for all a € H". We also

have
(5..%7)
lim inf 9, (a) > D f(a,82(a)), and (37)
O 3 ool w Ll
and o o
€’f' 1 .26
lim sup ho (a) < D£(a,82(a)),. (38)
, P s =R i

9 )
e .. o b
for a ¢ G", a ¢ H", respectively. k(37) results from the fact

that D, is the limit of infima taken over entire intervals,
while the left side of (37) isjﬁhe limit of infima taken over
subsets of these intervals (nama%y the points ¢ ). A
similar argument establishes (38).

Now the right-hand sides of (37) and (3€) are nothing but

g and h, respectively. Henée

=

}«Tj;,go > ess sup (gle)ia'kss sup (g|G) (£4,%9)
> ess inf (h|H) = ess inf (h|H") 2 bof” (V]

from (35), (37), (29), (36), and (38).



449

Since ¢_ > b , ~ehere must exist an n' 'such that St > bn"

We are now ready to construct a feaaible density 8°° u%%&h

surpasses §2, Let

e R JoY
o 820(a) =l6o(a) + e pllif a e e
S " ( D% (Sipue)
Bot@) = sotal  |ifag ety En.
%Mﬂm* This is feasible. First of-all,
'; f(? ;3«“—8 : 1 G

AL [ e - soans e - g

L))
\%~ from (35). Secondly, for a ¢ G“ &_(a)%ﬂxln; < §2(a)

=lenel(G') = nu(H') = 0,

izife g

80 the Jupper beund eonstraint § < ¢ remains satisfied. Similarly,

/? 62(a) = ngwn> gi(a) gﬂg = b(a), for a ¢ H", so the lower

bound constraint 8 > h remazna satisfied, This-prevas feasibil-
ity.

Comparing utilities, we obtain

=7 :‘.1 'E”‘ : g i ?2]“\ ‘ b -

< 17
sﬁx [ E§<a,a,s(a>) . f(a.ﬁ*(a>{}u<d&> jgéah'?éhédu " *n*hnn

[

from (40), (21), and (22), /2/f/¢

= SarSaru (€)= ng by (H")

ﬂj

2 k
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from (33) and (345
N\
> bpe legau(@®) = nu@m"] = o,
e, o
since f;‘n, >-—b‘n” 11((;”) = u(sn)' u(_H“) = U(g'), asd a1l Sesms

are positive. Thus §°2° is preferrved to 62 under standard

y&, ordering of pseudomeasures. The denial of (20) again leads to
7 , ; '

4?;\\r\\\acntraﬁiction
o RSP

«;H?‘ &(&Lﬁé G’F‘.Amragagamfg'é
L~ (

The proof for this case cemhines the techniques of the
two preaeding,paaﬁﬁ, and we sha&lnéast outline the procedure.
As before, we assume (20) is false. Let x be a real number
satisfying
: / , (S.441)
ess sup (g|G) > x > ess inf (h|H).. Raiid
P ams o § .
Reasoning as in«§=¥b gi), we can find a positive (rational)
H > h H, H h a) < x
number y, such)that ug’?§) 0, where By, = q {?Lﬂgg() x},

an&xgxé is givenA?y (22)‘f

Next, we £ind the number ¢_ and the set G' as in ?au@ (i1,

(>}
(30) , and again take a positive sequence decreasing to zero:

> g > € > €3 >eeej lime = 0.

o

) 18 005 ‘
As inAiii), we find a unique sequence of real numbers,

€1r Cypees, Such that g(g“) > 0, where
N

G" = G' n {aige (a) = cn\fer alQ)g ® 325 Bosrate
n e
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(cf£. (33)). cContinuing, we find that (cf. (39))

; (51442)
1lim inf e > ess sup (g|C)._ ~(42)
Now choose n' so large that
H f: f,’;“"" 'vf 'ji;
€y < Y,H §§y2)/u ., 143)

for all n > n' This can always be dane, since lim €, = Q,\and

A T

i the right side of (43) is pasitive-%\u (G") is fim.te. since
i Qgcf({pﬁ»ﬁ«'&
is ﬁmu-—fimte and atomic on G" b (42) and (41) :mely that

there is an n" > n' for which

@‘3} el

Since u is mgmawfinxte, and nan-ratomie on iiy ¢ it takes
2
on all values between 0 and u(_}_n + Hence there is a measurable

7 ) subset H" g B such that
, =% T

Enubt (6") = y u(H") .. +45)

since € u satisfies inaqualiéy (43). The common value in (45)
is positive and finite.
We now construct a new feasible density 62° as follows:
L B {98 L o

6"(&) = 6°(a) + € ,.,\5' .'Lf ag G"y

i l

e §22(a) = 82(a) - y,40if a ¢ B/’
o 3 1 E

§°2(a) = 8°(a)s, Fitagey H".
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yj{y

To show feasibility, we have, first,of el
AN
@ﬂ I 66‘ - 6')}\6]1 = e/ﬁnu(G ) » qu(ﬂ ) = 0!——3

L oalts

from (45). Arguments already given in-p&#!& (1) and (ii) show
that the bounding constraints b < § < c remain valid for §°°
,ﬁenceﬁrit is feasible. Comparing utilitiesga

fo)
\n 2> g 13 | l"[i s .;f, ik

[fraaesen - zescenfuan - [ cpag o - [ o o

-

> g/ n%uh(@“) " ¥q X u(l?")

n
3] 13
N 1
> x [e, wu(E") - yzn(ﬁ“)l - 0.
v w ’

from {(21), (22), (25), (44), (45). Hence 6%° is preferred to

82 under standard ordering of-pseudomeasures. This contra-

. pe 0l
7. d1ctlon establishes {20) fcr.pagt (111).

C% j&pﬁ/” = C

M),{S} A:gﬁk_‘&n:}}#o':j

-8
( : . A ppl
3/‘ This is completely symmetric with paxt (iii)- One f£inds
: £ Rk,
a set G, as in-pase (i), a sequence by, by,... as inpnﬂst (ii),
) (g |

etc. Details are left as an exercise,

—  Thus (20) has been verified in all four special cases, By

the argument-ﬁﬁiéh begins this proof, (29) is now established
in general. The-proof-is—compiete. ,LL%JT Vaf |
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;ﬁLThis has been a long and tedious proof, and the resulz
itself does not look prepossessing. A few intuitiva remak¥s
may be in order, then, to indicate ggat the lemma says,. and
why it "should" be true. “

The funation_g represents, roughly, the return per unit
increase in investment at various points ofgé.jfThe function h
represents, again roughly, the loss in return;éex unit dis3
investment. If (20) is violated for a pair of disjoint sets
G, H, this means there are subsets G', H€', of posiﬁivé measure

such that g on gi is higher than h on H'. Then, if we

e,

transfer some mass from H"to G', the net gain on the latter
set outweighs the net loss on the former, resulting in a new
feasible density=whé@h~surgasses §2, The main burden of the
proof just given,-in-faet, is to find the appropriate subsets,
and the appropriate mass to transfer.

We stress the generality of this result. The only
special conditions imposed on A, L, u, b, €, or f, aside from
measurability, are that u be s&gma~finite, £ real, and f(a,-)
lower semi#ccntinuous for a ¢ ﬁg~

eonditienskxand will nearly always be satisfied in practica.

These are very weak éfﬁ%

our aim now is to use this result to derive the exéptence //\

y of a number that behaves somewhat like a shadow price.
— R

]

{%%mw{;Lemmaz Let (a,Z,w), £, b, ¢, and 82 satisfy the conditions of

é§¥ preceding lemma, with 62 unsurpassed for the problem of

G
-~

), maximizing (13) subject to (14) and (15), Let the functions
Nt
1 g, h{:} + extended reals be defined, as abova3 by (lé)%(l?).
/ i e BAAL \
N/
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| Proof:

i

_l! = G, lf%bi ]

1 ¥
m' and n' for which i 3}3 .
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Then there exists an extended real number 0 p2
E e E, ‘such that

:’ and a set

p——
R

=iy *’E is either an atom or a null set, and

(. wys)
g(a) < p® < h(a),. | y

for all aé€ A\E. \

Veriiags S o

- f.('l‘his may be expressed by the statement: Except for at

most one atom, (46) is true almost averywharc,f;

Let (jsep Aysees} be the decomposition of A into nont

atomic part AB and atoms Al, Az,... « Let gf?‘ = ess sup glﬁnf%

h = ess inf h|A - for n=0, 1,... . The preceding lemma
then states thatv

; S W4 )
m n y (1 Ly

g- £ h- o7

for allm, n =0, 1,... such that m # n. It gives no informal

tion if m = n, since then them is no disjointness of A m? A "
First let us suppose that ;

m n (éll"hl"g})
sup g~ < inf h— .. -

Choose any number p2 between these bounds. Then (46) is true

for allf a € A except possibly for a null set *'En c }n' =i

2 -

Hence (46} is true everywhere exceptw for the
oo

Since E is a null set, the lemma is established
if (48) is true.

satEnuE,,

Now let (48) be false. There must be a pair of indices,

By (47), these indices must be
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But then, for all m # n', n ¥ n', we have
(5 444)
“£49)

equal: m' = n',

-— n'
gm < Y « g% . h?»

-

ey,

by (47) again. Hanca,dif we exclude the set;gﬁ,ﬁy(éa) will be
ré-established for the rest of A. Thus (46) will be true

almost everywhere on g\Aﬁr,
It remains to prove only that the anomalous&gﬁ; must be an

atomw\t$3£i%s, that_g' # 0. Suppose on the contraiy that
go > h°. Choose two real numbars;qg, v, so that

@ > x>y >nd,

“~and let

ln = Ay n {ah(a) <yl

G = Agn {alg(a) > x},|

; C%”é / " As in part (i) of the preceding proof we conclude that G

and H are measurable sets. If u(g n H) = 0, then

(5.4.50)

ess sup (9] (A\m) = ¢° > 10 = ess int falme)).,  450)

The first equality in (50) is oﬁtained by noting that the

essential supremum of g anwgbAis the same as on ¢, since

?0 > x, This in turn is the same as on G\H, since this just

removes a null setdléimilarly for the last equality in (50).
But (50) contradicts the preceéing lemma, since G\H and H\G

are disjoint. i
If u(G n H) » 0, we can sﬁlit GnH into two pieces of

positive measure, F; and F,, since u is nontatomic on B). But
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then

St ess sup (g(El) >x >y > ess igg‘(h}$2)?3

A

- This again contradicts the preceding lemma, since ?l and F, are
{ disjoint. Hence n' # 0, and the offending set A ,\must be an

!

|

atom, ljf L]

X S < >
,wwﬂwwﬂiﬂn»“ The excaptioaal case, where (46) fails for some Axkﬁmwill

be referred to as the case of the anomalous atom. ﬁere is a

trivial problem in which it arises, Leﬁ4§Aconsiat of just one
point:s A = {a }, of measure gne; let the payoff function for
this point be f(x) = |x|; the bounds satisfy b<0<e.

Because of the intagral constraint (15) there is just one

feasibla =~ hence optimal - solution; nﬁka%ygétgg = 0, The I JY@Q)
space consists of one atom, and«eneavexifisa easily that -
g(a ) = +1, h(a ) = —1, so (46) cannot be true for ao

The anomaleus atom situation is related to, but not
identical with, the well=known case in which there can be
"inereasing maxéinal returns” on (at most) one alternative

5~

ﬁ%” project at the optimal allocation.” This occurs in the example

beginning this section, (1)#(2), in which the second derivative
is positive on point a,. But this latter situation involves
"second-order” conditions, while the anomalous atom involves
"first-order" conditions.

The number p of this lemma will turn out to behave much
like a shadow price. 1In this connection it is desirable that

t
it be finite. This is not guaranteed, andAia not always
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possible to find a finite P satisfying (46) , but there are
several simple conditions whiah imply that there is such a
real number.

One such sufficient condition is that the anomalous atom
case occur, TFor then the inequalities (49) let in daylight
between sup g and inf hw (both sup and inf over n # n')ﬁ and
allow us to pick a real number between tham.

A second condition wh&eh insures that the p in (46) ba
finite is that

‘ | E.w51)
[9 n {als2(a) < c(a)ﬂ > 04 By
‘w .,L/f #
= v
S il
uLAe n {als®(a) > b(a)»_}] > 0y 152)

§° is strictly below its upper bound, and a similar set on
which §° is strictly above its lower bound. For, from their
definitions, g > -» on the set in (51}, and h € « on the set in

(52). Hence _

Demeglcpardcn,

“and P is finite.

hatuaa now inhroduee a differentiability condition. We
make the following aonvantiﬂn, First, let b(a) < 6°(a) < c(a)
for a certain point ae A, \f(a,*) is said to be differentiable
at the point 6°(§) iff




F
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lim {fla,82(a) + -~ £(a,8°(a) 53)
3 [tlase@ +'y) - £(a60@)sy

exists. (&his is the usual definition, except that the values
#= are possible. These occur with a vertical tangent at
6£(a), 0 if f(a,-) is increasing at 62(&), -0 if it is
aeeraaszng) Next, if 6"(&} = c(a) we, say that f£(a,°) is

lw}fferentiable at d2(a) iff the limit (53) exists when y*@
through negative values, ggg this limit = =-w, Finally, if
é2(a) = g(g);ye say that f(a,+) is differentiable at 62 (a) iff
the limit exists whan_g*ﬂ through positive values, and this
limit = +», When £ is differentiable ,the value of the limit in
(53) is called the derivativa, and denoted D f(a 62(a)).

The next result seems sufficiently intereahing to be

labeled a theozgh.

- Theorem: Given measure spaca (a,Z,u), u si%ma~finite, and

measurable functions fz A x reals =+ reals, b, c: a + extended
reals, with £(a,*) lower semiwcontinuous on the non-atomic part

of Ay ;mt d2 be unsurpassed for the problem of maximizing
| [ £(a,s (a) )Iu (da)

26K
over measurable fuﬁ?kions 6: A *Feals wh%eh satisfy

besse
G
pac p5 [}7)
j § du = 0.
A
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: , C19)
let g, h- A= e%ended reals be defined as usual by (16)- -fE) .

. In addition, let there be a set E of positive measure

\"t such that f(a,*) is differentiable at §°(a), for all a € E.
g§; Then :

i&i»n f(a,é’(a)) is equal to a czcame.t:an't:q pn ' almost every,
where on E, and 2
Im;) p’ is the unique number whéeh satisfies

i - Eiv.s4)

S04 4 94 MR N

| almost everywhere.

L

g Proof: Let {~Ag’ Ajr Byyeesd be a daeompnsitim;. of A, with u non4
atomic anwgg%‘and atomic on Ay n = 1, 2,.44 « Since u(g) >0,

u(E n A ) > 0 for at least cns: value of n 1 PR R
Firat take the case when u(E n A}ﬁ,) > 0 for some n' # 0.

,,.,,,

Then, for jany a € A, for which @F(a,éﬁ(a}) exists, we have
A‘bf} ; .—’9,{ ]3-5 ]
g(a) = D £(a,82(a)) = Ef(&'&?(a)) % D £(a,82(a)) = h(a)e

(isq&"(’)

from the definitions of these functions. (If 82(a) = e(ﬁ), the
common value in (55) is ~w; if 6.‘1(3) = bjia), the common value
is +=). " |

Now Df(a,8°(a)), as a function of 3 with domain E, is
measurable :f?i,aince it is the limit of a sequence of measurable

functions gy {given by (21)) %{or givan by (92)";5\ as yi + 0

through pos:.ts.ve valuen. Also A ,;\\/hence E N An" is an atom.
Invoking the lemma (9), we find thab\ t\ Df (a,8° (a)),{;-{hance g and

is equal to a ccnst:ant, p_,, almost everywhere on E n a
.:\ : O NN
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It follows that
ess sup (g|A,) = ess inf (h|A ,) = p°

i

Using the abbreviations ¢” = ess sup (g|a ), n? = ess inf(h|A ),

it follows from (20) that, for all_gl & §;§4§2 ¥ n',

55 / N gy . !
) ni n' g’:’ \ f)é',oq (& w56)
UL mpt eyl LUV 455)
80 that
n n (& .%.572
sup g = p® = inf h . {57

and (54) is true almost everywhere.

Next take the éase when u(E “*ﬁb’ >0, For any a e»ae
for which Df(a,82(a)) exists we have
‘\i:*f}*

g(a) > Df(a,82(a)) > h(a) 458)

for, on Ag, g is the supremum of the functions}gy;while Df ds) o

. is their limit §§,440: and h is thé infimum af_ﬁﬁe functions )
| 2% (c8
by, while Df is again their limit as yp0. It follows from (§9)

that gg‘i QO. But from the preceding lemma (4&),‘the opposite
inequality is also true, so gQ = 59 (= 92, say). It/then
follows from (58) that Bf(a,&”(a)) = p® almost eyerywhére on

Ay

Also, the same argument (56) establishes (57) again.
Hence {57) is established in all cases for a unique numberlgl,
and (54) is true for this number. The arguments just given
show that Df(a,8°(a)) is equal to this numﬁérﬂgtjalmost everyS

where onlg n An for all



461

’fgf; on E. 41*1?‘ 575’

g

Note that the anomalous atom case cannot arise here, It

is precluded by the condition of differentiability on a set of
positive measure. This theorem yields a thi;d simple
sufficient condition for p® to be finit&,\é;;giﬁﬁ\that there be
a set of positive measure on which Df(a,62(a)) exists and is
finite. For Df(a,82(a)) = p2 almost everywhere, and the

condition just given insures that p? is finite.

;“ﬁ”’___.gy Finally, we want to show that p° acts as a shadow prices
y A thab~&s, that 62 (a) maximizes

/ (524.59)
f(a,x) - p®x 159)

over all real x satisfying b(a) £ x g;t{;)ﬂAfGr almost all
a € A, Here (59) may be interprétea as giving the "payoff
density" f(a,x) minus the “resoﬁrce costf,'?%g.

We make a special convention é# to the meaning of
"maximization" in case p? is infinite in (59), Namely, if

N 7\
pl = -», then "maximizing" -ds~to mean%’ taking x as large as

possible, so that x = c(a) is the maximizer of (59) (if c(a)
is finite). And if g& = o, thenkgwmust be taken as small as
possible, so that, if b(a) is finite, then x = b(a) is the
maximizer.

For finite p°, the condition that 6°(a) maximize (59) will
be recognized as the sufficiant condition for optimality given

(3.3

o, by 12}, a@ansﬁianﬁa, specialized to the particular feasibility

conditions of the problem we are studying in this sectian.é// -:§;h

rd
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@.2)
This suggests the question: floes {2) ef-sectien=3 still
suffice for ”begtness“ if the p® appearing in it is infinite,
and we interpreéﬁkmaximizationﬁwaccerding to the convention
just mentioned? The answer is yes, for any arbitrary

feasibility conditions that include
\2’3 A (7 (s"lq,'(ae)

N ‘Si\,du - 0”1\ 1690)

wWa ,
Let us demonstrate this. The feasible set, Mjconsists of

measurable functions 6=:§ + reals, all of which saﬁisfy (60).
The sufficient condition is thatﬁRfer all §,
’ (5% 61)
£(a,82(a)) - p?82(a) > £(a,8(a)) - p2é(a) ~+61)
for almost all a € A. Using our convention, if p? = += , (61)

reduces to

. (& 462
§2(a) < §(a)e, +462)
But (60) implies that
\\3’f 2° |o‘f’/' /:} TS
(8= 82)au = 0, ~+463)

and this together with (62) means that ¢§ = §° almost everywhere.

Hence &2 is best because the feasible set is trivial:/;A¥waﬂs
,4kﬁmrfnﬂﬂrﬁeta*:83 is the only feasible solution. éimilarly,

if p? = ~», (61l) reduces to (62) reversed, and the same

argument applies. This completes the demonstration.

- Wa_ We are thus on the verge of establishing a necessary and

sufficient condition for optimality. One consequence of this
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will be that aunsurpassed“ and "best"™ solutions coincide for

this problem. FPFor, starting from an unsurpassed 8¢ we derive
a condition %h%éh suffices for §2 to be best,

Now to establish the shadow price condition (59)2 For
this we need an extra condition on the atoms of u. The trouble
is that g and g)axa defined on the atoms in such a way that
they depend only on the immediate neighbexhocd of 82 (a), whareés
(59) asserts something about the entire xénga [b(a), cla)l.

The assumption of a@ncaviﬁz will bridgefthe gap.

We define thiéiabstraatly. Let £ be a real-valued
function whose domain is a real integ%al {g,g}j(ﬁndpoints may or
may not be included, and b =c is pééaible{; £ is said to be
concave iff, for any numbers x, y in its domain, and any number

t in the interval [0,1], we have 4

-
&

= ™ (2 B

A concave function may be,éhawn tc be continuous, except
possibly at the endpoints of iés domain, where a "sudden" down=
ward jump is possible. Thus é concave function (defined on an
interval) is always gﬁgﬁgggggéiwccntinuoug. We also state
without proof the following Qell»knewn facts about concave

funatlonazioq T /A

&%\ Z ;f(x*yl) ""?‘?_E) . x; - f(x) - f(x..yz) (e o i
3 S e i?-kf‘%? 2D £(x) < 7 ) 464)-
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|

for any positive)b;eal’yl, Yo and real x such that X =Yy X,

and x + yJ are in the domain of £. (Our special conventions

concerning D, and D~ insure that (64) holds even if x is an
endpoint of the domain.)

| / Let us return to the problem in hand. In stating that

f(a,*) is concave, we follow our standing convention of taking
the domain of this function to be restricted to [bfa), c(a)l,
(%(g) to be included iff it is finita, and similarly for g(ﬁ)).

The following theorem may be taken to be the main result
of this section.

{
e

3
#
i

' ' S &
C¥£mm;$heoram Let (A,Z,u) be a measure space, with y sigma-finite;

@nad

~\ ;
let f:VA X reals = reals,kp, c:Cﬁ\* extended reals be

i}' measurable; let £(a,*) be lower semiscontinuous on the nons

atomic part of A, and concave on the rest of A; let 8% be

feasible for the problem of maximizing
: (& biss)
f £(a,8(a) ){u (da) {65)
over measurable functions 6::g + reals which satisfy ‘
W R,
% H b<s<ec {6€)
: ‘l ;'&,' ot E.wen)
z ’ ] P NN 67)
i A

|77 Then the following conditions are logically equivalent:
igiﬁg) 82 is unsurpassed for this problem;
(ii) 682 is best for this problem;

A%{.

0%
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cF%(iii)fthare is an extended real number% p?, and a null set E,

Fuch that 6$(3) maxinizes

() | ; ; & 8)
\ & il £la,x) - pex , Lo

over all real x in the closed interval [b(a), c(a)], for all

a € A\E,
3 «‘s ;
'lemg"?roafz (;;éa implies (ii) is already contained in the sufficiency
L PO &) (33
0 theorem tt)j¥3¥we£«eaa&ioamav plus the argument of (61}~ (&3).
e ot

% { (ii) implies (i) by definition. It remains to show that (i)
implies (iii).
Let {Ae, 1,..,} be a &eeompasitian, so that p is non%
atomic and f§iawar semi~continuous on A, while u is atomic and

®

f concave on each Ay h $0,
4ﬁmz@§ge show ghat concavity precludes the occurrence of
an anomalous atom in_(4¢). Choose an¥ atom A . First of-al
e a

Jhis follows from th ct tha®, by concavity,,
g|a, is maasurable (g is given by (16),' {lﬁﬂﬂﬁfj (a) given by

B

% (21) is nan?;nureasing in y, for fixed a ¢ L Hence the

; lower rightddarivate D+£(§;52€§)), which is~§(§), is the limit
of any sequence g;;Va), ¥y going to zero through positive
values. gglAﬁ is thus/ the limit of a sequence of measurable
functions g;:1al,%ané S0 is itself maasurable.vfhlsinilar
argumant establishes the measurability of h|A ~§§r§ﬁ given by
@ny @9 o

The lemma (9) then implies thatvg and g are constant

almost everywhere on An‘ These constants must equal gn, the

\\/
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essential supremum of@g{%n, an&rgg, the essentialvinfimnm of
b2,

 There is a point a € A, such that g(a) = g” and h(a) = n?,
since these relations hold ;immst everywhere on<§h, and
u(a ) > 0. But g(a) g h(a) equal D _£(a,82(a)) and

D f(a,&ﬁ(a})ﬁ #gspectively. (64b\middle,#§hen;implias that
u\\\ / ) ‘; Py e »_',__,«‘
P < hn

.

Thisﬁtrne for every n=1, 2,,.. + We also have ga g*hg

e By,

n.
from (46), land g h“’2 for all ny # _n,, from (20), Hence

sup g~ £ inf hn (botﬁ taken over all m, n=20, l...), and (46)
' is true almost everywhere. There is no anomalous atom.

Thus there is an extended real number, p°, such that
: 7 (5 by 9 )

g(a) < p2 £ h{a) 469)

for almost all a ¢ A. We’ now show that this_pa satisfies the
condition (iii) almost eﬁarywhexe.

o | Firstjsupyosa pﬁ wﬁ~m. Then g = -» almost everywhere,

pa

from (69). Let g(a) = == for some a ¢ A\Ag (£(a,*) is then)| o

concave, and it fallows that there cannot be any positive n

satisfying (64), le t, \That is, 62(a) is at the upper limit:
6°(a) = c(a). If g(a) = ~-» for aamela.ln the non+atomic part
LW
is again at the upper limit., Thus 6§,w134almost everywhere,

then it follows from the definition of“g. (16), that é8°(a)

But, by our convention for p2 infinite, this is precisely the
condition that 8° maximize (68) for p2 = =-», almost everywhere.

Hence (iii) is established in this case.
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Next, suppose p° = $o, Than_E = +» almost everywhere.
An argument similar to»t&éxsna just given shows that 82 = b
almost everywhere, which is the condition for {iié) to be
satisfied when p2 = 4w,
It remains to establish (iii) when_giyis finite. In this
case, the condition that J2(a) maximize (68) is equivalent to
the following double inequality: f
’ ,\ 17 2 { 1A 5
£(a,8%(a) + y;) -£(a,8%(a)) 2 f(a:fS’(a)) - £(a,82(a)-y,) (& 470
¥y 2P 2 Jm

/ + -
which must hold for all positive y; such that 62(a) ¢ #145 ala), v

1S

and for all positive y, such that ﬁzig) - ¥, 2b(a). We now
show that (69) implie§ (70). 1If ac¢ g\gc, then f(a,*) is can? N
cave, and the implication follows at once from (64).
%§2>2 ; Finally, let a ¢ A s g(a) is defined by (16) as the
| supremum of the 1@£t~%§£§§-§n (70), as ¥y varies over the open
interval (0, c(a) - 82(a)). Sxmilarly, h(a) is, by (17), the

3
infimum of the right te#mg;aé-(7d), as y, ranges over

(8,6°(§) - b(g)). (69)1£%en implies that (70) holds for all
interior points af [b(a), q(a)]. But it must then hold for
the endpoints as wellg\baeauseﬁf(a;‘), being lower semi~
continuous, makes no suddenvﬁpwara jump at b(a) or c(a). This
establishes the implieation in general.

Since (69) holds for almost all a ¢ A, so does (70). _This

» completes the proof that e@aéé@aen (i) implies condition (ﬁii) LJﬁV j’ﬁ?
—r
s omesp————
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\;lféps, under the special assumptions made concerning £, a
necessary and sufficient condition thgi feasible 6° be ung
surpassed, or best, for the problem §f maximizing (65) subject
to (66) and (67), is that uhcusaaa$§% a "shadow price", p?, g
under which (except for a null setj, for each "project" a ¢ A
separately, 82(a) is chosen to ma#imize the "payoff" f(a,x),
net of the "resource cost" p2x. f

This rasulé_is important. f?ixst of=adl, it suggests an
efficient method for finding aﬁ optimal solution (if there is

one). Namely, choose an arbig%ary number p, and, for each

: | o
a € A, choose 42(a) to maximize |f(a,x) - px over the feasible

interval [b(a), c(a)], disregar&ing'the tataq resource
constraint (67). If, by chéhce, (67) is satisfied by this
process, we have found an d%timal solution. If not, adjust

P to a naw-valua%bp‘%ﬁand;¥ry again.

s How should p be adjg%ted? It is easily seen from (68)
that the maximizing valqé of x is a nc@}increasing function of
P (We are implicitly éssuming, for simplicity, that there is
a unique maximizer of §és) for each p and a € A). Hence, if
total resource availagélity is exceeded by the trial solution,
raise the tentative sﬁadow pricef p, and lower it in the
opposite case, Thisf;imple monotonic relation between p and
total resource deman§ makes it easy to "zero in"™ on the proper
P (againﬂ\asauming &%at there is an optimal solution). The
necessity of the shédow price condition also guarantees that

we will not overloo& the optimal solution by this procedure.
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|
Furthermore, the shadow price coédition suggests
institutional arrangements for arrivigg at an optimal solution.
For example, if one overall arganizgtion is responsible for
this allocation, separate divisions might be responsible for
separate subsets of pﬁbj&cts ag ﬁ; The "head offieé”umight
dictate the tentative shadow prid; to the divisions, note the
consequent resource demand, adjuﬂt the price accordingly, etcﬁv/
Going a step further, the free market itself is an institutional
mechanism for carrying out the;price—adjustment process

discussed above.

\At> Two special cases in which the results of the preceding

theorem are valid may be noted. The first is when u is non&
atomic (as well as a&gma~£inite), and f(a,*) is lower semi+
continuous for all a ¢ A,' ‘The second is when f(a,+) is concave
for all a € A (with no aséumptiona on y other than aigma~
finiteness). The valldiﬁy of the first case is obvious: gince
4 has no atomic part, nq concavity assumption is needed. The
validity of the second £ollaws from the fact that a concave
function is lower sem%gcontinucus, so that if g(a,-) is concave
everywhere the premisés of the theorem are certainly fulfilled.

Finally, we recall that the condition (67) is much less
narrow than it appears. We can in—£aet formulate an apparently
much more general thparemtwhiah falls out as an immediate

corollarys
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; ;%kﬂﬂ' eorem: Let all the premises of the procading theorem be ful-

Wi
fillad,‘except that the fgasibility eandition (67) is replaced

5 \': 1y o )i
] o bY \5 b b ;

s rps [ s gl

s e —

o
i

“q> > - i .nv—j; . 157

S

(Haxe L, and L® are two extended tbal numbets‘ 1 ﬁﬂdu is still

i,
g

- i
"SR Ay e v £ O

@)

raquired to\ba finite, howaveﬂ). ' Then the fcllowing are equi~

s valent’

,i (1)

(ii)

.

IR
1

§° is unsurpassed for this problem;

i6" is best for this prablam,
{iii) 'there is an extended rpal number, p®, and a null set E,

such that 8%2(a) maximizes

(& 1)

f(a.&i - pox £71)

< ©Over all real x in the clesa& interval [b(a), c(a)l¢ for all
a & A\E, }Furtharmore. ££ !# 85du > L ' %hen p2 >0, and Af
\} ﬁ’dn < L%, thmx p? < 0. A

““Jﬁmmganm.ﬁ

Mvwﬁ:?ng’;;cofz (ii) implies (1) b‘ definition, an%,Sﬁ#') impiias (ii) by
' suffieiency theorem alraady given (2f. (5)+(8) oAU ton: 3.

N\ To show that (i) impliss (iii) we add a point 2, o A and

transform this prohlem into one of the preceding type by the

: recipe given -abeve in sec&ion 2.

1 The‘gingletan set {z } is an atom, since u' {z } =1 > 0.

f(z r®) iA identically zaro, and this is a concave function,

S0 the prenises are fulfilleé on A' = Ay {z }. By the
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preceding theorem, -there exists a number; p!, such that

§2' (a') maximizes (71), for almost all a' € A'. 1In particular,
1

{ it must ‘maximize (71) for a''=z,, sinae uiz } >0, Since

f(2°3 ) is ideﬂfically zero, (71) reduces tc:v

; CAZRES)
ip%*‘s { t72)
,;;;Lf | New, if p® > 0, then the maximizer of (72) is as small as
possible: 6°‘(z ) = b'(z )s Butg:recalling the translation
(24) i
recipe, #34“e£wseet&ean24 this is simplyf{"
’!C} = 54’;’. : (.‘-’, ¥.1%)
1 . J 85dy = -L2.. (73)
é WA \ ; ‘, -
} Similarly, if p% < 0, ehen-wa must have é‘(z ) = ¢' (z ),
@) ajainy
| which is to say, bﬂ 1=-3] o? section f2) again,
i ' \16{ y} %‘F

(£ 494,
*'I !/‘@uﬂﬂlnr <74)
A

(jg, /8 ) LAALG 2 y
(73) and (74) give the two extra conditions on p.‘,ka?ﬁbﬁ"

-

e i
Thus, if 6° is optimal for this more general problem, we

get a shadow price condition of the same type as above, with an

W [0 (Y
extra sign condition on |p®, depen&ing on where[fi 82, du is

located in the interval [;o,pnl. The leconomic interpretation

of these sign conditions iséthe same as in section 3,
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95;5; now we have been examining conditions ;ﬁiah imply,.
or are implied by, the fact that;a given feasible solution &%
* is optimal. We now take up a dikfarent task, that 0f proving
¢ éﬁ thet an optimal solution exists for a given problém. First,
!? \ /}t we start with the simpler task (@impler,_shaggiay for a given
Q, problem) of proving-that at least one feasible solution exists,

Even this is by no means trivial for the problem with which we

( f,. {ﬂ i~§ J,e—az

have been dealing, charaeterized by aonstraints erﬁ# and 9649 ®

Q@ka—fTheorama Let (A: /1) be a measure space, with s&gmaufinite,

let b, c.A + extended reals be measurable funcﬁions¢ The

follow1ng condltions are lcgically equivalent:

e X{é)' @hexe:exists a measnrable function §:A + reals|such that
= Sl (&< 1)
bs8ge. )
A ,-":y O o
ﬁ“,)z { e (5. 5..3)
SRR FERY <)
A
T (ll) _1? i Cy P < @, © > w00, and 0
29 ] | 3‘ [ ‘
1’|€ ; § ?O | (2.2t %)
g[\badu <0 f_[ e dus 13)
% {

f”f%“ﬂwPrOOfi That (i) implies (ii) is obvioua. Conversely, assume
(&) ./ ' First, because u is sigma finite,ﬂ*he:aAgxis€§ a
ositiv measurable function k:A + reals such that
E.—-—P————e- e - .“\
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i o
o (&', $ o)

o > I;\k,dug‘c.-)\ ET o
§

If /«u 0, take k = 1 evei'ywhere. Otherwise, let
{?1, Gz...;} be a countable measurable partltionQWLth
© > u(G) >0 for all n. On G let k be equal.to the constant
1/{?9ufgni}. This function fulfils the stateé conditions,

Next, define the median function, m,’ as the one whieh

picks the middle in size order of thraa"”extended real numbers;
thus m(3, -2, ) = 3, m(-m ®, 17) = 17. etc.
’Nemt.;, for each real number x, define the function

~A > extended reals by

= — &
I A
£

m (a) = m(b (_ggf. c(a),xk(a)) .-

Jﬁz‘

- Because b Lc one ﬁindg that
i;f"; | (655
m = max[b, min(¢, xk)] = min[max(b, xk), cl. €5r
el v, gﬂ, = - Y
/ émﬂ'g)
|my is thus me?‘surable » and also -zealsvalued, since b(a)

and c(a) are nevgfr both 1nfinite of the same sign. We now

‘x.

show that, if ,f

*c’;

ch

21 [

17! R

é; ,\g‘u < 0 < I Sr\gu'* ) \-.66.)..
A

Sy,
e SO
e

oy

P
&
;“

then m, vgill be a feasible solution for (i) and (2) for some

¢

real nufuber Be T

: J W\ | wf-‘ 23 1S | 1%
‘g,:(If (6) is falsa, then either IA\_I_;- «du = 0, or Fal € d;x = 0,
7 . e 5
In g/ither case we fget an immediate feasible solution. In the

t/—'
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first case, fo;t—examp-le, set §(a) = b(a) whenever b(a) > =w;
and{an the null set where b = =», choose § = min[c,ﬁ}. Hence
finding a feasible solution in case (6) will praye the
theorem}

353 ;,
First of all, by (S), ' J

D b« < c.
Bl =My 2 E'

.ﬁ

—

) 7‘?

~ Next we show that %A ﬁd“ exxsts and is finite for all

real x. We have 55
-(c” + |xk|) < min(e, xk) < m £ max(b; xk) < b + |xk| o
B
:{*'3.“

¢4 {15 1§ / (15| ,gﬂ,

Also, n[ T+ fxx])au > s, ama'[ " + {xk[)'\du_ < w,
| Aé f N ?

3

LT | -

4 ™ ;
a'bacausét?f (3) and Q&), Which shows that} mﬁgu is finite.

14 Q%2 - | &

} W

Next we show thamﬂf Km gu, as a functivn of xl)is
==}

continuous. Latg lf'XZ"” be a sequence, either increasing
or decreasing, wh?@e limit is the real number X. By the

monotone eonvergénce theorem we have 90
26, 29 : J !
e R B e

92 125 e | J Iy |
1i [ du = f lim me Ay ﬂ%f m, Gu
n?f A 'xﬁ\ A gjgfﬁj*> i &

},

o

proving céntinuity.
AT f
xgﬁfl, Xoreeo is a sequence increasing to 4w, thenrpx

S

incredses to ¢, so



% 9 Y
SRR by e |2 &

§lxm ] m_ , du a[ écﬁgu - 3

s ————————
mcm—
ey

n .
: <
i
If Kyr Xogpeas is a sequence decreasing to —w, then x
decreases to b, so i

RS

g
7220 ¢ \ Eg) 1.0 o
1 i

&;3: E fy(ﬂ ‘ \»
$ imgjgim A du ﬁiJ | by dn < OQ
ElcE: o |

(Both these rasults are again by menatone convergence,
The inequalities are from (6).) ‘

i;*c(

AN

&
tr'?
q"’ i

)7f
IA! ndu is positive;

Hence for sufficiently large real X,

and for auffi%}ently small real x, it is negative. Since it

n,Lf'
A ig eontinuaus, t?ere must thagibe an x-value for which,
'i% b 2 g -

f m »du = 0, and this m ia,faasible¢ Hence (11{7implies

-

‘iii m W Iy

Sy

] As usual, this theé%em has an immediate genaralization@
glkéTheoremz Let (A, P M) ba a measure spaceﬁ\with u s&gma»finita,

¥ i let b,c:a » extendeé reals be measurable, and let L ¢+ L2 be

two extended r%zéanumbers. The following are equivalent.

“fhere exists -2 measurable function §12 - reals ,ﬁsuch that
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This is an easy corollary of the preceding theorem, by
the now familiar procedure of transforming this problém into

one for which (2) holds. We leave the details as an exercise,

{jﬁ) 5.6, Existence_of Optimal Solutions

:t"ﬁ

We now come to the much more difficulé problem of proving

the existence of optimal solutions. A number of assumptions

-y,

have finite integrals, and the paygff functions’§(§,-) will be

continuous .(as usual, this refe;élto the interval [b(a), g(§)15:
Even so, much work is involved, _

We shall first prove gxistence under the assumption that
u is noﬁE}tomic. The bagié procedure is to find‘functions
satisfying the suffic%ﬁht condition for optimalityﬂkand then
show that one oﬁwthgdé is feasible. Next we go to the
opposite case whegé:u is séiQu-atomic, using an entirely
different proceéﬁ;e. Finally, we combine these results to
prove exiatence under general (a&qmawfinite) He

Standard ordering of pseudomeasures is still used for

oxdering nﬁilities, and existence is proved for best solutions,

>

(#— Theorem: ;ﬁet (A,Z,u) be a measure space, with u sigma~finite

0)

J

and noﬁ%atomic; let p,czg + reals, and fsg x reals + reals, be

measﬁrable; let g(ﬁ,*) be continuous for all a € A, Assume



M‘&WW‘MMF-I- =

477

b < ¢, and let L be a real number such that

e i (S'.b,t}
- TN =
. : 3‘_ | \
[ Then the problemi, #aximize ~
> f’j“«.g.
I,zg (a,8(a))u(da)y
* over measurable functions §:A + reals, subject to
ff':l" =~ ¢ L
Vo e )
b8 gog o~
: / , Zo ¢ P
I gﬂ R 13

has a best solution.

- 'f'
A

.yf’””’—/f;roofz For each a ¢ A,/ and each extended real number P let

i
i
|
i
i
!

A O S S

iy v

S £\

_“a'p be the set of real numbers x- wh&eh maximize the
Vi

expression £

| (Seest)
e S @
= }; :;."“_ P .;f{‘» .

~over the clcqéd interval [b(a), c(a)l. "Bg our convention

concerningjfﬁfinite‘g»values, we haV@.ﬁﬁim = (p(g)}ﬁ\and
Byt g@(?)}. Since (4) is contiﬁkoﬂ; in x (for finite p),
and thefmaximization is over a closed bounded interval, the
sets E a,p are in all cases nonrempty, closed and bounded.
Henc¢ they themselves have a minimum value and a maximum value
foi;all (g!g). Define the functions B,y:A x extended reals -+

reals by
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B@,E) = ;t\ﬂj‘.‘n_"};a,éia;‘jﬂ
v(a,p) = max E_.

Let =» < p, < p, < @, We have the following chain of

relations
o
c(a) agv(a,-—'@) = B(a,~=) > y(a,p,) > 8(a,p,) WS

2 vlapy) 2 B(apy) 2 v(a,®) = B(a,®) = bla)e,

? The equalities in (6) follow ig%m~§a,w = {b(ai}i
_ﬁah_w’a {c(a)}. The miadle inequaiity in (6) is the only one
that needs proving. in—éae%a frem the definition of E

have

apwa

}‘q;{%
}’ ¥ . £
* fla,84apy)) - py8(amy) 5 f(a,v(aipy)) - pyv(apy)s
:‘._.‘

£(a,v(a,p,)) - pzﬂaféz) 2 £(a,8(a,py)) = pyBla,py) ey

Adding these two ingﬁﬁalities and simplifying, we get
3(a,pl) > v{a,pz).ffrhis establishes (6). Thus , for fixed

ae¢ A, Bla,*) an& v(a,*) are nonnincreasing functions,

Nextﬁlwe ahow that y(a,+) is continuous from the left;
that»&a, if 91' Pyress is an incraasing sequence whose limit
is Py (possibly +®) , then thq limit of y(a,pn) is Y(a,p ;
Farﬁt lat’pa be finite. The sequenee Y™ Y(a,pn)xzs nonmf
incraasing, hanee it has a limit ok Y(g,p géjmust show

-that this is an equality, and to éa this, it suffieas to prove
thagﬂya maximizes (4), since Y‘?iPa) is the largest number

an,

(AN
P
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i (,Q x‘;,’é;
whiech does so., g

Now (4) is jointly continuous in Xand p (a¢ A is _ﬁi&m&) ’

hence : :
* il £(a,y,) SRR T
lim a e » £(a, ey
new 2 Px}ynr LA 1 1YQ p Qyo o <+

For any x € [b(a), c(a)] we have f(a,y ) - p y > £(a,x) - p X,
sim:az maximizesﬁ?. Hence,&by (7), ’

17° 2t
£la,y,) - p, Yo 2 lim [£(a,x) - %xl = £(a,x) - Po¥es,
® = nves :

4;;

&

Thus 2a maxinmizes (4) for p= ’ﬁe' 80 v(a,p} is continuous from
the left for any finite p. ?sf

Next let Po ™ ¥ Sﬁ'{;ea f(a,*) is continuous on the closed
bounded interval (b {a), c(a)], it has a finite upper bound, N.
For any ¢ > 0, choasaﬁ p finite, and greater than {N - f(a,b(a))]/s,

Then for any c(a) > ® 2 b(a) + ¢, we have
i

9'
&

plx = b(a)] gpa >N - f£(a,b(a)) > f(a,x) = f(a,b(a))r

8 : P (
o that / F (& 6.0

7 £(a,b(a)) - ph(a) > £(a,x) - DXy +8)
4/
(8) shawé that no suc:h X can maximize (4), hence y(a,p) <
b(a) #/2. Thus if Pyr Poress increases without bound, y(a,p )
approac.hes b(a) = v(a,»). This proves that y(g,t) is

c:ox,atzinuuus from the left. A similar argument shows that

' ﬁf’ég.- ) is continuous from the right.
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Lj Next, we show that, for fixed p, yv(a,p) is a measﬁiable

function of a. We split A into two measurable pie@é§ and
consider each separately. On the set {a|b(a) yc(a)}. Y(*,p) =
b = c for any p, and so is measurable. "

dew consider the complementary set E t {a[b(a) < c(a)}l.
To show that Y(-,p) is measurable, it suffices to show that
the sets E n {aly(a,p) < y} are all m@asurable as y ranges over
the rational numbers. Mow, for figad a, p, (4) is a continuous,
hence lower semiggantinuous, fun#éion of x. Hence its

supremum on any interval [b,c] (with or without the endpoints,

and b < c) equals its supremﬁm over the rational numbers on

;}i"

EnN {ah(a,p) < y} = F ; 76
2 “", { /Jﬁ»" :
h 4 % ‘ A i\ &e,)
k Ng{f(a x}*- px|x rational, x < y} | 2 | 499
Enqa |
?’ ﬁﬁpfﬁ(a,x} - px|x rational, x > v} . | |

s

o

In (9) a aﬁd g‘are held fixed, and the two sups are taken
over x as anicated. For this formula only, we define f(a,x)

to be == iﬁ;%_is not in the closed interval [p(g),dg(g)]; and
note that;ffor fixéd X, the function g(',g) thus defined is
measurapié. In verifying (9) there are five cases to consider,
depending on whether y is in the intexval [b(a), c(a)]l, at an
endpéint, or on either side of it. Note—that ghis interval is
nqﬁ%degenerate for a ¢ E, hencéfalways contains a rational

gﬁinﬁ. We omit details.
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Since the rational numbers are countable, the two sups
in (9) are over a countable number of measurable func;tions ’
henca am themselves measurable functions of a an E (p,y fixed),
Hence the right side of (9) is a measurable seti; This proves

Y(',p) is measurable, A similar argument prgﬁea that B8(+,p)

&
@
fA

L ]

£
A
i i‘ﬁ 4{} Fd Q“%’

5% Next.{ consider the integral éf A 'y(agﬁ)u(ﬂa) as a function
—

of P+ For anyz‘w < ip £ o this ia well‘f‘-definea.l‘an& in fact
finite, by (6) and (1). It is alsq, nox;x_j;increaaing in P, since

Y(a;?) is nonwincreasing for eaah»’xa € A. Using the monotone

i «7
convergence t}neorem, it follows from the left-%cntinuity of
:-t”'f

1S
T(a,-} that gy (a,~ A (da) is al&o lefi:-'cantinuous. (Take af

mm—"ﬂ”r

to
sequence Pl' Posese inereasing tp p ; then Y(a,p ) » y(a,p )
J 313
b?( left%continuitr manct',ene convergence then yielda
ifa}”"'? ),xu(da) * fa Lﬂ% u@a’ )“\

)] =
A similar argume;%t shows that I 18(3,-),\;1 (da) is fiinite,

e

non-yinereasing, and fright-ccntinuous. &3

We are now ze,ddy to construct the optimal solution, Let

;‘; P Fl & Gao)
»,:39 » 5“9{’ Yfa;phu (da) > L} a FIVYY
{

— Since |f Y(a,*)ﬂu (da) is continuous from the left, it
PeT A
follows tha;,.s:’ iy e
::‘\ i’§< \ 14

| , kﬁ?;s;,g"‘.
j Y(a,p® )Af«&,a) N . ‘,
[N Ly
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if pe > =, (11) is also true if p® = -= , by (6) and (1).

o]
P

Next? we show that

©
[ staponiaa < nov
A o =

If p® = +», then (12) follows from (&) and (1). I§f§° < ®,

then, for every p > p% we have

BT 1 e [ /
[ !B(g.g),\u (da) < [ Y(a,p),\u (da) < Iu ~
Al A
% 3% -"&J'

ffom (10). 112) then follows from thﬁ rlghtncontinuity of

/l
f B(a.')u(da). :
{ This p‘ turns out to be the shadow price of the optimal

solution. 3
Now consider the inde@iﬁite integral

I__ [Yg,gigf) - B(a,p®)lulda). @3

This is finite. Al@g, since u is noé}atomia, (13) is a nony
ii? E
atomic measure. génce it takes on every value between 0 and

its value on A, inclusive of these bounds. Now

%ﬂ
“A} 8(a,p?)ulda)
|

lies betwaen these hounds, from (11) and (12). Hence there is

<§=({uld}
{14)

a measurable set F such that (14) equals the value of (13) at

F, {This,yialds
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A\F) -
? /

We now claim that the function 8°:A + reals ahseh;coincides'

i
i
i
t
1

| B

with y(-,p_) on F, and with B (-, pﬁ) on ANF, is bﬁst. ?o&,k

=N R

it is measurable and satisfies (2), since both Y(-,p°) and
B(+, p°) satisfy these conditions. Also igusatisfies (B)ZZpy
(15). Hence 42 is feasible. Also it sgﬁiéfies the sufficient
condition for "bestnessﬁk;since both”fié,yi) and 8(a,p®)
maximize (4) for L p‘. ,ka.lfﬂqgg

=%
Y .
i ) 7%*“"‘7»,5«’” -

I y
tj::j:;%:ﬂg We now remove the condition that u is nanfatcmlc. In its
> place, however, we are abligad to add a further condition on

f,'namd&y that |£(a,x)]| < e(a), where 6 is some function with
a finite integral. One consequenca of this new ‘condition may
be noted: It guarantaes that the utility function is a

finite signed measura for all feasible 6. Hence standard
ordering of pseuéameasures reduces to the ordinary comparison
of definite intﬁgrals, and the distinction between "best" and
“unsurpassedﬂ”Aisappears. To emphasize this point, we shaiddl
write the géility functions in the following theorem and proof
in the fgém of definite integrals.

e et 7 &
9&\& Theorems: Let (A,X,u) be a measure space, with u sigma-finite;

D
D

3
&
L

letgﬁ,caA + reals, and f:A x reals + reals, be measurable; Let

g&é,-) be continuous for all a ¢ A, Assume b <c, and

[ y(a,p2)u(da) + ] B(a.pf)u(da) = L. ’fi5§
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% (9 w0
\5 L4 g4 )
g B (&6 i6)
-0 <é] b duy < 0 < f | ¢, 8 € o, {16)
Z ‘\;i - A= = ot A~ A= I
| Also agsum% taerw~ts a measurable function @: A reals such
1 P 4> { by 'Vi
9f7f that fA £,4u lis finite, and
: = - . 7 : & .619)
Ifa,x) | < 0t@), "
for all x € [b(a), c(a)l, a ¢ A.
« Then the problems Maximize
| %%g‘ﬁﬁg ;f ( CHPAT
'~ & [ £(a,8(a))u(da) (18)
[FAL -~ 4 ,
over measurable functions 6§§f+_reals, subject to
b/t § < ¢/ (19)
“mTte S §5 l :
A 2160 &

@
hasAbest solutienﬁﬁ

‘wfw“?$§#m_;:;cfs This proof is aivid§d into two parts.

In the firstﬁ we
assume that u is~ﬂégma~atammcs thatméav there—is a countable

P g
/ :I)} measurable partition {Al, Agsees} such that u restricted to
‘wwfj each A ia atomic. Since p is also aégma»finite, it must be
i beunﬂed,on each A .

Firat Jwe show that total utility depends only on how mass
is distributed among the atoms, and, given this, is
in&apendent of how mass is 6iatributad within the atoms. That

is, suppose 6 and 6 are two densities such that
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| W’ z%'; 2V ; ’
i i { (&6, 2 )

5‘ [ % 61f\du » I 1 52 du = ) 0 . {21

[ ‘ A | ‘A | :

| .;'; [~ 8] ,

5 by

| say, for all n = 1, 2,... + Then '

é. ', (¥ 123 o
% gf(a §,(a))ulda) = | |£(a,8,(a))u(da) . 22)

i ’ (ud),

| To show this, we invoke the lemma, £9) of %ﬁe—g#eeeé%ng
sea%%aaa stating that 61 and 62 must each be equal to constants
almost everywhere on any atom: say 61 = dl ¢ 6 = ﬁz on A P
almost everywhere. From (21) we obtain élnu(A ) QZﬂznu(A ) = A
which means that 4 = dz for all n. Hence {' &y ai%ost

evarywhexe, so that (£2) is of-eourse correct. Thus utility

. § depends only on the sequence (Xl,flzy...),_and is in faect

| given by | N
91y) + 9505 eee a3y
i where e 7 S RN \“V\;“i’ﬁ’l A -
In(A,) - [%% (a, A /u (a ))u(da). %

) 'This reduces the problem to two simpler issues. First,
'ﬁ‘ for what sequenaes (klp Agreee) are there feasible densities
§ such that (21) is satisfied for all n=1, 2,...? Second,

among these:feasible sequences is there one that maximizes

(23)2
| The first question is easily answered. Integrating the

i constraint (19) over A , we obtain

| ;
</
&
1

S
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r L A s f
S S ’”fagméll n, where b = /@N\b £GU, <, “;féh 24 dy. Furthﬁfmsre,
1 i

the constraxnt;(za) lmplies that / 7
Al + 12 +ess = 0 LN ;:’:i‘::" “"2‘6-’-—
& “.:.;,-..fj “ 4

v 4 ﬁ(zs) and (26) give necessary conditions for,ﬁiy feasible

vw”wnﬂ-]fv

sequence (Al, Az..;.)» Conversely, they aﬁe also sufficient
for there to exist aifeasiblewﬁjylelding this sequence., For
if (25) is satisfied, one easily sees %hat some weighted
average t b + (1=t )c = § w1££ satiéfy (21) for n. The & thus
constructed autematically satisfigs (19),\and satisfies (20)
because of (26). ﬁﬁ :

We have thus reduced thgféroblem to one with a countable
number of unknowns: Maxim%ii (23) over real sequences
(Aq0 Az,..;) satisfying gﬁ%) and (26).

1et A% « (1%, l%,.fi), k=1, 2,040, be a sequence of
these feasible sequenﬁes, such that the value of (23) approaches
its supremum as k*w.& We flrst give a standard argument to
show tirat there is a subsequence 1 likkka,..., such that, for

2

all n = 1, 2,..«, the sequence Anl, Xn ress has a limit Aﬂ

i, Ai,... is all contained in the

First, the sequence A
closed, bounded interval [b;, ¢;]. Hence there is a cong
vergent subsequence, By the same argument,}there is a sub€

sequence of this subsequence such that the Az values converge.
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Continuing, we get a sequence of sequences, each a subsequence
s :
of its predecgggg, the n«+th subsequence havinq convergent A

§ r
values. Finally, one takes the "diagonal": the g+th tarm of

PR

the gfth subsequence, This yields a subsequenca conyerging
for all n = 1, 2,... @

We now show that the resulting limiting seqﬁéncs 3, | / #
& ‘y t,.?/d’v

(A, A$se.4) is optimal. First we prove feasibility- (83) is 7
satisfied by xs, since it is the limit of awsaquence in that
interval [bri n}‘ -Naa¢4swe nust show thq£

fr"

£ (57627
A P AS tee. ¥ oy —2

£

k

Let A 1, A 52

r+es be the subsequencgféonverging to

<

\ LT Fd
AL = (xla Aﬁ'!li)i Think of ,,*“f
A X e 428y

as the integral of a function X3%{1, 2,...} + reals, all

subsets of the poqémivegintegers being measurable, and having
cowunlm { 5N +

the enmnawa&énn=measuxei vin} = 1 for all n =1, 2,.,. . We

also have& for all i and all n,‘\

S [ < Poal *jeal

by (25), and.%he sum over all n of lbﬁ‘ + Lgnl is finite, by

(16). henae we may invoke the dominaﬁed ccnvergence theorem,‘
and assert that the limit of the sums in (2%) as ki*w is the
sum of the limits. But all sums in (28) equal zero, by (26).

\
N

;/



488

Hence (27) is true. This proves that )A® is feasiblei?

It remains to show that (Ai, ,.,.) maxxmiz&s {23) over
the set of geasible sequences, (25)%(26). FiratAwe show that
the function 9, given by (24), over the domagﬁ (25), is

continuous. Let Al, Az,... be a sequence @f numbers with

a5

limit A, all satisfying (25). Since £(ay) is continuous,

flint £(a, A¥/ua)) = £(a, A/
gia #ln n)) = f

(5:6:29)
£29)

by (17). Hence we may inv%ﬁé the dominated convergence theorem
& :

again£ and assert that &

Hence g, is cantinuqﬂs for all n=1, 2,... . Mext, for each i
think of the sum §
f ki ki (& &8
§ 91(11 Y+ g (3 +... il

!,;.,
I
]

| as the integraﬁ of a function with domain {1, 2,...}, the

cownnT,
- measure on t@is space being eheheaumeas%ien-maasure, as in (28),

. We haveﬁ far all i and all n,Yﬂ )

s £ ié:;uf
31 ¢
9n (l 2]
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/ \x\; 2L 7~
/ Sstiee P
/ from (24) and (29). klso 7

— 91 + 92 +eos = IA sﬁdﬂ < .

e Hence we may invake dominated canverganﬂe yet a third time,
and assert that the limit of the. sums in {(36) as ki¢m is the

sum of the limits. Now A i > Aﬁ fot all n, as ki « By the

! continuity of g9, it fnllows that f‘
é ) ICE. j
) ¥ &

S ky
PR Lin g, 0 5 g, (08,

{,

&

for alllg m Y, 2004 & Heqﬁé the limit of the sums in (30) is

{5’:{ )

_glﬁaf) + gz(kﬁ) *ere o

ﬁ But the limit of the sﬁ;s in (30) is also the supremum of (23)
over all feasible {11, 12,¢..), by the construction of the
original sequence of sequences, Al. A veee « Hence (31) is

the maximum of (23&, and (Kf, Aeeee) is optimal. Any feasible
§ yielding thisﬁgequeaee via (21) is then a best solution.

fj&;; This cempﬁétes the first half of the proof.

S
- m»:nm—:mz-a
‘“:’1!..::
‘{

Zﬂ’WQ now drop the restriction that p be sigma~atamic. Since

M is ﬁ&gﬂawfinite, there is a countable measurable partition
{Q ¢ Al,a..} such that u is nonratomic Oﬂ;Aﬁt and atomic on

(‘n
each a 4 N o= l, 2ie6s Tl R
ey |19 Af 6| 720’ A
Let B =1/, b \au and e =/, cdu) Let A_be a number
¥ 0 %9"\ § / o

witb
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(56
b <\ <e¢ :
o g 2 59 =32}
Consider the problem of maximizing (18), with AQ in piace of A,
over measurable functions 6:A9 + reals aatisﬁying¢(i9) and
il ;’ K la oo Y
o R " ®

-

- states tﬁat there—axiats a

best solution, 82 ; ta this problem, since U restricted to AQ is

nonjatam;c. For this best solution &he utility function has

The preceding theerem»

the value
‘ o) <« B .
& N _(": {‘ 5 6, 24 )
O ] £(a,82(a))u(da). {34)
\\o/ R S i 4 N\
o FW
Now 6*, hance (34), dg@enﬁs on Ag. aﬁétwas'writa 9(19}
for the valua,(sé) as a ﬁfnctlan of Ae The domain of 9o ie

ea c ]. Also, becausé of the special assumption (17), we
interpret (34) as a (ginita) definite integrals hence g, is

0

realwvalued. rather %han pseudomeasure—valued as in the

general case. éﬁ

Consider nqﬁ the problem of maximizing

45?7

& R 3
Iﬁ (956,55 )
/
&
over all seduences (Ae, Ayress) satisfying
/ SRS N (36)

n -
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\4
X

/ for all ﬂ“x&' 1, 2'ib0’ and

@;é;

;‘é ] ke L Al +.b- = Oi”‘*m %

lllll

Here An' bn’ Cpe and = feg n=1, 2,...,have exactly;tha same

maanings as before, while A_, b_, ¢ e and g have jﬁst been

@ -9 -0 -9

P

ffxfffﬁf% If (16, l,...) is an optimal solution t@ ﬁ3a) 7(37), we

can construct an optimal solution, §2, to ﬁhe original problem

é% defined.

(18)'7(20) as follows. on A@' let 82 ec@neide with the

optimal solution to the non+atomic pnéblem (22) ={33), with

parameter A_= AE. On & , far n >‘h, choose any feasible 8

o
satisfying (21) for 33; The reaﬁltlng function 8° is clearly

feasible, It is also optima&# since the utility function (18)
for any feasible § does noﬁ axceed (35) , where the Ay ¥s are
determined from § by (2%} for § = 82, the utility functian is
equal to (35), which uﬁ the maximum of its possible values.

It suffices, tkg;, to show that (35)5(37) has an optimal
solution. Now_ thfs is of exactly the same form as the
problem of maxigﬁzing (23) subject to (25) and (26), with one
possible exceﬁtion. We do not know whether the function 39

is continuags. If this could be shown, then the first half

? of this pgﬁaf demonstrates the existence of an optimal

(xe 1y...), and we would be finished.

Wﬁ now show that ge is continuous. As a first step we
show it‘is concavé&; Let Ll'.Lz'.PB satisfy

¥7)
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&1 S &

-0 0

and let si A + reals be the optimal solution far the parameter
(i = 1, 2, 3). The proof of the preceding kheorem shows

that these optimal solutions have shadow prgwes. Hence for

6§ntharewexists an extended real number,vgf, such that 63(3)

&
maximizes g

55
i
i

P

F
f(a,x) - px g"

zr T | § -
;g 1L a0/
<P

-~ over x € [b(a), cla)l, far almost g&l ae Ac. P2 must be

JX
finite; for if p® = +w, then 55 ,,,,,, b almost everywhere on Ac
which contradicts (38); similagiy 6% = ¢ almost everywhere on

AQ if p2 = -», again eontrad@ﬁting (38). It follows that

f£(a, 83(a)) - P“ﬁ‘(a) > £(a,6§(a)) - P8¢ (a)

almost everywhere on %é; {i = 1 3). Integration over Ae
yields g
=2 33 -lg o't} P21, - Ly)

a,

(i bl l; 3}; 80 g&hat

"53 {‘; 1 }\ Q
_-.5"’ Qf{“ vv
e X (Lg ) () 2 g.(L,) = g (L,)
Av ) 39 2 9& 1 > p° }“Zeilé r&géfmz

,f

y
/
i

for allygé < Lz < L3, a condition equivalent to concavity.
%ﬁ%ce a concave function is continuous at all interior

puiﬁ%s, the only thing left to prove is that g, is continuous

)

ﬁ,f‘ -
Kﬁ;&a -

f ‘g“xd“i"l‘z’z”‘a‘j * e
A = &0y =N

i



2
“gﬂ,ﬁhe ssque%ée Ll’ Lz,... then converges to b

@;" L | /Q,/’ f’}‘ "*“A ? 9
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/
/

!
at the endpoints, be and ¢ Because g is concave, to

1 0’

/eatablxsh continuity at be it suffices to prove that
i i
| ;
{

9(%6) s ;im g (Lk)

!
i
|
| oW wa rawxntroduce the function v(afg) given by (5). In
| the preceding proof it was established éhat. for fixed ae¢ Ab
v Y(g,p) has the limit b(a) as P, Aléo, for fixed p, y{-,p)

| is measurable, and

£ N7
Lr 3 | F 7

AU
_«"‘x
P
ik o a
i % o
| as pe,
i

Now 1et Pye Q%,..- be a seguence increasing without bound,
&
and deflne Ly gé,... by

i e
Vjﬁgjs = & 6.do)
AN I " ] Y(a,p, ) u(da) )
§ 2]

Alsa ¢
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This follows from the fact that the function aﬁ(a) = Y(a,pk)
has the shadow price Py » and satisfies the resource coastzgint

{40)» hence it is optzmal for L+ Now for each a e ﬁb

i ——

. \‘e‘ 1 {
2 ) k

§

7 Lim £(a, y(a,py)) = £(a, ba)),~_

by the continuity of f£(a,+). Hence, by (L?), we may apply

the dominated convergence thaoremﬁ and ¢0nclude that

lim qe(l-k) = [A £(a, b(‘?gﬁl“)’y(éa) = getbe)..,.

N_ .
&

ﬁ

This proves (32) for the aaqu@ﬁce Ly, Lz,..., and establishes

the continuity of g at qe.% Continuity of gg at %9 is proved
i
by a similar argument, wiﬁh B(a,p) in place of Y(a,p), and
&
l&"‘

. ﬁ

This supplies t@ﬁ missing link in the proof, and we

conclude that a bas& solution 6° exists in the general case‘,4+4:%2?;r
.{:f

&

}"L
As usual, qaere is an immediate generalization. If (29)

% ;&%

in the prece,cu.gg theorem (or (3) in the one before t,iat‘) is
i’

replaced byqfhe condition
e g b

1 ¥ \
T . & ,h )

1[ §,du < Le, NVELS
” A ”

&
4/’

finite, and (16) in the Grpceulng / S‘!’f‘p

...... « ® * au B e e @ et =

Lqeogén (or{(l) in the one b@fore tﬁa#} is replaced by the

coqﬁition
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e |11 I 9 | 21
T it ; l 5
-t I »,bl\glu - E? 50 i] cj\du - Lo < w/»{fi
> A o -y

o

3\
!

-
-

o

then there still exists a best solution in thasefféépective
cases. f";

The proofwahich consists as always igytransforming this
problem into an eguivalent one in which fze) and (lé)ﬁﬁor (3)
and (l)f halqu}s left as an exerciseg

3 i
We now give an example of a groblffgggg'having an optimal
solution. Let A = {1, 2, 3,...?, I = all subsets, u the
égégéﬁaéien-measure; b(n) = Ofind e(n) =1 foralln=1, 2,... &
The payoff function is¢” f§£ x) = mx/n + The density function,
in addition to satisfyian; 5‘6(5) < 1 for all n, must

satisfy _ : F

= Fe1) + 443) +0us = 1.

At

#
é;é*easily géiifée; that all e# the premises of the
preceding theogém are satisfied (take G(E)k“ 1/n in (17);
,L = L° = 1 iﬁ (41)) with one excep i;;- }A>5§u‘f=9(l)
+ ¢(2) +...eu o, 1
Ther?*is no optimal solution to this problem, since any
given fﬁgsible solution can be improved. To see this, let §
be feagiblehiand choose any n for which 6£§) > 0. Alter § by
repl§éing §(n) by 0, and 6(2}1) by 6€§+1) + 8(n), everything

elsé the same. This remains feasible, and the change in the



utility function is ) v;“-”i

“o This example gives a aertain insight 1nto the role of the

‘u’ (

fxnitenesg\condition on f§ b ,dpy and f le,da

5.7. Unigueness of Optimal Sulutiana(jf

By ﬁuniqueneas” we mean the prﬁéérty that there is at
most one optimal solution, (The @r inary word “uniqueness"
sometimes carries the aonnotat&bn of “exactly one"; but we are
not here concerned /with axisténca, only with mn@ajﬁuplieatien

b

of solutians)b r
As in*uur“pravieﬁﬁ ﬁiseassaon, we identify any two

densities whéeh,are unéqual only on a null set. .Thus, to say

that there is at mes; one optimal solution is to_ say: ;f 8,

and 8§, are both cptimal solutions, then u{alﬁl(a) # 8,(a)} = 0.

We need twofnaw concepts for the following result.

’;.

;} Dafinition: f;gﬁals + reals is strictly concave  iff, for any

two aistincz ‘real numbers, %X, y, and any 0 < £ < 1,

D

E(tx + (1-t)y) > tf(x) + (1-t)£(y). (1)
e This is a bit stronger than concavity pex ﬂe, because of
the striet inequality in (1). 2 linear function is concave

bu’ not strictly concave.

(4
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”Sﬁwjl Definition: Let || be a set of real-valued functions, all with

(det
domain A. ~N is convex iff, for any 61, 52 € Mﬂ\and any

0 <t <], the function t6, + (1-t)8, belongs to M,_f
—— For example, t:he feasible sets we have been aealing with
throughout aeatioas 4, ‘5, and 6 are all conv&x‘
Utility ordering is still that of stan&ard ordering of
- pseudomeasures. The distinction between ; m and unsurpasseda
must again be stressed, because it is @eiitieal in the
following result. : jff
e g’

,tar“ . Theorem: Let (A L,u) be a maasur:@f“ space, with u &ma-finite.
det f A X reals <+ reals be megﬁurable,, and such thai:, for all
EXRY f(a,-) is strictly cgncave. I;’et M be a convex set of

PO A
7z I) real-valued measurable f‘}ﬁctions.
= ~Then the problenyi “,{ﬁﬁaximize
5g
‘. s {&‘g‘ o :
g‘{f(a; § (a))u(da) -
§#
Vi

over § ¢ M, has ft most one best solution.

it
M“’“Wm,Pmof. Let 6 g;xd 6 both be best. *I‘hen, for any § ¢ M we have

¥4
21 ¥ 8V

[f(a,éi(g)) - £(a,8(a)) ju(da) > 0/S
A e ’

1

' k (=1}, 2). BAdding these two inequalities, we get

zr““"

<:}\l %)

?522; ] | ¥E(a,8,(a)) + £(a, ) 5(a)) - Zf(a,ﬁfa)i]ﬁ(da) >0,

i

|2 ?i

w
e
e
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| A £
Now consider the function«5a~§6 + %5 A8 E M, by

convexity. For this §, the integrand in (2) is nﬁver positive,
and is in fact negative on the set {alél(a) # 62(a)}, by

strict concavity. Hence this set has measuré zero, which

| establishes uniqueness. |[{“//iFf ﬁﬁﬁ
" | |

M_ s —————— f!ﬁg

It is not true that there must be at most one unsurpassed

solution, as the following counteraﬁample shows,

Let (A, +H) be Lebesguekmaa%ﬁre on the real line. Let
f(a,x) = ~x2 + 2x if a > 0,&f(§ix) = ~x2 - 2% 1f~§ < 0, and let
M be the set of constant funailona whose single value lies in

ot

the closed interval [-1, l].> M is obviously convex, and one 4104~

‘/"

. that f(a,-) is strictly concave for all a¢ A.
Now let Xy0 %y bﬁ two numbers in [=1, l]c{with Xy > X,
and let “1' wz be Qhe pseudomaasures obtained by substituting
the correspondin%ﬁ¥unctians in &) . x*f(a,v) is increasing for
a >0 and decrg&sing for a< 04 henece (wl - wz) is a multiple
of Lebesgue g&asure truncated to the positive half-line, while
(wl - wz) gis a multiple of Lebesgue measure truncated to the

§

negative;ﬁa1f~line. It follows that
/ (o1

s (¥ = wz)"'({;) = (9 = ¢2)~(§) e )

Hence all feasible solutions are unsurpassed, because, by (4),

no two of them are comparabled
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We shall now apply the preceding theory to thefprablem of

the spatial distribution of crime. aetua&%vaﬁhempweseat
section goes beyond the simple optimization framewcrk of the

rest of &h&s chapter, in that several different populations,
5\ with diverse motives, are interacting. Thus we are in a
l;ﬁ$d%£ ﬁﬁ "game" situation, andnwhat is optimal for one agent may not
9 /%'}y be optimal for another,
0 There is a population of potential victims, a population
¥ of potential criminals, who commit crimes upon the victims
\J

IsY

Vk; when the opportunity presents itself, and a pepulation of
VRN
Oﬁ}} \ ;x golic en, who try to prevent criminals from perpetrating

Vo
Y ﬁﬁf their mlsdeeds.ﬂ

i/ ‘g — The three populations inhjbit the measure space (S,I,a),
o\ >
» 2

o being ideal area over Space, 8. If v, ¢, and p are the
1gi densities of the three respective populations (density with

respect to o), the density of crimes at location 8 is given by

a function

y g N
b, AR

£(v(s), c(s), pls)) ;> .
109 \l
and total crime is then given by!f \f do, We would expect £

(g =
to be an 1nkreasing function of v and Co and a decreasing

=N

function of p.

P

Consider, for illustrative purposes, the crime e
‘ ($.8.%)

£(v,e,p) = vee ™, 2y
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z/f‘
A sem1+p1ausible rationalization for (2) might run as follows.
For p = 0, a crime occurs if there is an "encounter" Hetween
a potential victim and criminal, and, with "random" movements,}
the frequency of encountérs should be proportional to the
product of the densities, gg.g Next&kgupposewthut the commis%
sion of a crime is inhibited if a poiiceman is present within
a certain "surveillance radius", If policemen are randomly
distributed, the probability of no policeman being present
within the critical radius declines exponentially with police
density, and this gives (2). (Units of measurement for”v, ¢,
and p may be chosen to avoid multiplicative constants, as iﬁ
(2

Whatever one thinks of such arguments, it ig still
illuminating to discuss the consaquences of (2) i-or, more
generally, (IL\— under various behavioral assumptions. We
assume that victims and police distribute themselves over Space
s0 as to reduce crimes, while criminals distribute themselves
80 as to increase crimes.

One further objection to this set+up should be mentioned.
Shouldptt these population distributions be inte§;¥>va1ued{ or
finitely concentrated? ; in-which case they are unlikely to
have density functions. The answer is that ¢, v and p are
best thought of,‘hot as densities for cross-sectional distribug
tions, but for the tiQé¥averages arising from the random
perambulations of the populations. Thus a measure u, where

u(g) is the expected number of people of a certain type in
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regian_g, can very well have an areal density.

Before launching into details, let—us briefly consider
some specific interpre}ations of this general model. "Crime"
is a rather heterogeneous category, and not all types of
crimes would be weliérepresented by the model. ~Im—the flrat
placey-there are numerous "crimes without victims"1% gambling,
traffic in drugs, prostitution, etc., 1In some of these cases
the frequency might be described by (1) and (29}?,, o So%amp%e
“random" encounters with streetwalkeré}ﬁ-but one would not
expect the "victims" to be motivated to reduce the incidence:
of such "crimad“.\ Secondag, there are crimes éh&eh do not
require a specific “encountar“ for their commissioq&iéounter~
faiting,lor ant{rtrust law violation, for-instance.

Burglary, larceny, iobbery, and rape are examples of
types of crime?ghféh-da not have these disqualifying features,
and their incidence might be approximately represented by a
function of the form (1 ). ©One might want to re~interpret
Vs € Or p in sama‘éf these cases., For example, in burglary
the spatial distribution of (movable) wealth would seem more
relevant than the spatial distribution of people, so v shouldv
perhaps be taken as wealth density rather than population
density.

><.l Certain non-crime situations may also be represented by

this model. Consider military attacks against targets
{(installations, opposing forces, civiliansﬁ‘etcl). Letting v
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be the density of taxgets,}grthe density of, say, bombing,
and p the density of "defense equipment{, the above model

might then predict the volume of destruction in terms of these

three distributions. \ The controllers cflgkand Yy are motivated

to reduce destruction, the controllers of c to increase it.
Hence we might expect to find the spatia;fﬂistributions here
similar to those whish result from crimé incidence.

Again, canéider the folloﬁihg ?iﬁitation~snob" situation.
There is a "high-prestige" and a "I&w»prestige“ population.
The high~prestigers want to aveidjcontacts with the low=
prestigers, while the latter want to increase contacts with the
former. Interpretlnék“%éminals and “v1ctims to be the low-
and high-prestige populations, respectively, and "crimes" to
be contacts between thegﬁwo populations, we get something like
the model above?m\YThe‘police might enter as harassers of the
low=prestige papulation in its attempts to increase contacts).

er%&weughoutﬂthtsmbnoky,gur aim is to develop and explore
theoretical models, not to tailor them closely to any
particular real;world situation. (For crimés-such an attempt
would in any case be difficult, because of the spotty quality
of most crime dat f,;l

We now return to the formal model, which has not yet been
completely specified. For simplicity we assume that the three
populations are mutually exclusive, and that no transformation

from one to the other is possible. ™{Thus we ignore the

possibility that victims themselves can inhibit crimes by
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surveillance, the possibility that some criminals can be

e

xictimized by other criminals, ete.) s
Two cases will be explored. In the first there are no

police (the anarchistic,;or "Wild West"® case))and the two

populations, victims and‘criminals, are freely mobile over

Space. In the second case, the distribution of victims is

e )

e T

fixed, and the remaining two populations are freely mobile.
(This might occur, for example, if crime is of minor importance
so that it exerts no locational pull on the pop;iation at
large. Another interpretation is that the population distribus
tion of victims adjusts very slowly compared to the other two
populations, so that it may be considered fixed in the short
run.{;\

A given population tries to reduaeﬁﬁﬁpr increaseﬁx?crime.

What does this mean? There are (at least) two interpretations:

'the individualistic, and the collusive. If c¢riminals act

collusively, -for-example, the entire body of criminals
distributes itself so as to maximize total crime; if they act
individualistically, then they will move from places where the
density of crimes per criminal is low to where it is high.

Similarly, if victims coll&&de[they will distribute themselves
to minimize total crime; if they are individualists, they move
from places where the density of crimes per victim is high to
where it is low. For some crime functions f the resulting '
distributions are the same under either assumption, but in

general they will differ.
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For the police the most plausible assumption is collusion:
Fhey are distributed by central headquarters ﬁa minimize total
crime, For victims the individualistic agssumption is more
plausible: Each potential victim moves to reduce the
incidence of crime on himself. For criminals, both possi=-
bilities are plausible, depending on whether crime is “petty?,
or "organized” by some criminal mastermind.

We -shall analyze just three of the many possible combina-

tions:~\

P

‘fzgi) no police, both victims and crimina;s are individuvalists; _
(ii) no police, both victims and criminals collude; g

~={iii) vietim distribution fixed, both police and criminals

V‘n%_collude.

2 &)

’ W@éé}:With no police, we have a crime density function

g:realsz - reals,aﬁgégi%mnf(v,c) is the crime density at a

1ocation§ﬁif victim density there is v and criminal aansityig.
- — (.“-‘_re't“ k

All functions are assumed to be maasurable,-séal—ﬁa&ued* and

nqﬁ?nagative. We also assume that
£(0,¢) = £(v,0) = 0,

and that the right~hand partial derivatives le(o,c) and

D,£(v,0) exist for all ¢, v > O.,AQWe are uétﬁ
\% 0 e 0% AN

the notation

Dy£(0,0) = lim [f(v,c) - £(0,0)]1/v,.
by£(0,c) QZ%QPI v,c) - £(0,¢)1/
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To avoid trivialities, we assume that the total popula=

tion of victims, V, and criminalsgﬁg,4are fixed positive real
fjikz/” numbers, as is the total available éreaﬁ a£§). The constraints
C%S‘ on the density functions,:xbandﬁs, is that they be nogfnegativa

8
real measurable, and satisfy

Il/é !")/gl\ / fom
N [ quu = v,Q}] e, da = Coy 3)
S \ | R \:. § e \\ » Fj

4

g%ﬁ;fbefinitionz The pair of feasible densities v®, c2:S + reals is

Sy

7w\
7~
b5
3 o

N an individualistic equilibrium pair iff there is a null set

E € I, and two real numbers, kv' kc- ‘3'_ 0, such that, for all

s

/‘LZ? \@b {5 .74

Al e @)L lilie ve(e) > 0, 4y
’ Y (£.¢€.9)

f(V’* (S) (w;‘,' (S)) ciﬂ‘if co(s) > 0' \4‘5’)
(5.2.¢)

D,£(0, e (g)) 2 | o \if ve(s) = 0, {6)

Dy £ (ve (S).._O) "f_?cc}a?;if c®(s) = 0. =7

B ha o '

The intuitive meaning of (4)%{7) is as follows. We

A
?é" K%\ interpret the "incidence of crime" on any victim at location s

r_igi to be the crimes per victim at that point, which is the left
‘ side of (4), if v(s) > 0, 1If v(s) = 0, the natural interpreta-
tlon is le(G, c(s)), which is what crimes per victim would be

for a%‘10w~density“‘migration there. \(4) and (6) are then
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precisely the conditions under which no potential victim can,
by moving, reduce the incidence of crime on himself.
Similarly, we take the "gain from crime" for any criminal at

location g to be the crimes per criminal at that point, which

is the left side of (5) or (7),‘f0r c(s) >0, e(s) = 0,
respactively.\“féf”éﬁEW(§§'ére gheq;tha conditions that no
criminal can gain from mcving; tégﬂusual, we allow éxceptions
on a set of measure zero. Two density functionsiuyl and~y2,
which differ only on a null set, are taken to be identical,
and similarly for °l and Gy

%j,“““ =(ii); Now let—us go to collusive criminal-victim intere

Fo

action. The set of feasible densities is &@ain given by (3).

| Definition: The pair of feasible densities, v°®, c®, is a

igép collusive equilibrium pair iff

”"“’%\af 4, b

£(v®, c®)da is unsurpassed in the set of pseudomeasuresf/®

£
I”g(v°, c)dq, ¢ ranging over the feasible criminal densitiesfiimﬁk
& V;‘/""./ “' q?
/ l\f (v’, c’k?a is unsurpassed in the set of pseudomeasuresgi

I f(v, ¢ )da, ¥ ‘ranging over the feasible victim densities“y\\

”””Mﬂﬁﬂﬂﬂ:» That is, given the distribution v2, criminals arrange
£hemselves over Spaee so that no other arrangement of criminals
leads to a distribution of total crimes surpassing the one
resulting from c2; conversely, given ¢®, v? is chosen so that

minus the distribution of total c¢rimes is not surpassed by that
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resulting from any other victim distribution. The reason for
the "minus" is of course that victims are trying to reduce
total crime, which is equivalent to trying to increé;; minus
total crime.

'éﬁeuhas¥t9‘invoke pseudomeasures only'if the total crime
integral can be unbounded. For the present application we may
safely assume that, for any £ arising in practice, all
integrals are finite. Nonetheless we give the more general
definition above because the results obtained are valid for it,
and no extra work is involved.

If all integrals are finite, the above definition may be
restated in simpler form: The feasible pair (ve, c¢®) is a

collusive equilibrium pair iff

\’” ( o\ XD
\\\\\gév-,c)da <\! \§<v“ c,)da <\IS\<:V,Q °) da &)

for all feasible v, ¢. The left inequality in (8) states that;g
given v; c2 is ;;oaen to maximize total crime; the right
inequality states that[églvan c?, v2 is chosen to minimize
total crime.-

kxiw?2§}£$a recisel the saddlepoint condxtionvw%ich consti~

4 p > 4 p

tutes an equilibrium in twe—person zero=-sum games. Since both
sides are colluding)we have, in effect, just two decision
makers,; and the whole problem may be thought of as a game
between a maximizing player, G*ﬂmg and a minimizing player,

Crim,
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Vic, the payoff to Crim under the strategy pair (g, ¢) being

The éiffarence between (4)7(7) on the one hand, and (8)
on the other, is that in the former the individual victim or
criminal does not take account of the effects of his moves on
the gains or losses of his "colleaguedﬁé/ In this respect,
the difference is vaguely similar to that of & competitive vs.
monopolistic industry, respectively. To put the matter in a
slightly different{ and slightly inaecurate,vway,‘under
individualism average gains or losses are egquated over Space,
while under collusion marginal gains or losses are equated.

Consider the very simple crime function

§ ;;.H, &)

£(v,ec) = vc —+£9)

(which is (2) with p set equal to zero). One easily verifies

that the pair of uniform distributiansﬁi~
l]'

i {;,ﬁ:ﬁ;
ve(s) = V/a(8)y||c2(s) = c/a(s) (10)

(almost e;erywhare) is an equilibrium pair under EEE&rgwm
definitiensg% &gv = C/a(8), k, = V/oa(S), (6) and (7) are
satisfied with aéﬁality, and (8) is satisfied with equality
for any feasible v, ¢, total crime being YC/“‘S))'

One also suspects that (10) is the only equilibrium pair

under either definition. A non-rigorous argument would go as
= W -~

e
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follows. Suppose ,<say, that v were not constant almost
everywhere. Then the criminals would all crowd into the
region where v was densest. But then victims would nof be in
equilibrium, since they could move into the region vacated by
criminals. A similar argument applies 1f‘£{were not constant
almost evarywhera.%ﬁf

Our aim now is to generalize this argument and make it
rigorous. We prove this separately for the individualistic
and collusive cases. Each of these cases has its own
appropriate class of functions for which the statement is

proved, and (9) belongs to both classes.
o

f?? ;ﬁheorems Given measure space (3,I,a), with = > a(sx > 04 positive
real numbers, V and . and a measurable function £:non+

_negative reals® » nanvnegative reals which satisfies:

/¢

B

vf(il) \the right~uanu partial derivatives D f(a,a) and sz(v,e)
\\' M
A

exist for all real v, ¢ 20, and, if v > 0, then D f(v,O) > 0;

d g(i)\fgy,g} = 0 iff either v = 0 or ¢ = 0 (or both);

“w(:iih £(vx, Cx)/x is a strictly increasing function of x
’ (x > 0).

Then (10) is the unique individualistic equilibrium pair.

F £ L
L8 A

»“m
’% Proof: Gne verifies at once that (10) satisfies (4) (7) almost

everywhere! (4)-(5) follows from the constancy of v° and c®, b

ot
PR

while (6)-(7) are trivial because§v° and c® are positive.

Hence it remains only to show the uniqueness of this solution.
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Let (v2, ¢%) be an individualistic equilibrium pair, and
let E = {Q]v!(s) >0, F= {s|c2(s) > 0}, Suppose first that
)3c = 0. It follows that a(E n F) =0, for‘otherwise (5) would
be violated, since f(v,e) >0 if v > 0 and ¢ > 0. Also we
must have a(g\g) = 0,; for otherwise (7) would be violated,
since Dyf(v,0) > 0 on this set. But this means that a(E) = 0,
which implies the feasibility condition (3) is violated for
ﬁz%, since V > 0, We have a contradiction, and it follows that
Ko * 0

‘ This implies that a(F\E) = 0; for otherwise QS) would be

violated, since £(0,c) = 0. Hence a(E n ?) > 0; for otherwise

al(F) = 0, violating (3) for c¢®. Now for almost all pointsﬁmg,:

of E nﬁiiwe have
{ CS

(. §.11)
o o N\ 4 : . .
Q1¥//§¢ w@ ‘gy 2(s) = £(v2(s), c2(s)) = k_c®(s) (1)

_.w/*“\-\\:,“_ \\

a%gm_,,-\ from (4) and (5). S8ince &(E N F) > 0, there exists 8

s&tisfying (11). Hencéakv’ S 0. It follows that o(E\F) = 0;

""""" “V
for otherwise (4) would be violated, since f(v,c) = 0, Also

a(A\(E y F)) = 0; for otherwise (6) would be violated, since
le(0,0) = 0,

We have now shown that v° > 0 and c® > 0 almost every%
wheres hence (11) is valid almost everywhere. Integrating

(11) over S, we find, from (3), that Vk, = Ck,. Hence £
- { (f)x‘w,;
ve/V = ¢®/C q12)

almost everywhere. Letting x(s) be the common ratio in (12) at

the point g, we find/ from (11) that
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£(Vvx(s), Cx(s)) (5 8%
13 /= Cker “3)

almost everywhere. The middle term in (13) is strictly

increasing in X, hence there is just one solution xe: .v2 and

‘ ¢® must be constant almost everywhere, which yields (10). Hff &»@5
A e

We now give the corresponding result for collusive

\
JﬁQ“ equilibrium. The uniqueness, rather than the existence, of

1-9 |
P

"

i1

“ . equilibrium is the more interesting condition, and that is

what-ie established in the following theorem,

g&é,fiheorem: Let (§,Z,a) be a measure space, with « > a(s) » 0, and
f*“ﬁ o non-atomic; let V and C be positive real numbers; let

(L

measurable function f:non-negative raalsz + reals satisfy .

} w;“m, LX};)Jfor any fixed real c > 0, f(v,c) is continuous in v, and
o

Ber N
diffarentiable with respect to v for v>0 (notation-

le(v,c))

(1;))for any fixed real v > 0, £(v,c) is continuous in c, ana
differentiable with respect to ¢ for ¢ > 0 (hataticn*

(iii) for any fixed real e > 0, Dyf(v,e) is strictly

_increasing in_v;

(iv) for any fixed real v>0, plf(v,c) is strictly increasing
in c. l

Then (10) is the only possible collusive equilibrium pair.
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e\
\_)A‘l‘

Cp*rrwgProotz Let v2, ¢® be a collusive equilibrium pair. |e% is then)

unsurpassed for the problem of maximizing

4

%
J

i&;ﬁ?

o \

: = v | (57, %l )
[ #Gtr, dtsipias) R

z 22 , ;

| over the nontnegative densities c:8 + reals satisfying

| v 103 ;

| fs ¢ da = C, sincejﬁ is non+atomic and f(_v, *) is continuous,
all v > 0, we have as a necessary condition for this that

“there exist an extended real number, k, and a null set Eeg¢ I,
~such that, for all s ¢ S\E, c2(s) maximizes

(_}5" ¥.1 27:}
iysinke ) - hn
, 4
| over nontnegative real x (section 4 -abeve).

Eonile
The "shadow-price" k must, in fact, be ®ealy For if
k = »w, (15) has no maximizer, while if k = 4w, 9_.2 would be

zero almost everywhere, which violates /g ¢® da = C > 0.

We now show that, if B3¢ 8, € 8\E, and y:(sl} > v:(az).
b then ' '

o
¥

{;‘3 g.i0)
{16) will be demonstrated by eliminating two possibilitiesg
possibility €1 c°(s;) = e®(s,) > 0. Since (15) is

$ s

either c%(s;) > e® ‘»:'72)"; or c®(s;) = c2(s,) = 0,

~
5
=
5

differentiable in x, the derivative must be zero at these
respective point;a; "‘fh;:t-is,

(s.2a4%)
| DyE(va(s,), ct(sy)) = k )




|
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(i=1,2). But D,£(+,c') is strictly increasing (c' being

the common positive value of c?(sy) = gﬁ(sz)}; Hence at least

one of the two equations in (17) must be invalid.

E,

5-%% §pssibi1iE§;f£é4= ©e%(s,) > c2(s;). Consider

:
¥
{

§
i
|
f

e v,

(5,%18)

£(ve(s;), %) - £(ve(s,), x) ~8)

~ -

A A

as a function of the non+negative real variable x~*;{13)‘gg““
continuous, and has a positive derivative for all x > 0,

Hence - using the mean value theorem ~ (18) is strictly

p "

increasing in x. It follows that

(Vb

=

fEVE (51) : @F (32)] - f[}’-‘- (32) r c-?-(sz)} \\\‘(
e i ok 2.4

’f{ng(?l)' a:(§1)} - f(y?(sz). q?(g;)}% 39).

)5

a

Also,'since_g;(gi) maximizes (15) for s = s; (i =1, 2), we .

T 5N S AR
T

get 7 , L e
0555 | Al } 37 Q) - A b2 (5, 8.Le)
f{vz(sl), c&(sl)} ~\kc!(§l) z’fgvgtgl), q?(sz)i - kcﬁ(sz{l +<20)

and also (20) with subsecripts 1 and 2 interchanged. Adding
these.thrae inequalities (19ﬂ¢(20) and simplifying, we get
the contradiction 0 » 0, This eliminates possibility (é%} and
establishes (i6). ,

This entire argument may now be repeated with the rSles of
_zi and ¢° interchanged, the only difference being that yL i
maximizing the negative of (14),. since“?l[~§(y,9)] is strictly
decreasing in C, we obtain the analog of (16) again, but with
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one inequality sign reversed: -

§ b Ifﬂ§1'_§2 € S\E' (§' being a certain null set) and
; c2(sy) > c%(s,), then

(s %.21)

either v®(s,) < ve(s,), or v®(s;) = v®(s,) = 0. t21)

Finally, suppose there—are two poxnts Sy1 8, € S\(E u B! ),ﬁ\'wf

suth thangq(sl) > v"(sz). We cannot also have gsgsl) > aw(sz),

for then (21) woulél}end to a contradiction. Hence c&(sl) =

c'(sz) = 0, by (16). For any other point s ¢ S\(E U E'),

choose s, or s,, depending on which si Egtisfies v'(si) # v (s).

E———— e
it

The argument just given then shows that c2(s) ;?0. Hence, if

v® is not constant on S\(Ey E'), ¢ is identically zero oﬂ]this
set.

ST TN AR

—
Since E Y E' is a null set, this gives the contradiction
ol5 q%}’ . = Rt AR A SRR i

e

Bp—

0»] c? da = C > 0,
S - = _

" Hence v° is constant almost everywhere. A similaréargument

shows that ¢° is constant almost everywhere.

i the proef. _1443 74

This completes

This does not prove that the pair of uniform densities

(10) ég.a collusive equilibrium pair: There is the possibility

" \
.......... i

’ ]

e
collusive equilibrium pair is not difficult. ~WNote-that, under '
the premises of this theorem, the shadow price conditions are

both necessary and sufficient for equilibrium«(@g’c15gr).
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Hence (10) is such a pair iff there are numbexs“glfand>k2

such that c/a(S) maximizes

@;gnﬁm)
£(V/als), x) - k;x ~<22)
over x > 0, and V/a(S) maximizes
(:3 g 32)
~£(x, C/u(S)) =~ kyx <23)

over x > 0. If these conditions (22) and (23) are added tu‘tha
premises, we may assert that the pair of uniform distributions
is the unique collusive equilibrium pair,

i “There—are some real-world situations which illustrate
Cy,;\ these resulté, at least approximaﬁely. The policy of dis=-
persing population to reduce losses from air attack is an
example. If carried out to the limit, both targets and
attackers would be uniformly distributed. In a uniform
environment, a yredator and a prey species would tend to become
uniformly distributed. The distribution of Christians and
%ions in the Roman arena must have been roughly uniform.

~m

‘S{iidi) 2Now we introduce police. The distribution of
f’j/;;ctims is given and fixad, whixe police and criminals are
freely mobile. The former try to reduce, the lattarAincrease.

total crimes., As the crime density function we take
y il
(5, 8.04)

f'(": A P) sl g(v)ﬂﬁﬁtpr"‘ "(’2"4“)

v te.
where g is strictly increasing, non#negativeﬁan& reai:&a&aad*

This is just auﬁﬁiﬁhh generalization of (2). One can obtain
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results for more general functions, but (24) leads to a very
simple and elegant equilibrium with some provocative implica=
tions.

In the following result, premise (26) is introduced to
avoid an uninteresting complication; it is quite weak. Also
premise (25) could have been deduced from rather weak assump-
tions, but we take the simpler course of assuming it outright.

All logarithms are to base e.

L - ¥ & —

gft~l;§heerema Let (S I,0a) be a measure space, with « > a(s) > 0;

let C and P be positive real numbers ; 1et vi8 + non=negative
£ p15 A5h,
reals be measurable, with ! vbﬁa >0 (i.e‘ there are some
e

victims); let g:non*negativé?reals <+ non=negative reals be :

" strictly increasing, Assume:-

Aé}l) there is exactly one number L satisfying
\il} Lo 155

(&8 25)
£ Jlog| “133) alds) = pp +25})
(g 3 . &0 \{s|g v(s))>§lj
r & A \L ¢ Vi)
: ' {:.J, %, 16,
- (1) g;r this L, a{slg(y(s)) = L} = 0. “(26)
4”M,w$’“"’werhen there is exactly one collusive equilibrium pair

(c® p‘) for th; problemgx ﬁaximize over ¢, minimize over p:

- L

> ] glvis))e(s)e p‘s/é(ds)

‘Here c¢:85 + reals and P:S + reals must be non~negative maasurable,

and. satxsfy
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N wo
LY/ 4"' 24
n{x o (5g.51)

f ¢,da = ¢uﬁj pda= P, +27)
s . Z | s - Nows e

Apart from a null set, ¢? and p°® have the following form: J§
/Iﬁ g(v(s)) £ L, then c°(s) = p2(s) = 0.,  (28)

If g(v(g)) > L, then

ct(s) = c/als|glv(s)) > @

P (8) = log [g(v(s))/1). (5,190

Vana

';,j‘\i'

only possible collusive equilibrium pair, Let c2, p2 be such

)
%

2;4;_j2roofv Let g(v(s)) = h(s). First we show that (28)5(30) is the

a pair. The conditions for t@g existence of shadow prices are

. / RS y
) satisfied, since b(g)xa“Q‘(g);ia concave in x, and
wh(s)cets)g"g is concave in x. Hence there are extended real
numbers, kc and kp,;such that (except on a null set), c°(s)
maximizes : ' 1 So R
f e\ UE”E;(B’ ({7 A R
§ L3y  h(s)e™B=181y - k% 131
over x > 0, and p2(s) maximizes
- (5, 7352)
~h(s)e®(s)e™ - k x ~32)
Lo
over ?_:_ z. 0 ° J(,,A“"’{ﬂ

We shall once and for .all g;éiﬁde the null set on which

(31) or (32) ‘is not maximizgﬁfﬁ Thus, "all s" means "all s in

the complement-bf this saﬁzg "there is a point" refers to the
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complement, etc.

?irat,égc < =, for if not, then c2(s) = 0, all s,

violating (2?;. Similarly,mwp ®, jf
NGXt',kc > 0, To see this, note that the assum§tions on

v and g imply that {s|h(s) > 0} has positive meagure. If

k. < 0, then on this set (31) would be strictly increasing in

%, hence have no maximizer. ff
: - For
Next,wyp > 0. ﬁhagjgisstaaé%a&%axigﬁy(s)-u 0, then

g’(s) = 0, since k >0 in LBl)\] From4i27), there is a point

_gi for which a‘(sl) > 0; hance also h(sl) > Ou Now if kp <0,

then for point s 81 {32) would be strictly increasing, hence
have no maximizer.

If gt{§) = 0, then g@{s),# 0. This follows from kp > 0

st

‘in‘(32). If c2(s) » 0, then (32) is strictly concave ina§p

hence has (at‘most) one maximizér.' This maximizer is zero

iff the slope at x = 0 is no@&positive. Thus we have
nj

P‘(ﬁ) = 0 iff}h(s,c“s’ < kp‘w«; -.6'3'3‘)'

the s\ope at x =0/ is Pdsﬂ've
If S33)r—fails, tha maximlzar of (32) is obtained by setting the

Tkusf
derivative aqu&l to zero. » 1f h(s)c2(s) > kp,

then

(6, 1. 8%)
) O

27

P%(s) = log E;(g)aa(g)/kp)m Ry

Ngé the set {§3p°(s) > 0} has positive measure from (27).
HencéJgﬁ(s) maximizes (31) on this set. Substituting from (34)
into (31), we find that ¢ (s) maximizes
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over x > 0, for any g such that p2(s) > 0. Sin%a c?(s) > 0,

the bracketed expression in (35) must be zero:r

/

c(s) = k /kc,f--'-. / 36)

so that ¢® is constant on the set {s|p® (%; > 0}).
Next, the two sets {s|p°(s) > 0} agﬂ {s!h(s) >k /c”(s)}

are the same. Hence, from (34) and (zﬁ),

&Q?I ID[) f / b‘-/ P TR
/ / Lo, & diJ
1eg (h(s)c’(skykp)a(ds) = P, +37)
5 SRl ZL#
% {Slh(swkb/c" (a?)}
From (37) and (25) we cbtainwwf/cﬁ(g) = L, if p°(s) > 0,
so that, from (36), e
f_HL""' ,e A
F R, ™ Lo~ A’Zae)
c
Substituting (38) and (3@) into (34), we obtain
“p%(s) = log(n(s)/L) —+29)

wherever p2(s) > q)(éo that h(s) > L on this set).

Now cansider the maximization of (31). 1If c®(s) = 0,
then p (s) = 0, and the fact that x =0 maximizes (31) implies

h{s) ﬁ,kc- Hgnca, from (38),

if Ef(s) = 0, then h(s) £ L.
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Next let c2(s) > 0. The case where p2(s) > 0 also has

already been discussed, yielding (35) and (36). Suppoae,"

pﬁ(s) = 0, The fact that x > 0 maximizes (31) yieldﬁfﬁ

h(s) = k = L. But from (26) this occurs only onjifset of

measure zero. o
We are now finished5 For the two setsh&{slp-(s) > 0’ 4 ’

S~

ZG“(S) > G}if?d {slp (s) = 0, c_(s) = 0} togather exhaust s, N

get F)
except for a nuli}set. On #he-xht#er, g(v(s)) = h(s) < L, and

: T { a@’\,& L
on éggtéééme;, g(v(s)) >ﬁL. -

(30) is the same as (39). Also,
¢® is constant on the set {gtq(v(gj) > L}, and zexo off it, so

(29) follows from (27).

g To show that (”8)-(30) aetually gives an equilibrium pair,
Ghe need only verify the shadow price conditions (31) and (32)

for some kc' kp, since these are sufficient for unsurpassedness

\1,/“ 120t
(in fact, for bestness) (e2, p?) given by’ (28)5(30) do

indeed maximize (31); (32)h respectively, for ke = L,
o
kp = LC/a{s|g(v(s)) > L}. Verification is left as an exercisa:l}$‘,

The equiliﬁrium solution (2%)%}3&) may be characterized

as follows. [There are two radically different rgbimes, a high=

density fégiﬁe,ig (characterized by victim densities satisfying

g(y) >v§),\and a low-density régime,wgg. In fggime II there are
no poligé, no criminals and no crimeé._ In fggime I, while
densit§ of police rises with that of victims, the density of
criminals is uniform; so is the density of crimes, as one

verifies by substituting (29) and (30) into (24).
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This leads to the surprising conclusion that the most

crime-ridden victims are those living at intermediate densities.

Por§§since crime is uniformly distributed in régime I,*crimes

per victim must be inversely proportional to the ﬂensity of

victims. Starting at the highest victim densitiesf'crimes per
victim rise as victim density falls, reaching a peak and then
suddenly falling to zero as the critical densxty is passed and
régima II is entered. Sf

Here is another slightly paradoxical ?ﬁglication. Suppose
there is an ant&}crime drive, and the togﬁi police force Py

é “N
is expanded. Since the integrand in (g%) is non+increasing in

L, the new equilibrium L must be lowg%. Total crime -- which

equals CL — does indeed fall. Butg{n the process the critical
victim density falls, anduzggimagi‘-which is {s|g(v(s)) > L} =
expands at the expénsa of fégiyg II. People who were living
at densities just below the Qid critical density will
suddenly find themselves egéulfed in a crime wave, crimes per
victim jumping from zexcﬁé& the highest level in the system.
All this is the result{gi increased law enforcement!
The explanatidn,fgf course, is that the increased "heat"

on criminals in the old régime I induces them to disperse
into the greenagapastures of régime II.

"vahe."spilLé;er“ effect of law enforcement in one community
on the crime;§éte in neighboring communities has been
recognized.fgxt is sometimes claimed that better law enforce=

ment decreases crime in neighborin communities‘%3z This may
= g - g
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be true with respect to the apprehension of wanted crimina%gf

But insofar as the police serve the function of deterringf
potential criminals from committing crimes, the argumgﬁé just
gi#en indicates that better law enforcement may we;;fincrease
crime in the environs. ﬂ-

This sort of two-;zgime equilibrium is bg;ﬁb means
unusual in game theory;;i’ But we would expgﬁé any such effect
to be blurred when applied to the real woglé. In generalieié
does not find the intermediate density gé;king of crimes per
victim as prediqtad by this model (bagﬁxrobbery may conform

to this pattern, if one defines "victim" density properly).

Instead, the usual pattern is for,cfimes per victim to rise
with size of place, and to be inversely related to distance
frdﬁ;éentral-city. fﬂhere are, however, many exceptions, and
There—are,—of course, ény nﬁmber of ways iauwhiehkghe
preceding model could have gone wronq, The three populations
are not fixed in size 'and not homogeneous. The crime
function may be migpbacified. Movement costs have been ignored.
Finally, the motif&tions of the three populations may have been
misspecified. In particular, it is not at all clear that

police are alléeated to minimize (an index of) total crime. 6)'7
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Economic Science (Macmillan, Londcnu an ed), 1952), pgée 16,
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5
- 25ome work has been done in generalizing (}5%(2) to a

continuum. The calculus of variations may b%f;pplied in some
special cases. Work beyond this point waqggegun by Bernard
Koopman in 1956. See J, Dékuenin, “bptiﬁ;m Pistribution of

Effort: An #xtension of the Koopman ﬁasic Theory®, Operations

Rasaaichw 9=1~7, @anauay—Febr&ary,‘lSﬁy Another exposition
may be found in 8. Karlin, Mathematical Methods and Theory in

Games, Programming, and Economi&s (Addison-Wesley, Reading,

Mass., 1959), Volum& 2, Chapﬁtr 8, where the connection with the
Neyman-Pearson lemma is stnésaed. Also see M. E. Yaari,w*On
the‘pxistance of an thimél.klan in a Continuous=-Time Allocation
pracess ; Econometricg, 32: 576-590. @cbgbo&. 19699 For some

more recent work on uhé Neyman~?earson problem, see R, L,
Francis, mOn Relat&énships‘éetween the Neyman-?eaxson Problem
and Linear Programming pa%es 259n37Q?6£fOptimizinq,Methcds in
StatisticskiJ.fs. Rustagi, e%gger (Academic Press, New York,
1971), g

Lo 3To ﬁe precise, we never choose € larger than g;x. This

L4

insures that x + Y remains in the domain of f, so f(x + y) is

weliﬁdefined.
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40n derivates see E, J, McShane and T, A‘ Botts, Real

alxsia (Van Nostrand, Princeton, 1959), gages 110~111.

~(3

G. J. Stigler, The Theory of Pgice (Macmillan, New York,
Y : A
,rhrev. ed., 1952) p&gea 119~ 120.

1'1,\,“ 4
<EVS9} is even a bit stronger than the sufficient condition

{323
2. In (59), the null set £or which a‘(a) does not maximize

(3.2
is chosen once and for all. But the null set for which 2

fails depends on §, and eonceivably there is no null set E such
1:;.“(,
that fzi holds for all 8 and all a ¢ A\E.

# .zgf. G. B.jbantzig and P. Wolfe, "The Decomposition

Algorithm forsﬁiaear Programs,f Econometrica, 29§ 767fj78,
(October 1961) |
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:;?FThe concavity and continuity of g_ are of some
independent interest, yielding a "comparative statics" result

for the preceding theorem, as the parameter L varies ip”QB).

o
0%

"gTwo similar cases come to mind. The law oﬁ“&aes action

in chemistry takes reaction rate to be prcpogtional to the
concentrations of the reagents. In the quka-Vblterra theory
of predator-prey interaction, encounterafraqueney is again

proportional to the product of the sp&ﬁies densities. A. J.

- Lotka, Elemants of Mathematical B§§§qu {(Dover, New York,

27 @ (e y,

1956);4g!gp5-884¥lw“ _ﬁf

.J’*

lOSee E, M, Schur, Cr%ﬁﬁ: wkthcut Victims (Pxintice«ﬂall
Englewood Cliffs, N.Y., %565).
,.1?:

&

7@4‘

My, s, Presidenﬁ*s Commission on Law Enforcement and

V \
Administration of dustica, The Challenge of Crime in a Pree

i

— -"

(Harvard Hnizgre4#y Press, Cambridge, 1968) espse&a*iy'pages&ﬁ

253:@63,;2761281.

‘\lzincidnatally,‘psing this argument as a guide oRe can
easily develop a dxnémic model of radistribﬁtion of the two
populations from a noﬁfequilibrium position. We Shab now go
into this.

SO
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\YQ %W«o‘r C. M, 'ﬁi‘i.ebout, A Pure Theory of Local

dd«“

JExpenditures,® Jemw Folitiﬂm?c Econom 64 &@&u,
(Octim:r 1956} |

We‘»‘j\;
: x“ ? ér?"'s
YR ,14

'

y See, e.g., M. Dresher, Games of Stramgx (Prentice-Hall,
\,3/
Englewood Cliffs, N.J., 1961) &9&5—124—6{.27.

9<
gy,

15

_*.(

E. H., Sutherland and D. R. c:;assey, Principles of

o =

C:iminolo +# {Lippincott, Philad%g:phia, Qf;h edy 1966)} -

4
5

’won alternative c:rit:zaria for the distribution of police,
\/

see C. S. Shoup, “standyrds for Distributing a Free
g’\d’ / /Gevernmm:ai- Service:a Crime #reventz.on,“ Public Finance ~.

it l?{ 383-39# A 1964, ﬁn& his Public Finance (Aldine, Chicago,
(4" 1969), 1157{18.
= “" , :
f\.M“; [’:* g ‘?ifi)’&(\ﬁg VLV(70M i\/ gﬁ,l]}t,ﬂﬂ 5/,0( Ly A)»’D LQ {’i)"“-%iy\
L P ‘ G&Q LA f«* :‘;;m: 6‘7»; é\.q \3 {sé;!:a‘i‘ L‘/L‘OL‘,()W{((} 6’12\’ j) Dasi );(r%
f J £ el f
G Con, Ii o w,ﬁL,‘:' a vy Wy T8 677 .

e
&

V.
v



