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FEASIBILITY ) )

4.1. Introduction

We have argued that the world can be édscribed as a measure
u over the space (2,I), where Q is the set of all possible

1\71 hiTiae

histories (see .5). Here, for any measarable set of hlstories

th%é@/ H, u(ﬂ) is the total "mass" embodied Lﬁ this set, where“”mass

h ¢ "“‘P‘I—& -2,
is to be interpreted in the broad sense discussed -absva]

o pages-

‘ §> This is the point of view of §é omniscient observer who
describes the world after the ant%ée drama has unfolded itself
(at time +«, so to speak). Froméihe point of view of someone

‘ living and acting in the world, ; is not given in all detail,
Rather, he has some pcwertwor f?eedcm,mto choose how the world
will develop. This may be rep@%sented formally by a setﬁhﬁkkof
measures over (2,Z). The integpretation is thatﬁ\for anyﬁ \
ue M, there is some faasiblegblan of action by which he can
guafzgtee that history will uéfold according to the description
u, but that no feasible plan éf action will attain any u not
belonging tc‘ﬁ: The sethﬂhwfll vary from person to person, and
also will vary for the same person at different times., It will

' be called the feasible set of person p at time t.

For a beggar, the feasible set will be relatively “smallf})
That is, he has so little power'that the various alternative
measures M in M will be "very szmllar“ to each other; his

VWA

actions make "very little" dxfierence. For an emperor, the
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feasible set will be relatively "large?b
There are various oversimplifications and cogéeptual
difficulties involved in the notion of feasib1e éét as just

presented. First of=all it neglects uncertainﬁ&. One does

W not actually know the full effects of any ac;ions one might try
to undertake. This uncertainty may be représented as a

§T probability over the universe set M“'af all measures over (Q,I).

\ 0 s -

This is a two-level measure (see 2.8) reprasenting the effect
of one attempted line of action. The fgasible set itself will
then be §<§gg of such two-~level probabiiity measures.

This is a fairly complicated conﬁtruction, but something

like it appears necessary to handle ﬁhe problem of uncertainty

adeguately. In this chapter we ahail, by and large, pass over
the problem of uncertainty to avoié,undue complexity. The
assumption ,-then, will be that cngfhas perfect information
concerning the consequences of an§ plan of action. The
feasible set [|, instead of being;a set of probabilities over
M7 is then merely a subset of MQ. |

r“\

?ha second difficulty concerns the interaction of several
agents. Doesn&t the power of person pl depend on the actions
of other persons pz, p3,...? What if they make incompatible
choices?

iﬁﬁhﬁm examine in some detail how a plan of action gets
translated into a measure ¥ under conditions of certainty.
Actions include, in the first instance, motions of the body
ﬁﬁiéh affect the environment - planting, harvesting, and eating)
weaving, carrying)and building, etc. The plan gives the time-

schedule for these actions, starting from the time t, at which
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the plan begins. The plan also includes actions affecting
oneself which enable one to carry out the other actions at the
appropriate timagjl—far~exampis lecomotion to be at the right
location for an action, self-maintenance activities, self+~
training regimens to develop the skills needed for some future
action., These actions set up causal;chains é§¥uh reverberate
into the future, The certainty asaﬁmptian means that one can
predict these effects perfectly (iﬁclu&ing the unfolding of
history that continues after cne’éAdeath- it also means,-by—the
wayy perfect information concerning the history of the world
prpvzous to £). ‘

Now introduce other peoplé into the environment, Just as
with the natural environment,fbther people are affected by
cnels actions = in paxticulary by speech,*and by the writing
andﬂsenﬁtﬁﬁmﬁf'wiiﬁﬁﬁﬁfmaisages‘ -The aasumption of certainty
means that one can predict perfectly the responsesj f others to
one's actionssd-which may bg to ignore these actions, ez to
engage in cooperative activities with oneself, or to attack
oneself, ex to take action affecting a third person, etc. We
again have an unfolding of causal chains, except that these
chains now involve the activities of other people.

Thus cne’s power does indeed depend on the actions of
other\§eagie but since their responses are“by assumyticn,é\

known with certainty, no problem of incompatible choices arises.
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The assumption of certainty is sb#éﬁueéf a gross simplifig
cation, yet often a useful first approximation. The—point-is-
that it is not necessarily a worse approximation for someone
living in society than it is far Rcbinson Crusoe. A high

degree of predictability is a sine. gga non for social existence,

and one of the prime functions efgsoclal institutions 1§ to
insure this predictability. We ﬁnaw thatﬁ\un&er normal
canditiana, a storekeeper will aell us any item on the shelf
at its stated price, a fire depaxtment will respond to an
alarm, an oncoming motorist will yield our right of way. 2n
enployer knqws his employee gill follow orders within a certain
broad zone ch@legitimate@faﬁthority. In fact, the general
course of civilization has érabably been to increase the over$
all predictability of the future. The incursion of droughts,
flco&sjanﬁ other natural f;uctuatians has been damped;
epidemics are less threatening. The improvement of transpsrta$
tion and the rise of insuranca‘1~bath private and social wapoals
the risks of individual misfortune over the entire 5ocietyg1\
and establishes a subgiséence floor which tends to rise over
time. Violence tends tafdécline within a region with the
territorial spread of t@é nation-state: Philadelphia and
New York do not make waﬁ on each other as Athens and Sparta
aia ¥ |

Assuming cerﬁainty: theny, our problem in this chapter will

be to describe feasible sets }| in various plausible and
VA
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convenient ways ., tﬂ'is a very complicated object even under
certainty (remaébef that each of its poigfs is a complete
description of the world), and one needy good schematic ways
for characterizing it, at least apprexiﬁately.

In general)we aha&i try to chargéterizebg by "whittling
down" from above; Tﬁg£kis, there w&il be a n;;her of simpler
sets, each one consisting of all measures satisfying some test
criterion. Any feasible measure mght satisfy all -ef these
tests, so that\m\is included in t@% intersection of all these
sets., Hopefully, it is équal to;%heir intersection; if not,
further tests are needed. f

‘Thus,%a given measure yu ma§ be infeasible because it
violates a natural laws o=, beééuse of technical ignorances o,
because resources are not avaggable¢,uiy because it violates a
legal s;atuta@ or, because thé person lacks the money or
authority to induce needed aq;ions by other people.';mkwill
then- consist of the measuresfu satisfying all these criteria
(and perhaps other eriteria Qot listed).

Several of these broad criteria could themselves be
expressed as the conjunctiod.of simpler é%&ées&a. Thus to
satisfy the natural-law criﬁeria, the measure may have to
satisfy conservation laws, éaximal density constraints,
dynamical laws in the form of differential equation systems,
ete., To comply with legal statutes it hust satisfy zoning laws,

traffic laws, housing laws,'antiipollution laws, etc.
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Our aim,—then, is to make a quick survey of these various
exclusion criteria, vaicuslg)this survey must be superficial;
anything more would require expertise in dozans of dlfferent

specialties, Raﬁﬁasm?ge stress features

are analytiaally
tractableﬁ}and at the same time catch broad structural aspects
of the various criteria. 1In particular, these yill include
most of the feasible sets used in the rest of;%hi% book.
(Budget constraints will be discussed &aﬁei%finﬁghapter 6).)

e

($*> 4.2, Uncontrollable Regions ff

Person p at time t has feasible sat M He cannot do any<

‘&12\

5 thing about the world befox‘e time t°§ fhe past has already

happened. How is this fact refleated in the set ﬁ?

Let u' and u" beth be feasible. Recall that the crosss-
sectional measure at ﬁime t gives tﬁe distribution of mass over
R x S at that time. It must be true that, for any t < t s the

cross~sectional measures at t determined by p' and u" are the

same. Thus

. \ e S §,.
> e ¢ B =henie ¢ @)

for any measurable Eg Rx S, any bt <« t » and any two u', u" ¢

M. A similar equality hclds £ar deubleﬁhrcss~aectianal measures,

VAAn,

- ete., provided all times are in the past of t Next, consider

the production and consumption maasurea, whiah are on universe
F‘:l“ f‘;‘v

set R x 8 x T (p%gesmmmm»), If we consider the past half-.space
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Rx S x {tlt <t }, then the proﬂuctian maasurgs Al and Ay
derived from u‘, u" € M, respectiVely, mast ba identical when
restricted to this hal£~space, since they bath equal the
actual pattern of pro&uetibn realized in tﬁe paat. ISimilaxly
for consumption measures 12 I P WL

All these remarks are implied by tﬂé following principle,
which expresses with complete generaliﬁy the notion of the
uncontrollability of the past. It is convenient here to add
the artificial point z to R x 8, and let the history h take on
the value 2z Jo at the times before it is 'born’ and after it dies”

With this convention, h has as its domain the entire time axis
T, with range in (R x 8) y (zo},

{

Two histories, h' and h" areﬁidantiual before t -o 8 4 4

h'(t) = h"(t) for all t <t Lét H be a set of histories.
H is t -past-determined iff, whenevar .h' € H and h! and h" are

i

identical before t

then h" € K. fé% now state the éast

’
2 o

‘nncontrollability,Erinciple-

—» any two feasible measuresfhave identical values on all
measurable t —past-determined ;ets.
A ~i/ The set appearing in (1) 15 t ~past~datarmineda éo is
thékget determining production or consumption on any measurable
Gg [Rx 8 x {t|]t < t 1. Th;a shows that the remarks above
are implied by the Past,ﬁnconirollahility,ﬁrinciple.

Not only the past,\hut a portion of the future,%will be

uncontrollable. cgnsider a fire station located at s at time

t,e The locations-ﬁhiah can be reached by time t >m§ by a

e
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fire engine starting at t depend on the maximal speed of the

engine, street layout, trafﬂze congestion, etc. There will be

an accessible region which in general expands with increasing

t, the whole set of accessible points in Space=-Time forming

roughly a “cone™ withjépex at (so,to),‘and opening into the
future;§// RE

Without speedier communications, the entire subset of ;
§ x T outside this cone is uncontrollable by the engine dis¢
patcher at time*ya. Maximal speed limitations imply thatfsuah
uncontrollable regions exist in general.

&

om r'

© Even within this cone there will be asyects ;%§eh ‘are

virtually uncontrollable. The great processes of naﬁuxe, aarth¢
quakes , hurricanes, etc., are still in this category. For all
but a handful of people, the tides in the affairs ef men -war,
revolutlon, depression, religious movements, fashion cycles
ete. — must be considered uneontrollable.

We conclude with an abstract definition of uncontrollability
whﬁaa includes as special cases everything dlseussed in this

section.

Q- | Definition: ma&masaafmmu%on&@wmegmh Set

E € I is uncontrollable with respect to M“iéf u(E) has the same
value for all p ¢ [, »

4.3. Cross~Sectional Constraints

"

| ™k
Cross~sectional constraints are thoge‘whtzh exclude

measures whose cross-—section as of tima.é_fails to satisfy
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certain conditions. In more detaill;wefstart with a measure
By

U on the space of histories (o E), and then examine its cross<

\ 4
section "t' which is given by f

!

: s*f‘ =
S @ = uiiae ¢

iy
for all measurable E. <ut is, offéeursei & measure on the space
(R x S, 2- X X )« There will xn general be many measures u
with the same crosausection at~t. and if/ﬂt fails thon all of
these measures are 1nfeaaibla. SGme of the condmtions to be
imposed may have to be met by "t for all time-instants -+,
others perhaps for only soma t.

To simplify notation we shall drop the subscript t.# “The

&
g§w¥ measures are still over universa set R x S,
7 B :
-,/€<ﬂ{},? Integer Values and Finite Concentration

“‘Fi

For a certain subset, R', of Rasourcgg{fin which objects
come in "natural units" u«such as peopla{ycattle, and cars, -,
¥ may take on only integer values (or be infinite) when
restricted to R' x S, The constraint here is one of purely

= semantic erigiq, /Any other meaaures would be meaningless,

$ijefinitian' Measure u on (A,x) is concentrated on set Eg A iff

'ﬁ;§ u(a) > 0 and u(F) = 0 for all measurable F disjoint from E

(E itself need not be measurable).

; We have already met several related concepts. Measure U

is simglz&cancentrated iff it is concentrated on some singleton
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set, Similarly, u is finitely concentrated if:*ﬁt is conS
centrated on some finite set. | :

Restrictions to finitely eoncentrate@’;easures arise in
tw? ways. First, certain resourcé*type&ﬁére just naturally
nagk‘spread~out‘,5ver sPace, and are wéll represented as being
confined to a finite number of loaations. One thinks of the

5/ natural units mentioned above, andAperhaps othersﬁg/ Second.
even though it is technically feasible to spread a resource
eontinuoualy o}%r Space, ene%a-budgetfmay not permit this.
w¥e¥wexamp%e there may be an overhead cost associated with
each location at which the!xesource is situated. 1In many

problems the multiplicityfis also specifiedj

given n policemen, deplofftham so—as- to ﬁinimize total crimes.
The case n = lis espeaially interesting; the classic plantﬁ”
location problem of Weber is a special case.

There is a alose connection between integer-valuedness,
ﬁtomicity. and finite concentration. Recall that y is atomiec
iff u(A) # 0, and, for all E ¢ I, either u(E) = 0 or u(E\E) = 0,

4 Every simpliicencentrated measure is atomic.

S —

*£?5! Theorem: Legﬁh be a bounded measure, not identically zero, on

(a,Z). 1g7u takes on just a finite number of values, then

there ;ﬁfa finite measurable partition E@l,...{an} such that

iy restiicted to each Ay is atomiec,

i P
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*”’”§§T:'g£gggz Since u is bounded, there-is a countable measurable
partition {%@. 1,...} suah that u restricted to AB is nand;
’yjyé atomic, and y restricted to Ai is atomic for i=1, 2, s &
4 This partition must in fact be finite, since ctharwise u(Al) ’
u(a1 U Aa),yg. would give an infinite number of different
u=values. On the nonratomic part, p takes on all values

between 0 and u(a?). Hence u(A ) =0, Since u ¥ 0, there is

at least one Ai' say i = 1, and u restrictad to A@ ] Al remains
atomic. M rw :

g The converse of this theorem{is also trueﬁ\hut of less
interest to us. How if u is in%egervvalued and bounded (we
nﬁt&i not consider the unbounded case) it takes on just a
finite number of values, hé;ce is atomic on all Ai for some
partition {Al,...,A }a Atomic measures are not always simply*
concentrated; however,~there is one very common condition under

~which the two conaegﬁs coincide.
,M «' :
3& 5 Deflnitians Let (A.z) be a measurable space. 2 is countably

PP generated iff thare is a countable subclass G & Z-wh*eh
v
;ﬁi” generates I,
gﬂgﬁéfgéél For example, the Borel field on the real line is countably

generated, since it is generated by the collection {9Ia < x},

x rational. ,éimilarly for the q-dimansianal Borel field,

e

n=2, 3,... . But this property will often not hold for more

e

complex s&é&a»fields? such as the one over the space of

_ histories @, or those involved in multirlayer measures,
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St R —

.fﬁwwiif’gﬁThaoremz If u is an atomic measure on (A ,Z), and I is
o e : s
— countably generated, then u is simply~coneentrated.
! f?*% Proozj Let {Gl, Gz,...} generate L., For each & ’ exactly one of
g (G | (A\G ) is positive, the other being zexo. Let F_ be
' j either G cr A\ chosen so that u(F y ‘> o, u(A\F ) = d; Let
F= nn,l n\') H(R\F) = u[un,,l(A\F 1 8 MA\?:,_) + W(A\F, Jeee = 0,
80 that u(g\E) = 0, Hence u({) ﬁ,o.

f“léf ; F is therefore) nonigmpty, so there exists a € F. We show
4 that p is concentrated on the set {a Jo. Xu suffices to show
V0 that,~for any measurable E with a ¢ E we have E, F disjoint;

for then u(E) = 0 is immediate. Consider Jthen, the class I' of
all measurable sets whieh either contain F or are disjoint from
.f. ' is closed:nndax complements and countable unions, so
tﬁat it is a sﬁgé§~fialﬁ. Furthermore, _ G € I' for all ‘n., It
follows that Z'jm I, Since E above does not contain F, it is

dispoint from F, and the proof is complete. |||

j ‘We conclude that, if u on (2,2) is intagéfkvalued and
bounded, and I is countably genéfated, then y is finitely
¢oncent£étad. Thus, in most cases of interest, integer~
valﬁedness is a stre;gthening of the finite concentration

condition.
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C§¥i;} Space c&Qacitx

Let x 5 R be some particular resaurcektypa and 1@& F be a
region of Spaee. The amount of r that can be squeazeé into F

i\,mﬁ\ém; /i»w«
may well hav@ a finite upper 1imit6\‘ "rung aut of space"

at=this-limit. Let v (F) be this upper limit;

If F ana Fz are twe disjoint xegicns, we must have

?55?'1 UFy) <v (Fl) b v (Fz).k

For if (1) were false, there would be no way to approach
capacity on Fl U F without axeeeéing capacity on one of the

two subregions, Condition {lx»ls called finite subadditivit .
Jdn (12 may sometimes be strict, which means that capacity,
It is possible that the inequalié‘?'annot be reached in F, and

_F, simultaneously, The mast interesting case, however, is
where (1) becomes an aquality for all disjoint regions Fl’ Fa,
80 that v, is finitely additive. -¥a—faet, it is not unreasen~
able that v, should he countably additive, so that for any
countable packing cf regions, the capacity of the union is the
sum of the capaaxtias of the individual regions., We may also
safely assume ‘that V.. (#) = 0. With these assumptions, v becomes

a measure over Spaﬁwa the ¢ capacity measure for resource r,

Now let /L\ be a cross-sectional measure. We assume that all

singletan sets are measurable in Re {r ) e Z.» for all r, € R,

N O

: It must then be true that

{\ oS ;

u({r} x r) < v,.(F) 12
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CM’M?-’ .,
for all resources r and regions F, A(z) states that the total

mass of r in region F does not exceed tha capacity of that

region for r. But (2) is not stringe#t enough® Each resourea*\

type is taking up space on its own, and the region m?st have a i
global capacity sufficient to accommodate them al%ggimultaneeualy.
This suggests the following approach. 2

First, we postulate a general capacity mégsura o over

Spaee, (s, 2 ). This measure will be callea ideal area. It may

or may not coincide with ordinary physical area (or volume).

Next we postulate a function, f: R x s + reals, having the

};‘,,,,

interpretationi ﬁ(r,s) is the "amouht of space” needed per

unit of resource r at»locationbg.; £ is noqinegative and assumed
to be measurable with respect tgfzr X Es. This description of
£ is vague; the precise rdle afﬁf‘gnd ) is given in the next

ineguality, which gives the total system of capacity constraints

tha
must be satisfied by:any feasible cross-section u.
'f"" ﬂﬂ / e R 1))
At ol =8 3.3
e P fadu g a(B) ~ )

RN’F

@‘

e

b//éar all regions F. The left-hamd-side of (3) is a plausible

expression for the*total "demand for space" by all resources

;
together éﬁteh oqbupy region P, and (3) requires that u be
small enough sqfthat this total demand does not exceed the
"space" availéble in any region.

The mqét interesting special case arises when f does not
in faet éepend on its s-coordinate: f(r,s) = f(r,s') (=£(x),
say) ;or all x € R, s, s 15 S. ;5(;) maylshengbe ﬁﬁought of as

-~

7~ e
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the reciprocal of the maximal density to which resource r can
be sgueezed. Ifqlin addition, just one single resource—type

o 18 distributed over Spaee (tha%»is, u[(R\{r 3 x S] = 0),

then (3) reduces to (2):

-yl o | 4

7[ fda[' - A
)o o 19 e, :Ed{« f(r)u({r}xF)-ca(F)?

which is the same as (2) if we define v, = a/f(r).
Note that (3) allows thﬁgpossibility of f being zero some+

times. A resourcéltype x £3: which £(r,s) = 0, all s ¢ S, will

be called nonmgpaéiusim% : Postulating that certain resources
are non—space*usigg 1sfa simplifying approximationﬁzhieh is
often useful. 1In th&s case the constraints (2) simply disappear.

~Let—us considér some real-world examples of maximal
capacity constraints. First, for most resourceltypes thare will
be some physicgl density beyond which the resource will be
destroyed. géke o will be ordinary physical volume (or perhaps
area). Fo;f%eople this capacity is sometimes approached: (3)
must be ngér equality inside subway trains during the New York
City rush;hours.é/

Legal statutes often have the effect of placing capacities
well bélow the physical limit. These may be referred to as

ant&ﬁgongestion laws, whether that is their primary purpose or

not. Fire laws will limit occupancy of halls; no-standing laws
will limit occupancy of buses and movies. Zoning and housing

laws requiring open spaces, minimal lot sizes, maximal lot
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coverage, maximal building height and bulk, etc., all have the
effect of spreading people out and reducing actual occupancy
far below what would be physically possible.

The fact that we have here social rather than physical
constraints raises no difficulties. The lnterpretation cf (3)
is different: The measures u-ﬂh&eh'violate it are illegal, not
necessarily physically impossible. The function f used in
these constraints will in general be larger thanﬁfor the
physical constraints; more space is 1ega11y required per unit
resource tﬁ;n is physically necessary. -&%&91 sinae laws vary
from place to place, f(r s) will in general vary with its s=
coordinate (rising in places where 1@ws are “;;;:2;;;-). For
physical constraints one can pggbapif make do with an_f depending
only on r. ,:
v&j//#;are is one essential difference between natural laws

(V'ﬁﬁ;nd statute laws as far as geasibility is concerned, Natural
&h laws cannot be wviolated (g}idefinition), but one can often
violate statutes »~ (by cgﬁﬁitting a crim§} Thus to treat
statutes as conséraingé is to restrict the feasible set undulysg .
fne may decide to p§5k illegally and run the risk of getting a
ticket,‘ig%uaxamp;é; For the most part we shall ignore this

point,xénd treagfstatutory "constraints" as binding.

Exclusioné}are a limiting case of maximal capacity

constraints,7 They specify that a measure must take the value

Zero on cafﬁain sets., Examples are laws against trespassing,
Conordon

zoning ;aws, segregation laws, and curfews. -“Eake a curfew, for

instance. It specifies that u(E x F) = 0, where E is the set of
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"unauthorized personnel" and F is, say, the streetsfgf a certain
town. Cross-sectional measures “t must satisﬁy this condition
for those times t at which the curfew is ia effect -say niqhtﬁ

.,9

times over a certain timevinterval. fﬁ

~ Exclusions may be handled forma&ly by letting f take on
the value +w in 43). X% & is sﬁgﬁanfinlte (as we may assume
from its inﬁerpretatian), it Ag sasy to show that (3) implies
ul(r,s) |£(r,s) = =} = 0. Thns all that needs doing is to set f
equal to infinity on the ﬁxcluded sets.

Finally, the limitgd variety constraint is a special kind

of exclusion., Some rgsourcentypes may not be able to existe

Commodities may noegbe producible except in a limited number of

qualities and st%;is%&unicorns and philosophers' stones are not

found in naturejfetc. Let E (assumed measurable) be the subset
i

of R consisting of all these excluded resources. Then u(E x 8)

must be zero for any feasible cross=section yu.

Resaﬁ&ce Capacity

The guantities of various resourcewtypes available may be

limitqd These limitations may change over timé?ias resources

arefgreated or\destroyed, but for any given time_g we may

7

po#%ulate a resourceécagacity measure Vv

¢ on the space‘gp,zr).

- ~—

ﬁ*j 1)
U (B x.8) < v, (E) ~44.)-

e
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for all E ¢ X r, mha%—ts the left marginal of “t cannot

exceead Vt

=

Limited variety constraints are a special case 3ﬁf€é) (as
well as a special case of exclusions). They may bgﬁ;epresented
by setting v equal to zero on the appropriate sets.’:

There w111 in general also be constraints of the form (4)
for subfragions, and not merely for sgnoe as a whole. This
will ocecur whenever resources are tied up in particular regions

and cannot be transported elsewhere wzth infinite speed.

Disallawed Configurations

Recall that a cenfigurat@éh is simply a measure on universe
set R X F, Rfﬁhe set of ras?érees and F a region of Spaee. We

have defined when two cangiguratiaas are to be considered of

the same type, and also&éhe notion of an abstract aonfigurationdf

type, which may be exgmﬁlifiaa in variousz actual regiona/égi*%ﬁi
(These concepts invqk%e a metric on Spaee).

Rewfguppase t@gi certain abstract configuraticn;types are
set aside as “ﬁigﬁilewe&“, These afeweaniigﬁﬁatianavggééi
would, if examp}ified, violate some natural or human law. For
example, the iéllowing might be illegal configurations: two

bars within ﬁiatanaau§1,:aw a bar and a church within distaﬁae

Xy Or a hqﬁse without a fire hydrant within ﬁiatance_ga.

A aréés~sactiona1 measure u is to be considered infeasible
if, for any region _F, u restricted to R x F exemplifies a ﬂiS*

allowed confxguratian~type. Thus a separate test must be passed

f/

APy O

;}r/}u

"
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for each region. 3

- A less stringégt version of this test works wiggﬁéﬁéet of
"allowable" abstract configuratiéﬁFtypea. A crqgﬁigection ]
passes the test if there is a countable collea%ion of regions,”
F, which together cover S, such that u restrictad to R x F
exemplifies an allowable configuration type for each F ¢ F.
That is, it must be possible to repgesent M as a "patching" of
allowable configurations. :

These two versions will bgﬁcalled the strict and loose

Ea

constructionist versions ofgﬁha configuration test} respectively,

This approachg;;g_eigﬁér version; is very general and
flexible. On the otﬁéfuﬁgnqm,it does not allow for spatial
variation in what is allowable or not; thus it is probably most
useful in connection’ with natural 1aws&\or within the domain of

a single legal sya%em.

4.4, Intertempgjral i:onstraints

g

We now go on to feasibility conditions involving several
different time~instants. The possible feasibility conditions
are much yicher than for cross~sections. One broad class of
conditiqﬁs requires that certain sets of histories have measure
Zero. ;This resembles the concept of exclusion whieh weshave
discgésad above, In fact, exclusions are just a special case,

reqﬁiring that the set of histories occupying G g R x S at time

t have measure zero.
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(\'§:> Noh{intexaative Systems

T

44
01
A

“bet—us start with a very simple case. Supgdée for each

pair of positive numbers t v (Ee < ty), tgége is a function

0
E & t _RX S +RxS, expressing a dynamieal law: X history
0
whrieh=is- in state tr,s) at moment te wili move to state

_?t tlgx,s) at moment tl s This maans that the entire future
of a histcry is determined by the state it occupies at any one
- moment, éae then speciféﬁa that;the set of all histories
violating thés dynamical law nés measure zero (assuming this
set is measurable), ’55
A condition of this aﬁit is implausible because it does
~not allow for interacti@h: ihe course of a history depends
only on its past, not cn the environment. More generally, one oy
lockg for a rule bygmhich the "rate of change” of a history in
<3;;,/" state (r,s) at timé;t depends also on the cross-sectional
i}§' measure at timeig; (This would require putting some structure
\T:§s<:§§;§~&a~as to défina the notion of a :::a*:.e;‘)3..;;t For example, the
accaleratianééf a particle under gravity depends on the
distributiop{of mass ever‘§gu¢e; the behavior of a person may
depend onzﬁis observation of the distribution of behavior of

other pe§§le.
<g§ Bi&riera

Kicf the innumerable forms such a rule might take, we mention
ju§% one type. 2 barrier fcr a certain state {r,s) is a con<

figuration wdeh prevents that state from changinq in certain
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ways. Barriers are quite perv;sive; some occur in nature,
some are added by man, somaf%gmoved by man. A house serves,, Pl
among--other things, as a barrier against the weather, prevgntihg
air in an unpleasant state from gaining access. Umbrellas are

barriers against rain, thimbles against needles. The skin is a

barrier against infection. Walls, fences, locks, quardg)and

watchdogs are barriers against trespassing.

Transportation construction in general may be thought of
as barrier removal or barrier circumvention. Barrier removal
occurs when the rough surface of thé earth is smoothed, as in
road and rail construction, tunnalinétfgridging.aaé—d*éég&ng—
Barrier circumvention occurs:when an alternative medium is
developed Ehabling one to h?pass the former barrier é:as in air
and sea travel, pipelinaé and powe#lines, broadcasting.

| By slighé extengidn of the meaning, oae can speak of
barriers to entering‘certain occupations, certain industries,
or certain social:statusas (citizenship, marriage, poli&ical

office, etc.),~éhe formal analyses of these situations is

similar to that of barriers in the strict sense.

A Pollution Model

?hé following model reverts back to the assumption of no
inter;ction with the environment, but allows several histories
to spread out from single points.‘ Models of ﬁhis sort may be
suitable as representations of the diffusion and transformation

of substances, as in air pollution studies. Our aim, however,
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is mainly to illustrate how the concepts we have been-%orking

with might be applied, and we make no attempt to take realistic

complications into account.s/

We start with our basic sets of Resourcas, Space, and
Time —(R, 8, Tg«\with a*gnn.fields L, Es, zt, respectively,

/{f~ Suppose a unit mass of resource re is rﬁleased at location sg
e,
ur bl at instant te. What has happened to 1t by time tl? We assume

that the answer is given by a funcuion f: R, x8 xT xT, X

-9 -0 -0 -1

i‘

(Zr X E ) * reals.
ik ml

iﬁﬂyﬂﬂ;1ﬁ5ﬂ&enieuwaﬂmamenafta~exp&a&n«netatian. Fivst,
subsaxipts 0 and 1 will be uﬁed with R, S, and T, and points

belonging to them, to distinguish "origins" from "destinationsrq
Origins, denoted by 0, a&a points in Rx 8 x T at which mass
is released into circuiation; destinations, denoted by g, are

points where mass is £ound after circulating awhile‘ "Ei e ™
b | L.

is parenthesized because it is a product :igmawfield, while the

other crosses stand for cartesian products.

X The funct$on £ is a conditional measure;j &
/ ﬁ%jpg (i), £or fixﬁawﬁg: S, tgr £y f( 9: Eg: tlr-) is a measure
g &d o Spacg (Ry x Slr By E R );qﬁﬁg

L S

Ry
functiqh’with respect to its domain spaca, (R X8 XT xT

I LS R R
Iy ﬁfks Ky MEg )s

| or -9/ 0 @ '—2
~—— "/ The interpretation of £ is this:

\ “%}(ii) ion=fixad G e Z X Es ' f(- *¢*+°y G) is a measurable
@) ’-
L

f{xb, sg, tg' tl' G) is the total mass in resource~location

states in G at moment tlvwhich arises from the reltaﬁe of unit



368

s mass of resource r_ at location s_ at moment t . That is, the
A o~ 0 -9 P
\ unit mass will become diffused, perhaps spreading over various
lacatian&,rand also perhaps becoming;éﬁanged into different
resonraé&types‘ Thus we get a qh&ﬁging series of cross=
O sectional measures, dayendingxan-gl, the moment of observation.
Q%; &\\fis. We require that £ sa;iéfy the following consistency

condition: ﬁfﬁpg ﬁrplﬁéltz are three moments, then

W, S
[0
£(r., 8., ¢t , t,, G)|=
,.g_ei *el ”"’9' S 2;’&_“_)
\ >0 ,f‘g e ik 1)
lf pes, FE 510 f10 ty O Bl s by b 0y @y | @

for alkfé = R 8 8 G z X I, « .The left-hand side of P
/.»__géugcwee ‘9"’"6 ¥, By 27N

(1) gives the[fiass on set G at time t,. The right-iand ss.ae_,]/ﬁj‘
gives the same thing indirectly: firsg{by finding the entire S A
distribution anvgl xmsl (at the integﬁ;diate timewtl): finding
the contribution o g at &, by uniy mass at (r1,8y) at t; and

X then integrating (in eff;;t, taking the limit of the weighted
sum of these ccntxibutions);$7

- If &y ﬁ_Fg\Fhen Eﬂia’identically zero: fhere is no mass
before the date of release, If tl = t )thenagnis simplyf

concentated, ~ s
logated, with unit mass concentrated at the single point

gyé,sele This meyéiy gives the initial condition ag“te.

The cansexﬁation of matter is expressed by the conditianfw«
4: ﬁ,“l_f. ) Lk, ') ')v

_.fire'»se' tyr t1s By X 8y) =1 2y
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for all v., 8., & ., tl for which t 1> t {2) states that the

same totag ma:s i: present in some formgsomewhere at any time=
instant after release. enmtha_azhas—haaéﬁ ofle may want to
incorporate the gradual absorption, or "death"; of some of the
histories starting at (gglse) at time tg In this caséfthe
value of f in (2) will be a noniiacraasing functicn of tl
hOIdingwfé’wﬁg' te fixed, and equal}ing one at tl 2 pg.sx
The second half of this model is a measure v on the space

s
release of resoarees (pollutants). On rectangles the inter?

(gb b sg 1%3' E “u L = Z, ), rapresen;iﬁg the pattern of
pretation of v is as follows? v(§»xﬁy'#_§) is the total mass
of resources of types E released igf}egion ¥ in period G. Note
that v can incorporate the possipiiity of positive guantities
emanating at single locations (éﬁn Edison plants?) as well as
continuous relgases over sp.nehhalso the possibility of
positive "gobs" appearing at single time»instantsk as well as

continuous releases over Time«

X Given the measurable set G g Ry x §;, what is the total

mass embodied in the,fasourcenlo¢ation pairs in G; at moment

tl‘ as a result of the release pattern v? The answer is

M X@"b \ @ v @3
Alt,,G) =\ 7 (r St ,tl,G v(dr ,ds ,dt )f 3)
- Rgrsexw -0~ Q0 —-0-

Here again (35 may be thought of as the limit of a weighted
sum of the éantributions to G from the various triples

(rg,se,t J\the weights being determined by v. For fixea_gl,
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A(ty,°) is in fact a measure on R, X 8,. If the conservation

—

law {(2) is in effect, it follows from (3) that

Mey, Ry % 8) = w(Ry x s x (ele 6)). S

$ e =)
4
A\ D
b*‘ /7, That is, the total mass

///// mass released not later than_;l, as one gﬁﬂld expect. Oune can

found at moment t, gﬁﬁals the total

go a step further and define a total ﬁgiposure" measure p over

Ry % 8; % Tys p

: K‘“ AVAIL
W 2Ol § Vs

p(B) = ty, {lxg,8y) ,,!55*1’?1'?1’ € \B}Ftl"l :

4)
Lyt

for all Bg I, X I_ X Xt,fé”(whe integration in (4) is with
o b o | i WY ‘

respect to ordinary Labag%ue measure on the real 1ine_§1,

&

representing “quantityggf tim@f.‘ The interpretation of p on
rectangles is as fol}éﬁs: p(E x F x G) equals total mass~-time
of exposure to resq:ii;:'ces (2._.3. Kpollutants) of types _}_‘s:_ in
region F during gﬁiind_g.v';eteltha%wignlike most of our other
maasuré;; p is ;ﬂ mass~time units (e.gl}ton—hours, man-days)

rather than i@fmass units. p is needed to evaluate cumulative
& A )

exposure effééts.

Fs

Let ugigiv@ a plausible concrete example for the "diffusion"

functionéﬁ; We simplify by assuming that just a single resource-

type iaﬁinvolve&, and that no transformations in R occur. That
S D

.4ﬁa.ng§chemical tr&nsformations occur, but only spatial motions.
Thipfsimplification is reflected formally by dropping all

/

s

S

ol
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references to R in the preceding expressions: _f becomes a

2k function with domain 8§ x I, » Vv becomes a measure
Lo A 3 “9 9 | ‘
e, | on X ete,

Qy%j:§> Space is taken to be the plane, with cartesian coordinates

(x,v) Zs is the Borel field for the plané’ With these
ey N

preliminaries, we now give £ in the £qfﬁ of an indefinite

integral: &
v 1 : :
\’V f:-’ 2 N \)\ 2 \\4 ; &'4 s )
f(x 7 Yer tgr t; G) \; i g:@ =
\\)cﬁv 2 A= 2 N &
‘ (x1-§g5§(§1-§ﬂ2> 5 (yy-v,) y ) ’j%
\ B mrfl o el k() -t ) (AR fAy )
w 229 (t,-t_) B f | - -V R
. 7 - 1.0 — =179
C’ g : &

)es,‘au

for all (xe,ye é 9

<ty all G ¢ E + The integration
25

in (5) is wzth reﬁpect to-%ne-dlmensional Lebesgue measure.

Here exp[z)“ stands for e*; a, b, c, k are real constants

—d BANVIAAAN L

satlsfyingr\ a >0, b > 0, k > 0. A(E) is valid only for

t, te. ;;Ie have already mentioned that for €y < te, £ is

identica}iy zero, and for tl == te, f is simply~concentrated

with unit mass concentrated at (x_, v.). For any &y > t, then,

-0 -0 -0

(5) & a bivariate normal distribution with mean at {%9 + cft :ﬁg)'

y&ﬂ variance of a (tl—t ) in the x-direction, variance

_ (gltge) in the y=direction, and covariance zero. The mass

5 _ expl-k (ty -t )]
over all of Spase at moment t, is equal 7 so that

N

the conservation law (2) is satisfied iff k = 0,
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%ae might interpret (5) as follows. A unit mass re&ease&

-0
systematic forces. The latter consists of wind blowing in the

gﬁ%&%\ at location (xg ) at time t, is subjected to random and

xmdirection at veloclty ¢, The former causes khe mass to
spread out in a normal distribution yatt&rn.f The whole
distribution moves with the wind and alsc~keeps ﬁpreading,
variances being proportional to elappgé time. The k term is
thrown in to allow for possible disgﬁgearance of mass through
absorption. fgv '

- It may be verified that £ defined by (5) satisfies the
Chapman~Kolmogorov equation (Lﬁ(with R bemng deleted from~%h15
equation,-of course). 55

The model we have-éaa& outlined is one fragment of a
larger system. The release measure v, fcrhexampla will in its
turn be derived from tha distribution of activities over S x T,
together with their assoc;ated production mgpsuras. Conversely,
the resulting measugés A given by (3) condition the environmentrl
and thereby affectf%he feasibility of activities that might run
in varieus-placest This whole system of relations provides a
test that must ?@ passed by any feasible measure p on the space

H

of histories, '

<:§:\ 4.5, Activiéy Distributions

The féasibility test to be presented in-this—section cone
stitutes a generalization of the standard model of activity

\V4 analysis;%g/ We shall here concentratel on the formal development.
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We have already discussed a "configuration" test for
cross~sections "t' in which either “t zestricted to any region
must not be éisalloweé (strict constructionism), or “t must be

"patched” together by allowable restrictions (loesa construc~
tionism). The same sort of test could be consgructed for
intertemporal feasibility, with activié;ityQé;'taking the place
of configuration types. _¢f

Tests of this sort, however, are rather clumsy to work
with because ene must compare pattergs spread over Spaee (or
Space~Time), It would be much mﬂrﬁ convenient if the test
involved only the comparison of aingle points, so to speak. The

following is an attempt to carty out this construction,

We postulate a set of a;iowable activity types&£& In

accordance with our aim, wa”consider only ”simply*lccated“
L $
activityutypes hh#tuis4fact1vities whieh have just a single

location at any one mnmant. We -shaldl- also restrict our
attention to s adentagg activities, so that the single location
is fixed over Time. LThis second assumption is less crucial and
could be relaxed, bﬂt it is convenient.

Let us Spellfaut what these restrictions amount to. Taking

n activity to b% a measure over a set of histories, these

. histeries willgall have an identical, constant, itinerary. Hence

the historiaﬁ are distinguished omly by their transmutation paths.
We may thaﬁ‘simply identify an activity as a measure over the
universe set Q of all transmutationﬁpaths (= functions whose

domain is a closed timé$interva1,‘and whieh take values in R),

e

v’ J f«u.
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Another concept of activity identifies it with a‘pioducs
tion or consumption measure (or the pair of them);f‘whese are
over a subset of R x 8§ x T, But because of the very special
kinds of activities we are considering, all}réferenae to § may
be supﬁéssed. For simplicity we shall alﬁéys take the universe
set to be R x T. ff&

The dlstincticn between activity and activity~type has
been slurred over #n the yreceding discussion. Recall that an
activity is defined in terms oﬁ’“real" Spaee and Time, while an
aetiviggntype is defined with abstract sets, S' and T' in

place of these\ (8' is a mgtric space and T' has the structure
of the real line). An aptivity*type is then exemplifiad in an
actual activity iff thgre is a maasure-preserving spatial

isometry and time trghalation between the "abstract" and "real"

spaces, i

In the pres%ﬂl context the situation is much simpler.
Since the ragigﬁg in which activities are located are single
points, therejés no isometry problem and we can ignore metrical
’consideratiogé entirely. We could still use an abstract Time
set, but aeeua%%yrit will be more convenient not to do so.
Finally, ge confusion will arise in thﬁféreaent discussion if
we drap %he distinction between "activity" and “activity~type '~
and s%mply refer to them both as “activitg'.

5ﬁe summarize this discussion in the following definition,

wh;éh combines the various special activity concepts.,
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ig&ﬁ D@finiticn. An activity is a triple, consisting of a measure p ,»”
:: }) on the space of transmutatlonipaths§ (9 e ), and a pair af
maasuresﬁlal and Azﬁxon (5 x T, 2 X I )‘

x””* Hexre p gives the amounts of capital goods ™ and “materiala
tied up in the activity, while Al and A are the prodacticn and
consumption measuxes{}faﬁpeatively. We need not be concerned
with the nature of the a&gnﬁ~field Z' on ﬂr; for the present
discussion, it suffices to know that it axists. It is undegf
stood that this definition is only fqp the present digeussion:
in other cases @#e may wish to revg&; to the more general
activity concept discussed) in cﬁgﬁter ¢

We shu%i use the letter q te designate an activity, and
write, %eawanamp;a 12(q.63 fcr the value of consumptia;}in
activity q on set Ce 8 # 2 As stated above, Q will
designate the set of aliowable aetivitieéthhich in general

will be a small &ubseé of the set of all triples of measures
(ﬂ Al!R ))";\ :

1tsalf wi¥1 now)be made into a measurable space by

NV\?\ 'ﬁ‘

placing a*a*gagwfield L on it. The conditions to be placed on
I Will be maicamd bg'%e >

~Definition: ﬁan aasignment is a measure v on the space (s X Q,

Iy % E )*

g

e ————

aésignmant v describes how activities are distributed over

A
1

the,w%rld. On rectangles it may be interpreted as follows® o SR
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V(F X G) is the total amount of activities of types G situated
in region F. This somewhat vague characterization will be
pinned down below, Note that v is a (generalized}vﬁggnlayer

measure, since the elements of g are themaalvasé&ﬁiiglas of)

measures. ﬁf

We now give the basic mathematical jaszificatian for the

procedures to be used in this section. We state it in abstract

;)'«

form to make it self-contained. jﬁ

{4

Thecramz Let (Q,Z ), (8,2 ), and (B, £ ) be measurable spaces;

@f —

let v be a measure on (S x Q, Z ﬁ b3 ); let A¢ _Qx I, »

f,mm — ~—

gwj%? extended reals be an abcont canditxonal measure. -
et —Then, for any meaaurabla a@abaet Gof (5xB, I, x 1),
ok e
integral ' 1Y§
(%) \ Y0 \ :
C&O '} ’z/ 7 / §4t

J \(‘\\C;{bl (s.b) €° GB\’(ﬂS,ﬂq) = u(G)
v

15'
£

is well-defined, and ghe resulting set function u is a measure

. on (8 x B, Es

;‘(
o £
S ;(

_f%, Proofz We show that the conditions for the existence of a

product measure én the space (S x Q x B, Iy % Xq x I,) are

satisfied. Wéfgha%i consider this as a product of two spaces,
the first beiég (S x Q, zs x I ) and the second being (B Eb).

v is a maasuxe over the first space.

Define N: 78 x Q x I, * extended reals by the rule
/ S —

f-' am—
S

e > R R

)
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all s¢ 8, gqe Q, E ¢ Eb‘ One easily verifies that A' is

abcont conditional. Hence u', defined by

WG U e ) 7 # e
u' (H) w‘\fs Q\A (s,q,{b!(s,q,b) € H} v(&s,dtﬁ - 42)
»
for any H ¢ X ® Eq % zb, is a measure on {$ x Q x B), A‘H in J

aaaaa

(1),%hauaxaﬂ» is merely the maxginal af this measure on the ’
component space (S x B, I, x Xb)‘ -Ehﬁ%—&a, u(G) = y' (G x Q) for
any measurable Ge (s * B;. This maj be verified by
substituting G x Q for H in (2); slmpleicatian yields (1).

Hence p itself is a mﬁasura¢ﬁfl}+*i” 7y

i

E——

.‘#‘
g\_‘ﬂ

| Let us now interpretrﬁhxa theorem concxat&ly. 8, g, and v
have the meanings alreaﬁy discussed. let (B, xb) = (R x T,
Zr x Z ¢)? then we mag interpret A to be the family of produc?
tion measures al, go that A{q,v} = Al(q,-) is the production
measure on R x T assaciated with the activity q.

3] in (1) newabeeomes a measure on (R x s x T, Xr x E~ X E )E&/

How is thisfto be interpreted? Contemplation of {1). and the

nature o;»v and AJ@suggasts that u is the total production

meaau:é{xesulting from the activity assignment v. Thus, if we

take any region E, and consider for each activity the mass
producaé of resource-types E in time~period G, then u(® x F x . G)
is the limit of the weighted sum of these masses, the weights
being provided by the assignment v restricted to F x Qe
Precisely the same interpretation, but with A instead of

kl' now yields a measure u on R X S¥x T whiah is to be
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interpreted as the total consumption measure resulting from
the assignment v,

= Pinally, ie%rus interpret (B, zb) to be the space of
transmutation*paths (ﬂr,Z') and A ta be the family of measures
p on this space, That_is Mg, = G(Qc*) is the "capital*gocds
measure assacia;ed with the activitg,g:

With this interpretation, ¥ iﬁjfl) becomes a measure on
the space (S x ﬂr' Iy x £, H&w is this to be interpreted?
First of=all, consider the sam 8 x ﬂ A moment's reflection
shows that this can be idautified with the set of all histories
‘whfeh have constant itinerariesQ,ie$—as call these the

edentggx historiesg ycr, the point (s ,h ) € 8 x Q. 3 corresponds
>natura11y to the history ‘h whose tranamutationﬁpath is hr,\and
whose itinerary has the constant value s_ over the time-

-0
interval in whicg it exists. The natural interpretation of u

here is as theﬁéistribution of mass over the space of sedentary
histories. Tﬁﬁs, latting F be a region and H a measurable set
of transmutation&paths, u(F x H) equals the total mass

embodied in sedentary histories @ﬁ*en are located in F and

have trahsmutationwpaths in H.

(i!; at the cost of further complicationa!%wm had
intrqﬂuced activities involving non+sedantary histories, the u
herg would come out to be the basic world=description measure

/ :

over the space of all historiasﬁ R.)

g
§
7
V4
Fi
f
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To summarize: Any activity assignment v datarm&nes a

tripla mf measures, all via fermula (1). When wa-auhstitute

(for A in (lr\the praduction and consumption meaaures wkxl and

e “__,,._‘-»r’

Az, reapectively - of the various activitiés in Q’ we come out

with the production and consumption maasures over R X8 xT

Lo

wh%eh are yielded by this assignmantmv. When we substitute

the “capitalngoods” measures p af‘%he various activities for A,
we come out with the mass distributien over sedentary histories,

We sha¥l abbreviate thesg three measures as Bys “2' and u

. Sy

PR
respectively. Thus ¥y and yz are on the space (R X8 x T, ﬁ“"

I, % I, % I } while g% is ‘on the space (8 x Qr' I, x I%).
2 Befcre going on to discuss the feasibility tests whieh
’ariaa from this analysgs, let us see what it reduces to in a
very simple case: thﬁ=aase where all four sets, g, R, 8, T,
are finite (and ali s%ts are measurable)., This case is of
interest for twn raasons. First, it gives a heuristic guideZ
line to the analysga just completed. Second, it shows how
everything ngls down to what is essentially ordinary activity

analysés.

i:>>\ The vélua of assignment v at the singleton set {(ggg)}

will ba:wfitt@n simply as vsq, and we adopt a similar notation
for all other measures. In fact, in this simple case the
measures can be theught of as ordinary point ﬁuné%ions, and the
nagation un&érlinas this fact, Vaq is the "level® at which

o L.
activity q is running at location S.
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For convenience we let A stand for either 11 or AZ. - Then
Ag;t aquals total production (or consumption) of resource x at
time t in activity Q. In (1) let—uas choose for G the singleton
set {(r,s.t)}. Then the integral (1),&@6&0@5 to a simple

summation over activities g ¢ Qs

A

“zot * Vag, *q,rt */qua"fzz#z?- Bag.s

In this case the interpretation of yu is’gﬁzicusz the total
production (or consumption) of resourcéfr at location 8 at
time t, obtained by taking a weight&ﬂ‘sum of production (conZ
sumption) of r at t for each allewahle activity, the weights
being the levels of the various activities at s, as indiﬁated

,‘?"
i

by assignment v. ) :g =
- Things are slightly mnga complicated for the ”capital»
gned$“'kaasure p. For sim@licity &aﬁ—a& ignore "births" and
"daathsﬁ,*and assume thaﬁ all transmutation paths exist at all
times. If N is the numbar of time-points, then a transmutation-
path may be written a& an N-tuple (rl,“.,r ) in R, r, being its
resource=state at,ﬁ;ma e ﬁ may then be i&entified with the

C\f\“'

product space R rmw%hen ") is the mass embodied in
q,rl&. ve ;rm

the txansmutatioa«path (rl,...,rN) in activity g Now let—us
choose for G 1n (l) “the singleton {(s,rl,.‘.,rﬁ)}‘ The integral

(L) again reducas to a summation over activities 9 €

v | v Foow &
1) g%t}}_"“'?’s 2 W:.pﬁirf‘l“"'rw_; ~=?‘429%‘2?§1"""’1g,
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il go i ally is the total mass embodied in the sedentary*
histcry whos% location is fixed at N and which runs through
the sequence of resource-states (rl,...,r ) over @ini This
again is a weighted sum of the mass embodied in transmntation~a\
path (rl,...,rN) for each allowable activity,j;he weights being
the 1evals of the various activities at s. ﬁﬁ 

nstmas now return to the geneffl caae.‘ So far we have
said nothing about feasibility) jﬁ; now érogose a test';héeh
has a vague resemblance to the cmnfiggration test (loose conc
structionist version). A measure p&gées that test if it is a
countable patching of allowable canfigurations. Here we have
a ccrresponding set of allcwable»activities, Q, and we consider
only measures whéeh can be\“buﬁlt up fxom the activities of Q-
We interpret "built up" to mgan that there exsaes an assignment
v such that the measure u ta be tested is determined by v
according to (1). That is, considering (i) as a function whéeh
assigns a measure u to eVery measure v, the measures which pass. -
this test are those ingthe range of the function.

This might be cqgéidered too easy a test, since v is not
restricted in any W§§. One natural restriction that might be
placed on v is that it be 8égma~£inite or even bounded.

Another ccnstraint on v that suggesti itself is an areal
capacity restriation. We have already discussed this in con<
nection with cgoss»sectianal constraints, where we postulated

a “demand—forfépace“ function g{lg X 8 + reals, which restricted

7
the possiblgfcross-sections Uy at moment t. Now the measure u

S,
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on the space of sedentary histories, 8§ x ﬂr' determines a
cross-sectional measure Uy for every moment t. hence must

satisfy an areal capacity coég;aint for all t. -EIn-faet we

must have *i

WA h_(t ds,dn F
Vm\\(ng (@s,dn,) < a(P)

for all regions F and all moments t, where o, i; ideal area.
= (.u‘ J 7~
This is essentially a restatement of (3) géxﬁautienm3»ahnxn,

It could be argued, however, thagﬁthis understates the
demand for space. An activity not oﬁiy needs  space to store
its “capital~goods“ at any momantfkbut also "aisle space"” g
"elbow roem”,.anough extra vacant area -in-shoert to carry out
the manipulations and transfqrmations in which it is involved.
This suggests ﬁhat‘6§§ should attach a "demand-for-space”
function directly to activities ger se, Thus iee—ﬂavwrite f*
S xq~ reals, f nqgrnagativa, measurable with respect to
Es X Eq. ﬁg(g,g) is |to be understood_%ntuitivelg/as the space
demand by (unit level of) activity q at location s. We must
satisfy 21

R \ii; o0 1 {"’5‘1 §.3)
L \J \£,dv < a(F), 3)
JExg \\ :

\
for all regions F. This places a direct restriction on the
possible assignments Ve an& therefore a further indirect
restriction on the measures ua, Upe My akﬁeh must satisfy (1)

from some V.
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We now turn to the individual measures uﬂ} By, Hqe Our
ultimate aim is to establish féasibility conditions for measures
i on the space of histories i« How does such a y relate to Lﬁf”

this triple of measures? As for u., its universe set is kha

set of sedentary historiag; (S X ﬂg), which is a suhs@t cf 2.
The feaéibility condition on 1, then, is that itségaﬁtriction
to 8 x Q. be an allowable Mge @;’ | _ ;ff

As fcr the production and consumption msasuxes, My and Bor
these represent "births" and "deaths" of histories, respectively.
Thus, a finished product is produced in ‘a manufacturing process
at a certain place and time. This initiates a new history
which perhaps moves into transportﬁtian to be consumed else®
where. The smoke emitted fram a "chi ey initiates # histoﬁfg
involved in atmos?heria circulation‘ We must have,-then, for
measurable (E x F x G) g (R X8 xT), /QI(E x F x G) equal to
the total mass embodied: in hiatarias which originate in period
G in regionxr at a rg&outcewﬁype in g.' A similar relation
holds far/az anﬁbgﬁ; mass of histories wlsiech terminatéfin
Ex F x G.l3" ;

For M tﬁvpass the feasibility test, then, there must be an

aaaignmant v yielﬁing measures \_., “1’ uz}which are

9
simultaneauslx_comgatible with He

4%521 Neighborhood Effects

We now consider some of the presuppositions implicit in

the preceding construction. These are,-in _fact, worth studying



384

on their own,. and not merely in ccnneetion with the activity

analysﬁs model,

Let F and G be two disjoint regions‘}gi%uaanwhapgen*tha&

</

ﬁthe possible precesses:whiah can go on in region G dre |

influenced by what goes on in region ?. For example, the sound,
light, heat, or substances amanating from F may condition the
environment of G. These influencﬁs are sometimes called

neighborhood effects. We may agpeet. in a general way, that

neighborhood effects will bacame stronger the closer F ané G
are to each other, while they tend to disappear between distant
regions. (Some lnfiuencesg suehwaa radioactive fallcut, have
woxldbwide effects, If wa include in the concept of neighbnrt
hood effect the ﬁelibexata propagation of influence via the
transportweommunxcations system, in addition to the "natural"
influences just mant%éned, then even distant regions will be
palpably influenaad;by each'othar.}

Now consi&er;éhe epyosiﬁe case,gwhere there are no
neighborhood effaéts@ This may be assumed as a simplifying
approximation when influences are sufficiently weak. But how
exactly does aﬁe formulata the acncay£§ *no neighborheod
effects aeaurﬁ? ~eur next few paragraphs .represent-an attempt
to pin down éhis notion.

The cqpaept of direct summation of measure spaces has

) o
V. T,

already been considered as a special case of "patching" (page

==} Explicitly, we have) The F2
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.

collection of measure spaaes, where the A s farm a packing:

Am NA = P if m # n. The direct sum of these spaces is the
'ﬂﬂtriple (A, (1), where
‘ 7; o
(1) Awm R U AU susi
ZZ» RNy B Ay ’
(ii) I consists of all sets of the form E; U E, U..., where
gn € Xn for all n=1, 2, ¢u0,

TV (1ii) u has domain I, and, for E = E; U E, Use., B € I

s

H(E) = uligl) 4 uzfﬁz)*... -~ ?*%}‘l
f’”ﬂwﬂmﬂzfifm;::h this definition, (A,Z,u) is a measure space. It is
not difficult to show that I is closed under countable unions,
o0 and &ifferances, and that A € Z, so that I is a s&gma«field with
!ﬁ 3 J universe set A, For each n, Engxa the restriction of I to
! W2 subsets ofﬁgn‘ Finally, ghe éiajeintness of thewaa’g guarantees
that,vfor an?lE € L, its représentation in the fafm El U Ez Usose
is unigue. Then u as given by (1) is wall«definedb n is the
restriction of M to Al Thé fact that u is a measure ia a
‘simple consequence of ﬁhe gétahlng theorem.,

We shall use the symhbl @ for direct sums. Thus,>
L= I, & 32 ® ..., and u u Uy @ u, 8... .

Next, we want to extend this definition to the case where
there is a whole set af measuresJ ﬁn, defined on each space
(A,,Z.), not merely th& single measure u . Write (A, zn, M )
for the measurable space together with the set of measures.

Again we assume that:theuﬁh’s form a packing.
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@*ﬁi'ﬁafinitionx The direct sum (Aﬁ gl'ﬁi) ® (Azfzz,Mz} ®... is/ the

\\\\\

triple (a, E,M), where A and I are formed as abcve, and M is the

T
:gégj set of all measures u formed according to (1), whexe Mys “2""
are selected from Ml’ Mz,... in all possibla ways.
B :

' Now let (s X A, 23 3 ) bae a prmduct measurable space.
(We ehall later interpret S to be physlcal Space, but for the
time being let us proceed abstraatlﬂ)“ /Let M be a set of
measures on this space. ’

"_—&t—m i s

;ﬁ%w{;nafinitiona (S X A, A

' x Xa,M) is countably rectangular iff, for
any countable measurable partitian {81, Sz"“} of 8, it is the
e direct sum

& o oy
b (fl X R, S, X zﬂ'vﬂ}) ® {S%fxxé’ %l

Herxe 8 is the restrietion of X to subsets of Sn' and is
1

the set of all restriatians to S of the measures u ¢ M

-~

WA
-

§ e are some examples:f

I:c
1*&“ Let ‘consist of two pcints,’m;of one point: 8= {sl,sg},

\1§ f A = {a}, All subsets are measurable‘ Let M consist of the four

o+ | measures ﬁij‘(i =1, 2/3 j =1, 2) _whose values on the two

points of § x A are given by nij{(sk,a)} - i if k = 1, and = j
if k = 2. Then M is countably rectangular. But if any one of

these measures is deleted, the remaining trio is not countably

rectangular,
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cﬁis The set of all measures, and the set of all g§5%§~finite
_EJE;> measures, on 5 x A, are both countably rectangular.
\ 6&&&) The set of all boun&ed measures is not countably
ractangular, if the 9égma~field z is Anfinite. (The proofs of

these statements are left as exercises)
{h aémuaah&a&~$sm¢ha£a under cauntable rectangularity, the set
M is built up from component sets in roughly the same way that
a rectangle set in a cartesian product space is built up from
the "sides" of the reetangle.
Now let us interpret S as Spkce. The set A will be given
a variety of interpretations, hut in all cases the set‘M will
be some "allowable" set of mea§ure$, 45
~This apparatus is design@a to capture the intuitive notion
that,iif there are no neighbg%hood effects, then any region can
be "autonomously" assigned Lés own allowable set of measures, C?
this set not depending at ail on what is chosen elsawhere.ﬁfﬁn hegk e
plays the role of this aut¢nsmous set for the region Sn, and
the "countable rectangulazfity property expresses precisely the
fact that the choices from the respective sets Mn can be made
frealy and independently! of each other.
Q'& Nawwietﬂas take (2,2 ) to be the space of allowable
activities (Q,Z ), and take M to be the allowable assignments
v on § x Q. Then in general this will be countably rectangular

in the activity analysis setjyp. ﬁwa have already noted this if

the assignment v can be any maaa&re, or any négmavfinite measure.,
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Slightly less obvious is the fact that, even if a space=
&3

capacity constraint of the form f§$aaéwxn=¢&xumd¥~grepeated as
(2) melaw) ia impmsed, the resulting set of allowable .assignments
;.  retains thiq pruperty@ :

?ﬁw;?hﬁoram= Let (S,Z ) and (Q X ) be maasurabia sp&ces, f{:ﬁ X Q=

—

yfjgp reals nonynegative ‘and measurable, o a measura on 8. Then the

set of measures v on 8 x Q«wh&eh satisfy ;
L B o (46
L A wtn)y  / 2}
| Imwgr i ;

for all measurable F ¢ S, is countably géetangular.

&4%ijrocf:' Let {s,, Sz.;..} be a countable_ﬁeasurabla partition of s.
: For any v satisfying (2), v ne its restriction to S X Q,
satisfies the same cundition for al; measurable F ¢ S . m&?
e let v, be such a measure on 8, % Q, n = 1, i vess and consider
x;;; the direct sum v' = v, @ v, 8., 5\ For any measurable F < 8,

we have

,;\5*

Thus v' satisfies (2). This proves countable rectangularity. |||
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Next,<&§él§% turn to the sets of allowable measures
of 5. 1)0
u_, My Hy determined by the allowable assignments v£af¥§§-ai
P

ll\ 3 A
{*'“¢ﬁea$ioa~5w The fallcwing result apglias to all threg of thaﬁgj

+

.‘ﬁ ;
43a Thaoremz Let measure y on S X B be éetarmined by Y on 8 x Q by
the rule . : o L
;"W - N ; V d?
\ ¢ ‘Bj I3 !{ 3‘ iv M (b6,
we = ] Aa ] e, € e}) (ds,4q) 3y
. , | 8e)
/,,_af g ‘ A 4 i |

’Gfa measurable subset of § x B, and A. Q X Eb + extended realsf&ﬂ
an abcont conditional measure, whan, if the set of allowable
measures v is ccuntably‘rectangqlar, the same is true for the

resulting set of allowable meaéﬁxea Mo

”*”ﬂggz*“;;oofz Let {Sl, Sz,.i.} be a countable measurable partition of S.

If u satisfies (3) for some allowable v, its restriction to
§n X B satisfies (3) for all measurable G ¢ S x B, withA“n

- ]

.“%E;x% substituted for S, and v,/ 'the restriction of v to B, * Q'a

R el eP g substituted for v. Now let y be such a measure on s x B,
> B
determined by v, on S X/ Q, n=1, 42, ... . Consider tha direct

W"’“\
sums ' o= Hy ® u2 ..,, and yt = v& v, A.ﬁ' « By the

countable recrangularity assumption, v' is allowable.
For any measurable Gg S x B, we have

'(‘3) '(Gn(s 1*B)) + o (Gn(s xB)) +... | 2 f o/

= ul(Gn(s xB)) + uz(@n(s xB)) r |
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? Hence u' is allowable. Thus the set of allowable measures u

o

é is countably rectangular. | [/ /%

ﬁfz' -~ The assumption of no neighbcr%éod effects, therefore,

//QY///;;;;adas the activity analysis modél we have constructed, How
realistic is this? There willa&ﬁﬁeaanae always ba;ggﬁg
neighborhood effects, so the reaquuesticn is wheﬁhék these
effects are unimportant enough to be ignored. The answer
appears to depend on the scale of observation. On a "pexrson=
sized" level, neighborhood effects are so wvital that any model
ignoring them would be uselgss. Chopping a person in half will
rapidly affect his functioniggz /Each half needs the “neighbo:ﬁm
hoﬁh effects" emanating from the other. Similarly, the
technical possibilities in half a machine or half a house will
be affected if the other héli is sheared off.

At the level of the dkdinary urban neighborhood, the
neighborhood effects are;gtill important but not nearly as
momentous. "Urban prab%éms“ are in large measure the reflecZ
tion of these interdepeédencies, resulting from the proximity
of masses of people tojeach other. Going up the scale to the
economj%wide and worlégwide levels, neighborhood effects are
much attenuated. We.ﬁight expect, then, that the activity
analysis model described here could be fairly applicable to
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aconomgfwide tachnical‘yossibilitias,vless so at the urban
neighborhood level, and would be poor as a model for individual
household possibilities.

There is,mhawaveaw one consideration 2§§éh vitiates eonﬁ
clusions of this sort. It is the system of constraints as a
whole which is subject to criticism, not any particular sub%
system in isolation. If neighborhood éffects are not taken
into account in the activity analyﬁis subsystem, they may be
taken account of elsawhara, in ‘a way that the set of measures
passing all feasibility tests reflects the existence of these
effects,

~ There-are othar “neighborhood effect” concepts smsieh are
not captured by the countabg:jzgggigggsp property. éae<$oma—
times wantg an asymmetrical concept, in which region E has an
effect on region ﬁlbut not vice versa. Countab e-ggggé;;;iy
is symmatric,lin}the sense that no ordering distinctions are
made among the’components of a direct sum. We shall very.
briefly indicate how thesé Yone-way® effects might be repreZ
sented, This is done by bringing in Time explicitly.

First, we need a slight weakening of the countable
rectangularity concept. Let M be a set of measures on space

WV

(A,2), and let E, F be two disjoint measurable subsets of A, e

»N is said to be reetuggﬁla: with respect to the pair of sets

Meyr = Mg *,32) | : : )

-
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where ME is the set of restrictions to E of the meaaurea u g‘ﬂ!
and similarly for NF and Mﬁuy.}“YCQunﬁable rectangulaxity k
implies that (4) is true for any such E, F{W
Now let M be the set of allowable measures oﬁ the space

(B x 8 x T, z x z t" Here 8 and ? are Space and Time; B
might be the rasoutce set, R, or some more complicatad set,
depending on the problem in hand. Latg 1 Fy = S be two dist,
joint regions. § o

Now we define: ﬂ%ere are no neighborhood effects frcm F

1

to 3 to Fz across time-instant q%]iff M is rectangular with respect

; to the twa sets ‘ , ’
2 ‘ ook b

o & $ o

» , Al N
“”6? X Fy X {§}§"<“;°}) and (B x F, x {t|t >_gd§>. i{ ,/);;)/#

1
<N ===

|~ This amounts to saying that-%hat*can happen on F, after Gy

time ﬁ is not affected by what happens on Fl prioxr to t

ince
is concept is not s mmetrical, inuthe-sea&&—tha@-there can be
Th neep 8 ¥

neighborhood effects across t from F2 to Fl‘ but not from Fl

to F,.

(*Pg ) 4.7. Superposition and Returns to Scale

qm-g efinition~ Let M be a non+ampty set of measures on space (A,Z).
%?QGNH is said to be additive iff, whenever u, and U, belong to N,
{ﬁ§§§ then Uy + U, belongs to M M is said to be a cone iff, whenever

He Mand ¢ > 0 is a real number, then cu ¢ M.

An additive set of measures is also said to obey the

ﬁgg@f%bosition principle, since two members of it may be
o4
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"superimposed" to form a third member.  Nete—that a ncqfempty
M-whieh is both additive and conical is a convex cone:%f/
The set of all measures, of all,ﬁ&ama-finite measures,
’and of all bounded measures on (Q,Z}Jare examples of sets ’
having both €f these properties. Now consider the set of all
allowable assignments v on the spdee 8 x1ghin the activity
analysis model. This determines ‘a set of measures 4 on the
space S X B, where B and u have/ various interpretations, J&g
the integration formulaiﬁgg e!meaetaeagﬁﬁr

It follows at once from elementary inteqratlonkeheorhﬁy
that if v? determines ut . andﬂv' determines u" viaézié, then
v' + v" determines u' + ‘, Hence if the set of allowable
essignmants v is additive, so is the resulting set of measures
M. Similarly, if the set{of allowable v's is a cone, so is
the resulting set of allewable\u’g.

Are these conditions realietic? As was noted above in
the discussion of neighborhood effects, any conclusion is to be
treated with caution: Even if we decide -Jas we sh&lylﬁ that
these conditions are not ;ery defensible, it still does not
follow that ome should reject feasibility tests wh*oh assume
them. The system of feasibility tests as a whole must be
confronted. As a simple example, consider the activity analysis
model in which the set of allowable assignments is unrestricted.
This allows, say, cross=sectional measures of arbitrarily high
density, which is not realistic. But there are other
feasibility testsl%%iéh exclude excessive den;ities-7 in

particular, space capacity constraints. It may be very
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convenient to keep the unrestricted actigity analysis model as
one subsystem of constraints, and no objgctions need arise to
the system of constraints as a whole. |

With this caution in mind, i:giséfﬁose the question in the
following form. Given the set of alloﬁable configuration-types
or activity types, is it reasonable to suppose that this set
is additive and/or conical? ,;

There is one minor difficulty involved in the concept of
additivity here, which we illustrqée with the set of allowable
confiquratioﬁktypes. A ccnfiguraéioﬁ;type is a measure on a
universa set of the form R x F, whete F is an "abstract" region
mhieh is a measurable and a metrlc space. Now consider ¥y and
Py defined on R x Fy0 R R x Fz, respeetively. Since in general
F, and F, are not the same, the sum 4y + U, is not wellddefined.
We can, however, proceed as fqllaws. Suppose there is a
measurability-preserving iso@étry between_gl anqngz, say
f{:§1 + F,. This, with ul,'inducas a measure ;' on R xﬂfzi
and we now define the sum oﬁ My and u, as ul' +'u2, a nmeasure
on R x F,. If there are several different isometries between

R and Fos in general aach;will lead to a different summation
operation. If there is né‘isometry, 4hen the sum is not
defined. These complicaggons reduce the usefulness of the
additivity concept in thfs context.

By contrast, the cq%dition that the set of allowable
configuratioﬁltypas or éctivitfktypes is a cone is perfectly
well-defined. For configurations, this reads: If p on R X_F

is an allowable configﬁgatioﬁ#type, then so iswgu an”F ¥, k

—
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being a noézyegative real number. ﬁg sivail devote tﬁé:g;&k
of our attention to the question oqgreasonableness of this
condition, and the corresponding céndition for activityﬁgypes.

Let us connect this thh the concept of scale. Recall that
in our discussion of scale (in 2 7) we distinguished a number
of different concepts, in particular the notions of a k-fold
expansion in the intensive, the;éxtensiva, and the duplicative
sens%%i Now suppose thab the sei M ef allowable configuration<®
types, ox activity*types, has the fellowing property: ‘if TR M
and u' is the k-fold expansion of y in the x~sense, +hen u' ¢ N

In this case we say that [ has constant returns to scale in the

x-sense. We shall-discuss each of the various senses in turn.

A moment's reflection shows that the two conditions "M is a
cone U and “ﬁ has constant returns to scale in the inten31ve
sensei,‘are the same. How reasonable is this property? That
is, ifru is allowable, is it reasonable that ku should be
allowable, for any real nn@ber k > 0?

/"""I‘here are two casesy Q._ ) fj_“or }: > 1, arbitrarily high
densities would be allowable. But presumably at some point it
would become physically Lﬁpossible to squeeze that mass into
the given space; and eveﬁ before one reaches this density, the
increasing concentration of mass will in general lead to inters
actions (neighborhoﬁd effectsl) mhich prevent an exact
proportional change of mass everywhere. (ii) for‘E < 1, this
last objection still holds, in reverse. There may be "threshold

effects" or "critical masses" which prevent one from halving
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mass everywhexe and maiﬁiaining feasibility.

}ﬁ(ﬁgéf o -ﬂaeehéh#t when k >0 is an integer, and uE M, then ku ¢ M

follows both from the condition that N is a cone, and from the

condition tha% M is additive. Thus the objections against

arbitrarily high k values are objections agains%_gggg,eﬂ these

conditions. 1 v
Now consider constant returns to séale in the extensive %¥&ﬁ

sense. Here 0ae introduces$ the areal;measure o on SPace, and a

k~fold expansion involves a similarity mapping whéeh multiplies

area, as well as all masses, by_ﬁyf All densities (with respect

to a) remain the same, but now aggther difficulty arises® If

volume expands by a factor of k§ then surface area expands by
i3
x2/3

=

and length bymgl/a. The§é nonfproportional changes in
general make it impossible tggmaintain an extensive scale
change. For example, if a ﬁ;use is doubled in linear dimension,
its "capacity"” (;aughly measured by vclume) octuples, but the
rate of heat loss( rcugh%y proportional to surface area) only
quadruples, so the haat%ig plant need not expand in proportion.
Absolute scale changes ég_make a difference, and constant
retuins to scale in thé extensive sense must also be rejected
as a general rulei%;(g

This brings uséﬁo constant returns to scale in theu

ﬁ%x
duplicative sense. fﬁere an activityﬁhpr configurationutypa is

placed “side*by»si e" with itself, Specifically, if u is an
allowable canfigufation, with universe set R x F,~then a k-fold
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expansion of u is a measure u' on R X F' suéh that there is a
partition {Fl 4 Fé cer Fk ) of F' into k pieces, and p' .
restriaﬁed to eachkgiece R x F (i = 1,.,.,k) is a duplicate
of u (%ha%—is, there is a measurabilityqpreserving isometry £
from F to F ', and u' restricted is th¢ measure induced by £
from p). A similar definition holds ﬁ%r activity«types‘

e note,mfirst ‘of-all, that k mﬁst be an integer for this
definition to be meaningful. A he? and a half does not lay an
egg and a half if one hen lays oné egg. This gives at best a
weaker condition than constant rgturnslgwm se, and might be
called constant integer return%fto scale.’

Tote also thatq unlike the other scale concepts, there—are
many distinct configuration*types-mhteh are k-fold expansions
of the same uu—«ghemzeasanfﬁs“%het nothing is said about the
metric relations of the pigces Fi‘ to each other, but only
about their internal strugtuxe. Tha_§ pieces may be close to
each other or scattered.v§Under constant duplicative returns,
all of these k-fold expﬁﬁsimns would be allowable.

Constant duplicatiQe returns is a corollary of one of the
feasibility test systﬁﬁs we have discussed:; the configuration~"
criterion, in the loége constructionist version. *?crﬂg Cross=
sectional measure y%;ses this test iff it is a (countable)
patching of exempliﬁlcations of allowable configuration*types.
If u is allowable,ythen a k-fold expansion is such a patching
(in fact it is a élrect sum of the‘g -duplicates). A similar

statement holds g%r activities in place of configurations.
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The basic weakness of the constant dqplicative returns
assumption is that shared by this loose qbnstructionist
version: the ignoring of neighborhood gffects. In general,
what is feasible in a region depends oé the environment of that
region, and cannot simply be drawn frnm a fixed list of
allowable possibilities. However, it may be a fair approxima:
tion in some situations, and as sudh it appears to be the ltast
objectionable of the three senses of "constant returns to scale"

that we have discussed.

4.8. Indivisibility

A long tradition in economic theory connects departures
from "constant returns to sgale" with "indivisibilitﬁf} Another,l\
somewhat more recent, literature denies the connection. Our
aim here iaﬂnot to re;olvé this issue once and for all, but to
clarify it by distinguishing the many different concepts
named by these terms. it is likely that much of the controversy
arises from the confusion of meanings of the same term in the
minds of different pa;ticipants (or of the same participant).

In the preceding secéion,we have distinguished several
different meanings af 'constant returns to scala‘ ? In the
present section wemsiiia do the same foijindivisibilit “}1€f

One may distﬁnguish at least six different meanings of
the term ”indivisibility / (many of~ehese have already been

é

discussed) ! .
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T8)/, As a synonym for integer-valuedness.

| i), As the requirement that a certain measure be finitely

concentrateds in particular, that it be Simply =

goncentrated. The man who "flung himself upon his horse,
and rode madly off in all direatigns“ was violating an

indivisibility constraint in thi%vsenseC&;

tid):, As a limited variety constraint{q This may be due to
natural laws, as in biology, w?ére only a limited range
A,w*“*ﬁ of organic forms are viable;-?§=it may be’due to lack of
axf:kf knowledge of how to make cer?&in rescurdéitypes or con<
5 figurations; or it may be dué to a high overhead cost of
starting new product 1ines@far to lack of raw materials.
{iv) 4 As the condition that certﬁin configurations cannot be
split into two spatially geparated halves, This is of
course the original meanf%g of the term "indivisibility™.
“{v)<, As the condition that c?rtain configurations cannot be
split without destrayiqg their functioning, as with

‘4
i
F
%

‘organic whole@?&
~{vi)l.As the condition thatfcartain configurations cannot be

spatially segregatadfby resource components; e, g a metal
f\ e-

wh&eh cannot be extxactad from its ore.
@  Some of these spatlaL interpretations have temporal
equivalanta@\ e.g.ﬂ> naniintexruptibility constraints.

Now, Ssurveying thesq interpretations, and referring back

ol

Y

to our critical discusszbn of returns to scale, ene ‘noteg that

none of these ccn&itioné was used in the argument. Constant
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intensive returns was rejected because affthrsahold and
congestion effects, constant extensive ;éturns because of
length~area~-volume nonfproportionalities, and constant duplil
cative returns because of neighberheqé'effects, (Threshold,
congestion, and lengthearea~volume pﬁen@mana can themselves
probably. be regarded as special manifestatians of neighborhood
effects@ Thus it would appear that nonfconstant returns to
scale (in any sense) can appear witheut indivisibilities (in any

;
sense of the texm). #

In fact, one might be welfzadvised to reverse the standard
argument and derive certain kinds of indivisibility conditions
from the nonjeonstancy of raturns to scale, Suppose length~
area-volume effects make ag;crganic form viable only in a
limited size range. This_gs an example of nodéeonstant )
extensive raturns,land lﬁgds to an indivisibility of type”té;ii.

The axiatence4§f naighborhaod effects underlies

indivisibilities of typ& i##tlénd perhaps also of types %ﬁxﬁ
and 4¥i). {

4.9. spatial Control

Most of our diéaussion has been of testsséh¥§h any
feasible measure ufgn the spacé of histe&ies i must satisfy.
In this section wgstake a different point of view and consider
some means by whiéh the acting person carries out his choiéa
among the ﬁeasib;é alternatives. The discussion will be

entirely infcrmag.
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RIS
We shall-be concerned with spatial c@ntral *aﬁhﬂEW¥8 the

contrel of the movements of things. It4pppears that spatial

Qg/;
control underlies control in general, (at

ago-by—=John Stuart Mill). To explain§; In—the—first-place,

Sone acts upon the world exclusively through motions of the

body (including speech, which is a ﬁétion of the diaphragm,
vocal cords, etc.). These acts 1n£luance objects or other
people. Bna getshthings to interaet, as a rule, by placing
them in proximity. A plan of acgion may be in large part
described as a schedule, bringid% people and/or objects together
at various points of Spaca~Tim%?to interact«iﬁédesired ways, the
outputs of some of these procg?ses being stéred or transported
to arrive at other Space—Timeg§oints where they serve as inputs
for other processes. (These proaesses include not only
production in the ordinary sense of the term, but residential
processes, education, dance?, political meetings, etc.)

For such a plan to be feasibla, the transportation and
storage facilities must be'available when and where needed, and
it must be possible to caéry out the processes with the
scheduled factors, This will generally involve persuading other
people to cooperate -'e§ by exhaxtation, or offers of services
or money. g :

This account omits one important aspect of spatial control.
ene»not only has~té _~4a things, but also te prevent motion.
Everyone is aware of t@a fact that transportation incurs a cost —

thatvés, precludes somé alternative opportunities by requiring

&
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the sacrifice of rasourues, time .and effort. The prevention

of movement also incurs a cost. Perhaps this is noted so

rarely because its manifestations aré too obvious to comment
tfon. A few examples wi¥l illustrate &his point.

mhere ia; first of-all, a neadgto maintain altitude. “hat
is, if things are to be brought into gspatial proximity in—order
to intaract they must be at about the same distance from sea
level, 1In the presence of gravﬁty, the means of accomplishing
this in almost all cases is tofprovide a horizontal surface
;;ﬁcg gives common support to the various interacting entities.
The crust of tha)ﬁarth is av&ilable for this pm:;,x:»se,~ but has
certain drawbacks. “Pivst, it may depart too far from the
horizontal, so that*oaa-haa;;e incur costs, either to flatten
it out, or to prevent things from rolling downhill, or both,

PSacanﬂ7~it may not providg adequate suppart, as in marih or
swamp, not to mention apan water, and so must be either
reinforced or unused, Favally, there may nif be enough of it
in the right places, aq that more surfacg%:;Jé;nstructed{lat
considerable cost. Thq prime example of this is multiple~
story structures, but’ also most furniture serves the function
of providing extra ho&izontal surface where needed: beds,
chairs, tables, shel&es.

Second ¥, one t only-has«%e bring the right things
together to intetac? but %dgkeéé the wrong things away. We
have already commenged on the function of barriers in keeping

i

4
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out the weather, “unauthorized persa%él%i etc. The entire
institution of private property may baﬂéonstrued as a system

of selective barriers, denying access to all except those
authorized by the owner of the propertygicr those having

special access rights (easemants, sgatch warrants, etc.) Noxr

is this merely a Wcapitalistic“ ar;angement: ﬁhe phenomenon of
"too many cooks spoiling the broth” is a universal technological

problem, reguiring the 1imitat1cﬁ of access rights in any

i
&
;

economic system.

It should be clear from g%ese examples that the prevention
of motion is as fundamental éytask as the provision of
transporﬁatian. There is aeelose analogy here between the

T 2

Resources-set,vR, and Spac ‘§1 cne devotey effort not only to
%

transforming things from Lass to more desirable resourceuatates,‘

but also to maintaining tﬁings in their present state: to the
prevention or slowing ofidepreciation. Indeed, much of our
total effort is of thias”trendmilli?iiriety, merely stopping
things from getting woxsea—-most a#ting, sleeping, exercise,
medical care, haircuts, laundering.

Similarly, in Spa;e-onn not only trﬁgﬁ to #ove# things to
better locations (trapsportation), but tries to prevent or slow
their moving to worsg locations. This could be called location

maintenance. We haﬁ% already examined the special case of

altitude maintenancb, and shall now discuss others. We shall

continue to use the term barrier as a general name for any

mechanism or insti?ution whiﬂh maintains location.

-~
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Consider the very general class of barr;ers whieh we may
call walls. These prevent various rasourc&&types from moving
through the border of a certain region. ?#Esse-may be
classified according to the kinds of reséurces which- they bar,
and wﬁether they function to keep thing& in the region, ?f%ggg
of the region, or both. - ﬁf

Thus, a country may bar 1mmigra§ﬁon,~ezfemigration, or both.
Glass is a barrier to the passage og airf%but 1ets light through.
A locked door is permeable to somaqhe with the key, a barrier
to others.

Storage facilities and packaéing in general are all walls
in this sense w-@ans, saeks, si &s, barns, cﬁates%-e%ea These
serve the double functian prote¢t1ng the contents by barring
contaminants, the weather, pilferers, etc. from entering, and
-also hold the contents in place by barring exit. \

. A special class of wall%ﬁﬁuhiahgineludas ‘elothing,
windoﬁﬁshadas, and scundpraoéing) serves the function of
insuring privacy ™ tiratwis, pravents the dissemination of
certain light or sound patﬁerns wh*eh might be perceived by

H
outsiders., {

Brakes are barriers Q%ié; prevent or limit the mobility
of specific things. The&e include anchors, hobbles, papers
weights, hall and chainh,as well as ordinary vehicle brakes.

{aqﬁ ~Bindings are mecha?isms ﬁh%ch prevent or limit the
//fgﬁfwﬂw;elative motion of difﬁprent things. These need not be

barriers as we have baén using the term, since the entire
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configuration of things bound together can move as a group
relative to thelthrth. ~In fact, brakesfﬁay be considered the
special case of bindings in which the,ﬁ%rth itself is one of
the objects. Bi.fzdings inclzde adhesi\ees, bolts, nails,
zippers, string;ﬂ;iso paekaging and storage facilities insofar
as they hold things within an integqment. But typically one -
wangg‘not merely to bring things toéether but to hold them at
proper relative distances. This ia done by using a structural

frame, which is a rigid body or ana with a limited number of
¥

degrees of freedom for motion: ' bnildings; and

the metallic or wooden parts of ﬁachine%: the skeleton plays a
similar role in organisms. These again are forms of bindings.

4&1ﬂmnﬂr;;m&r§£ effort goas into the design of preperly
selective barriers( tka&—ts, ha&%iers which prevent the passage
of some things and not othera) and of barriers wh&eh can be
controlled to vary their sq;active power as desired. This
involves both tachnologicai research and institutional
arrangements (guards, cusﬁ;ms inspectors, censors, e&é.). The
evolution of military teéhnalogy is to an extent a race between
ever more penetxating ofﬁensive weapons and the finding of
barriers to s#op them, fram the sword and shield; to the missile
and antiﬁmissile. 5 -

There are usually)many ways of building barriers to
accomplish a certain gunction. Roofs and umbrellas are
substitute barriers ggainst the rain. To stop a pollutant

X gy
emitted at 1ocation”§1 from reaching a person at‘gzsgée can
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place a barrier at the source fawgﬁ,smaké control) , “ex at the

recipient 6ex§;ﬁgas mask), or at an intﬁrmadiate point (e«g.
insulated house with filter). f

&

éaa.also may have aptions to ereet a barrier or to take

some other action obviates the naed for the barrier.

Two groups which-are mutually h@stilw)can nigrate away ;;em

s

each other, or they can stay put and erect harriers to reduce
=D

contacts ("separation® vs. segregat;an")f*gk Ox, instead of
sound ' procfing to insure privaey,;gaa:enammask scundsﬂg§ Sgititiag o
creating artificial noise. Thisﬁhaa been used in connection
with church confessionals and %h¥siaian 8 examining rooms (not
to mantian gangland “rubauts“)ix/’“

wﬁatuus now turn briefly fram the prevention to the pro-
motion of motion &—thaémis, tc transportation. Transportation
is defined broadly to inalude any deliberate effort to change
location., It therefore includes communication (which—is the
transportation of letters, electromagnetic waves, and other
resource types designed‘sspeeially to convey infcrmation), ‘and,
for the most part, public utilities (which-are largely con-
cerned with the movemaat of water, gas, electricity, and sewage.)

A transpcrtationﬂﬂystem may be classified into: the

channel, ehe.transmitaer, the receiver, the power source, the
vehicle, and ehe~aargb. Not all of these components are present
in all systems, 1n éutomntive transportation, the channel is

the road, the power source is internal combustlen, the

Mn"’\p\e pwrphse LQYyi{leYs aye nat UN commdn T\-\l«.g ‘H_H

Great Wall of (it g / Lu\H- to keep M., mwa)\s ouT Lu‘f «Jso)

Py | pu\\ap; pnw.c.wl‘], KQ.GP e Cme’.se . H/
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transmitter and receiver are parking facilities, 1In radioﬁtéﬁg
has the transmitting station and tha radio receiver, with
transportation of electromagnetic wpves: there is no vehicle
or channel in this case. In the séwer system, the channel is
the network of sewer pipes, the tgénsmittars are the various
toilet facilities, etc., the recagver may be a treatment plant,
the power source is usually gravgty, the cargo is sewage, and
there is no vehicle. Z;

Transportation constructic; refers to the building of
channels, transmitters,and recéivers. -As—already-wmentioned,
it may be thought of as barrieé removal or circumvention.
Consider the road system., When completed, it establishes a more
or less unobstructed surface connacting any two gggﬁi_ﬁiThe
internal "road" system of bui;dings %;the corridors, stairs and
elevators — may be thought oggas a finewﬁtructuf%& extension of
the road system proper; togeéhar they connect any twopggggggin

/'e-

economy.)q\
g% w;iw“ﬁﬂ While road-building reﬁucas barriers to travel along its

7

length, it tends to create new barriers transversely. For

example, the building of m bxidge creates a barrier to ships
too tall to clear it (ana thus establishes a lower head of
%f; navigation)\vx/ When roadﬁ intersect in a grid system, cross~
| traffic creates very conaiderable interference in the form of
slowdowne and extra fuel consumption.w//‘This sometimes makes
it advisable to invest e§tra resources to reduce tﬂgs inter<

fe:enceﬁ;~§:y'by overpasées, clover-~leaf intersectiongJor

AR
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i
§
§

/ {
traffic lights. The tradition that the poor l¢ve "on the other

that i
gide of the tracks" indicatagda transport artery may function

£

as a social barrier, Fi
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FOOTNOTES - CHAPTER 4

1The decline of international vialence is more dubiuus.

See L. F. chhardson, Statistics of Qeaaly Quarrels, Q, Wright

and C, C, Lienau;;n&s.)bgBowwcad Press, Pittsburgh, 1960),

J

"y Pengs concept has become famﬁliar‘thrmugh relativé}} theory,

where the finite speed of light ﬁlays théw;§ie of the finite

i >
fire engine speed. —eve. See H,' alnkowski, “sSpace and Time™,

in The Principle of Raé&itivity (Dover, New York, 1923), p. 84,

T

5 7y TORLS ' g
R .?pf. the discussion cf.?indivisihilityfw@aiau; section 8,
= ? 7‘_ o =

Fi “%Fcr other examples sée A, D, Biderman, M. Leuria,fk;

Bacchus, Historical Incidents of Extreme Overcrowding (Bureau-of

Social Scienece Raagafeh,;ﬁashingten, D.C., 1963),

1 >~

TS5, %EMe family of funétions f must satisfy the consistency

condition: -t £ (r,s} = ftltz(ﬁ tl(r,s)). Death could be
represented by lattxn@ £ take on the nnn*existence" value Z g

P e

with f € (z ) = 2, ; bzrth by also introducing "backward

causatfgm ?

Yo’

.?

For an 1ntere$ting attempt to model air circulation and

pollution in Qn actaal region (Los Angeles) see F. N. Frenkiel,
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"Atmospheric ééllution and Zoning in aggﬂrban,xraﬁ*, Scientific

Monthly, 82:1947203, (Aprsl, 1956) H. [Reiquan, ®sulfur:

gimulated Long-Range Trans ort in the‘ptmosphere“,,§gigngg,
%‘m eralm—} 19110 deals

170: 3185320, wrfL nevihwestey,, Europe.

SN
e TN

In the theory of Markov prcceésas, which the present model
resembles, relations of the form (i) are known as Chapman=
Kalmogarev eq&atians. If the family of measures represented by

f are all SiQEQ& coneentrated,‘%hen this entire construction

=
rﬁdacns, in effect, to the dynamical law system discussed above,

and (1) reduces to the consistancy een&ition for dynamical laws.

H = B remember also that “mass’ as we are using the term need

not coincide with physical mass. If it does not, (&) is not the

same as the physicist's "cansérvatian of masi

H 4 Oqne well-definedness qé {3), and the fact that A is a
measure for each t, follow;ifrom our assumption that £ is a
finite conditional measure. For the wvalidity of (4) one" also
nead% to assume that v is aécont, as of course it would be in

this model.

if fo “iﬁThe classic rafarence is'Activity Analysis of Production

and Allocation,(T. C. Kcopmans, ed??pt (Wiley, New York, 1951).
) — ¥ O L

A

1
¥
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Actually § x B = 5§ X Rx T i§ the order of the components

s

of the cartesian product in (1). go confusion should arise if

we permute them to the usual alph#%etical order.

gg_iaThis is the case if all tﬁé mass embodied in the set

s x Q comes from a system of a¢tivitiea in the activity analysis

framewark of this section. anatherﬁkmare camplaxbwpassibility,
is that there are several $uperimposea systemsfin operation Tads
say, one of the activity analysis form, one of the diffusion
process form discussed abeve,?and perhaps others. 1In this

casel}tha measure y will be tha sum of the mass distributlons

,.a'

involved in the several systems.

igAgain, if the activity analysis system is not the only

one in operation, /u will relate to the sum of the production
rm

measures from the various systems, not to Uy alone; similarly

for My

1;:i§For further analysis of these and other properties of

"production sets”ﬁ in the context of n-space, see G. Debreu,

Theory of Value (Wiley, ‘New York, 1959),€p 39 ~42.

- Pnere is aawgéééaﬁive literature on the effects of

extensive scale ehangeé, both in engineering and biola§y. In
the former it goes under the titles "dimensional anaiysis" or

"theory of models%i 3bth aspects are treated in D'Arcy
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Thompson's classic work,fen Growth and Form (Cambridge

University Press, 1917);

wfﬁjﬁFor the argument that “nodiponstant returns to scale"

results from “indivigibilities“‘see, e.g., F, H, Knight, Risk,

Uncertainty and Profit (HougthQXMifflin, Boston, 1921).i§ggé&

98, 177;‘A. P. Lernér, The Economics of Control (Macmillan,

¢ k‘\ }';, Y / i
New York, 1946)-9&g&3~68~69 143; T. C. Koopmans, Three Essays

on the State of Economic Science (McGraw-Hill, New York, 1957),
?QQas-lsﬂhﬁ54. Faf criticisms and further discussion see P. A.

Samuelson, Paundaticns of Economic Analysis (Harvard Unive:oé%y
Press, Cambridge, 1947) mpaéaa 84~85; E. H. Chamberlin, The

A TEA
Theory of Monopolistic Compatitionu(ﬂarvard Univgss&ay Press,
Cambridge ,7th—ed., fSE), ApggadiaaB: H. Leibenstein, "The

:éroportlonality,Controvarsy and the Theory of Production™,
Quartaslg Joueaa&«ui—nconemﬁea, 69: 619;?25, mbvembex* 1953;

D. Schwartzman;?”The yethodology of the fheory of Returns to
ﬁcai%‘, Oxford E@cnomiauP;paxs faesterieal 1Qg 987105
ebraamy, 195§;

‘7;qguotatiah from Stephen Leacock.

19,  ' D -
-é; issimilarly, for the co*gvolution of the safe and safe-

cracking techniques see E. H, Sutherland and D, R. Cressey,
; i\ ) 4 v LA ()
Principles of CriminoloqufLippincott, Philadelphia, Fth_

247 edition, 19665 ps 275,

- o 210 4 b » i L, 280 0 : L Y b
"‘"“;}J’( ? , —}1_)"\ e /;,(‘,\,,j‘ ¢ la ff B gow{-l,,»,» G - b “] % /4% oL U/l_,( 1 g e P L/ K A:

LV Y I

N SN

3 2,
/El’:\‘ APALA Cs d ’e' 7UAL 2 n i
{ " 5

= JoA o llyy
" Mo 2 A ALAN A 4
)

1

y Y (& oL Lt
i ol -t A o Lt 2 . ————
5 D Bt ot /,’ G o o

woai) e s D ek e B e T sl



413

% igtzf.. Genesis 13: 6«11.

;‘g%l\tew York Times, May 10, 1964, page 40,
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) '7;} “& f\“""h (2F. O
=E A. B, Smailas, The Geography of Towns ,\(Hutahinson

I}nivg}m&-ty Libxgx-;u, Lanﬂﬁn, Sth—edition, 1966), qﬂwe..s 47, 54,
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,..,.;ig‘n. M. Winch, The Economics of Highway Planning

(Um.vmé-%y—e{ Torenta Press, Toronto, 1963), p&q-as 67-68.
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