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FEASIBILITY ) 

  

We have argued that the world can be dgscribed as a measure 

u over the space (2,I), where Q is the seyfof all possible 
7 K:I?'W’VL 

histories (seeAz.S). Here, for any mea%arahle set of histories 
~ 

;‘*c v:;,;\ Gyt 

H, u(H) is the total "mass" embodied iy this set, where "mass" 

i ehaptiyr o 
is to be interpreted in the broad senge discussed -aboval < 

P pages- 

‘ §> This is the point of view of §é omniscient observer who 

describes the world after the ant%ée drama has unfolded itself 

(at time +», so to speak). Froméihe point of view of someone 

living and acting in the world, ; is not given in all detail. 

Rather, he has some gowert%or f?eedom,\to choose how the world 

will develop. This may be rep@%seutefi formally by a setfiflfig‘of 

measures over (2,Z). The inteépretation is that%\far anyx ‘ 

u e M, there is some faasiblegélan of action by which he can 

guafzgtee that history will uéfold according to the description 

u, but that no feasible plan éf action will attain any u not 

belonging tc‘fi. The sethfihwfll vary from person to person, and 

also will vary for the same person at different times. It Qill 

 be called the feasible set of person p at time t. 

For a beggar, the feasible set will be relatively “smallf%) 

That is, he has so little pdwer:that the vaslous aleevuasive = 

measures M in M will be "very similar® to each other; his 
LA 

actions make "very little" difference. For an emperor, the
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feasible set will be relatively "larg%;b 

There are various oversimplifications and cogéeptual 

difficulties involved in the notion of feasible,éét as just 

presented. First eF=wll it neglects uneertaiqfi&. One does 

not actually know the full effects of any acggons one might try 

to undertake. This uncertainty may be représented as a 

probability over the universe set Mf’af all measures over (Q,I). 

This is a two-level measure (seéwzfésdreprasenting the effect 

of one attempted line of action. The fgasible gset itself will 

then be §<§gg of such two-level praba@iiity measures. 

This is a fairly complicated conétructicn, but something 

like it appears necessary to handle éhe problem of uncertainty 

adeguately. In this chapter we fihail, by and large, pass over 

the problem of uncertainty to avoifi’undue complexity. The 

assumption ,-then, will be that ong;has perfect information 

concerning the consequences of an§ plan of action. The 

feasible set M, instead of being;a set of probabilities over 

Nu; is then merely a subset of M2 

?ha second difficulty concerns the interaction of several 

agents. Doesn&t the power of person Pl depend on the actions 

of other persons Pz' Pgrese? What if they make incompatible 

choices? | 

%fi%Qas examine in some detail how a plan of action gets 

translated into a meflsure Ma under conditions of certainty. 

Actions include, in the first instance, motions of the body 

fifiiéh affect the environment — planting, harvesting, and eating, 

weaving, carrying)and building, etc. The plan gives the time=- 

schedule for these actions,:starting from the time_}o at which
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the plan begins., The plan also includes actions affecting 
oneself which enable one to carry out the other actions at the 
appropriate timegjl-for—axampis locomotion to be at the right 
location for an action, self—maintenanc@'aetivities. self~ 

training regimens to develop the skills needed for some future 
action, These actions set up causa1 chainsé%§eh reverberate 

into the future, The certainty asgfimption means that one can 

predict these effects perfectly (ificlu&ing the unfolding of 
history that continues after cne’é.daath- it also means, by —the 
way, perfect information ccncerning the history of the world 

prpvious to ). ; 

Now introduca other peoplé into the environment, Just as 

with the natural environment,fbther people are affected by 

cnels actions =~ in paxticular, by speech{flan& by the writing 

andflsendifi§“bf'wi%fifiifi*m&isages’ ~The assumption of certainty 
means that one can predict perfactly the resp;;;;§§af others to 

one's actions;5~which may bé to ignore these actions, ez to 

engage in cooperative activities with oneself, or to attack 

oneself, ex to take action affecting a third person, etc., We 

again have an unfolding of causal chains, except that these 

chains now involve the activities of other people. 

Thus one's power does indeed depend on the actions of 

other panp%e but since their responses ara,,by assumption, 

known with certainty, no problem of incompatible choices arises,
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The assumption of certainty isvfib#$§ie&y’a gross simplifid 

cation, yet often a useful first approxgmatisn. The—point-is- 

that it is not necessarily a worse appxoximation for someone 

living in society than it is for Rchinson Crusoe. A high 

degree of predictability is a sine. gua non for social existence, 

and one of the prime functions of;soclal institutions 13 to 

insure this predictability. We finow thatfixunder normal 

ccndit&ons, a storekeeper will aell us any item on the shelf 

at its stated price, a fire depaxtment will respond to an 

alarm, an oncoming motorist will yield our right of way. 2n 

enployer kngws his employee gill follow orders within a certain 

broad zone ogfi?legitimate@fiaithority. In fact, the general 

course of civilization has érobahly been to increase the over$ 

all predictability of the future. The incursion of droughts, 

flcods}ana other natural f;uctuatians has been damped; 

epidemics are less thxeatening. The improvement of transperta$ 

tion and the rise of insuranca‘l—bcth private and social wapoals 

the risks of individual misfortune over the entire societyfa\ 

and establishes a subaisfieace floor which tends to rise over 

time. Violence tends tafdéclina within a region with the 

territorial spread of t@é nation-state: Philadelphia and 

New York do not make wafi on each other as Athens and Sparta 

aia ¥ | 

Assuming carfiainty: then, our problem in this chapter will 

be to describe feasible sets M in various plausible and 
VA
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convenient ways ., flfi'is a very complicated object even under 

certainty (remefibef that each of its poinés is a complete 

description of the world), and one needsy good schematic ways 

for characterizing it, at least apprcxifiately. 

In general)we shall try to chargéterize M by "whittling 
W&x 

down" from above; Tflgéwis, there will be a number of simpler 
sets, each one consisting of all measures satisfying some test 

criterion. Any feasible measure m?ét satisfy all -of these 

tests, so that\m\ia included in t@é intersection of all these 

sets., Hopefully, it is éequal tog%heir intersection; if not, 

further tests are needed. fi 

:”Thusffia given measure yu ma§ be infeasible because it 

violates a natural laws; o=, heéause of technical ignoranc:%fi_m, 

because resources are not ava§§able¢,uia because it violates a 

legal s;atutq@ or, because th; person lacks the money or 

authority to induce needed aq;ions by other paople.';mhwill 

then- consist of the measuresfu satisfying all these criteria 

(and perhaps other oriteria Qot listed). 

Several of these broad criteria could themselves be 

expressed as the conjunctiofllof simpler é?%éefléa. Thus to 

satisfy the natural-law crifieria, the measure may have to 

satisfy conservation laws, fiaximal density constraints, 

dynamical laws in the form of differential equation systems, 

ete, To comply with legal statutesjit hust satisfy zoning laws, 

traffic laws, housing 1aws,'ant£ipollution laws, etc.
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Our aim,—then, is to make a quick survey of these various 

exclusion criteria. vaiouslg)this survey must be superficial; 

anything more would require expertise in dozans of dlfferent 

  

specialties, Ra%flas;)ge stress features are analytieally 

tractablef}and at the same time catch broad structural aspects 

of the varieus criteria. In particular, these yill include 

most of the feasible sets used in the rest offifihifi book. 

(Budget constraints will be discussed iafiei%fin_ghapter 6),) 

gt 

(;k) 4.2, Uncontrollable Regions 

Person P at time t has feasible sat M He cannot do anyS 
‘QA 

L thing about the world befox‘e time %5 fihe past has already 
happened. How is this fact refleated in the set M? 

Let u' and u" beth be feasible. Recall that the crosss- 

sectional measure at fiime t gives tfia distribution of mass over 

R x S at that time. It must be true that, for any t < t s the 

cross~sectional measures at t determined by p' and u" are the 

same. Thus 

e ‘474 S | ) o i WEBE € B) =il € 2) ) 

for any measurable E g R x S, any t < t » and any two u', u" ¢ 

M. A similar equality hclds far dcublefihrcssnaeetianal measures, 

- ete., provided all times are in the past of t Naxt, consider 

the production and consumption maasures, whiah are on universe 

set R x 8 x T (?%ées;mn;;); If we consider the past half-.space
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Rx S x {tlt <t }, then the prcfluctian measures Al and Ay 

derived from u‘, u" ¢ M,lrespactively, must ba identical when 

restricted to this hal£~spaca, since they bath equal the 

actual pattern of gro&uctibn realized in tfie paat. lsimilarly 

for consumption measures 12 ¢ Ay"e WM 

All these remarks are implied by t@é following principle, 

which expresses with complete generali§§ the notion of the 

uncontrollability of the past. It 1si;cnvenient here to add 

the artificial point %z, to R x S, an@ let the history h take on 

the value 2z Jo at the timea before ih is 'born’ and after it dies” 

With this convention b has as its domain the entire time axis 

T, with range in (R x 8) y {50}. : 
{ 

Two histories, h' and h" aregidentical before t -o iff 

h'(t) = h"(t) for all t < t . Lét H be a set of histories. 

H is ¢t ~gast—determined iff, whanever h' g H and h' and h” are 

then h' € H. 7%% now state the éast ,,fl“fi,/ identlcal before to' 

&ncontrollability,Principle- 

—» any two feasible meaauresfhave identical values on all 

maaaurable_§°~past-determined éets. 

W 7 The set appearing in {1);is_sgfpastndatermineéj éo is 

thG/;et determining productiofi or consumption on any measurable 

Gg [Rx 8 x {t|]t < t 1. This shows that the remarks above 

are implied by the fiast,anonérollability,érinciple. 

Not only the past,\but a portion of the future,\will be 

uncontrollable. Consider a fire station located at s at time 

t,+ The locations-#hiah can be reached by time t >n§° by a 
e
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fire engine starting at_}o depend on the maximal speed of the 

engine, street layout, téZfflic congestion, etc. There will be 

an accessible region ;fiié£ in general expands with increasing 

”P, the whole set of accessible points in Space=-Time forming 

roughly a “cone™ withjépex at (sc.to),‘and opening into the 

- future;g// e 

Without speedier communications, the entire subset of 5 

§ x T outside this cone is uncontrollable by the engine dis¢ 

patcher at time t_ , Maximal speed limitations imply that;such 
-0 

uncontrollable regions exist in general.- A (f 

» Even within this cone there will be afigects ;gie; ;re 

virtually uncontrollable. The great processes of nature, earth¢ 

quakes , hurricanes, etc.. are still in this category. For all 

but a handful of people, the tides in the affairs @f men ~twar, 

revolutxon, depression, religious movements, fashion cycles 

ete. — must be considered uncontrcllable. 

We conclude with an abstract definition of uneontrollability 

whi@h includes as special cases everything dlssussed in this 

S section. 

Q% | Definition: Lethmabe a set of measures on thq?space (A,Z). sSet 

fji) E ¢ I is uncontrollable with respect to M_iéf u(E) has the same 

value for all u € M 
‘‘‘‘‘ 

  

<:§§} 4,3. Cross~Sectional Constraints 

Cross~sectional constraints are thogevgiiéh exclude 

measures whose cross-section as of timaléifails to satisfy
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certain conditions. In more detailfgwefstart with a measure 
¥ on the space of histories (0 Z), and then examine its cross< 

,*\( \ section My which is given by / 
4 

' e"f =\ 
—  u(E) = u{n]n(t) ¢ E} t 7= 

for all measurable E. ‘“t is, offceursei a measure on the space 
(R X S, z- * X )s There will im general be many measures 

with the same crosa-section at»t. and if/&t fails than all of 
these measures are 1nfeasibla. SGme of the ccndztions to be 
imposed may have to be met by “t for all time-instants £, 

others perhaps for only soma t. 

To simplify notation we shall drop the subseript t.fi The 

  

  

e 
%fifii measures are still over universa set R x s, 

‘ ’E/x‘bf _‘.*}pw”" : 
# 

C%,/?~K%}f Integer Values and Finite Concentration . . \,,_h,, = 

;“‘ja‘ 

- - For a certain subset, R', of Rasourcagfrin which objects 

come in "natural units" ::such as people;<catt1e, and cars, =, 
¥ may take on only integer values (er be infinite) when 

restricted to R' x S. The constxaint here is one of purely 
= semantic origing lény other maasures would be meaningless, 

ifljbefinition' Measure u on (A,z) is concentrated on set Eg A iff 

u(A) > 0 and u(F) = 0 for all measurable F disjoint from E 

(E itself need not be measurable). 

   5 We have already met several related concepts. Measure M 

is simglz&ccncentrated iff it is concentrated on some singleton
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set, Similarly, u is finitely concentrated iffl*it is cong 

centrated on some finite set. | ) 

Restrictions to finitely aoncentrate@’;easures arise in 

twg ways. First, certain resourcéétypaafére just naturally 

noth‘spread~out‘,3ver SPace, ana are wéll represented as being 

confined to a finite number of loaabions. One thinks of the 

\3/ natural units mentioned above, andAparhaps othersfig/'Second. 

even though it is technically feasible to spread a resource 

eontinucusly o}ér Space, ennéa-budgetfmay not permit this. 

~¥9¥~examp&e there may be an ovexhead cost associated with 

each location at which the resource is situated. 1In many 

problems the multiplicity is also specifiedj /fiéxwefleagée 

given n policemen, deplqy them so—as to minimize total crimes. 

The case n = 1lis espa#ially interesting; the classic plant= 

location problem of Wéfier is a special case., . 

There is a alose connection between integer-valuedness, 

¢tomicity. and finite concentration. Recall that y is atomie 

iff w(A) # 0, and, for all E ¢ I, either u(E) = 0 or u(A\E) = 0, 

4 EBvery simply~concentrated measure is atomic. 
o eI T e 

T e, 

} 1 Theorem: Leqj% be a bounded measure, not identically zero, on 

  

(fi,:). Ifivu takes on just a finite number of values, then 

23 there ififa finite measurable partition {A;,...,A } such that 
[ 

n restricted to each Ai is atomic. 
g 

P - 
~
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- 
rsese 

—| Proof: Since u is bounded, there—is a countable measurable 

partition {%@. Byseeed such that u restricted to 2y is nond; 

f,55§ | atomic, and u restricted to Ai is atomic for i = 1, 2, ces o 

' v:,,.‘,f/*'* This partition must in fact be finite, since otharwiqe u(Al) ’ 

H(A1 U .Ay)sees would give an infinite number of fiifferent 

u=values. On the nonratomic part, p takes on all values 

between 0 and ufiap). Hence u(A ) = 0, Since u ¥ 0, there is 

at least °“e_~i' say i = 1, and u reatrictad to A U Al remains 
-~ 

~atomic,. M e 

interest to us. How if u is integervvalued and bounded (we 

{F 
o 

The converse of this theoremais also truat\but of less 

sht%i not consider the unbounded case) it takes on just a 

finite number of values, hénce is atomic on all Ai for some 

partition {Al,...,A ) Atomic measures are not always simply% 

concentrated; however, there is one very common condition under 

‘which the two conceg&a coincide. 

_”/———:—«M 
y 

a Definitions Let (A.z) be a measurable space. E is countably 

e generated iff thare is a countable subclass G 8 Z-wh&eh 

[ B/ 
{ ;fifi” generates I, 

ggggéégé?g For example. the Borel field on the real line is countably 

generated, since it is generated by the collection {ala < x}, 

x rational. /éimilarly for the q-dimensienal Borel field, 
m—— 

n= 2, 3,... . But this property will often not hold for more 
e 

complex s&gnanfields, such as the one over the space of 

 histories 0, or those involved in multirlayer measures.
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T 

'ffwwfiif'\ Theoxem: If u is an atomic measure on (A ,I), and I is N L R —— 54 N 
countanly generated, then u is simplywcancentrated‘ 

£ 3 
X/ S 2’ 

( @P“ Proo? Let {Gl, Gz"”} generate L., For each.é ’ exactly one of 

u(G ), u(A\G ) is positive, the other being zexc, Let F be 

  

16 eflwfi either G, or A\ n¢ Chosen so that u(F y'> 0, HWIA\F ) = 0. Let 

£z fpap nQ MA\F) = u[un,,l(A\F ) < uLA\zfl) + W(A\F ) .00 = 0, 
80 that n(g\g) = 0, Hence u(g) §;0. 

L ( 

f{;lzf ; F is therefore) noqigmpty, so there axistswgg_e_?. We show 

" that p is coneentrated on the set {a }. It suffices to show 

Vo that, fcr any msasurable E with a, d E e have E, F disjoint; 

for then (E) =0 is xmmediate. Consider then, the class I' of 

all measurable sets fih%eh either eontain F or are disjoint from 

_f. ' is closed:nndex complements and countable unions, so 

t;at it is a s§§£#~field. Furthexrmore, _ G € I' for all n, It 

follows that ziia L, Since E above does not contain F, it is 

diapoint from F, and the proof is complete. ||| 

Jrrge—— 
j ‘We conclude that, if u on (@,E) is integéf;valued and 

bounded, and I is countably genéiated, then y is finitely 

aoncentf&ted. Thus, in most cases of interest, integer~ 

valfiedness is a stré;gthening of the finite concentration 

condition,
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Cj¥i;} Space c&gacitg 

Let x e R be some particular resourcektypa and le& F be a 
region of Spaee. The amount of r that can be squeazeé into F 

\\, w;,} /i»;& may well hava a finite upper limit,y‘ “runq cmt of spac:a" 
at=this-limit. Let v (F) be this upper limit; 

If F ana ?2 are two disjoint xegions, we must have 

vr(Fl U F ) < ¥ (F ) + v (Fz). 

For if (1) were false, there would be no way to approach 
capacity on Fl U F without axceeéing capacity on one of the 
two subregions., Condition {1)/is called finite subaddihivit . Jdn (lz may sometimes be strict, which means that capacity, It is possible that the inequalifi‘?'annot be reached in F, and 

    

_F, simultaneously. The mnst interesting case, however, is 
where (1) becomes an equal.ity for all disjoint regions Fl' FZ’ 
80 that v  is finitely additive. -In—fact, it is not unreason= 
able that v, should e countably additive, P that for any 
countable packing af regions, the capacity of the union is the 
sum of the capafixties of the individual regions. We may also 
safely assume ‘that Ve (#) = 0. With these assumptions, v becomes 
a measure over Sp&fiev the ¢ capacity measure for resource r, 

Now let /b\ be a cross-sectional measure. We assume that all 
singleten sets are measurable in Re {go} € I, for all r, € R, {“‘j Q 

: It must then be true that 

(Lh3:2) u({r} x F) < v,.(F) 12
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for all resources r and regioms F. A(z) states that the total 

mass of r in region ¥ does not exceed the capacity of that 

region for r. But (2) is not stringe#t enough® Fach reso;rca-\x 

type is taking up space on its own, and the region mnst have a | 

global capacity sufficient to accommodate them all smmultaneously. 

This suggests the following approach. 

First, we postulate a general capacity mégsura o over 

Spaae, (s, E ). This measure will be called £§33£ area. It may 

or may not coincide with crdinary physical area (or volume). 

Next we postulate a function, f- R x S '+ reals, having the 

interpretationu £(r,s) is the ”amount of space” needed per 

j? unit of resource r at»location_g.fi f is ncqinegative and assumed 

to be measurable with respect tqur x I,. This description of 

£ is vague; the precise rdle Qf £ @nd @) is given in the next 

ineguality, which gives the total system of capacity constraints 

tha 
must be satisfied by:any feasible cross-section u. 

~:'-' E Q 7 D ey 

j (: 4 (ag’\\ %f ) (\HL 5.%) 

) 7 ) f,\du goa(f)—~ 43y 
RxF Lot e : 

b//f;r all regions F. {fihe left<hand-side of (3) is a plausible 

,Q{W/ expression for theg%otal "demand for space" by all resources 

g i‘ b u—t .'g 

& together éfiéeh egfiupy region P, and (3) requires that u be 
& 

small enough sggthat this total demand does not exceed the 

£ 
"space" availéble in any region. 

; 

The mqet interesting special case arises when f does not 

in faet éepend on its s-coordinate: f£(r,s) = £(r,s') (=£(x), 

say)';ox all x € R, s, s' € 8. jg(g) may/ghen?be thought of as 
A i J 

- 
e 

7
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the reciprocal of the maximal demsity to which resource r can 

be squeezed. Ifqlin addition, just one single resouree—type 

o 18 distributed over Spaee (thatwis, u[(R\{r }) % 8] = 0): 

then (3) reduces to (2): 

-y { | af 
él — £, di = {r fhd o f(r )u {r } x F < a(F) 

b = 

vhich is the same as (2) if we define v, = a/f(r). 

Note that (3) allows thg;possibiI£Zy ofigrbeing zero some+ 

times. A resourcéltype r,fér which g(r,g) = 0, all s efi?, will 

be called nonwsgaéiusing;¥ Postulating that certain resources 

are non-space=-using 1sra simplifying approximationjlhieh is 

often useful. 1In th;s case the constraints (2) simply disappear. 

~Let—us consider some real-world examples of maximal 

capacity constraints. Pirst, for most resource‘types there will 

be some physicgl density beyon& which the resource will be 

destroyed. géfe o will be ordinary physical volume (or perhaps 

area). Fo;féeople this capacity is sometimes approached: (3) 

must be ngér equality inside subway trains during the New York 

City ruah;hours.e/ 

Legal statutes often have the effect of placing capacities 

well bélow the physical limit. These may be referred to as 

anfiiggongestion laws, whether that is their primary purpose or 

not. Fire laws will limit occupancy of halls; no=-standing laws 

will limit occupancy of buses and movies. Zoning and housing 

laws requiring open spaces, minimal lot sizes, maximal lot
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coverage, maximal building height and bulk, etc., all have the 

effect of spreading people out and reducing actual occupancy 

far below what would be physically possible. 

The fact that we have here social rather than physical 

constraints raises no difficulties. The lnterpretation of (3) 

is different: The measures n-whieh violate it are illegal, not 

necessarily physically impossible. The functionfif;used in 

these constraints will in general be larger thanfifor the 

physical constraints§ more space ;;tzegally required per unit 

resouxce thpn is physically necessary. -%%as, sinae laws vary 

from place to place, f(r s) will in general vary with its s= 

coordinate (rising in places where 1§ws are “;;;:2;;;-). For 

physical constraints one can pggbapif make do with an-f depending 

only on r. : 

U dd There is one essential difference between natural laws 

(v uand statute laws as far as feasibility is concerned, Natural 

/U” laws cannot be violated (bg definition), but one can often 

violate statutes - (by committing a crimeu Thus to treat 

statutes as constraings is to restrict the feasible set undulys . 

fne may decide to p§5k illegally and run the risk of getting a 

ticket.'ie%zaaamplg' For the most part we shall ignore this 

pomnt,\and treat statutory "constraints” as binding. 

Exclusions are a limiting case of maximal capacity 

constraints,' They specify that a measure must take the value 

Zero on cgf¥ain sets. Examples are laws agai?st trespassing, 

/ of & B 
zoning laws, segregation laws, and curfews. Pake a curfew, for 

instance. It specifies that p(E x F) = 0, where E is the set of
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"unauthorized personnel"” and F is, say, the streets”gf a certain 

town. Cross-sectional measures yt must satisfly éfiis condition 

for those times t at which the curfew is ia’effect -say night1 

times over a certain timevinterval. fiffi 

" Exclusions may be handled forma&ly by letting f take on 

the value +w in €3). If a i» sagfianfinlte (as we may assume 

from its in*erpretation), i Ag sasy to show that (3) implies 

ul(x, s)lf(r,s) = o} = 0, Thns all that needs doing is to set f 

equal to infinity on the excluded sets. 

Finally, the limitgd variety constraint is a special kind 

of exclusion, Some gg;ource-tyges may not be able to existe 

Commodities may noefiie producible except in a limited number of 

qualities and styfis%&unicorns and philosophers' stones are not 

found in naturei etec. Let E (assumed measurable) be the subset 

of R censistiné of all these excluded resources. Then u(g x~§) 

must be zero for any feasible cross=section yu. 

Resow%ce Capacity 

Thfi;quantities of various resource-types available may be 

1imitgé. These limitations may change over timé?:as resources 

areféieated or\destroyed, but for any given time_g we may 
£ 

pogtulate & resource-capacity measure v, 
P, 

on the space (R,Xr). 

aéy feasible cross~section U, must then satisfy 

Hg (B % 8) < vy (8) ~4). 
L
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for all E ¢ X r, %hae—ts the left marginal of “t cannot 

excead Vt 
o 

Limited variety constraints are a special case 3fiyfé) (as 

well as a special case of exclusions). They may bgf;epresented 

by setting v equal to zero on the appropriate sets.'; 

There w111 in general also be constraints of the form (4) 

for sub+ragions, and not merely for Sgnpe és a whole, This 

will occur whenever resources are tied np in particular regions 

and cannot be transported elsewhere wzth infinite speed. 

nisallawed Configurations 

Recall that a configurat@éh is simply a measure on universe 

set R SMS, Rifihe‘sat of rasgfichs and F a region of Spaee. We 
have defined when two cangiéurations are to be considered of 

the same type, and alsoléhe notion of an abstract configuration«f 

type, which may be examplifiea in various actual regiona/fl“** "fflfiffw 

(These concepts involve a metric on Spaee). 

Rewfiguppuse t@at certain abstract conflguraticn?types are 

set aside as “digfiilawe&", These affiweeniigasatien5v;§§ég 

would, if examp;ified, violate some natural or human law. For 

example, the féllowing might be illegal configurations: two 

bars within fiiatanaaa§1,:afi a bar and a church within distahae 

Xgs Or a hgfiae without a fire hydrant within distance_ga. 

A eréés~sactional measure yu is to be considered infeasible 

if, for any region _F, u restricted to R x F exemplifies a diS* 

allowed ccnfxguratian~type. Thus a separate test must be passed
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for each region. : 

A less stringégt version of this test works wiggfiéfiéet of 

"allowable" abstract configurati&i?types. A crosfifigection M 

passes the test if there is a countable colleetion of regions,” 

F, which together cover S, such that u restrictad to R x F 

exemplifies an allowable configuration %ype for each F ¢ F. 

That is, it must be possible to repn@sent M as a "patching" of 

allowable configurations, Asj 

These two versions will qgfcallad the strict and loose 

constructionist versions Offfige configuration tast} respectively, 

This approachi;ia_eiyfiér version; is very general and 

flexibla. On- the @tfié&ufikné@~it does not allow for spatial 

variation in what is allowable or not, thus it is probably most 

useful in conneatien with natural lawsfikor within the domain of 

a single legal syafiem. 

\) 4,4, Intartempéfial constraints 

7 

We now gb on to feasibility conditions involving several 

different timeminstants. The possible feasibility conditions 

are much nieher than for cross~sections. One broad class of 

aonditiafls requires that certain sets of histories have measure 

Zero. ;This resembles the concept of exclusion whieh weshave 

discgésad above, In fact, exclusions are just a special case, 

reqfiiring that the set of histories occupying G g R X 8§ at time 

t have measure zero.
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bt 

(\ &;> Noh{intetactive Systems 
g 

a A0 
W ¢ 

“bet—us start with a very simple case. Suppdge for each 

pair of positive numbers t_, & (te < tl). there is a function 0 
2 & ¢ _R X8 +RxS, expressing a dznamical law: X history 
9 

whrieh=is- in state tr,s) at moment te wili move to state 

ft & (x,s) at moment &y $ This maans that the entire future 
1 

of a histcry is determined by the state it occupies at any one 

" moment, éne then speciféas thaa;the set of all histories 

violating théa dynamical law nés measure zero (assuming this 

set is measurable). 3 

A condition of this agit is implausible because it does 

not allow for interactioh: ihe course of a history depends 
%m:-,» 

only on its past, not on the envirconment. More generally, one 
oo, 

lockg for a rule by mhich the "rate of change” of a history in 

f%;//’” state (r,s) at tima t depends also on the cross-sectional 

i)§ measure at time t. (This would require putting some structure 

\T:§s<:§§;§~as—&s to &efiine the notion of a rate), For example, the 

accalerationééfi a particle under gravity depends on the 

distributiop{of mass over Spaee; the behavior of a person may 

depend on}fiis observation of the distribution of behavior of 

other pe@%le. 

%arriers 

  

erf the innumerable forms such a rule might take, we mention 

jufii one type. 2 barrier fer a certain state {r,s) is a con< 

figuration whdeh prevents that state from ahanging in certain
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ways. Barriers are quite perv§sive; some occur in nature, 

some are added by man, somef%émoved by man. A house serves,, o 

among--other things, as a barrier against the weather, preventihg 

air in an unpleasant state from gaining access. Umbrellas are 

barriers against rain, thimbles against needles. The skin is a 

batrier against infection. Walls, fences, locks, guardgjand 

watchdogs are barriers against trespassing. 

Transportation construction in general may be thought of 

as barrier removal or barrier circumvention. Barrier removal 

occurs when the rough surface of the earth is smoothed, as in 

road and rail construction, tunnaliné?fgridging.aaé—daéég&ag— 

Barrier circumvention occurs'when an alternative medium is 

developed Shabling one to hfpass the former barrier éfaa in air 

and sea travel, pipelineévana powa#lines, broadcasting. 

| By slight extensidn of the meaning, one can speak of 

barriers to enterinfi‘certain occupations, certain industries, 

or certain aocial:statuses (citizenship, marriage, poli&ical 

office, ete.) The formal analyses of these situations is 

similar to that of barriers in the strict sense. 

A Pollution Model 

?hé following model reverts back to the assumption of no 

inter;ction with the environment, but allows several histories 

to spread out from single points.‘ Models of fihis sort may be 

suitable as representations of the diffusion and transformation 

of substances, as in air pollution studies. Our aim, however,
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is mainly to illustrate how the concepts we have been-fiorking 

with might be applied, and we make no attempt to take realistic 

complications into account.®/ _ff 

We start with our basic sets of Resources, Space, and 

Time —(R, s, Tgm\with a&gnnrfields L, Zsfi zt, respectively, 

/iEfiT% Suppose a unit mass of resource re is rfileased at location se 

at instant te What has happened to 1t by time t,? We assume 

that the answer is given by a funcuion £2 R XS xT_x Ty -9 -0 -0 - 
X 

.fl' 

(Xr X E ) * reals. 
& »l 

ieemasagaauevfienwaamamentfta~exp&a&n«netatinn‘ First, 

subscxipts 0 and 1 will be ufied with R, S, and T, and points 

belonging to them, to distinguiah "origins" from “destinationsP 

Origins, denoted by 0, axa points in R X 8 x T at which mass 

is released into circulation; destinations, denoted by g, are 

points where mass is £ound after circulating awhile. 'Eé ~ 3, 
5 k. 

is parenthesized beeause it is a product :igmawfield, while the 

other crosses stand for cartesian products. 

X __ The funct.ion f is a conditional measure ; M’& 
W_ i s 

| -?}“f L;): oxr fixga ré: ) te' tlp f( 9 9. tyr°) is a measure 
!.::.7 (?é on the spaca (R X sl, z r, X ¥ l) ,fi} 

23 

functiqh)with respect to its domain space, (R 8. % T, x T 
) ® -9 -9 1 

zr §:%3 x zt x Zt )} 

S fdi) #ox fixad Ge I, x 28 ¢+ £(¢y*,4*, G) is a measurable 

2, ; L 

| -9/F6 o 1 
~——  / The interpretation of £ is this: 

f' 

( 9 g 9, tl' G) is the total mass in resource~location 

atates in G at moment tljwhich arises from the reléafie of unit
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mass of reseurce_;g at loeationlfe at momengfipé; That is, the 

unit mass will become diffused, perhaps’spteading over various 

lacaticns,_and also perhaps becomingaéfiénged into different 

resoutéé&types. Thus we get a ghfifiéing series of cross= 

sectional measures, dapandingmanifil, the moment of observation. 

Q%; &‘\fis. We require that £ sa;iéfy the following consistency 

\ 

condition: fiffi; < }lfiéltg are three moments, then 

    

  

g 5 

W ;fér e 
ggflre’ ‘ise' }9' _fltzfii‘fi) = 

\ % ff# 12\ . 1) 
/"J'Rlxg;l ‘. (5;1"‘.‘?1! wtl' }21 f*) mf (fer “‘59' tet Ttl' d,mrl' _d_fil) {1) 

for alkf; : R, 8 8 G i X I, « The left~hawd side of - e & MQ' 0 € *9' G e 52 32 \ A g\ 
(1) gives the[?ass on set G at time ?2’ The right~hand sidewmléfifighi 

o 

gives the same thing indirectly: firsggby finding the entire 

distribution °nv31 xmsl (at the integfiéfiiatg timempl); finding 

the contribution to G at t, by un;fi’fiass at (ry,s;) at t,; and 
then integrating (in aff;;t, taking the limit of the weighted 

sum of these contributions);gy 

- If &y <_§9\Fhen Eflis“identically zero: fhere is no mass 

before the date of release, If tl = t )then_gtis simplyel\ 
concentrated, T . = logated, with unit mass concentrated at the single point 

{;é,sele This megéiy gives the initial condition ag“te. 

The conservation of matter is expressed by the conditionf ' 
£ 

;,;\ Lf» ) L{’ ,(,1 '} 

_firegrise. tgt ,tlt,‘Rl "msl) = 1 2y
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for all ¢, 8., &, tl for which t 1> t {2) states that the 

same totag ma:s 1: present in some formgsomewhere at any time= 

instant after release. enfithz_akhat—hanéfi one may want to n 

incorporate the gradual absorption, or "death"; of some of the 

histories starting at (qglse) at time tg In this casérthe 

value of f in (2) will be a nontincreasing function’ of ty 

h°1dingnfb’w$9' te fixed, and equaliing one at tl 2 tg.5~ 

The second half of thia model is a measure v on the space 

gfig X 89 j%a, E x f? X ff ), rapresen@ifig the pattern of 

release of resoarces (pollutants). On rectangles the interg 

pretation of v is as follows? v(§»x%§'#“§) is the total mass 

of resources of types E released iqf}egion F in period G. Note 

that v can incorporate the possibiiity of positive guantities 

emanating at single locations (ébn Edison plants?) as well as 

continuous relgases over sp-nafihalso the possibility of 

positive "gobs" appearing at single time*instantsfizaa well as 

continuous releases over,gimes 

X Given the measurayié set G g R, X §,, what is the total 

mass embodied in the,feaaurce-loaation pairs in G; at moment 

ty, as a result of the release pattern v? The answer is 

N s g \& \x ¥ Gt+-3) 
v = v ¢ 1(5 d rafi rd A At f,” R s \i(r se ty,C)YV ( re - t ) 3) 

‘0-0 -© 

  

Here again (33 may be thought of as the limit of a weighted 

sum of the éontributions to G from the various triples 

(re,se,t J\the weights being determined by v. For fixed_gl,
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A(ty,°) is in fact a measure on R, x 8,. If the conservation 

law (2) is in effect, it follows from (3) that 

///// mass released not later than tl’ as one mould expect. One can 

Mtl, Ry X Sl) = V(Rg x 89 x {t]t < t }) 

£ 
at is, the total mass found at moment tl equals the total 

go a step further and define a total "exposure" measure p over 

BN e N > 
\© ANV s 

e 20N S s ey 
Q‘B) = (1: {(rlgsl) llrl,sl,tl) € B)F 112\ M’) 

for all B¢ I, X I, X I, ey g” The integration in (4) is with 
ket | e | : 

«* 

respect to ordinary Labaa%ue measure on the real line t,, 

representing quantity:af timqr The interpretation of p on 

rectangles is as follbws. p(E x F xt§) equals total mass~time 

of exposure to resonrces (1 e./k;ollutants) of types §_in 

region F during periad G. ~flete;thatq‘3nlike most of our other 

measures, p is in mass~time units (a.gl}ton—hours, man-days) 

rather than in mass units. p is needed to evaluate cumulative 
- 

exposure effects. 
4 

Let us give a plausible concrete example for the "diffusion" 

function i. We simplify by assuming that just a single resource=-, 

type ia‘involve&, and that no transformations in R occur. at 
> 

Afih&ng chemical transformations occur, but only spatial motions. 

Thigfsimplification is reflected formally by dropping all
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references to R in the preceding expressions: _£ becomes a 

function with domain S0 9 X 2 » V becomes a measure 
, 5 s ‘ 

e, | on 8 xT etc, 

§7%j;§> Space is taken to be the plane, with cgrtaaian coordinates 

(x,v)s Zs is the Borel field for the plané’ With these oMy g 

preliminaries, we now give £ in the fgffi of an indefinite 

  

integral: S 
' & X1 

Wt 
7 Yer tgl e G)& T (< 

bfifibqflJvowxjgg SoX e 

\De?” e gl 
(xy Ie-wc(tl fl )2 & (;'l"‘y )2 

f 227 (8 -t) 207 (£ ~tg)    
for all (= 8 s all <t all G Y.+ The integration (99)6 é' 9 - Cq 6\1 g 

in (5) is with re;pect to-%wc-dlmensional Lebesgue measure. 
df 

Here exp[z]“ stands for ew; a, b, c, k are real constants 
,.' e LA e 

satxsfyingr\ a >0, b > 0, k > 0. A(S) is valid only forx 

t, > te. S:Ie have already mentioned that for €y < te, f is 

identicaliy zero, and for tl == te, £ is simply<concentrated 

with unit mass concentrated at (x_, v.). For any £ 2 t_, then, 
-9 -9 -0 

(5) A a bivariate normal distribution with mean at {%9 + cft '%9)' 

yEJ variance of a (tl~t ) in the x—direction, variance 

b (t1~t ) in the y-diraction, and covariance zero. The mass 
- ; explk (£~ )] 
over all of Spaese at moment t, is equal 7 so that 

N 

the conservation law (2) is satisfied iff k = 0,
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Wgfié might interpret (5) as follows. A unit mass reféased 

at location (x ) at time t is subjected to randemfiand 

systematic forces. The latter consists of wind blowing in the 

xmdirection at veloclty ¢. The former causes the mass to 

spread out in a normal distribution pattarn.f The whole 

distribution moves with the wind and alsO~keaps fipreadlng, 

variances being proportional to elappg@ tima. The k term is 

thrown in to allow for possible disgfigearance of mass through 

absorption. ffifi | 

- It may be verified that f defined by (5) satisfies the 

Chapman~Kolmogorov equation (L?(with R bemng deleted fremr%his 

equation,-of course). 55 

The model we have-éag& outlined is one fragment of a 

larger system. The relegse measure v, for-example, will in its 

turn be derived from th& distribution of activities over S x T, 

tegethar with their assoczated production mgpsuras. Conversely, 

the resulting measuges A given by (3) condition the environmentr; 

and thereby affectféha feasibility of activities that might run 

in various-placesf} This whole system of relations provides a 

test that must pé passed by any feasible measure u on the space 
' 

of histories, ' 

4.8, Activiéy Distributions 

The fiéasibility test to be presented in-this-seetion con= 

stitutes a generalization of the standard model of activity 

analyéis;%g/ We shall here concentratel on the formal development.
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We have already discussed a “"configuration" test for 

cross~sections nt, in which either “t restricted to any region 

must not be éisallowed (strict constructionism), or “h must be 

"patched” together by allowable restrictions (loese construc~ 

tionism). The same sort of test could be ccnsgructed for 

intertemporal feasibility, with activifi;ity?ég taking the place 

of configuration types. _¢f 

Tests of this sort, however, are xather clumsy to work 

with because nae nust compare pattargs spread over Spaee (or 

Space~Time), It would be much morg convenient if the test 

involved only the comparison of dingle points, so to speak. The 

following is an attempt to carry out this construction, 

  

We postulate a set of a;lowable activity types%tg. In 

accordance with our aim, w?“consider only “simplyfilccated“ 

activityutypes kh#tiis¢ ‘activities whieh have just a single 

location at any one momant. We -shald- also restrict our 

attention to s edentagz activities, so that the single location 

is fixed over Time. LThis second assumption is less crucial and 

could be relaxed, gflt it is convenient, 

Let us spelifi&t what these restrictions amount to. Taking 

n activity to hé a measure over a set of histories, these 

- histeries willgall have an identical, canstant, itinerary. Hence 

the historiafi are distinguished omly by their transmutation paths. 
f 

We may thefi simply identify an activity as a measure over the 

universe set Q of all transmntationkpaths (= functions whose 

domain is a closed tim$$interval,_and wh&eb take values in R), 

q 
%«" e 

-1’ ~ N\
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Another concept of activity identifies it with a‘pfaducf 

tion or consumption measure (or the pair of them);f'whese are 

over a subset of R x § x T, But because of the very special 

kinds of activities we are considering, allfiréfaren¢e to § may 

be supfi%ssed. For simplicity we shall 41&;ys take the universe 

set to be R x T, 

The distinction between activity and activity~type has 

been slurred over #n the praceding discussion. Recall that an 

activity is defined in terms ofi’“real" Spaee and Time, while an 

activitxwtxge is defined with abstract sets, S' and T, in 

place of these\ (8' is a mgtric space and T‘ has the structure 

of the real line). An aptivity*type is then exemplified in an 

actual activity iff thgre is a measure-preserving spatial 

isometry and time txghslation between the "abstract* and *real"‘ 

spaces, ;f 

In the pres%fil context the situation is much simpler. 

Since the regiqfié in which activities are located are single 

points, therefés no isometry problem and we can ignore metrical 

consideratiofié entirely. We could still use an abstract Time 

set, but eueua#%y it will be more convenient not to do so. 

Finally, ne confusion will arise in thefgresant discussion if 

we drop %he distinction between "activity" and “activityntype " 

and simply refer to them both as “activitg'. : 

jwe summarize this discussion in the following definition, 

wh;bh combines the various special activity concepts. 
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ing Definition: 2an activity is a triple, consisting of a measure p ,y” 
i;3}> on the space of transmuizatio;ipaths§ uz,z ), and a pair af 

maasnresfilal and Azfi\on (R x T, Z X I )‘ 

2”“’ Hexre p gives the amounts of capital goodsg™ and “matermala & 

tied up in the activity, while Al and A are the prodacticn and 
consumption measu:es{gfasgeatively. We need not be concerned 

with the nature of the a&gnfi~field Z' on fl ; for the present 

discussion, it suffices to know that it axists. It is undegf 

stood that this definition is only fqp the present digcussion; 

in other cases @#e may wish to revg&é to the more general 
activity concept discussed) in cfigéter 2. 

We snu%i use the letter q te designate an activity, and 

write, %e*-anamp%e lth,fi) fcr the value of consumptic;}in 

activity q on set Ge¢ 2 x 2 As stated above, @ will 

designate the set of aliowable autivitiegkahich in general 

will be a small aubseé of the set of all triples of measures 

RS s/ 
34 1tse1f wi}i jnow)be made into a measurable space by 

placing aza*gnuwfield L on it. The conditions to be placed on 

z will be inaicated bggé . 
—_— 3 

—~ {*_ —~Definition: fian aasignment is a measure v on the space (s x Q, 
e e )& 

  

\ ”W‘aésignmant Vv describes how activities are distributed over 

the’wérld. On rectangles it may be interpreted as follows® i
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V(F x G) is the total amount of activities of types G situated 

in region F. This somewhat vague characterization will be 

pinned down below, Note that v is a {generalized}vpggnlayer 

measure, since the elements of g are hhemsalvasfi&%iiplea of) 
& 

L F measures, : 

We now give the basic mathematical jas%ification for the 

procedures to be used in this section. We state it in abstract 
1-“« 
% form to make it self-contained. & 

—*_—"fi—_—_—_, ;“b 

“Thacramz Let (Q,Z ), (8,2 ), and (B, £ ) be measurable spaces; 
@F — 

let v be a measure on (S X Q, Z fi z ); let A¢ _AxE - 
-.. 

  

P 
— 

waE? extended reals be an abcont eanditzonal measure. - 

o — Then, for any maaaurablafsubaéfvs of (s x B, z§ X f?}t%fhe 

integral 1Y§ 

o \ B\ 190 f/ VA ) 
j Q(r'{b’(s'b) e’§§)v(d5.dq) = u(G) 

5 ,;, 
£ 

is well-defined, and gfie resulting set function u is a measure 

  

S 

,f%, Proof: We show that the conditions for the existence of a 

product measure én the space (S x Q x B, I, % Xq x I,) are 

satisfied, wefska%i consider this as a product of two spaces, 

the first beiég (S x Q, Zs x I ) and the second being (B Eb). 

v is a measuxe over the first space. 

Defige N: 7S x Q x I, * extended reals by the rule / S - ol 
/ 

/; 

/' 7 ’\"51?;5) - A(q‘rfi)l 

" 
- 

S 
9 

\ 
y
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all s¢ 8, gqe Q, E g Eb‘ One easily verifies that A' is 

abcont conditional. Hefiee u', defined by . 
N\ &’5’0 N\ (\mé’,u}” @ =\ wrfsaolean e )vas,an @ 

for any H ¢ 2 X Eq X Zb, is a measure on {S x Q xiB). u in : 

(1),1hauauafi» is merely the marginal uf this measure on the : 

component space (S x By I, x Xb). -Eha%—is, u(G) = yu' (G x Q) for 

any measurable G ¢ (§ “W?;’ This maj be verified by 

substituting G x Q for H in (Z)gfaxmpleicatien yields (1). 

Hence u itself is a msasura,fi L}%*fi" 0 
e 

,@« 

| Let us now interpxetrihxfi theorem conarately. S, @, and v 

have the meanings already discussed. let (B, zh) = (g x T, 

Zr x 2 ¢)? then we mag intexpret A to be the family of produc? 

tion measures Al, 30 that A{q,*) = kl(q,-) is the production 

measure on R % T asseciated with the activity q. 

‘¢ in (i) nowEbeeomes a measure on (R x 8 x T, zr x Zfl x I )i&/ 

How is thisfta be interpreted? Contemplation of {1), and the b 

nature s;»v and AJ@suggesta that u is the total production 

meaguxé{regultinglfrom the activity assignment Ve Thué} if we 

take any region F, and consider for each activity the mass 

5 producad of resourceutypes E in time~period G, then u(E x F X . G) 

is the limit of the weighted sum of these masses, the weights 

being provided by the assignment v restricted to F x Qs 

Precisely the same interpretation, but with A instead of 

kl' now yields a measure u on R X S¥x T wh%ah is to be
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interpreted as the total consumption measure resulting from 

the assignment v, 

- Finally, iefiwus interpret (B, zb) to be the space of 

transmutation*paths (n (Z') and A ta be the family of measures 

p on this space. That;iglx(q,‘) = p(q,») is the "capital~goods" s 3 = ; 

measure associated with the activity q. 

With this interpretation, p ififfl) becomes a measure on 

the space (s x flr' x x N, Haw is this to be interpreted? 

First of=all, considar the 5at 8 x fl A moment's reflection 

shows that this can be identified with the set of all histories 

‘whieh have constant itinarariesQ,iefi—as call these the 

edentggx historias. ybr, the point (s M, ) € 8xQ ; corresponds 

naturally to the history h whose transmutationbpath 13 h and r'& 

whose itinerary has the constant value s_ over the time~ -0 

interval in whicg it exists. The natural interpretation of u 

here is as the filstribution of mass over the space of sedentary 

histories. Thus, 1etting F be a region and H a measurable set 

of transmntation&paths, u(F x H) equals the total mass 

embodied in sedentary histories wn%%fl are located in F and 

have txabsmutationwpaths in H. 

(:tff&w at the cost of further complicationatkwe had 

intrgfluced activities involving non+sedantary histories, the u 

her? would come out to be the basic world-description measure 

,’; 

over the space of all histories, 0.) 
/ ¥ . By / /
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To summarize: Any activity assignment v daterm&nea a 

tripla af measures, all via fermula (1). When we‘suhstitute 

ffor A in (1Y\the praduction and consumption measures wtkl and «._—‘M 

Az, reapectively -~ of the various activitiés in Q’ we come out 

with the production and consumption maafiures over R X8 xT 

fih&&h are yielded by this assignment v. When we substitute 

the "capital-goods" measures p egfithe various activities for A, 

we come out with the masS'distrfififiticn over sedentary histories, 

g 
respectively. Thus y, and yz are on the space (R x § x T, @) 

We sha¥l abbreviate thesg three measures as Hyr Yoo and u 

I, X I, % I ) while g@ is ‘on the space (8 x Q. I, x I%). 

32 Befere gaing on to discuss the feasibility tests whieh 

ariaa from this analysns, let us see what it reduces to in a 

very simple case: t&§=aase where all four sets, Q, R, 8, T, 

are finite (and al& s%ts are measurable)., This case is of 

interest for twc reasons. First, it gives a heuristic guideZ 

line to the analysgs just completed. Second, it shows how 

{?? everytging bgils down to what is essentially ordinary activity 

analyséa. _’ 

i:>>\ The vélua of assignment v at the singleton set {(ggg)} 

will be:wfitten simply as vsq, and we adopt a similar notation 

for all other measures. In fact, in this simple case the 

measures can be tfiought of as ordinary point fiunihions, and the 

no;ation undérlinas this fact, Vsq is the "level® at which 
2 R - 

activity q is running at location S
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For convenience we let A stand for either 11 or A,.  Then 

Agxt aquals total production (or consumption) of resource X at 

time t in activity 9. 1In (1) let—us choose for G the singleton 
set {(r,s,t)}. Then the integral (li,Aeduces to a simgle 

summation over activities g ¢ Q: 

A 
u%if s vs;fi'l' qprt +/(’ 5;‘3'2&5_525? *:,?’: ¢ 

In this case the interpretation of y is Qflgicus: the total 

production (or consumption) of rasourcfi ¥ at location s at 

time t; obtained by taking a weight&a‘sum of production (conZ 

sumption) of r at t for each allewable activity, the weights 

being the levels of the various activities at s, as indifiatad 
,’3’ i by assignment v. 55 N\ 

- Things are slightly mnga complicated for the ”aapital» 

gaed$“”haasure p. For sim@lieity Teb-is ignore "births" and 

"daaths".*and assume thafi all transmutation paths exist at all 

times, If N is the nnmber of time-points, then a transmutation- 

path may be written aa an N-tuple (rl,,*.,r ) in R, r, being its 

resource=state at,fi;me t. Q may then be identified with the 

product space R r«»%hen o is the mass embodied in q,rl‘: ve ;rN 

the txansmutatiom«path (rl,...,rN) in activity q. Now let-—us 

choose for G 1n (l) ‘the singleton {(s,rl,...,rfi)}* The integral 

(1) again reauces to a summation over aativities a € Q: 

: v | + v Feose @ Cg‘/‘,( u§ ,_‘}'l, o w e pr: o sqlpgl !}Fll LR 'rb?‘«’“ _ngp}-}z 3?:1 go e er
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Pl is the total mass embodied in the sedentary" 

history whos% location is fixed at 8 and which runs through 

the sequence of resource-states (rl,...,r ) over @int This 

again is a weighted sum of the mass embodied in transmntationnx 

path (rl""'?N) for each allowable aotivity,jghe weights being 

the 1o§ols of the various activities at s. fifii 

Lo#mas now return to the general oaao.- So far we have 

said nothing about feasibility} fWe now oropose a test*whieh 

has a vague resemblance to the oonfiggration test (loose conc 

struotionist version). A measure pagoes that test if it is a 

countable patching of allowable configurations. Here we have 

a oorresyonding set of allowable»aotivities, Q, and we consider 

only measures il can bo\“built up® from tho activities of Q. 

We interpret "built up" to moan that there ouso%s an assignment 

v such that the measure u to be tested is determined by v 

according to (1). That is, considering (i) as a function wh&eh 

assigns a measure u to QVery measure v, tho measures which pass. 

this test are those ingtho range of the function. 

This might be cofiéidored too easy a test, since v is not 

restricted in any wo§. One natural restriction that might be 

placed on v is that it be 8&gma-finito or even bounded. 

Another constraint on v that suggesti itself is an areal 

capacity restriotion. We have already discussed this in con< 

nection with ogoss~seotional constraints, whero we postulated 

a “demand—forfépaoe“ function g{Zg X 8 + reals, which restricted 

i 
the possible cross-sections u, at moment t. Now the measure u 

v
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on the space of sedentary histories, 8§ x flr, determines a 

cross-sectional measure Uy for every moment t, hence must 

satisfy an areal capacity co&?iaint for all t. -En-faet we 

must havo ‘I 

O\ 

\¥x~\J \\\6; (t) s u (ds dh ) < a(F) 
P 

for all regions F and all moments 31 where o, is ideal area. 

This is essentially a restatement of %3? o!msaotioamalahonnl 

It could be argued, however, thao;this understates the 

demand for space. An activity not ofily needs space to store 

its “oapital~gooda“ at any momontfkbut also "aisle space"” g 

"elbow room“,eonough extra vaoant area -in-shoert to carry out 

the manipulations and transformationa in which it is involved. 

This suggests thatlofig shodld attach a "demand-for-space"” 

function directly to activities ger se, Thus iee—flovwrite f* 

Sxq~ reals, f nogrnogativa, measurable with respect to 

5 

d;mand—by (unit level of) activity q at location s. We must 

g ¥ Eq. +£(s,q) is|to be understood intuitivolg/as the space 

satisfy 21 
it \ 11 (4.8, 3) 

oA \[ \E,dv £ a(F), 13) 
N Fxg ’ ' 

for all regions F. This places a direct restriction on the 

possible assignments Ve and therefore a further indirect 

restriotion on the measures ue, Upr Uy éh%eh must satisfy (1) 

from some v.
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We now turn to the individual measures ufl} By, Uqe Our 

ultimate aim is to establish féasibility conditions for measures 

i on the space of histories 1. How does suoh a y relate to Lfif” 

this triple of measures? As for u., its universe set is kho 

set of sedentary histories, (S X RQ), which is a suhsot of 8 

The feasibility condition on p, then, is that its ;ofitriotion 

to 8 x 0_ be an allowable ue}?’ | | 

As for the production and consumption msasuxes, ¥y and Bor 

these represent "births" and "deaths" of hiatories, respectively. 

Thus,‘a finished product is produced in ‘a manufacturing process 

at a certain place and time, This initiatos a new history 

which perhaps moves into transport&tion to be consumed else% 

where. The smoke emitted from a "chi ey initiates # histofi?s 

involved in atmosphorio circulation‘ We must have, then, for 

measurable (E x F x G) g (I& X8 xT), /41(5 x F x G) equal to 

the total mass embodied: in histories which originate in period 

G in region F at a rosoutoowtype in i.' A similar relation 

holds for/uz andbgfi; mass of histories wiieh terminatéfiin 

Ex P X G.}':i : 

For u tovpass the feasibility test, then, there must be an 

aasignmont v yielding measures \_., “l’ uz}which are 
9 

simultaneouslx compatible with He 

éyfil Neighborhoo& Effects 

We now consider some of the presuppositions implicit in 

the preceding construction. These are,-in_fact, worth studying
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on their own,_ and not merely in oonnootion with ‘the activity 

analyofis model, 

Let F and G be two disjoint rogions.E#iowoanw&apgenfltha& 
f 

L& 

fitho possible prooosses:whioh can go on in region G dre | 

influenced by what goes on in ragion ?. For example, the sound, 

light, heat, or substances omanating from F may condition the 

environment of“G. These influoncos are sometimes called 

neighborhood effects. We may ogpeot, in a general way that 

neighborhood effects will booomo stronger the closer F ané G 

are to each other, while thog tond to disappear between distant 

regions., (Some inflnoncosg saohwaa radioactive fallout, have 

world:yido effects., If go include in the concept of neighbore 

hood effect the doliho:fi%e propagation of influence via tfio 

transport#oommunioatiooo system, in addition to the "natural" 

influences just montionod, then even distant regions will be 

palpably influenoad;by oaoh‘othor.} 

Now oonsi&oréého opgosifio case, where there are no 

neighborhood offoots@ This may be assumed as a simplifying 

approximation when influences are sufficiently weak. But how 

exactly does ofio formulate the conoepgx *no neighborhood 

effects ooourfi? ;8ur next few paragraphs .represent-—an attempt 

to pin down fihis notion. 

The oopoopt of direct summation of measure spaces has 
- {,,,«l J' 

already been considered as a special case of "patching" (page 

~="=)» Explicitly, we have) The Lo
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< Definition: Let (A nInelpls 8= 1, 2, ..., be a countable 
i 

( Lfi, collection of measure spaces, where the A, ’s form a packing: \, P N 

Am na = g if m # n. The direct sum of those spaces is the 

e triple (A, /M), where 
~ 290 

17 (l) ]A gmfilumfizu seey 

gii) I consists of all sets of the form E; U E, U..., where 

gg‘& ;Ekfor alln=1, 2, ..., 
e 

Y (iii) u has domain I, and, for E = Ey U By Uses, E_€ I Ay 

WE) = uy(B)) + uy(By)ee. o - 

/”’“w“”wtftffl;:;h this definition, (A,Z,u) is a measure space. E 
not difficult to show that I is closed under oountablo unions, 

It is 

7] and aifforonoes, and that A € Z, so that I is a s&gma~fiold with 

lffij 2 | universe set A, For each n, Enzlfi the restriction of I to 

f W2 subsets ofngn. Finally, ého disjointness of thewan’§ guarantees 

that,vfor an}‘E € I, its roprésentation in the foom El U E2 Usase 

is unigue. Then u as given by {1) is woll«dofinodox u is the 

restriction of M to Al Thé fact that u is a measure is a 

‘simple consequence of fiho gotohing theorem. 

We shall use the ojmbol @ for direct sums. Thus,> 

L= I, ® 32 ® ..., and u u Hy @ u, &... . 

Next, we want to oxtend this definition to the case where 

there is o whole set of measuresi %n' defined on each space 

(A,,Z.), not merely tho single measure u . Write (3, En’ M ) 

for the measurable spaoe together with the set of measuros. 

Again we assume that:tho‘gh*s form a packing.
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$-L Definition: The direct sum (a, 21.011) % (Az,zz,w 6... is/ the 
...... triple (a, X,M), where 2 and Z are formed as abovo, and M is the 

o set of all measures u formed according to (l), whoro Hys “2"" 
are selected from Ml' Mz,... in all possiblo ways. 

o g 
{ 

' Now let (s X A, zs X 5 ) be a produot measurable space. 

(We shall later 1ntorpret s to be physioal Space, but for the 
time being let us proceed abstractlyf\) 'Let M be a set of 

, measures on this space. : 
_‘____&_,.,.: * % 

§ 
. 

ngw{;nofinitionz (s x A, Zs X za,M) is oountably rectangular iff, for 
any countable measurable partition {81, $2,...} of 8, it is the 

  

e direct sum 
g i Wb . 105 s are | | 

Hexe Z is the restriotion of t to subsets of sn' and is *n 
— the set of all restriotiona to, S of the measures u ¢ M 

  

Here are some oxamples:? 
R 

I 1&3“-§ot,§ consist of twofpoints,’i of one point: § = {s;,8,1, 
A= {a}, a1 sobsets are moasurable. Let\fl\oonsist of the four 
measures uij‘(i = 1, 2/? j = 1, 2) _whose values on the two 

gng points of S x A are given’ by “ij{(sk’a)} = i if k=1, and = j 
if k = 2, Thonvflkis oountably rectangular. But if any one of 

these measures is deleted, the remaining trio is not countably 

rectangular, 

‘
;
\
:
’
A
%
M
fi
m
m
m
’
 

2
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eé&i The set of all measures, and the aot of all gfig%énfinite 

measures, on § x A, are both countably rectangular. 

  

Gk&t) The set of all boun&ed measures io’ggg countably 

rootangular, if the ségmawfield Zg is infinite. (The proofs of 

these statements are left as exeroises) 

e w$ho=&&ea-is~%ha£w under countable rectangularity, the set 

M is built up from component sets in roughly the same way that 

a rectangle set in a cartesian produot space is built up from 

the "sides" of the reotangla. ; 

Now let us intorpret_§ as Spooo. The set A will be given 

a variety of interpretations, hfii in all cases the set Mfi#ill 

be some "allowable" set of meagoreo. s 

~This apparatus is designqé to capture the intuitive notion 

that,iif there are no neighbgéhood effects, then any region can 

be "autonomously" assigned iis own allowable set of measures, C?“ ; 
: \ U pmt 

this set not depending at oil on what is chosen elsewhere.gifin‘ 
oo 

plays the role of this autonomous set for the region:§n, and 

the "countable reotangulafiity" property expresses preci;oly the 

fact that the choices from the respective sets Mn can be made 

freoly and independently! of each other, 

fi'& Now~lat—as take (2,2 ) to be the space of allowable 

activities (Q,Xq), and take.m to be tpe allowable assignments 

von S x Q. Then in general this will be countably rectangular 

in the activity analysis soé&?p. ffie havo alreody noted this if 

the assignment v can be any maaaora, or any lfigna~finite measure.
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Slightly less obvious is the fiot that, even if a space= 
&3 

capacity constraint of the form ‘(-% of-section-5 (xopoated as 

(2) oelow) is imposed, the resulting set of allowable .assignments 

4 retains thi«@ property@ 

  

% :l‘hoorom: Let (5,I)) and (Q, x ) be measurable spaces, f: 8 x Q -+ 
A reals non-fnegativo ‘and measurablo, o a moasuro on S. Then the 

-y set of measures v on 8 x QW satisfy ‘ | 
W L3 R 

(46,2 
] £.av < a(F), (2) FxQ- 

for all measurable Fg S, is countably gfootangular. 

    »fi&!fProof:' Let {Sl, 52,...} be a countable «i’ileasurablo partition of s. 

For any v satisfying (2), "n’ its rootriction to S X Q, 

satisfies the same oondition for all measurable F ¢ S . No;.{ 
et let Vo be such a measure on S X Q, n = l, s vess and consider 

L the direct sum v' = vy & v, 8., g For any measurable F ¢ 8, i 

g 

  

   

we have | / 
/ 

| 

: 2 f 

,.F! ; 
f (50 i \ 5\‘\‘ fl ( 5\{, b[{ g -3 : R ¢ = 
= :I f dv‘ = [ d”‘ + f ;: fAdV' * sus ffif/; 

  

   

Fn‘o'% 

J ? 

i 
{ 
{ £ dN 5_ Q(Fnsl) + G(Fflsz)"'.o « = Q‘F)¢~_ ; 2T, 

Arns, )XEK 

Thus v' satisfies (‘13). This proves countable rectangularity. ||| 
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Nextfiqloél§§ turn to the sets of allowable measures S, 
(';vfé l)r 

Hoe Hys By determined by the allowable assignmonts vgoffiaé-oi i 
ll. Y fl‘.’j\ 

&'“«fi%€$ion~5w The following result applios to all threo of ‘these, - 

43z Thoorom: Let measure y on § x B be éetormined by v on 8 x Q by 

o the rule . : j | A L 
.;Wv N | ; V gg . 

we =| [ Ma ] e, € a}) (as,da) 3y 
1 S e 

/l*‘-«f ol t l 
’Gfa measurable subset of § x B, and l. Q X Eb + extended roals'éfl 

an abcont conditional measure. Thon, if the set of allowable 

measures v is oountably‘rootangfilar, tho same is true for the 

resulting set of allowable meaéfixos Mo 

*““fi??f”;;oofs Let {Sl, 82,...} be a countable measurable partition of S. 

‘ If u satisfies (3) for some allowable v, its restriction to 

§n X B satisfies (3) for ali measurable G ¢ S x B, withAfin 
S substituted for S, and ’V 2/ th@ restriction Qf v to S x g! | 

g substituted for v. Now lgt y be such a measure on S x B, > o 

determined by v, on S X/ Q, n=1, 4%, ... . Consider tha direct 
== 

.sums ' o= Hy ® u2 ..., and vt = v& v, g@.. « By the 

countable rec angularity assumption, v' is allowable. 

For any maasurablo Gg S X B, we have 

.(G) - u'(fin(s xB)) + u (Gn(s XB)) i /@,f/# Ax; 

- ul(Gn(s xB)) + uz(oms xB)) , '



~
—
 - 

3 : | Al 

3% 9? %;’ ' ki A 

W e 
= I l(o.{bl(s,b) € G}) vi\(as,dq) +o0s § " Q s A AT :},,,, 

_
'
,
M
/
 

| sxai k(qv.{xb!(S.ll?) € ?})Avtu(t’_{S.ég) ~_ 

i ;‘ \ ; 

| Hence u' is allowable. Thus the sotfof allowable measures u 

% is countably rectangular. |} ] & 

fifz' ~ The assumption of no neighboroood effects, therefore, 

//Qy///;;;;adas the activity analysis moaol we have constructed, How 

realistic is this? There will.aéfioonzno always bofggfig 

neighborhood effects, so the real;quostion is whefihoi these 

effects are unimportant enough to be ignored. The answer 

appears to depend on the scale of observation. On a "persons 

sized" level, neighborhood effects are so vital that any model 

ignoring them would be uselosa. Chopping a person in half will 

rapidly affect his functioniogs /anh half needs the “noighboxi; 

hofih effects" emanating from the other. Similarly, the 

technical possibilities in half a machine or half a house will 

be affected if the other holf is sheared off. 

At the level of the oidinary urban neighborhood, the 

neighborhood effects aro;gtill important but not nearly as 

momentous., "Urban problgms“ are in large measure the reflecZ 

tion of these interdepeédenoios, resulting from the proximity 

of masses of people tojoaoh other. Going up the scale to the 

ooonomi%wido and worlééwido levels, neighborhood effects are 

much attenuated. Wo.fiight expect, then, that the activity 

analysis model aescribad here could be fairly applicable to
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neighborhood level, and would be poor as a model for individual 

household possibilities, 

There is,-however, one considorationnzoioh vitiates conf 

clusions of this sort. It is the system of constraints as a 

whole giiég is subject to criticism, not any particular sub$ 

system in isolation. If neighborhood offeots are not taken 

into account in the activity analyois subsystem, they may be 

taken account of elsewhere.iin;o Qagithat the set of measures 

passing all foasibility tests reflects the existence of these 

effects., 

~—There—are other "neighborhood effect" concepts ssteh are 
= rectangularity A g not captured by the countable oogalazisy property. ©ne someS 

times wanty an asymmetrical concept, in which region E has an 
‘ reclangularitc effect on region g_but not vice versa., Countable xoé&%asily 

is symmotric,iin the sense that no ordering distinctions are 

made among tho’compononts of a direct sum. We shall very. 

briefly indicate how thoso “one—way“ effects might be repreZ 

sented, This is done by bringing in Time explicitly. 

First we need a slight weakening of the countable 

rectangularity concept., Lot‘fi be a set of measures on space 

(A,I), and let E, F be two disfioint measurable subsets offié.v$4:< 3 

M is said to be rootangolar with respect to the pair of sets 
T 

e o (4.6 4) 

Mgyp = N @ ,P?g) | : ; ) 
-
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where ME is the set of restrictions to E of the meaaureo u E\H: 

and similarly for fiF and MEJF.}NYQountable reotangularity . 
implies that (4) is true for any such E, F{w 

Now let M be the set of allowable measures oo the space 
(B x 8 x T, z x 2 t)‘ Here 8 and T are Space and Time; B 

might be the rosourco set, R, or some more complioatad set, 

depending on the problem in hand, Lotnrlngz z S be two dist, 

joint regions. 

Now we define: fl%ere are no neighborhood effects from F 
  

  

1 
to ) to Fz across time-instant t%]iff Mis rectangular with respect 

WA 

to the two sots ' 
: . — | Yo 

“lrm xtle<e)) ma (xr, x (el > 2. Vot 
%  This amounts to saying that-%hatscan happen on F, after V;: 

| 

time t is not affected by what happens on Fl prior to t . 
Since 

This concept is not s mmetrical, inuthe~sen&o—thoo-thore can be P Y re. can 

neighborhood effects across t from Fz to Fl‘ but ‘not from Fl 
o 

to F 

.r;%‘} 4.7. Superposition and Returns to Scale 

    

fifirffigfinition; Let M be a non+ampty set of measures on space (a,2). 

M is said to be additive iff, whenever H; and u, belong to M, 
{fi§§} then u; + u, belongs to M “’M is said to be a cone iff, whenever 

ue M and € 2>201is a real numbor, then cu ¢ N 
   

{7 An additive set of measufios is also said to obey the 
iggef%bosition principle, since two members of it may be 

A4
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"superimposed" to form a third member.  Note—that a nonfiempty 

M-whieh is both additive and conical is a convex conef{f/ 

i%éfik,//”’éhe set of all measures, of all,aeoma~finite measures, 

’and of all bounded measures on (Q,Z}fare examples of sets ’ 

having both 6f these properties. flow consider the set of all 

allowable assignments v on the speoe 8 X.S.in the activity 

analysis model. This determines ‘a set of measures ¥ on the 

space S X B, where B and u have/ various interpretations, J:; 
== a 1) . 

the integration formula i&l oim: ction    
It follows at once fxom ¢lementary integration theorfifiy 

that if v? determines ut . andfiv” determines u" viaG§§;, then 

v' + v" determines u' + yu .' Hence if the set of allowable 

essignmante v is additive, so is the resulting set of measures 

M. Similarly, if the seo{of allowable v's is a cone, so is 

the resulting set of allowable\u‘e. 

Are these conditions realietic? As was noted above in 

the discussion of neigfiborhood effects, any conclusion is to be 

treated with caution: Even if we deoideih<os we shalfi‘é'that 

these conditions arefnot ;ery defensible, it still does not 

follow that eme should reject feasibility tests %hioh assume 

them. The system of feasibility tests as a whole must be 

confronted. As a simple example, consider the activity analysis 

model in which the set of allowable assignments is unrestricted. 

This allows, say, cross-sectional measures of arbitrarily high 

density, which is not realistic. But there are other 

feasibility tests wheeh exclude excessive denfiitiee — in 

particular, space capacity constraints. It may be very
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convenient to keep the unrestricted acti@ity analysis model as 

one subsystem of constraints, and no obj;otions need arise to 

the system of constraints as a whole. } 

With this caution in mind, l:gi;efoose the question in the 

following form. Given the set of allofiable configuration=types 

or activity types, is it reasonable to suppose that this set 

is additive and/or conical? _; 

There is one minor difficulty involved in the concept of 

additivity here, which we illustreée with the set of allowable 

oonfiquratioofitypes. A oonfigurafliooetype is a measure on a 

universe set of the form R x F, where F is an "abstract" region 

mhieh is a measurable and a metrio space. Now consider u, and 

Moo defined on R X Fe R R x Fz, respeotively. Since in general 

F, and F, are not the same, the sum 4y + U, is not wellidefined. 

We can, however, proceed as follows. Suppose there is a 

measurability-preserving isogetry between_gl anqmyz, say 

S{:?1 + F,. This, with ul,\induoee a measure u,' on R x F,, 

and we now define the sum ofi My and p, as ul' +'u2, a nmeasure 

on R X Fo. If there are se%exal different isometries between 

?1 and Fz, in general eaoh;will lead to a different summation 
e 

operation. If there is né isometry, then the sum is not 

defined. These oomplicagions reduce the usefulness of the 

additivity concept in thfs context. 

By contrast, the co%dition that the set of allowable 

oonfiguratiofiltypes or eotivitfetypes is a cone is perfectly 

well-defined., For configurations, this reads: !If ¥ on R x,? 

v 

is an allowable oonfigfigetiofi?type, then so is kp onRxF, k
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being a noqzoegative real number. g; aivall devote efieioolk 

of our attention to the question oggreaeonableness of this 

condition, and the corresponding oonaition for activityfigypes. 

Let us connect this w1th the conoept of scale. Recall that 

in our discussion of scale (in 2 7) we distinguished a number 

of different concepts, in partioalar the notions of a k-fold 

expansion in the intensive, the extensive, and the duplicative 

sens%%} Now suppose thab the set M of allowable configuration<™ 

types, or activity*types. has the following property: ‘if M e\fl 

and u' is the k-fold expansioo of u in the x~sense, ¢hen u' ¢ M. 

In this case we say that [ hao constant returns to scale in the) 

x-sense. We shall-discuss eech of the various senses in turn. 

A moment's reflection shows that the two conditions "M is a 

conel y and “3 has constant returns to scale in the intensmve 

sensei,areithe same. How reasonable is this property? That 

is, if'u is allowable, is it reasonable that ku should be 

allowable, for any real number k > 02 

4//,,f“There are two casesy (i) For k > 1, arbitrarily high 

densities would be allowafile. But presumably at some point it 

would become physically ifipossible to squeeze that mass into 

the given space; and eveo before one reache=z this density, the 

increasing concentration of mass will in general lead to inters 

actions (neighborhofid effects!) whioh prevent an exact 

proportional change of mass everywhere., (ii) For k < 1, this 

last objection still holds, in reverse. There may be "threshold 

effects" or "critical oasses" which prevent one from halving
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mass everywhexe and maifiieining feasibility. 

}fiffigfiw ¥ -floee.eh#t when k >0 is an intogerk and p e M, then ku ¢ M 

follows both from the condition that M is a cone, and from the 

condition tha% M is additive. Thus the objectio;:r;;einst 

arbitrarily high k values are objections againsofigggg,ofl these 

conditions. 

ot Now consider constant returns to eéale in the extensive 

sense, Here ooe introduce$ the areal;measure o on SPace, and a 

kufold expansion involves a similarity mapping wheeh multiplies 

area, as well as all masses, by_sfi; All densities (with respect 

to a) remain the same, but now aggther difficulty arises@m If 

volume expands by a factor of kg tiren surface area expands by 

52/3 and length bymgl/a. Theoe nonfproportional changes in 

general make it impossible to maintain an extensive scale 

change. For example, if a fiouse is doubled in linear dimension, 

its "capacity" (;oughly measured by volume) octuples, but the 

rate of heat loss{ roughly proportional to surface area) only 

guadruples, so the heatigg plant need not expand in proportion. 

Absolute scale changes ég_make a difference, and constant 

retuins to scale in thé extensive sense must also be rejected 

as a general rule.%§( 

This brings uséfio constant retug%f to scale in ther 

duplicative sense. !Here an aotivityffios configuration~type is 

placed “side*by~sxgi with itself, Specifically, if u is an 

allowable configu?ation, with universe set R x F,~=Hen a k-flold
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expansion of p is a measure u' on R X F‘ suoh that there{is a 

partition {Fl ’ Fé oo Fk ) of F' into k pieoes, and p' . 

restrioted to eaohkgieoe R x F (i = 1,...,k) is a duplicate 

of u Lehe%—is, there is a measurabilityqpreserving isometry £ 

from F to F '. and y' restricted is the measure induced by £ 

from u). A similar definition holds fior aotivi€§étypes. 

“We note, first of-all, that k mfist be an integer for this 

definit;on to be meaningful., A heg and a half does not lay an 

egg and a half if one hen lays oné egg. This gives at best a 

weaker condition than constant rgturnslgwm ee, and might be 

called constant integer roturnefto scale.’ 

TNote also ‘that, unlike the other scale concepts, thers—are 

many distinct configuration*oypes-weeoh are k-fold expansions 

of the same ue—nghofxaason“$EMEhet nothing is said about the 

metric relations of the pieoes Fi‘ to each other, but only 

about their internal strugtuxe. The_§ pieces may be close to 

each other or aoattered._?flnder constant duplicative returns, 

all of these k-fold expefisions would be allowable. 

Constant duplioatioe returns is a corollary of one of the 

feasibility test systéos we have discussed: the configuration=" 

criterion, in the loéee constructionist version. ~?ozfl§ Cross+= 

sectional measure p#;ees this test iff it is a (countable) 

patching of exemplifiioations of allowable oonfiguration*types. 

If u is allowable,{ehen a k-fold expansion is such a patching 

(in fact it is a glreot sum of the k- duplicates). A similar 

statement holds fi%r activities in plaoe of configurations.
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The basic weakness of the constant dqplicative returns 

assumption is that shared by this loose oonstruotionist 

version: the ignoring of neighborhood gffects. In general, 

what is feasible in a region depends oé the environment of that 

region, and cannot simply be drawn from a fixed list of 

alloweble possibilities., However, it may be a fair approxima- 

tion in some situations, and as suoh it appears to be the lfiast 

objectionable of the three sensesfof "constant returns to scale" 

that we have discussed. 

4.8. Indivisibility 

A long tradition in eoonomio theory connects departures 

from "constant returns to soale" with "indivisibilit*fi} Another,)\ 

somewhat more recent, literature denies the connection. Our 

aim here is/not to re;olve this issue once and for all, but to 

clarify it by distinguisfiing the many different concepts 

named by these terms. lt is likely that much of the controversy 

arises from the confusion of meanings of the same term in the 

minds of different paxticipants (or of the same participant). 

In €the preceding secéioei;e have distinguished several 

different meanings of ‘oonstant returns to scale' " In the 

present section e/ /swsEL do the same for Pindivisibility. P16/ 

One may distinguish at least six different meanings of 

the term ”indivi?ibility / (many of~eheee have already been 

discussed) ! /
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T8)/, As a synonym for integer-valuedness. 

i), As the requirement that a certain measure be finitely 

concentrateds in particular, that ifi»be 8imply - 

goncentrated. The man who "flung himself upon his horse, 

and rode madly off in all éireotioos“ was violating an 

indivisibility constraint in thifi{sensefia; 

tid)z, As a limited varietx oonstrainosq This may be due to 

natural laws, as in biology, w?ere only a limited range 
TN of organic forms are viable;-é;-it may be due to lack of é : / K\f:}f knowledge of how to make oer?ain reeouroeityges or con& 

figurations; or it may be du@ to a high overhead cost of 

starting new product 1ines%for to 1aok of raw materials. 

{iv)y As the condition that oertfiin configurations cannot be 

split into two spatially gegarated halves., This is of 

course the original meanfog of the term "indivisibility™. 

“{v)<, As the condition that o?rtain configurations cannot be 

split without destroyieg their functioning, as with 
o 
¥ { 

4 
Yorganic wholes"fl 

~{vi)..As the condition thatfoertain configurations cannot be 

epatially eegregated‘by resource oomponents; e, g a metel 
a— J ot 

A wiieh cannot be extraoted from its ore. 

‘“’“““~xf"wm Some of these epetiak interpretations have temporal 

equivalente@\ e..g.> noniimterruptibility constraints. 

Now, _surveying thesq interpretations, and referring back 

to our critical disoussibn of returns to soale, one ‘noteg that 

none of these conditioné was used in the argument. Constant
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intensive returns was rejected because offthreshold and 

congestion effects, constant extensive ;eturns because of 

length~area~volume noflEproportionalitiee, and constant dupli§ 

cative returns because of neighborhood'effects. (Threshold, 

congestion, and lengthearea~volume pfienomeno can themselves 

probably. be regarded as special manifestations of neighborhood 

effeotsa Thus it would appear that nonfconstant returns to 

scale (in any sense) can appear without indivisibilities (in any 

sense of the term). » Affi 

In fact, one might be wel?zadvieed to reverse the standard 

argument and derive certain kinds of indivisibility conditions 

from the nonjconstanoy of returns to scale, Suppose length~ 

area-volume effects make ae;organio form viable only in a 

limited size range. This gs an example of noeéoonstant 3 

extensive returns,iand 1e§ds to an indivisibility of type”iéiti. 

The exietenoe;of naighborhood effects underlies 

indivisibilities of type 1##1\and perhaps also of types‘%fizfi 

and 4¥4). J 

4,9, Spatial Controlfi 

;’ 
& 

4 

Most of our difioession has been of tests,m%ieh any 

feasible measure u on the space of histories  must satisfy. 

In this section We take a different point of view and consider 

some means by whiéh the acting person carries out his ohoi;e 

among the foasiblé alternatives. The discussion will be 

entirely informag.
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We shall-be concerned with spatial control nueheemis the 

control of the movements of things. It appears that spatial 

control underlies control in general “/25 

  

agofhyxfl%hn~Stuart~fl&lflfl. To explain' In-the first-place, 

=$%%e'aotq upon the world exclusively ghrough motions of the 

body (including speech, which is a fiotion of the diaphragm, 

vocal cords, etc.). These acts 1n£luenoe objects or other 

people. Geo getskthings to interaot, as a rule, by placing 

them in proximity. A plan of ao;ion may be in large part 

described as a schedule, bringid% people and/or objects together 

at various points of Space~Time to interact. in desired ways, the 

outputs of some of these prooepses being stored or transported 

to arrive at other Speoe-mimegpoints where they serve as inputs 

for other processes. (Theseéorooesses include not only 

production® in the ordinarygsenSe of the term, but residential’ 

processes, education, danceé. political meetings, etc.) 

For such a plan to be}feaeible, the transportation and 

storage facilities must he available when and where needed, and 

it must be possible to oaéry out the processes with the 

scheduled factors, This will generally involve persuading other 

people to cooperate -¢e¥ by exhoxtation, or offers of services 

or money. g : 

This account omits one important aspect of spatial control. 

ene-not only heo—ee ‘mxg things, but also te prevent motion. 

Everyone is aware of t@e fact that transportation incurs a cost - 

that~is, precludes somé alternative opportunities by requiring 

:2
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the sacrifice of resouroes, time and effort. The prevention 

of movement also incurs a cost. Perhaps this is noted so 

rarely because its manifestations aré too obvious to comment 

rton. A few examples wiEl illustrate &his point. 

flhere is} first,oflmol&, a needgto maintain altitude. “hat 

is, if things are to be brought i?to spatial proximity in—order 

to interaot;they must be at aboufilthe same distance from sea 

level, 1In the presence of gravfty, the means of accomplishing 

this in almost all cases is to“provide a horizontal surface 

:Nhioh gives common support tolthe various interacting entities. 

The c¢rust of the)fiarth is av&ilable for this purpose, but has 

certain drawbacks. “Pivad, it may depart too far from the 

horizontal, so thet-aae—heo—to incur costs, either to flatten 

it eut, or to prevent things from rolling downhill, or both, 

“fieeooflr~it may not provido adequate support, as in marfih or 

swamp, not to mention open water, and so must be either 

reinforced or unused. Faually, there may not be enough of it 

in the right places, 80, tha.t more surfacew g c{:‘;fistructed,l at 

considerable cost., Thq prime example of this is multiple~ 

story structures, but also most furniture serves the function 

of providing extra hofiizontal surface where needed: beds, 

chairs, tables, sheléea. 

Second¥r, one n?t only-haswto bring the right things 

together to intetaci but eogkeeo the wrong things away., We 

have already commen g on the function of barriers in keeping 
& 
B 
i 
&
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out the weather,“gunauthorized perao%él%i etc. The entire 

institution of private property may be:éonstrued as a system 

of selective barriers, denying access to all except those 

authorized by the owner of the propertygior those having 

special access rights (easements, sgarch warrants, etc.) Noxr 

is this merely a %oapitalistio“ argangement: fihe phenomenon of 

"too many cooks spoiling the broth" is a universal technological 

problem, regquiring the limitatlon of access rights in any 
& 
& 

economic system. / 

It should be clear from Egese examples that the prevention 

of motion is as fundamental egtask as the provision of 

transportation. There is afolose analogy here between the 

Resouroes-setfl$%9 and Spao?z.§1“‘$;:'devoteq effort not only to 

transforming things from less to more desirable resourcékstatee,; 

but also to maintaining tfiinge in their present state: to the : 

prevention or slowing ofxdepreoiation. Indeed, much of our 

total effort is of thias”treadmillé7§ariety, merely stopping 

things from getting woree*«-most e;Ei;Q, sleeping, exercise, 

medical care, hairouts, laundering. 

Similarly, in Spq;e'ono not only trfigo to fiove# things to 

better locations (transportation), but tr&os to prevent or slow 

their moving to worse locations. This could be called location 

maintenance. We hafie already examined the special case of 

altitude maintenanoo, and shall now discuss others. We shall 

  

continue to use the term barrier as a general name for any 

mechanism or instiiution whifih maintains location.
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Consider the very general class of barriers whieh we may 

call walls. These prevent various resouroe@types from moving 

through the border of a certain region. ’sfisee-may be 

olassified according to the kinds of res?uroes whiceh- they bar, : 

and wfiether they function to keep thingodig.the region, offggg 

of the region, oxr both. § 
:?" 

Thus, a country may bar immigragfion,-en emigration, or both. 

Glass is a barrier to the passage og airf%but lets 1ight through. 

A locked door is permeable to someqhe with the key, a barrier 

to others. ; 

Storage facilities and paokaéing in general are all walls 

in this sense -@ans, saoks, si &s, barns, ofiates%-o&eu These 

serve the double function proteotinq the contents by barring 

oontaminants, the weather, pilferers, etc. from entering, and 

-also hold the contents in plaoe by barring exit. \ 

- A special class of wallslauhioh(inoludes ‘elothing, 

winflofiisha&es, and soundproofing) serves the function of 

insuring privacy S tirat-‘i-s, prevents the dissemination of 

certain light or sound patfierne Wh&eh might be perceived by 

outsiders, ,f 

Brakes are barriers J;ie% prevent or limit the mobility 

of speoifio things. These include anchors, hobbles, papers 

weights, ball and chainh as well as ordinary vehicle brakes. 

{zqfi ww“.fiindings are meohafiisms whech prevent or limit the 

,/fgfifwmmielative motion of deff@rent things. These need not be 

barriers as we have beén using the term, since the entire
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configuration of things bound together can move as a group 

relative to the,torth. ~In fact, brakes;fiay be considered the 

special case of bindingo in which the/fierth itself is one of 

the objects. Bio&ings inolgoe adhesives, bolts, nails, 

zippers, string:,also(paokaging and storage facilities insofar 

as they hold things within an integqment. But typically one 

wano%;not meraly to bring things toéother but to hold them at 

propei relative distances. This ié‘done by using a structural 

frame, which is a rigid body or one with a limited number of 
"f‘g A 
    

  

degrees of freedom for motions £ ’ bnildings, and 

the metallic or wooden parts of éaohine%: the skeleton plays a 

similar role io organisms, These again are forms of bindings. 

Awgeeoe—goal;of effort goes into the design of properly 

selective barriers( thee—ts,wbaexiers which prevent the passage 

of some things and not otherq) and of barriers wh*eh can be 

controlled to vary their seleotive power as desired. This 

involves both teohnologioei research and institutional 

arrangements (guards, cuséoms inspectors, censors, ee¢e.). The 

evolution of military teehnology is to an extent a race between 

ever more penetrating offieneive weapons and the finding of 

barriers to sgop ohem,4§rom the sword and shieldf%to the missile 

and antifmissile. >/ i 

There are usuall%fimany'ways of building barriers to 

accomplish a certain gunotion. Roofs and umbrellas are 

substitute barriers fiéainst the rain. To stop a pollutant 

emitted at looation__é1 from reaching a person etngz§§§3 can
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place a baxriek at the source foege,smoke control) ,“ex at the 

recipient 6eeg;figas mask), or at an intormediate point (e«g. 

insulated house with filter). g 

é&i.eleo may have options to ereet a barrier or to take 

some other action ékioo obviates hhe'need for the barrier. 

Two groups which-are mutually hostilfl)oan nigrate away ;;om 
s 

2% each other, or they can stay put and erect barriers to reduce . ”fif 

;g: 

- contacts ("separation® vs. segregetlon");&%; Or, instead of 
A oy / ) 4 sound | proofing to insure privaoy,~ene=omammask sounds by S 

creating artificial noise. Thisyhea been used in connection 

with church confessionals and physioian 8 examining rooms (not 
5 

to mention gangland “rubouts“)i\/’% 
y’\_)u‘" r\t.‘ 

Ay
 

& 
7 

—
 

B
 N 

~Let-us now turn brieflyvirom the prevention to the pro~ 

motion of motion &-taee«is, to transportation. Transportation 

is defined broadly to inolude any deliberate effort to change 

location. It therefore inoludes communication (which—is the 

transportation of lettere, electromagnetic waves, and other 

resource types designed”gepeoially to convey information),;and, 

for the most part, puhl;c utilities (which-are largely con- 

cerned with the movemefit of water, gas, electricity, and sewage.)     
A transportation«eystem may be classified into: the 

channel, ehe.transmitfier. the receiver, the power source, the 

vehicle, and ehe~oargo. Not all &f these components are present 

in all systems, 1n fiutomotive transportation, the channel is 

the road, the power souroe is internal oombustion, the 
    

      

   

  

    
    

Mv\“’\p\e pwr‘fise Lqrf{lers aye nat UN commdn T\-.ug "H_H 

Great well of Chida wag | Lm\‘l' to keep M., mu.aLs ouT Lu‘f «Jso) 
angd pukap; pnw.c.v.l.], KQ.GP A CLmaee . i“/ 

,K
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trensmitter and receiver are perking facilities, 1In ra&io,‘éfio 

has the transmitting station and the radio receiver, with 

transportation of electromagnetic @9ves; there is no vehicle 

or channel in this case. In the séwer system, the channel is 

the network of sewer pipes, the tg%nsmitters are the various 

toilet facilities, etc., the reoeéver may be a treatment plant, 

the power source is usually gravfity, the cargo is sewage, and 

¥ 
8 f 

q 

Transportation oonstructiofi refers to the building of 

there is no vehicle. 

channels, transmitters,and reoéivers. -As—already-mentioned, 

it may be thought of as barrier removal or circumvention. 

Consider the road system. When completed, it establishes a more 

or less unobstructed surface oonnooting any two sgfiea_fiiThe 

internal "road” system of buildings ~athe corridors, stairs, and 

elevators — may be thought of as a finewatruoturéé extension of 

the road system proper; togegher they connect any two ggggg_in 

the eoooomy.}@\ ;, 

T ;iw’*’ M;i‘hi].e road-building re:;é‘iuoes barriers to travel along its 
i 

length, it tends to createinew barriers transversely. For 

  

example, the building of m bridge creates a barrier to ships 

too tall to clear it (and thus establishes a lower head of 

%fg navigation)\vx/ When roadé intersect in a grid system, cross~ 

‘ traffic creates very coneiderable interference in the form of 

slowdowns and extra fuel oonsumption. ' This sometimes makes 

it advisable to invest e*tra resources to reduce tfl%e inter< 
'\ 

fexenoeqm»say by overpasges, clover-~leaf interseotiono)or 

i 
R
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traffic lights, The tradition that the poor lgve "on the other 
That i 

gide of the tracks"” indicateeda transport artery may function 

as a social barrier. i 
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FOOTNOTES - CHAPTER 4 

lThe decline of international violence is more dubious. 

See L, F. Riohardson, Statistics of meaoly Quarrels,\Q. Wright 

and C, C, Lienau;;n&eejbsfioxwood Press, Pittsburgh, 1960), 

. 

2 
-l This concept has become familiar‘through relativé}} theory, 

3 A 

7 
.'[){'Q 

'Etx‘,e 

\ 

where the finite speed of light §lays thev3§ie of the finite 
o : 

fire engine speed. —eve. See H,/' &1nkowski, “Space and Time", 

in The Principle of Roi&itivity (Dover, New York, 1923), p. 84, 

i 

S .?pf. the discussion of "indivisibility"-belew, section 8. 
= : e = 

  

MLt “%Eor other examples sée A, D, Biderman, M. Louria,fb. 

Bacchus, Historical Incidents of Extreme Overcrowding (Bureau-of 

Social Scienece Researoh,;fiashington, D.C., 1963), 

  

{ ”~ 

TS5, 'SThe family of funétions f must satisfy the consistency 

condition: w~t £ (r,s) = gtltz(fi tl(r,s)). Death could be 

represented by lettin@'f take on the nonwexistence“ value zc. 

with-fit & (z ) = zc; birth by also introducing "backward 
l i = . 

oausatin": t § 
e’ 
  

b. 5For an 1ntere$ting attempt to model air circulation and 

pollution in Qn actoal region (Los Angeles) see F. N. Frenkiel,
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“Atmospheric éollution and Zoning in an fitban,firea”, Scientific 

Monthly 82:194:203, QAer.. , 1956} H. Reiquam, ®Sulfurs 
fiimnlateo‘fion%§§agg§@rrans orzqt? the‘}tmosphere + Science, 

170{;\,313%}20, : M'fl_ novthwester, Eu'bpe. 
1410 

A 

      

  

In the theory of Markov prooeeses, which the present model 

resembles, relations of the form (l} are known as Chapman= 

Kolmogorov eguetions. If the family of measures represented by 

f are all simgg& oonoentrated,-eheo this entire comstruction 
Ao 

rfldacos, in effeot, to the dynamioal law system discussed above, 

and (1) reduces to the oonsistency oon&ition for dynamical laws. 

P 

  

I 7 B remember also that “maes* as we are using the term need 

not coincide with physical mase. If it does not, (&) is not the 

same as the physicist's “oonsérvation of mase 

  

I 4, “?The well-definedness of {3), and the fact that A is a 

measure for each t, followggfrom our assumption that £ is a 

finite conditional measure. For the wvalidity of (4) one” also 

needg to assume that v is a?oont, as of course it would be in 

this model, | 

- f 

ff {o hieThe classic referenoe is'Activity Analysis of Production 

and Allooation{(?. [ Koopmane, e%§??£ (Wiley, New York, 1951). 
o 

\ 
  

s
 

i
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‘/ 
i,iliiAotually ExB=sS8XRxT is the order of the components 

of the cartesian product in (1). ¥o confusion should arise if 

we permute them to the usual alpheietical order. 

  

/;,ieThia is the case if all tfie mass embodied in the set 

s x Q comes from a system of aotivitiea in the activity analysis 

fremework of this section, Anotherfikmore oomplexfiwpoesibilifiyt\ 

is that there are several superimposed systemsfin operation , T @ 

say, one of the activity analysis form, one of the diffusion 

process form discussed ebove,gand perhaps others. 1In this 

case.kihe measure p will be g;e ggg.of the mass distributions 
P 

involved in the several systéms. 

  

5 Bpgain, if the aotivity analysis system is not the only 
one in operation, /u will relate to the sum of the production 

measures from the various systems, not to Uy alone; similarly 

for My 

  

,;:ifiFor further analysis of these and other properties of 

"production sets”a in the context of n-space, see G, Debreu, 

Theory of Value (Wiley, ‘New York, 1959),99 39 ~42. 

  

= NOALG I 
,3.15There is an-ewtensive literature on the effects of 

extensive scale ohangee, both in engineering and biology. In 

the former it goes under the titles "dimensional analysis“ or 

"theory of modele%é 3oth aspects are treated in D'Arcy
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Thompson's classic work,ffin Growth and Form (Cambridge 

University Press, 1917); 

\¢ 25F0r the argumefifi that "noo;eonstant returns to scale" 

results from “indivieibilities“ see, e.g., F., H. Rnight, Risk, 

Uncertainty and Profit (Houghto;\Mifflin, Boston, 1921), 45&&&& 

98, 177; A. P. Lerner, The Economics of Control (Macmillan, 

New York, 1946}Q§3$;é~68¥69, 143; T. C. Koopmans, Three Essays 

on the State of Economio Science (McGraw-Hill, New York, 1957), 

?%éas-lsc_g54. Fof criticisms and further discussion see P. A. 

Samuelson, Foundetions of Economio Analysis (Harvard Unive:oéey 

Press, Cambridge, 1947), 

  

84585; E. H. Chamberlin, The 

Theory of Monopolistic Competitioofiifiaroard Univ?ss&hy Prass, 

Cambridge , Fth—ede, fss), Appendix B; H. Leibenstein, "The 

4éroportlonalityfControversy ;id the Theory of _Production"™, 

Quartaalg Joeane&«oi—Eoonem&oa, 693 619;?25 movembexl 195§; 

D. Sohwartzman;?*The‘flethodology of the fiheory of Returns to 

floal%“, Oxford EoonomiouPepaes {fieWWseriesl, 1Qo 987105 

EEbreaoy, 195§; 

  

‘7;qguotatioh from Stephen Leacock. 

prrrr e . e * 
[ & -fi; ;8Similarly, for the cotevolution of the safe and safe- 

cracking techniques see E, H, Sutherland and D. R. Cressey, 
N / e C_} 

Principles of Criminologz (Lippinoott, Philadelphia, Fth_ 

J? edition, 1966) p. 275. 
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20 39 
- cf. Genesis 13* G«ll. 

i 29 {, 2o, New York Times, May 10, 1964, page 40, 

> 
.j” 9 

'\ ‘fh @, 

_i??ah. BE. Smailes, The Geography of Towns , (Hutchinson 

Univ;q)&e;.-ty Librazy, Londen, Sthedition, 1966), qfiwes 47, 54. ) (@), i ‘ 

     

    

     

  

  24 
,flfaan. M. Winch, The Economics of Highway Planniog 

(Unxveeo&%y—o& Toronto Press, Toronto, 1963), puqos 67-68. 
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£ Qfi.' Ldtwmre ,hhmr Acias, Fronliers of. (Lmq (AMQN*M~ 1 
\Geograpirest s..mg% Mo York ) Trdedilay, 1051 re 
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