$0 | CD 4 \ 235 Gl

3f T}éE COMPARISON oF INFINITE MEASURES)/

This chapter develops the theory of pseudomeasures. These
are extensions of signed measures which enable one to carry out,
for example, the operation of subtraction even for infinite
measures. Etmkuanammutwthatkguch of standard measure theory
generalizes to pseudomeasureéi and that many theorems can be

stated without qualifying conditions as to finiteness, integrag

'&bility, etc, Thus the theory should hold interest even “for

"pure" mathematicians.

The theory also has numerous applications. First, it
enables one to "net" freely, even when both “"grosses" are
infinite. The subtraction of consumption from production has
already been discussed, Another example is migration: Oae would
like to get net migratioﬁ by subtracting gross outiqffom in-

migration, even when the latter two measures are infinite.™

‘1?hi§ might occur, for example, on an infinite plané, or with

an infinite time~horizon). And, in general, it enables one to’
perform arithmetical‘accounting operations freely on measures,
without worrying about the appearance of the meaningless
expression ® - =, A

Second, it allows one to compare different "infinite
utility streams" éuch as arise in the evaluation of economic
development programs. The "overtaking" and similar criteria
which—have-been developed to deal with these problems find their
natural place within the theory, and emerge as special cases of

)
a general approach.
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Even more generally, pseﬁdomeasures ‘urn-out in many cases
to-be a natural way of representing preference orderings. ‘That
is, instead of representing preferences by real-valued uﬁility
functions, one uses pseudomeasué;valued utility functions, with
various natural orderings on thé space of pseudomeasures. This
arises for infinite~horizon development programs, for problems
of location theory on the infinite plane, and for preferences

among uncertain situations,

3.1. Jordan Decomposition Theory

The formal development of pseudomeasure theory goes through
two stages. The first stage involves a generalization of the
concept of Jordan decomposition. This operation, which applies
to any pair of measurés, has an interesting and elegant theory
by itself. 1In tﬁgi§fesent section we shall develop only that
portion of the theory which lends directly to pseudomeasures,..
or which has direct applications elsewhere in this book. Some
other results will;be presgnted as exercises (which are generally
~fairly difficult éo prove) .

Pseudomeasugégﬁgggwig arise from the application of the
Jordan decomposiﬁioﬁ to sigma-finite measures. This enables one
to define algeb;aic operations, integration, and ordering rela-
tions in a mannér’w%éeh is fruitful for applicationsﬁ_and also
of considerable mathematical interest in itself. \

Let (é,Z)Jbe a measurable space. All sets referred to

below are assumed to belong to I, and all measures and other set

functions are assumed to have I as their domain.
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x@ﬁiﬁ Definition; Let (u,v) be an ordered pair of measures; the upper

variation of (p,v) is the set function a¥ given by

e {/ ( 3. Lk}
A*(E) = suplu(F) - V(A |F & E, v(F) < =}, <)
7>ja11<§ € I.
s That is, to find A+SE), form the difference u(F) - v(F)
for each measurable subset F bf»g for which v(F) is finite, and
then take the supremum over ﬁhese~numbers. Similarly,l%ﬂ*ﬁniﬁk Ehe
Lo L orsssrngy « ;
. A

{EL’. Definition: The lower variation of (u,v) is the set function A~

given by

| : 3h. 2
% A (E) = sup{v(F) - u(F)|F c E, u(F) < =}, L :

/z:? §— measures (u,v) is the ordered pair of set functions
j (A+,X') given by (1), (%).k/

'ffﬁigf‘” Theorem: The set functions A, A~ are actually measures.
- i

- g ] + o i
1 \ Proof: ¥t—is—clear-that ' and A are nonfnegative (since ¢ g E,.

for all E¢ I), and #hat—l+(¢) = A (f) = 0. It remains only

to prove countable additivity.

)’w \ Let £§n), n = i; 2, ..:,be a countable measurable packing,
with E = U{#n}. Let_E_satisfy:u Fc E, Fe I, v(F) < »; then

FnE, fulfils the same conditions with E_ in place of E, for

N/ all ﬁms 1, 2, ... « Hence
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A+(\E1) + ;\+(§ ) 000> &(fnf:l) - "‘f‘“f’l’]"‘fj‘ (FRE,) - v(_g'ngzihr.’?

2 U(E) i V(}E‘),-m { (\3\)

AT T TR

Taking the supremum over all such sets F, we obtain
[ APEp +atEy) +00 > atm . 4)

It remains to establish the opposite inequality. If A+(§n) = o
for any n, then A+(§) = », since A" is clearly monotone ﬁ;qi

decreasing; in this case we get equality in (4). The remaining
case is where k+(§n) is finite forvéll_g. Choose a real' number

€ >0, and, for each n = 1, 2, coos choose Fn :-En such that

—

: S g i
( 3.1.9 )

MiE) = VIE) 2 x"'(_mn) -T2l '(5)

— o

Noting that {El-ua;}U_FN) ;:E,;Snd adding (5) over . ) PR
we obtain /

e |

Z(E) 2 lulry) - vED I I - viF]

/\ C:} Gy

>t ey +Leat ) et 442N Y@
Letting N + «» in (6), we o@tain S
“atm@ > - e +atEp 2Ry +L

Since € > 0 is arbitrary, we obtain (4) with inequality sign

reversed. Hence A+ is cduntably additive. By symmetry, so is

y V. MDs

,;; g 2""’"‘%:
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| How does this operation compare with the ordinary Jordan
- decomposition of a signed measure A? We know that A can be
expressed as the difference of twovmeasures( say A = Al - 12}
where A\; or A, is finite. Let (Afih-) be the (generalized) v
Jordan decomposition of the pairn(ll,lz). It is then easily
verified that A, A” coincide wiﬁh the ordinary upper and lower
variations of ), reSpectively._ Note that the operation above
is well~defined even if u and v are both infinite. In this
sense it represents a true generalization of the ordinary
Jordan decomposition.
whetmus:yrite q(u,v) for the Jordan decomposition of_(u,v).
Letvpl,.pz e e Auletilenns - Ha write p, < p, to indicate

that p; (E) < p,(E) for all sets E € IZ. Then we have /
#i Theorem: Let (A,A7) = J{(u,v); then

(D/ At < p and A< v +2).

~

M" %
Mwﬂfggrf’;}cof- Choose E € L. For any F < E with v(F) < », we hav?)

u(E) > u(g‘__) > u(g_) - Vv(F).

f,l{f " Taking the supremum over all such F, we obtain u(E) > AtE.
Thus u > A*. The ptoof that v > A~ is similar. }+ff¢;gr

Thus J is a 1shrinking“ operation. We shall see below
that J in effect iemoves the common part of u, v from each of

them,

i
] /

~, : #"‘:?é" \

Y : { Lk
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i 0/
Let u, v be measures, with/u > v. We went to define the

operation of subtracting v from;u in a reasonable way. One's
first impulse is to take u(E)v; v(E), but this introduces the

meaningless operation ® - « ié ¥ and v are both infinite

M‘\ measures,

{%& Definition: Let u > v be me@éures, U = v is defined as the upper

':ES' variation of the pair (u,v). :

\

easily sees, incidentalgy, that the lower variation of (u,v) is

~~ Note that u - v is énly defined for the case j 2 V. One

0, the identically zerq’measure.

The following thgérem shows that "minus" has at least some

of the properties of ordinary subtraction.

ERTE—

ﬁﬁwz'Theoremzﬁ (i) Let u > v be measures; then

el

s P T IR N 18

T?(ii) Let u, v, 6 be measures, with y = v + 8; then

8> (n-=-v)o o

(If v is s&é&a-fiuite, then (2) is an eguality).

PR SR
- i \ _ qor 71 \ \T1- ¥4 f
 t’proof; (ifa'xf V(E) = », then N(E) = w{}and (8) is satisfied at
~ E. If v(E) < =, then, for any F < E, |

f/ﬁ'\*, r}\\{:\ ))&'(' 2 ;"‘go . — !47

WE) - v(E) = [u(F) - v(g)l.-»[u(g\i)j- V(E\F)] > u(F) - v(F),

so that u(F) & v(F) attains its supremum at F = E; hence
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(b = V) (B) = u(B) - v(E),~ C ey
% L1 which again verifies (8) at E; thié proves -part (i).
i Cﬁ j{ii) Choose E ¢ I. For any F ¢ B such that v(F) < =, we have
;‘w \” - . :;, : € eitein
) . B(E) _>_ e(F) ==;u(F) -_v(F).
e » g —_— G
2 L*' Taking the supremum over all suéhwg, we obtain (9). Finally,
i;l;ij let v be sﬁéga-finite, so thatffhere is a measurable partition
(A), n=1, 2, ..., 0f Asuch that v(A ) < =, all n. Then
O(ENA) =u(EFA) - Vv(ENA)
= (u s VI(ENA), iy

from (10). Summing (11) oéér n, we obtain (9) with equality. kaéﬁ@

: P ————

,4.;M

gm——

\ Note that the inequagity (9) is sometimes strict; e.g., let

A consist of one point, a§d let uig) = v(A) = w, §(A) = 1,
: . {
W;~7w=» — [Exar01ses.

4 WK—‘

o Wy F%% Let U, > U, 2,,.> ﬁ‘ be measures. Show that
7 ) E g T ;

2\\‘/,&/ ' (ul i lin) = (ul i Mz) + (UZ ki U3)+--'+(u9_l = un) o /
(Hint: Prove for n = i and use induction; consider separately
the two cases (un 3 u )(E) = », < w5a

@LL) Let u > v > 6 be measures. Show that

-(u--,v)--== (W= 9) = (v -20).

(Hint: Hse the result of the preceding exercise for a staréf@
N y ‘



242

We now define two further operations‘bn a pair of measures
(4,v). Consider measures 0 satisfying © é_u, 06 < v, 1Is there
a largest among them? That is, is thergfa measure 0 satisfying
these conditionsn\and > 0 for any © sagﬁsfying them? There is,
and it is known as the infimum of u and v, written inf (u,v).

“In=fact, one can give an explicit formula for this measure:

/ i q Y
(%17

in (4,9) () = dnflu(e) + VD) < B, e

z vall E € L. > 4 ;
<Tﬁote the distinction between the two "infs" in (12)! The one

on the right is the ordinary infimum of a set of extended real
numbers, ﬁggéig; u(F) + v(E\F) 'for all measurable subsets F of
E,

7 Similarly, the sugremum;gf y and v, written ggg(u,v), is
the smallest measure > Y, v;l The formula for this is the same

as (12), with (ordinary)“#ﬁp "'in place of "inf" on the right- -

hand side.?’

ﬂ§»~ffiheorem: Let u, v be measures, and let (A*,A7) = J(u,v); then
Q'\}/ p+a =y eatemppuvie trey

,Jf‘Proof: First we prove gie right-hand equality in (13). Choose
E € . If V(B) = w,§£his equality is -elearly satisfied at E.

If v(E) < », then f <
%% i
v(E) + 2t (E) FVv(E) + sup{u(F) - v(F)|F ¢ E}

ad supfv(‘r"> + [v(B) - v(P)1|F ¢ E}

% sup{u(F) + v(E\F)lF G E} = sup(u.v)(E),
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so the right-hand equality again holds at E. In a similar

manner, with p in place of v, we prove that

W+ AT = sup(u,v),

which establishes (13). lJ%Az” Z7"A

This result has several applications. As a first, we show

that the Jordan decomposition operatﬁr is idempotent. That is,

sincexg(u,v) is an ordered pair of‘ﬁeasures, we may apply the

J operator again; but itatu§na~eu§i%hat nothing new arises:

2 uv) = J(@ V) = I,V
;«-"M’“ ]
f,f% Theorem: The Jordan decomposition operator satisfies 7% = 3.

1 i Proof: Let w,,v. be m le v J and let
Herr) e 3 Le u9: g be measures, let (uyvq) = _(ue,ve)' ndl le
/’TH‘*\!

(pz,vz) a*g(ul,vl). We must ghow tgat Uy = Uys Vy = vy, It N
( %&j suffices,-in-fact, to show that yu, 7 Wyr» Vo 2 vy, since the //Mu 37“L
| opposite inequalities are alfeady known,;by (7) caboves Choose o
k E ¢ L. We then have |
E . :
%' My (B) = sup{y, (F) j’vl(E)IF < E, ve(g) £ o) o (14) éffo
% To see this, note that
| (F) + v _(F) = (F) + v, (F) £15)
1Jw¢ \ Was (Y Ky 15
/ E by (13) abeve. Also HQ(F) < » for the sets F in (14), and
Y X)) |

vl(g) < WB(F) by (7). Hence we may transpose the v-terms in
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(15) to obtain-

~

hg*ulﬁf) - v, (F) = ue(g) & vg‘?{imf [3££§

from which (14) follows. \(14)|in turq_implies that

e — » A AT e T —

{ .J)' {,](‘"
uy(B) < supluy () = vy () |F/c B, vy () < b \ )

For the set of numbers over which thg:sup is taken in (16) is
at least as large as the set in (14); since vy £ vg. But (16) /z

f J o
states that ulgg)‘g u2(§), Hence My = Hye The proof that e

Vy = v, is similar. |||

- The following important result is a second application.
CH Theorem: Let Uy, V;, My, V, be measures such that
i : ,;%;i.:’:
. q (ul '\’1) &= MJ(UZ fvz) ’ § "('ﬁ,
‘ L/V then
uy + Vy = gi + Uges (18)

~) Proof: By contradiction. Suppose that (A*,A") is the common

Jordan decomposition of (ul,él) and (uz,vz), and let (18) be

false, so that there is an_gge L for which, say,
By (B) + vy (B) < vy (E) + u,(E). (rey

*

Hence u,(E) < =, so that A§(§)< ® j also v,(E) < =, so that

A"(E) < w. Now we have . .

E——

u; (B) + A~SEi a-vi(E) + A+(@),
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i=1, 2, by (13). Adding, we obtain

\@ up(E) + AT(E) + v,y (B) + AY(E) s vi(E) + AT (E) + uy(B) + AT (E).

;mhe A—terms; being finite,}drop out, and we are left with a
conkradicticn of (19). 1If the inequalltj in (19) is reversed,

the same argument again leaﬂs to a contradiction. Hence (18)
is true. |8 |

ST oo

g
It will turn out, under sigma-finiteness assumptions, that
{(17) and (18) are actualiy equivalent, a basic result for

pseudomeasures.

%&/”// Theorem: Let u, v be measures, let (A A7) = J(u,v), and let

/;%7

>

N

& = inf(u,v); then

; 1
W ;y<+ ] A\ : s [ 2 CREY-
Eu=-08 b AT=v-o, 209
and ; e
+ ‘ ¥ { ¢ ] # i
Wim XA o+ 8 Th v o= o+ o0, -21)
i ™ '

e qﬁV Proof: (u - 6) isékhe upper variation of (u,0), while A" is the

\::‘-‘mmmnm:;m. ”

upper variation of (u,v). Since v > 8, and the upper variation
is a nonfincrea§ing function of the right-hand component of the

pair (u,°), itffollows that

W= 0. t22)

To provq:the converse inequality, choose E ¢ I; for any

F c E such that 6(F) < w, and for any finite ¢ > 0, there is
£ _— ~ =

2

a measurable;§ ¢ F such that



by (8). 444* O
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0(F) > u(RG) + V(@) = £, 23)
by definition (12). We then have
WF) - 0(F) < uld) - v(e) + € <AV (E) + e 28)

The left inequality in (24) follows from (23); the right in<
equality is true by definition of A+,fon noting that G c E and
v(G) < 8(F) + ¢ < =, by (23).

Taking the supremum in (24) over such sets F, we obtain

—

ST - 0B < At(@m + e,

Since € is arbitfary, we obtain (22) with inequality sign

+ :\'

i <3
reversed. This establishes A (u - 8). The proof that
AT = (v - efﬁ;s similar. Hence (?0) is established.
Finally, (21) follo&s £rom fza;, 9.
A & e) + o=, ‘3

e

y s i

The results (20) are intuitLVely appeallng. Inf(u,v) may
be thought of as the mass dlscrlbutlon wh&eh B and v share in
commor . 3(20) then;states thag the Jordan decomposition operator
subtracts out this common par; from u and v, respectively. (One
should not jump to the concluéion, however, hat 4T, 0" have

nothing in common: ggg(x*,x‘) is not always 0. See belowgg
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It follows from (21) and (9) that

02 =12 ] o2 -1, 25)

o)
with equality if At or A7 is e—igma-finite,% respectively. =({25)
(in generai(.i;c)annct be strengthened ‘to equality: ?/ake A= { a},
u(a) = =, v(a) = 1))
Results (21) furnish alterghtive proofs for two preceding
theorems of importance: the ic};mpotency of J, and the equality
(18) for two pairs with the same Jordan decomposition. Taking

the latter first, assume (17);? with (A+,A") the common decompo=

sition, and let b, = _i_.gxg(ui,i}i), i=1, 2. Then

\§4x? By v, = (aF o+ 0,)+(A" + 62),a (" + el)+XA +0,) = v, + “2'
; K“}
269

by (21), which yields (18). As for idempotency, let (ul,vl) =

-w'o/ J(ue,ve) and (uy,v,) ”jﬁ“‘l'“l)‘ The hard thing to prove is
£ that Hy > Hyr Vg 2 Vg3 bj'ut,m by (21), we have
(Ulovl)‘ =Mf:!(u1 + 6, Vl + 08), 2%

Zerp / X where 6 = inf(u ,ve COngidering @ in (27) as a variable
measure, ‘one easily verif-iels that upper and lower variations
are both nonﬁincreasihg functions of 6, so that, indeed,

; 2
My £ Uy vy 2 Vo implying J = J.

.
o

————————

hmg«'7
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3

Exercises- ;
] M »«Qm S, :
\p A1 et 0*,A7) = J(u,v). Show that

@wa a‘t o= ggp(u.v) -V, th&t A o= sup(u,v) - u, and that

3 A+ + A‘;:ftggp(u.v) -;igﬁ(u,v)iix

' (Hint: start with (13)

i& @ii9 Let J9“1' l) = Jguz;v Y Show that the common value in
(18) is

" sup (uy ,v,) + inf(u,,v,) = §_nf(u1.v1)239up(u2.v2)-

o e = “ - o “/

A

o

(Hint: this follows easily from (21) and (13))\J
iﬁgffiki’/;gf;7 A final cluster of ideas centers on the concepts of Hahn
' decomposability and mutual singularity. These have already

been discussed in connection with signed measures, and we repeat

the definitions here for convenience.

(k| Definition: An ordered pair of measures (u,v) is Hahn

,iji decomposable iff universe set A can be split into two measurable
g,'

‘ ) ( pieces, £ and N, such that u(E) > v(E) for all measurable E & P,

o

And
4293 ¥ v(F) for all measurable F g N. The ordered pair (P,N)

is a Hahn;decomposition for (u,v).

| Definition: An ordered pair of measures (u,v) is mutually singular

a;f iff A can be split into two measurable pieces, P and N, such that
(D) = ] 2
' v(P) = 0 and u(N) = 0.
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& 'Iamieme&earwthat~mutual singularity implies Hahn

S

decomposability, since the pair (P,N) is a Hahn decomposition.

S i 2
~. ) Theorems: Let u, v be measures, withg(k+,x ) = J(u,v). Each of

% ¥

4 the following conditions implies gﬁe other two:

i . £ (i) (u,v) is Hahn deaompcsabl@;
g
(ii) (A+,A“) is Hahn decomposable;

& (1ii) a7y is mutually singﬁlar.
NP ;
5,T§§§:§i?rouf: {%) implies (ié&); Letf(PQN) be a Hahn decomposition for
¥\ (u,v). Then A" (P) = 0, since v < u on subsets of P; similarly,
Seg. A =o.

W g (iid) implies (ii)g clear.

3 i e a

’\{3- %‘ E;é) implies (i)} Since_gfis idempotent, (R+,A') is its own
aégif ;&djbrdan decomposition; henée (A+,l-) is mutuwally singular, by
| the argument showing tha§ (i) implies (iii). Let (P,N) split

A so that A”(g) = 0, A+§%) = 0., For any E ¢ P such that u(g) £ oy

we have

I | >A7(P) > V(E) - u(E). -

Hence v < u on subseté of P. A similar argument yields u < v

oncgkywwe now have a ?losed circle of implications, so these
three conditions arefequivalent. M0 e

i

fﬂ»ﬂaawéifawm_ We are interesﬁéd in conditions which guarantee Hahn

decomposabilitys
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-C;ir Theorem: Let u, v be measures. Any offthe following three
,ww} =% condltions implies that (u,v) is Hahn decomposable:
j (1) u is abcont:
Eﬁi) v is abcont;

T {11d) igf(u,v) is sié%a-finite.
&M

.gﬁr Proof: (1) Consider packings of sets E€I satisfying u(E) > v(E).

There—exists a maximal packing G/ of this sort —wﬁha% is, a
packing not properly contained #n any larger such packing.

(This inference requires the a§iom of choice, say in the form

of Zorn's 1emma§.
We show that G must be céuntable. Since y is abcont, there
exists a finite measure p with U << p. For each E € G, u(E) > o0,
s - S

hence p(E) > 0. The class of G-sets E on which p(E) > 1/n must

e AT

o g

be finite for each n = 1, 2,5..., since p is finite. G itself,
as the union of these classés, must be countable.

We may then write G = {?1' Ez, saske - FO¥ each"@, v(?m) < w;
hence, restricting everythiﬁg to E , 4 - v is an ordinary signed
% measure, and so has a Hahn decomposition P U N = E \

— We claim that (P A\P} is a Hahn decomposition fOr (u,v),

where

£ & o i p ALy

; 1o verify this, let F g P; we have

f 'H'?)A;t AL )
u(F nP) >v(FnP) 28)

e e

for each m; by summation, u(F) > v(F); thus u > v on P.

B
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]
!
Conversely, let F ¢ A\P H F may bes written in the form

y F=[F\(UGlu (Fn N u (Fnﬁz)u cos 299
\ We have ,
/ v(FnN)>u(FnN) 130)
] | S
P} for each m. Furthemore, we ;"have
V(F\UG) > u(F\UG) 3k
t\’“ For q\if (31) were ff'lse, we; could form a larger packing on which
u(E) > v:(g) by including t;he set F\UG; this contradicts the
) maximality of G. Adding (531) to the sum of (30), we obtain
.
N

u(F) > v(F) » 80 that v > u on A\P. This concludes the proof.

4\' /4/ (u) Same as (i), with ri:‘»les of u, v interchanged.

e

L S

N q f4liii) Let (A ), n =1, 2, ..., be a partition of universe set

_"i such that

o

inf(u,v) (A) < @,

~all n. For each n there is then a set F, & A, such that

(313
(3

u{?‘n) < ”} | * v(A!?\F?‘) £ o, £32)
W boi) . (
Y (32) ‘shows that, when on : restricted to F , or to
.A,‘\Fhf \F ry¥ - Vvis a s:iggned measure and thus has a Hahn decom--

positioxx. Let P be t;he union of the pieces _of the decomposié
tions on which u > v, and let N be the union of the pieces on

which v > u. Then (I},ﬁ) is a Hahn decomposition for (u,v) by
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__the argument of +28)}—above. [L{‘,ﬁﬁi
o = ,g% Exercise. Show that each 0£ the three premises in the

ol 2
preceding thecorem implies the following condition, and that -

this condition in turn implieg;taht (u,v) is Hahn decomposables
Theréaaxists»a set E ¢ Egsudh that u restfiated to E is :
abcont and v restricted to A\E is abcont.
/?a ‘For all we know to thia point, gngpair of measures might
be Hahn dgcompasable. The following counterexample scotches

this possibility.
# | Theorem: ~There exists a pair of measures (u,v) whéeh is not Hahn

s

_lli decomposable, and wh&ah, furthermore, is its own Jordan
decomposition. :
W

qw Proof: Let A be uncounhable, and let I consist of all countable

, subsets of A and their complements; split A into two uncountable
§

f - pleces, P and N (notg:that P, N are not measurable), and let

H, Vv be enumeration éeasure restricted to P, N‘”respectivaly.

™

%
Lok
" 4

That is, for E ¢ Z,‘if E N P is finite, then u(E) = number of

”/% points in E N P; otﬁerwise, H(E) = o; v is defined similarly,
; with N in place of ?. One easily checks that these are bona
{ fide measures.
L
§ Now suppose (E, A\E) were a Hahn decomposition for (u,v).
% / Either E or A\E mq%t be countable. If E is countable, then
\J/ P\E is nenégmpty;fchocsing a, € P\E, we have
\\rx Covlagl =0 < 1= ulal,
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so v > u is false on A\E, cantradiationé If A\E is countable,

then N N E is non-vempty; choosing a, egh n E, we have .

)

“{fo} =0 < 1= v?@Ql,

so u > v is false on E, contradietioné. Hence there is no Hahn
decomposition,

Jﬂémextgklet (x*,x”) = J(u,v), apd}let E be a countable set.
v(E n 2) = 0, hence

. (31:33)
A(E) 2u(ENP) ~v(ENP) = u(E). <

Also, P\E is infiniteﬁfﬁénce centaihs an infinite countable set

F. Y(F) = 0, so that
P ) s

4 ‘ (34,%d)
AT(A\E) > u(F) = v(F) = =, Ry
Co ik g ' 2 1
(33) and (34) show that A" > u, so these measures are equal.

A similar argument yields A~ = v. Thus (u,v) is its own Jordan

decomposition. ,LH”‘M e |

!

For this counterexample, one easily verifies that inf (u,v)

: o }
(€7 | ; I_akso
()f;/ﬁf takes the value 0 on countable sets, an
o

d . the value ® on their
complements. Thus inf(A*.A“) is not always 0.

Theorem: Let u, v be measures. If the pair (u,v) is mutually

singular, then (u,v) is its own Jordan decomposition.

“Proof: Let (P,N) be a measurable partition of A such that -

) Swmwnlmren
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Let ()\*,X") = J(u,v). For any E ¢ I, we have V(E n_P) =0, so
) Af(g) >2u(ENP) ~v(EnP) =u(EnP) = u(,

Hence AT > ¥, 80 these are equal. A similar argument yields

A" = v, This-coneludes—the-proof. e @

¥ The counterexample above shows that the converse of this

theorem does not always hold.

]

TT‘“ Exercises:

2"

-J.(,t, §

_—% (&) show that the following condition is necessary and
sufficient for (u,v) to be‘_»‘ its own Jordan decomposition?d }’
e),

~For any E ¢ L, if (u,v) restricted to E is Hahn decomposabl

then (u,v) restricted to _g ié mutually singular,

L3 ﬁ:ﬂ Let (u,v) be its og;m Jordan decomposition., Show that

gy @ = inf(u,v) can take oﬁly the values 0 and «,
= (Hint: Use (21) to deduce that 260 iqm )
— This last exercise may be compared with#the result:
“inf(u,v) = 0 iff (u,v) is mutually singular. For a proof see @:ﬁ»
{ p- oo~
-page . ———below,
f\ 3.2. ?seudomeasuresf

From now on a.].l;" measures will be -s-igma-vfinite, unless
explicitly noted otl;erwise. All measures are on the same space,
(A,Z). We shal&-;be concerned with ordered pairs} ‘(u,v) », of such
measures, Among thésa pairs, the enes—that-are ﬁutually
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singular will play a key réle. E‘hg"f following theorem gives

some characterizations of these gﬂirs.

“# Theorem: Let (u,v) be a pair of &m«-ﬁinite measures,, with

;

Jordan decomposition ot WA ). If (u,v) has any of the following

‘properties, then it has all ef them:
gl S 28%
gf;.r (i) (u,v) is mutually singular;

(ii) (u,v) ‘is its own Jordan decomposition;

(iii) inf(u,v) = 0;

(i) A% =

(v) A" = v;
(vi) AT +27 =y + vz
| wii) AY + 27 = .g}js:(u F
; ‘3( (Y}ﬁl) %‘ v = sup{u,v).
i 1 Wm L S
P | Frmf: (1) implies (ii): already proved.
o) W /(i) implies (iv) and (v)o obvious.
0\ 4 (iv) implies (wi)s

‘f;*+x"u_u+3\"-v+k+nv+/;ﬁ. )

Q13 ) e T
(The middle equality is from ¥I33( “ - ©
(v) im glies (vi)i \\ N C\.\’g'
¥, » T an w}\"'-!-vuk"al-u#v&-uf,
(i) implies (vii) and (vidi)s
'L : | i

AR 5 (3.3.1)
\ AT+ A Su+ ) o= sup(uv) StV | 1)
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uia@ﬂéﬁwiﬁwv4

(The equality is from (+3) above; the right-hand inequality

follows from the éefiniticn of\sup(u,v});\ Since the two
extreme expressions in (1) arejequal, the middle expressions

must equal each of them; th13j§ields (vii) and (viii).

As i easily verified, the following

4v11) implies (vx),
equality holds in general: f
g ;{\{3‘:‘&!‘3 5
w+ v o= sup(u,v) + inf(u,v). 2}
By assumption, the right side of (2) equals
€3)

AV 4T+ dng(u,v) =t 4y = sup(u,v) = At e -

///// (151) obseclige:d,
e left equality in {3) arises from €23) abeveﬁ the middle

\7>¥h (111%) o bseelios L.

R (i) implies (idi)

+3) ahﬁvi?jd} ané {3) together yield (vi).

from
A may be split into P, N such that u(N) = 0,

v(P) = 0; hence

3°‘i&f(u,v)(a) < u(N) + v(P) = 0.

V(ic“
% (iii)_implies 4u&§§§ This follows at once from (2).
Y so far we havé made no use of the séémaufiniteness assump=
This

[ _
tion. We now use it to show that (viii) implies (i).

establishes a closed circle of implieatians,rand shows that

all eight propartias are logically equivalent.
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?PT {v111) implies (1)’ By s&gma-finiteness, (u,v) has a Hahn

Yﬁ

: decumposition (P,N)._ Let G be a countable measurable partition

of P such that u(G) <'» for each G e 6. Since U > v on every

subset of_p, we have

© u(G) = sup(u,v) (6) = u(G) + v(E),.

fﬂimplying v(G) = 0. This is true;for each such G, so that
V(P) = 0. A similar argument yields u(N) = 0. Thus (u,v) is
mutually singular._]!Lé"tx %/ ‘ |

%M

o Now consider the set [| o£ all ordered pairs of Bégma
finite measures (u,v) on (A.t). Two such pairs are said to be

equivalent iff they have the same Jordan decomposition. This

equivalence relation determines a partition Y of M: n§§3¥é,
each element Py of ¥ is the set consisting of all pairs having

some particular (A+,A") as their common Jordan decomposition.

@Q*"'Definitioﬁgi Each element ¢ € ¥ is called a pseudomeasure. The

common Jordan decomposition:of all members of ¢ is called the

Jordan form of pseudomeasure Y, and will usually be written as

(w+,w“); the measures7w+, Vv are calle&ﬂ respecti#eiy, the

pifz]

upper and lower variations of ¢. P itself is the space of &
- psr

pseudomeasures over (A,I).

Syanarees
B oy -
>

i Theorem: Let § be a pseudomeasure, and let A be split into two

measurable sets P; N. Bach of the following conditions implies
the other two:
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5 }é (i) }(P,N) is a Hahn decomposition fcr every pair of measures
{im,v) belonging to ¢3

-~

= (ii) ) (P,N) is a Hahn deaomposition ﬁor at 1east one pair

(u,v) belonging to ¥y

—

L —

“ﬁ(u&)ﬁs&)avsm)na.

RS- T

5éra ¢ (i) implies (ii): oObvious, since § is not empty.

qur (11) implies (111L% M 2>von subs@ta of P, hence v (P) = 0;

V > 1 on subsets of N, hence w (N) = 0,

e

Wt !.cﬁmm(lll) implies (i)g Suppose (i) is false, so that there is a

Qg;:x pair (u,v) € ¢ and a éet_g‘such that, say, § c P and u(E) < v(g).
;Eﬁ) But then '

¥ (B) 2 V(E) = u(E) > 0,

so that (iii) is false. If, instead, Ec N and v(E) < u(E),
then |

W@)>u@)-v@)>m

snan

so that (iii) is again false.

AT

= ;
/g"“” This establishes a closed circle of implications, 8o the
"

three conditions are 1oqica11y equivalent. 1}4

M»«wm e

gu Definition: (P,N) is a Hahn déccmpasitiun for pseudomeasure P iff

p' any (hence all) of the cenditioas above are satisfied.

Mgmgﬁwmﬂ?f“
| Bvery ?seuéam@asure has a Hahn decomposition, since any

i

pair of a&gnn—finite measur&a is Hahn decomposable.
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The basic relations between pseu&amaasures and their

Jardan farms are spelled out in the following results.
gﬁgwr,;mheoram: The mapping w&éeh associétas each pseudomeasure with

iggs Jordan form establishes a lml correspondence between ? and

tha set of mutually singular g@éma«finita pairs (“'”)'i

£

JoE

T 3 ~ The Jordan form of ¥ balbngs to Y. In fact, V¥ aansists
0{?: of all pairs of measures of the form (w + 0, w + 0), where ©

rangas over the seﬁ of u&gna~finite measures.

Proof: -Obviously, different pseudomeasures have different Joxrdan

forms, and vice versa, so we have-to show that the set of

fﬁ?:*3 Joxrdan forms (w*,w") coincides with the set of mutually singular

_Lg" measures., If (u,v) is & Jordan form, thentxby t§§ preceding
theoram, (u,v) is muﬁually singular. Caneésely, if (u,v) is
mutually singular, then it is its own Jordan decomposition.

i Hence it is the Jcrdan form of the pseudomeasure to which it

% itself be&ﬁngs.

| Let (u,v) belong to pseudomeasure §, so that (¢ )
= J(u,v). But then, byl%aié-éba#anfwa have

"uayb + inf(u,v), w-w + inf(u,v),

so that (u,v) is indeed of the form (y* + 8, v~ + 0). Con&
versely, let (u.vi\he of this form, and let {A*,A") = J(u,v).
Choose E ¢ I, and let F ¢ E satisfy: P(F) + 6(F) < «; then

S vTE 2 vtE >t o+ el - TR 4+ e(m
\“/“'ﬁ!’ - ok i a3 = i’
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o prove the reverse inequality,’ let (P,N) split A so that

260

Taking the supremum over such sets F, we obtain

——

W@ >t E.

¢~(P) w\?*(N) = 0, and let G befa countable partition of A
such that 0(G) < =,

all G ¢ 6. For any such G we have QQQ Q&$*
] W 0o

waﬁ

w(Enenmao@ana%emnanvww / “U
{8
80 that g
\‘9*\5ﬁ% 52,*

A'(En e |2 v ?) +0ENGCN P .

2 [W(ENnGn P) 4-' 6(ENn Gn P)]

=v'@Enenp =y Ena.

Adding these inequalities over all G ¢ G, we obtain .
A > vt

thus AY = ¢*. A similar argument establishes A~ = y~. It
follows that (u,v) belongs to V. J+1&LM5

Thus a pseudomeasqie is a collection of pairs of measures,
among which is one speéial "canonical® pair, the Jordan form.
This is the unique paiﬁjzﬁieh is mutually singular, whieh is
its own decomposition;jﬁhich has the smallest left component
among all the pairs,kéﬁa~ﬂiso the smallest right component,

{(Proof: Let (u,v) not be the Jcrdan‘form, hence not mutually
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0 singular, hence At # u, A~ # wm The Jordan form may be
0 recovered from any pair (u,v) by subtracting out their "common
()g XO> part® inf(p,v) from each of them.

The following result eaéablish%a ‘a very useful criterion

for equivalence.

’5}1 \ THeoxem: (equiVaience ;g.heomm) ) Let Ugr Vyr Wgr Vg be auté-t-
{ *@.,; finite measures. (ul.vl) is equivalent to (u,,v,) iff

)

{,«g'

» mroaf : Half of this theorem has already been proved: (4) is

implied by J(uy,vy) = J(uz.vz),&]éﬁ-(law
Conversely, let é&' hold. Let G; be a countable partition
of A such that vi(Gi)_? « for all G, € ré‘/i, i=1, 2, Letting
z’ﬂ;* Gys G, be sets ﬁ'am‘}hase respective partitions, we note that
vy and \)2 are both finite on subsets of ,G’l n 532, hénc:e may be
subtracted from bctﬁ sides of (—gs)) on such sets. This justifies

the middle equality in the following chain. ILet (Ai"'. Ai“)

- Q‘(ui.vi), i’a 1, 2, and choose E ¢ I. Then

+ f
Ay (B n G n G)

supluy (F) = v (M) |Fc (En G n Gyl

ST

e sup{ué (E) - \’2(3’-") Ir e (En G n ,,,62)} )
B e “‘—_““/ !

=1, (EN G N Gy).
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i? Adﬁlng over all Gl é Gl' all Gz € 92, we obtain kl (E) = 12 (B).

- s

i
|
f
g ) similar argument yields Al = 32 . Hence (“1'V1) and
7“ [ (uysv,) are equivalent. W fg"

Exarcise. Show that this result remains true if the s&gma

finiteness assumption is weakened to: inf(ui,vi) is s&gma
finite for i_= i, 2,

\QEQ P ; We now make a few notatianal conventicns. Pairs (u,v)

75 ny”ﬁjwill generally be used to den@te the pseudomeasures to which

gxf~ they belong., Equivalence batwean pairs will be denoted by the
equality sign. Thua'(ul;VI? ”1ﬁ“2?“2) does not mean that
Uy = Ugs Vg = Vo3 it means ihat these pairs belong to the same
pseudomeasure, so that onl§ (4) is true. Similarly, we write
(u,v) = ¥ to indicate thaﬁ:{u,v) belongs to pseudomeasure V.

Sigma-finite measures and signed measures may now be

thought of as special kinﬂs of pseudomeasures. ’Specifically,
the measure u may be identifiea with the pseudomeasure (u,o).
(Here 0 is the identical;y zero measure). If p is aﬂaégma

finite signed measure, @ét (u*,u") be its ordinary Jordan

decomposition. We now iéentify # with the pseudomeasure
o Y

Pseudoneasure 3 isfbcunéad iff both w* and y are bounded
measures. The class oé bounded pseuﬁomaasures>may be identified
with the class of beunéed signed measures, Next consider the

case where exactly one of W* and y is infinite. The class of

these pseudomeasures may be identified with the class of infinite
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& :

(sigma~finite) signed measures. Finally, we have the case

- where both w+ and §y are infinite measures. These "proper"
pseudomeasures are new kinds of entitiés,:and provide the rationale

for this whole development.

The Algebra of Pseudomeasures

; ~
We now define various algebraic operations on pseudoé/
measures. The result we are aimingfat'is that, under various
. natural definitions, the set of al£ pseudomeasures, ¥, becomes

a (real) vector space. First we define addition.
O

‘ii‘%§ Definition: The sum of the two pseﬁdomeasures‘(ul,vl) and (uz,vz)
g

mem*»ﬂis the pseudomeasure (“1 + Uy, “l + vz).

e This definition is not quite~as straightforward as it
appears,:because the pairs (u,v{fstandugot for themselves but
for the péaudomeasures to which;they belong. For this definie
tion to be consistent, the pseuéameasure represented by the sum
must not depend on the particu%ﬁr pairs chosen for the summands.
That-is, if another two pairst;(ui,vi) and (ué,vé) are 3
respectively equivalent to (ulgvl) and (uz,vz), then (ui + “é!
v{ + vj) must be equivalent to (uy + uys vy + v,). This fact,
is, however, an easy consequence of the equivalence criterion
just provedﬁ and is left as an exsreise. (Note also that the
sum of two stgma-finite measures is sﬁgna—finita.)

We now want to verify that the properties of vector spaces,

insofar as they refer to addition, are satisfied by this definif
tion, It is obvious that *1 + Yy = wz + Wx' and that
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vy + (@2 + wa) = (wl + wz) + V3. We now need the concepts of

. zexo and negation.

TSR,

T

g

k%i | Definition: The zero pseudomeasure is the one whose Jordan form

g

') is (0,0).

—====""" phis is the pair both of whose members are the identically
zero measure. We shaldl denote this pseudomeasure simply by 0,
if no confusion is pesaible. From the equivalence criterion it
is immediate that the-&%gmawfinite pair (u,v) belongs to this

pseudemeasure iff py = v,
Ty, \

‘ngm Definition: The negation of psauéomaasure (u,v) is pseudomeasure

by (Vou).

Once again this definition must be checked for consistency:

Fhe negation of an aquivalant:pair must be equivalent to the
negation of the original paiﬁ. This follows immediately from

the equivalence criterion. ﬁegation will be denoted as usual

by a minus sign. Subtracti&h is defined as follows.

4,4; —) Definition: ‘1}1 - t})z = q;l + (~¢2) ¥
,;;3 Bigarmad |
™ These definitions again satisfy the conditions for a

vector space: 'y + 0 = Ebr any pseudomeasure Y, and -y is the

{%:\ unique additive inverse of V(¥ + (=9) = 0,

O ‘\\\f;y Next we define scalar multiplication.
.

3
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bt Qﬁgﬁinefinitian The product of the real number b and the pseudof

measure (u,v) is the pseudomeasure (bu; bv) if b > O, and is

{%A o the pseudomeasure ((~b)v, (=b)u) if b/< 0,

Here by is, of-course, the maagnre;Qﬁigh assigns the
value b-u(E) to the measurable set é, Note that measures are
always multiplied by ne@ﬁnegative ﬁumbars, 8o that they remain
measures. Again, a proof of consistency is required for this
operation, and the proof is trivial. The second part of this
definition could have been framea in terms of the first part as
follows: #f,é < 0, then by = (=b) (~}).

The remaining axioms for a vector space may now be verified
routinelys For real numbersmpl} Ez,gand pseudomeasures wl, @2,
by (b + 93) = Dbyyy + byys (g + by)dy = byvy + bovys
b, (byyy) = (byby)¥ys 1% = ¥;. The only minor complications
arise with the second equality, where the various sign combinaZ
tions for_gl,>§25}and bl + b, must be examined, Details are

QA....’.Z_
omitted. To summarizef 2< .-

gy

%¥¥»3“wheorem: Under the foregoing definitions the set of all pseudo?

;”j?j measures, ¥, is a (real) vector space.
A =N :
/
b,

#ww““wA#th As we discussed in;u;égﬂéha set of bounded signed measures
is a vector space. This pxéparty is lost for the larger set of
s&éﬁaufinite signed measureéibecause addition sometimes leads
to the meaningless expressfon.w - ®, and is therefore not well<™
defined for certain pairs.¥:What we ﬁava done, in effect, is [

embed this set in a still lérger set, and extend the domains of
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‘addition and scalar multiplication in such gfway that the
vector space property is restored. n

Note that subtraction of measures is compatible with

subtraction of pseudomeasures wherever both operations apply.
To see this, letru > v be a&é&a—finite mgasurésjﬂuw- vV was
defined in the preceding section by thajielation

Sveh

(= v, 0) = J(u,v) sy | 45)

New, identifying u and v with the pseudomeasures (u,0), (v,0),.
respectively, and using the new definition of subtraction,'wé

obtain
(u,0) = (v,0) = (u,0) + (0,v) = (u,v) = (u"'vlﬂ)i,-_

This last equality follows from (%), or from the equivalence

theoren (4) upon noting that

Sou+ 0= (u=v) + v, Y

Thus u = v in the pseudomeasure sense eguals the pseudomeasure
(4=v,0), which may be identified with the measure u =~ v,
subtraction being defined as‘in (5)., Neither subtraction concept
may be subsumed under the otﬁ;;ir;lhee their domains of
definition differ.

To illustrate these conbepts, consider the case of a
finite-sig;a~field I. Except for the trivial case A= ¢, I is
generated by a finite partition of universe set A into nqaigmyty

sets, say_gl....cgn. We claim that the space of pseudomeasures
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with the usual definitions of addition and séalar multiplication.
To see this, note first that a measure onggg,Z) is completely
determined by its values on the paxtitiog elements A;,...,A .
Thus measures may be "coded" by g~tup1ep;af nan}hegative %
numbers. This establishes a 1:1 corraéponﬁenca between the set
of Gsig;a -) finite measures cn (A E) and the nonsnegative orthant
of n-space. Furthermore, this corxespandanaa extends in an
obvious way to a 1rl1 relation between the set of (ségma~) finite
signed measures and all of nmspaee. If we identify the finite
signed measure A with the set of all pairs of finite measures
(u,v) such that gy - v = A, ene*easiiy checks that this is
precisely the aperatian of gaghering these pairs into pseudo%

measure classes. The correspondence
- pseudomeasures <+ signéd measures ++ n-tuples

is then wasily verified tq;be an isomorphism among vector
spaces, in the sense thatfit is preserved under addition and
scalar multiplication ingﬁhe respective systems.

Theie would be littie‘paint in constructing the elaborate
machinery of pseudameasure theory if one were dealing only with
finite sﬁgma—fields. The point is, of course, that these
concepts carry over togarbitrary measurable spaces (A,Z),

yielding results that are far from trivial.
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Integration with Pseudomeasures

Just as the concept of addition was extended above with
the use of pseudomeasures, so will the concept of integration
now be extended. Recall that everything is defined on the

fixed measurable space (3,I).
if;;H Definition: ILet f_be a real-valued measurable function. The

(indefinite) integral of f with respect to the pseudomeasure

(u,v) is the pseudomeasure
(I £ du+ [ £ dv, f £ du + [ £ \é&) $ +6)
N AT A - L - 4
N »

(26)'15 to be understood as follows. First of-all, £* ana

£~ are the nonrnegative functions given by

s

_f_*(it) = max (£ (a), 0):&‘}{*(_&}) = If}g%(‘;_fu(@, 0)

Hext, the four integrals in (6) are orainary indefinite
integrals. The indefinite integral df a nan;negative real-"

valued function with respect to a &igma~finite maasure is itself

&)

a &qgma~£inite measure. Hence aé) is a pair of s&gmamfinite
measures, and as such it represants a pseudomeasure.

A consistency gquestion again arises with respect to this
&efinitian. Namely, if a pair (u',v') equivalent to (u,v) is

suﬁstituted in (6), will the resulting pair be equivalent to

the origimal (6)? The answe: is yes, and the proof is again

Py

an easy consequence of the equivalence criterion, together with
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the elementary integration rule,

e

{ ¥
! by deolie
% o

Iﬁﬁ,éxl f,?A@*2 " [Aﬁaﬁ‘kl  pto, R
Details are left as an exercise. ’
Note that (6) is well-defined for any real-valued measurable
function and any pseudomeasure. In particular, it is valid for
any (a*gma«finite} signed measure, interpreted as a pseudo@
measure. This contrasts with the usual definition, which somé@
times leads to the meaningless expression o - ®», From our point
of view, what happens is that the operation of ind&ﬁ%ﬁite
integration sometimes leads out of the class of sigﬁéd measures
into the essentially wider realm of pseudomeasures} ﬁust as
addition sometimes does., It isweas&&y~seen that, when the
ordinary indafinite integral is well-defined (and the integrating

a-finite), it yields a signed measure

signed measure (is

equivalent to Thus our dafiniticn ﬁﬂﬁxkslﬂu&%d&}
extend the ordinary definition. ‘ :

We shall use the notation |
~ [ £f d(u,v) or [\gxdwfa
,t\" ‘\ ," y 3

}’ifer integration with respect to a pséndomeasure.

Most of the elementary theoremé concerning integrals
generalize to pseudomeasure integrals. We shedl consider,a few
of these theorems involving equalities ln thmw dﬂctlﬂﬂ

ATheorems involving inequalities will be discussed later).
,,"JT /17
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A
’ WM 25

%?ﬁwLThedrem: Let £ be a real-valued measurable function, and let

wl and wz be pseudomeasures. Then

: ‘ (3:3.%)
f £ dy, + ! £ dy, = I fa@(‘f'i + Y)d +8)

Proof: Choose arbitrary members (“i'“i) of wi (i =1, 2}; then
1r-:g
iﬁ“l + Ugy Vg *+ “2) belangs to wl A ¢2. Expanding the twq.aides

of (aftg;th these according to the rule {€), the left (right)

/,?E;ﬂ side becomes a pair, each measure of which is the sum of four
i /
¥ °
&m;// (twfl) indefinite integrals. Eguality of these pairs is
I established by applying the rule (7} four timas,‘fax the nanﬁ‘

| negative functions g~ f or g = f , combined with the measures

Ay i = “i (i =1, 2), or A by 0 (i = 1, 2§, l}+ﬁ§“ sy |

»ﬂ”’ﬂﬂw

|~ ?W Theorem: Let £ and 9 be xaal-valuad measurable functions, and ¢

N a psaadameasnre. Then

(& (3.2.9)
ks Do s fibtason. .-
3 éﬁ?”_yrmofz A rule of the same form asgﬂ9) holds for ordinary
P indefinite integrals with two qéﬁ&nagative functions and a
gtzif measure. Let (u,v) be an arbﬁ%raxy member of ¥, and expand
\ both sides of (9) by the ru;é {6). The left side of (9)

becomes
5

R UJﬁ +g")au + [\ (£ +»i3")§i}. I (€7 + g7)au + [ﬂ}t:g* s g‘*;\;ﬁ{l,

i
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\ while the right side becomes a similar pair with (f + g)
% placa of (ﬁ + g ), and (f + g) in place of (f - 9 il

—~ Testing by the(équivalenae criterion (42, we find that thesej;
?1g)5 two pairs aré]equivalant if the fcl}éwing equation holds.,
; rd .

f“‘w

é Feg’s s nt sT g0, S
But the validity of (19} follows at once from the fagﬁﬁthat

® . - » : £ . .
EE SRR SRR A SR ]

,wfﬂﬂﬁfﬁ' Theofamz Let f he a real-valued measurable functian, Vv a pseudo~

measure, and b, ¢ real numbers. Then

[ woen = %S,I,£W§W~x e s

#

A rule of the same form as (11{géolds for ordinary
integrals, andﬁ choosing an arbitra§§ member (u,v) of ¢,
fxﬁx expansion of both sides of {(11) byfiulﬁ {6) yields a routine
I verification, (The four possibla sign combinations of b, ¢ must
be dealt with separately.) LPY£;7'4‘V

In explanation of the fqllawiﬁg theorem, note that since
fg §¢ is a pseudomeasure, it makes perfectly good sense to
integrate another fnneticn £ with. respeet to it. The left side
of (i12) represents the tasultinq i#erated integral, and (12)

o states that this can actually be expressed by a single integral.

bmamea, S
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*ﬁﬁ'{ATheoram: ‘(gterated integral theorem) K Let f and g be real-valued

(/ﬁ

measurable functions, and ¢ a pseudomeasure. Then

[fﬂU gdﬂ » Lf.gé‘i’ﬁ, RN

#ﬂwaﬁfﬁi§r°°f’ A rule of the same form holds for ordinary integrals for

two nontnegative functions and a measure. Choosing an arbitrary

pair (u,v) belonging to y, we first expand f;gﬁdw by (6), and

then expand the integral of £ by this pair, again by (6). The

result is a pair, the left measure of which is

i & )

= &
(2
L e h
\ >

! +,+ Qu + [,g"'gﬁmgv * I o-«f“g*mé.“ * Iffg“}\ du,, €1:3) :
and the right measure of which is obtained:from (13) by switching
u and v. The equality of this pair with the expansion of
{£:§f§(u,v) follows from the fact that ;

had i (L. g 1)
b '

(£)* = £*9* + £7¢7, [and|(£9)” #fg*g* + g1g+?\ (%1)

{The validity of (14) is established $y considering the four

possible sign combinations of £, g séparatelﬂyﬁ L}fﬁbgjgf

m,w”’ﬂwﬂw?i:“ These four theorems all follow the same pattern. The

i

equalities (8), (9), (i1), (12) afé already known to hold for
ordinary integrals with nonsnegative functions and measures,
and this fact is used to show tﬁat the expansions of the

corresponding pseudomeasure in@égrals are eqguivalent.
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Let ] be the function everywhere equal to l. The
following is easily verified:

f 1 dy = y. / 428).
T
[T These results céncarniﬁg integrals & 8), (9), gIé), and

{15) o may be summarized in algebraic terms@

- Let F be the set of all real-valued measurable functions
on (A E).E{F is a ”__g_in the algebraic sense, nnder pointwise
addition and mul;iplicaticn. In fact it is a commutative ring

: unit
with unity,-the element being 1 Define addition on the space

of pseudomaasures ? as abQVe: define “scalar multiplication”, n,h

T4

as a mapping from F x ¥ to ¥, aéna%§n\ wE

51

——

.f/ (G
/ 2

’Than tﬁéae.r§sults, Eégeﬁhég with thé preceding ones, state that
¥ is a (unitary).module over the ring‘? with respect to these
aperatiens§/f Y as a real vector spaee may -then be thought of

as a module over the subring of aanstant functions if we
identify the real number ¢ with the const*nt_function £ = c,

We will sometimes need the Jordan form of an integral.

%%j%J This is easily foundg

“\\X

Cﬁiﬁgqj : Theexem: Let (¢ ,w ) be the Jordan form of pseudomeasure Y, and
Qg& let fa,A + reals be measunabla. Then

oot [ e oam -4 TR, e

et [fach [t + [T - e
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is the Jordan form of I £ ay.

/w”ﬁﬁljf Proof: It is clear that the pair (1¢) belongs to pseudomeasure
fhgkqw. The only thing left to prove is that (16) is mutually
singular. Split A intch, N so that w"S?) = ¢*(N) = 0, Then

the two left integrals in (16) are zero on the set

(ntalz@ > 03 u é:a (alf(a) < {})u

.xjf;g while the two right integrals ‘in—(¥6) are zero on the

e

domplementary set

@n {a|£(a) > 0}) u 60 {a]£(a) < 9. Uﬁ

This-completes_the pro@ﬁi.LPF”

e

fﬂnwﬂq$:ﬁ Definition: The total variation of‘pseudomqgéure Yy is the measure

' \ e -
D NN

"~ PORE

This is a direct generalization of thg;sama concept for signed

measures, We shall denote the totalj#ariation by |v].

£
LA
A

\Nexﬁf recall that, if u and yfare two measures, p is said’

to be absolutely continuous withﬁiespect to v iff, for any
’é" V:
measurable set E, if v(E) = 0, then u(E) = 0. The notation for

this is¢ p << v. We now extend this concept to pseudomeasures,

Definition: Let wl and wz be péeudemeasures. wl is absolutely

continuous with respect to y, iff lwll << ]wzl.

[T This is welildefined and not circular, because lel and

Iwzl are ordinary measures, The same notation will be used:r
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¥y << ¥, i
~ We end thisﬂséétien with two generalizations of well~known

theorems,
B

i%é* . Theorem: Letyf be a real-valued measurable function, and ¢ a

8y pseudomeasure, Then
*@M;
U fhaapf = [ 121,091,

““ﬂwwwwwm:r———(ﬂere lﬁl = max(f CT}), the absolute value’ af f. The
expression on the right is an ordinary indefinita integral, and
the claim is that it equals the total variation of the pseudo*
measure f £, dw).

o C diacid ;

cg& Proof: Since (16) is the Jordan form of [/ f£ dw, the total
fﬁﬁf? variation |/ £ ap| is the sum of the four integrals in (16),
which is ; :
f (£" + f“){\dwﬁ‘ +97) = [;!flidhﬁ!. Ww

Wﬁwwﬁg Theorems ?Radon—Nikodym theorem for pseuéemsasures}? Let wl and

¥, be pseudomeasures. “fhere exists a real-valued measurable

function f such that wl - [ £, dwz iff wl << wz.

E be a measurable set such that l&2[(§) = (). Hence w2+(§) = 0

and ¥, (E) = 0. We have proved -above that (16) is the Jordan

g
yyﬁfgﬂw;oofs The "only if" part is simpla@@;iet ¥y =/ £,dy,, and let
i form for an integral /, £ dy.

,

Since both measures in (1i€) clearly

st

equal zero at E for ¢ = wz, we have ¢1+£§) = wl“(E) = 0, so that

[N——

lWllgg) = 0, This proves that wlAk‘ ¥y
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i Canersaly, assume ¥; << §,, so that ]wll << lwzl These
g
are both ségmamfinita measures, henee, by the crdinary gAden-
Nikodym thearam, there gxists a nonsnegative real-valued
measurable function g such that !wll =/ gmdlwzl

> Now let (P 'Ni) be a Hahn deccmposition for ¢i ({i=1, 2),

and define the functioa f as follows.
f(a) = g(a) if a€ (P n Py) U (N, NNy,

£(a) = ~g(a) if ac (pnN,) U (N N ?z)r :

Expanding the integral in the form (16) for ¢ = by, we wikl

show that the pair of meapures in (16) is, in fgot, (&;*, wi').
It suffices to prove this equality for maasurabie subsets of
aach of the four sets (Py n Pg), (N, n Nz), (Pl n Nz), (N NPyl
fﬂf, since these partition A, equality for any measurable set

follows by summation. We will carry out the analysis for

‘?1 N N,, the argument for the other three sets being similar.

Sincél&i’(?l) = 0 and ¢," () = 0, it follows that |y = y,*
and ]wzl = WZ‘LYRQ“ all measures are restricted to P, n NZ‘
Also, frum“132$*_f is nonfpositive on P, N,, so that f

and f = g on this set. Hence, restricted to Pl n Nz, the four
integrals in 6393 (with ¢ = wz} reduce to (0 + f g dwz E?b + 0). 4
Now wl “,E§°n Py N N,, while wl = l&ll = f g, dlwzl = f W9 dwz;]

on P1 n Nz' proving equality. ¥+f¥£Jj'
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Applications of Pseudomeasures

Having formally introduced pseudomeasures, «%gééﬁs considér
some of the ways they can be used. A number of the follawing
examples have already been mentioned, but we can now give~a
more coherent é&auntsinﬁf@f“thﬁm« We.shell assume that all
measures discussed are s&gma-finite.‘

Let u and v be measures over Spaceisﬂg,asganiverse set, :
with the intexpretatioﬁxf u(E) = gross érodudtién'of'a certain {cthQ‘
resource in region sgkbg§} = gross conaumgﬁion of that resource <
in_§. If both measures are infinite, thé& cannot be subtracted
to yield net production.: We can, hdweVér, represent nat'prcducg

tion by the pseudomeasure (u,v). Wh;t‘can be done with this

representation?

Consider first aﬁ:ﬁt& the thdanvform (A*,2") of this
pseudamaéaure. with a Hahn deccm§osition (P,ﬁ). We know that
4 > v when both are restricted to P, and v > u when both are

restricted to'ﬁf Thus (E,N) sPIits Spaee into the region of net
production and the region qf net consumption, and 3" b give
these respective "net" megéures. ‘When these pseudomeasures

reduce to ordinary measures or signed measures (which occurs

when AT and A™ are not both infinite) they do so in an intuitively
appealing way. for ex&mple, suppose production is everywhere 3
times consumption. The pseudomeasure (3v,y) has the Jordan form

(2v,0), which is the ordinary measure 2v, and states that net

production is 2 times consumption.
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Problems involving infinite "gross" measures often arise
when the horizon is unlimited: the infinite plane of location
theory with unlimited space horizon, or economic development
programs with unlimited time horizoﬁ. In such situations it is
convenient (though not usually essential) to frame th@ﬁﬁrcblem
in the farm{{%“find the Optimal pseudomeasure such:ghat vos®

‘We have just discussed one broad category ogV;pplication
for pseudomeasures: the representation of physical situations.
Another, perhaps more impartant, application is to the
representation of preferences, Consider, iemwexamp&a4 an
economic development prcgtam with infinite horizon, Typically,

one represents the "payoff" from a policyﬁ? by an integral of the

form
|&2— 2“” S\p {\3_’2 A
IO fiwati s, a7

where f(p,t), for example, may be determined by total consumpél
tion under policy P at time t. One chooses the attainable
policy wh%¢h maximizes (17), There are two difficulties with
an objective function of the form (17). First, suppose the value
+» can be attained with several policies, Are these to be coﬁa
s}?ered equally good?' Simple examples suggest otherwises

—lgy;%ose-tha& policies p and p are such that £(p' ,h) > £(p”,t)
for all t, bu£2§hat both policies give the value + in (17).
Intuitively, cne would be inclined to say that p' is the better
policy. This means that (17) does not properly represent the
structure of pfefereneesra*kéﬁﬁ—apfez_limitv
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The second difficulty appears to be even more trcublesame.
What abcut feasible policies for which (17) is not well- '
defined-w khaﬁ—iaﬁ\where its evaluation leads to the maaningless
exprassian ® = ®, These policies would simply be incomparable
with others under the ebjective function (i7). Yet in many
cases simple intuition does suggest that some of these policies
are better thaﬁ others. u-ﬁaiwa&aapke. when they are relatad as
p and ? above, Thus again (17) does not praperly ‘represent

the strueture of preferences.
- ,(J,,a h@«&»

(17) is an integral ovar‘fima. But the same problems can

arise with integrals over Space, at.SpacenTimé; or abstract

qgacaa. C
MJ < Axa thasa difficulties seriaus? One can of course frame
models whiah avoid tham, and insure that all integrals {(17)
wh&eh arise are well~-defined and finite. "(This is done in
practice by trﬁncaﬁinq at a finite hqxizcn, introducing time=
discounts, etc.) But theﬁeArastricgions prevent cné from
coming to grips with many significant problems. Several of
these arise in location theory and will be taken up later in.
this-book, We shail mention cnelar two others here.

Consider the problem of glebal weltare maximization., We

adopt a terminology and ycint of view wh&eh is currently out of

ISR

fashion, Suppose

wanta to maximize the balance of total
"pleasure"” over total “"pain® in the world. Both of the fore<€

going difficulties may arise. Because the time horizon is

infinite, all integrals may diverge to +® no matter what policy
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is followed. (A pessimist would maintain that all integrals

diverge to ~®, which creates the same difficuitﬂﬂg And, if the

total amount of both "pleasure" and "pain" is infinite, none of

the integrals will be wellndefined. '

A rather different example is that of Bernoullian (or

M/ von Neumann«Morgenstern) utilityfé/ Abstractly,.ona.is¢§iven a
measurable space, (A Z), and the problem is to charaeterize
these preference orderings that a "rational" man might entertain
over the set 6f all possible probability measures on (A,Z). The
main result is the "expected utility"® principlés }br a rational
man there is a measurable functicn(g{:f + reals, such that he
prefers probability ¥y over u, iff

\L,N“‘ ey QC‘ 20 ; }} 3 = 1% )
- A~ ~ A ' :

o —

i
J

x;x‘ ﬁew there is no difficulty if u is a bounded function, for
AT
=)

then the integrals in (i8) are always finite. If u is,-say,.
unbounded above, however, one can show there are probability
measures for which the integrals (18) = +e, And if u is
unbounded both above and below, there are probabilities for
which the integrals (18) are not well defined.

= NOW, we shall argue below that there is no compelling
reason why u should be baundedg There are perfectly reasonable
preference orderings-whieh call for an unbounded utility
function_u., But in this case what are we to make of the integrals

in (18), and how are we to compare them? One possibility is to
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restrict comparisons to probability measures which=sare aong,
centrated on a finite number of points, for with these the
integrals (i8) are finite even if u is unbounded, This unduly
restrictive solution may be avoi&ed, however, if we interpret
these integrals as pseudcmeasuresﬁ and the order relation as
standard ordering cf_pseudomeasures. All this will be fully ;'
explained below, and anjaxiamatic justification for ﬁhis. :
procedure will be given for the case of a countable unive:ée
set. ‘

We shall also discuss tha ideas of Ramsey, and of

succeeding writers such as ﬂézaacker and Gale, en how to deal

with unbounded sums and integrals.

ideas — the sowcalled "overtaking criteria %:dréﬁ out‘as

special cases of tha‘developmant below. Thus“ the use of
pseudomeasure-valued utility indicators 1eads to a unified theory
éaiah includes not only aneﬁdimensional unbeunded integrals (the
"overtaking" case) but also higher%dimens$8nallcases (such as
spatial integrals in 1ocatic£&thecry),laﬁd, at the same time,
incorporates Bernoullian'utility theor?jwith unbounded utility
functions u. _

Starting froﬁ ordinary integral§ of-the-sort (17) or (18),
the first step is to‘go'from the définite to the indefinite
integral. In comparing unbounded integrals, merely taking note
of the value +» loses essential 1n£ormata.on(: One-ﬁwam:w-ee take
into account the entire distribution pattern.

The second step is to note that an indefinite integral is

a signed measure. The fact that it appears in the form of an
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indefinite integral is irrelevant for the following analys;s.
The problem has become one of comparing signed measures.

The third step is to allow for integralslﬁhigh are no;,Wellﬁh
defined in the ordinary sense by interpreting them as psgﬁéoﬁ:

- measures. We recall that lqghgu is always a wellwdsfxnéd
pseudomeasure for any real-valued measurable_f and any psauﬁkﬁﬂ
measure p. (In the examples above, ¥ is just an otﬂinary
measure ;»Lebesgue measureﬁlfor the development problem, and a
probabilggy measure for the Bernoulli pxoblem!. Thus we allow
pseudomeasure=-valued objective functions.

We now have a prcblemjﬁhiéh embraces”éll the others as
special cases: ?evelop a plausible crigetion for deciding when
one pseudomeasure is 1argerhi‘or 'bett¢€3;§~than another.

Our investigation will be guided partly by intuiticn, and also
by the requirement that, when the péeudcmeasures reduce to
bounded signed measures, the ordering of them should be compas
tible with thgh induced by the qémparisan of finite definite
integrals. ’;

4, \D«VME have introduced pseudéﬁeaautes in connection with the
difficulty of ill~defined iniegrals. -It—-turns—out, however,
“hat. pseudomeasures are alsc essentially involved in the
difficulty of comparing uﬁbaunded integrals. From our point of
view, both these difficu%%ies are the same, and, insofar as our

program is successful, both are resolved in one stroke.
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son of Pseudomeasuresi Narrow and Standard

The problem we have just formulated is: ¢iven pseudo™T
measures wl and wz, zo give a rule for deciding when wl is tg be
considered larger than wz. Our discussion will proceed thraugh
stages of increasing concreteness. First we take up compari?
sons in general, with a discussion of partial 0rderings, _oﬁr
development makes essential use of the fact that the pse&da@L
neasures are a vector space, and, accordingly, we next discuss
partial orderings on vector spaces. We then come tafthe space
of pseudéZ%sasures itself, and the discussion goes ﬁhreugh

several more stages.

/

=) Partial Orderings in Generalﬁ/
S
4 Let H be a set. A relation on His a suhéet of the

cartesian product H x H, The particular kinds of relations we
are interested in are called partial orderﬁ; and will be denoted
by > or ». 1If fﬁand y are members of H, the notation x > y
will indicate that thé ordered pair (§,~g) is:Eha relation if

Y £ X means the same thing,
i?gwinefinitionz The relation > is a partial order iff .

(l)/)fcr all x, y, z € H, if X >y and Y > 2, then x >

CESD\(tranSAtivity)) St
hfﬁa Y%(ml), for all x¢ H, x > x (reflexivity).

-
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| " The interpretations we have in mind for > refer to "size"

or to “pxefarxednassr@;and the statement x > y may then be

reads ”x is at least as big as -or, at 1aaat as good as «-y@;’\

depending on context. Transitivity and re¥1exivity are

aonditions with obvious intuitive appeal under such inter-

pretations, |
Given the partial order > on H, we now define two further

relations, Let X, ¥ € H.

i%;-}nafinitiadéﬁ x_> xﬁift x % y. but not y2x {strict urdar}.
/izzg x %y iff x % y anﬁ y > x (in&iffaranca);

BES — =

;»*‘“Jkﬁi;}{ §f$ glmay be read: »'fvia greater than — or, better than —
gﬁ: x vy may be read: "X is as big 355% oxry indifferent to}h:g%:
¢ For any pair of elements X, y there are now four
possibilities, exactly one of which must hnld. (i) x v ¥
(ii) X > y; (iidi) = < ¥y (bhat—&a,;g > x); (iv) none of these,

which occurs when x > y and y > x are both false. In the first

three cases we say that x and y are coﬁparable (under the

relation 2>), in the last case, incomparable.

e a‘j. " ;
(¥i'1gnefinitiaé§£ A partial order > on H is complete iff any pair of

elements of H are comparable. > is antirsymmetric iff x vy

&

implies x = y, for all x, y € H.

7‘“' Thus a partial order is co@plete iff for any pair x, y € H
either (x,y) or (y,x) (or both) stand in the relation >. A
partial order is antigsymmatrié iff no two distinct elements

are indifferent. (x n x is always true, owing to reflexivity).

o
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ﬁare are some examples, The natural ordering on the
real numbers is both complete and anti~symmatric. In utility
%§ \ theory one customarily assumes that a dacisioﬁkmaker s :
\&$53 551 preference ordering is complete, but not necassaxily anti%j
ngwi% symmetric. Suppose each of a set Iof dlfferent peeple has a

‘7~ | preference ordering ’i over a set of alternatives H (i € I).

The Pareto erdering, L determined by these is giyan byz X»y
iff x ’i y for all i ¢ I, This need not be either complete or
antivaymmatria. In what follows we "shiall make no assumptions

concerning completeness or anti+symm&try. yf

4 Deflnlticn. Given partial order > on H, a ébint x% € H is

reatest, or best iff x° > for all x H. Point x' H is
greatest, es X x a @ n €

unaugpassea@/iff there is no point x e H such that x > xo,

=

e 'M‘ -

The following result is immediate.

X R |
(3~ | Theorem: In partial order > over H, x® is greatest LA

§
L

::Z§' unsurpassed and comparable to all other x ¢ H.

wﬂﬁﬂ,;kww”}wm Thus any greatest element;is unsurpassed, and{“if > is
i complete, the two concepts céincide. There may not be a
greatest, or even an unsurpassed, elemant;Lg;ﬁthe“ﬁth@t“ﬁanﬂ@
there may be several. Any two greatest elements nmust be

indifferent, any two unsurpassed elemants\either indifferent

%@/ or Apcomparable.bf
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C?&f Definition. Let >, and >, be two partial orderings on set H.

<i£}A§;%Q extends >4 i£2, for all %, Y € H,
: £L£££XM X >; y implies x >, y, ==t

q. 'i‘ ; Mg i N, -

e Bl § maY dmplies x vy,

= That is, >, extends >; iff, whenever two elements are
| -2\ =1

comparable under q&, that order relation is retained under %2'

In our ensuing discussion we shat& place a number of partial

orders on the space of all p;eudcmaasures, each an extension of

the preceding.
\w~

P

Definition: Let f{jgl + H, be a function, and let > be-a
£ partial order onﬁyz.

The partial oxder induced on quﬁz f is

the relation >; on H. satisfying;) X2y iff g(x) z. f(y), for

(o

all x, y € Hy.
One easily verifies that 3a'is,uindeed,_a partial order.,
Note that the induction here is backwardg, from the range space

to the domain. ' ”/éf
R

| Definition:

Let ggl, 3&’ and (Hz, 32) be two‘partiall§1ordered
(Hy, >4) is representable by {§2f’§é} iff there is a
/‘:& function f. Hl + H, such that x g%y iffﬁf (x) ZA £(y), for all
? ' ¥ e:ﬁl- £

spaces,

«a«»wa"‘? ~ These two definitions underlie thé representation of

preferences by utility functions, fogfexample. Here the space

H, is usually the real numbers, and gé\their natural ordering.
- / e
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_H, is the space of possible alternatives for the problem in :
hand, and f #s the utility function. In our discussion H, will
be the space of pseudomeasures, ¥, and 24\ will be one or
another of the partial orders é; be specified. Our claim is ,
that this space provides a convenient representation for some

problems in which preferences are not conveniently repxesaﬁtable}~5\

or not representable at alij&-by the real numbers.

A Partial Orderings on Vector Spaces

Let V be a vector space, so that there is anjaperation of
addition (from V x V to V) and of scalar multigiicaticn (from
,rﬁsi # the real numbers x V to V). We are interestad in a certain

1% L |

)L Qj restricted class of partial orders on V.

*“f -
?

o
v

s x;ﬁvﬁ"

§

e

N

¢~ Definition: A relation > on a vector 3pag§ ¥V is a vector partial

. oxder iff
i:”;%j lfiééﬁ > is a partial order in the ogéknary sense, anéd
i3 (;i} if x 2y, then x + 2 > y + zjffor all x, y, 2 € V,-and
;%%(éigjzif_g > Y, and b is a posit%@e real number, then bx > by.

S

e s an example, take nmspaég} with the definitioni

(xl,;,., ) > (yl,...,yn) iff xi > Yi for all i = 1,000,n (the

second > referring to the natural ordering of the real num;ers);;
- Ft-turns—-out-that vactor partial orders may be

characterized in a very simple ana useful fashionfv/ First we

need one more concept.
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fEE. R

“Definiticn: Subset P of a vector space V is a convex cone iff
47_\‘* /f (l)* 0 ¢ P,‘ and -
maﬁ%&P (11M 1£ xXeP and y € ?, then x + Yy € P, and

ff (ii;y if b is a positive real number, and X € P, then bx ¢ P,

w,yrijZfi;;;crems Relation > is a vector partial order on the vector

spaceiv iff there is a convex cone P such thatﬁ\for all x,

Y €Y,
; o (3.3.0
X>y iff x -~y € Po - )
~——d |7~ Letting y = 0 in (1), it is clear that P = {xlx > 0}.
This is called the positive cone of the ordering >. If P is
an arbitrary convex cone, and we use (L) to define the relation
2>, it follows that this relation is a vector‘partial order.
This is .dn-fact, generally the most convenient way to specify
vector partial orderings. ‘
One easily verifies that x > ¥ iff (x - y) > 03 anén§'mhg
iff (x -&g) v 0, for vector partial orders.
‘fxij‘» ~~ Narrow Ordering of Pseudomeasures

We now come to the vector space, W. of all pseudomeasures
over a fixed measurable space (A E)s In“tﬁta~subsee%&9a we

shall define a vector partial ordering called narrow order; in

the next subsectionﬁ another aae called standard order, which

extends narrow order; finally,‘a variety of extended orxderings

which all extend standard order.
If uy, v are a pair of measures, or signed measures, we

have already used the notation u > v to abbreviate the condition:
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n{g) > v(s),?for all measurable sets E. We naw define an

e i ; i
ordering on pseudomeasures which generalizes this relationQ\and
wirieh in—-fact reduces to it when both pseudomeasures are signed

measu:as.
%ﬁ— Defxnition. The narrow order,x>& on the space of pseudomeasures,
D/

is the vector partial order whose positive cone is {¢!w = 0}

-

The pseudomeasures whose lower variation is Zero are
precisely those which are measures, so that the naxrﬁw arder is
the one whose positive cone is the set of (s&gmawﬁinite)
measures. (One verifies immediately that thisigét ja., in fact,
a convex cone, savthat the definition is consiétentfﬁ

The following theorem gives several naééssary and sufficient
conditions for two pseudomeasures to be-xéiaﬁad by the‘narraw
ordering >. These con&iﬁions are all in the form u > v, where
u and v are measures, and this is to bé interpreted in the

ordinary sense that p(E) > v(E) for all E ¢ I.

———
'jE} Thz?fﬁﬁé*ﬁ}i) Let (u,v) be a pseudomeasure; (u,v) > 0 iff w > V}
Q% = (fi) et (ul,vl) and (uz,vz) be pseudomeasuresj
3 | (ul,vl) > (“2'“ J AfT ul * v 3. 1 + “2‘ 3
o f% Liié)\c;@t le wz be pseudomgasures,j>
0«1@& Sowy 2y iff 9t 2 vyt and uyT < vy

Proof: (i) Let {A+,A") be ﬁhe Jordan form of (u.V)S {u,v) >0

iff A" = 0, It is immediate from the definition of A~ that
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} u>v implie‘gg,ﬁ“ = 0. Conversely, if v(E) > u(E) for some

| __measurable E, then Aﬂ(?‘) 3;% (E) - u(E) > 0; hence (u,v) z 0. )
Al T

1 /%-ﬂ_(_:'g}) Since > is a vec:;orjpartial order, (Myrvq) 2 (uy,v,) iff

oo ?
(By *+ vor vy + uy) = (uy,v,) - (ysvy) 2 0o (The equality

& A E A P
Al ‘/'"-w\ Pd

comes from the equivalence theorem). The result now follows

,frommt (i), _
+ - - - * - - +
% QBil) I£ ¥;7 > v, and ¥;T < 9,7, then YT 4 ¥,T 2 9T 4 9,7,
L~
e s0 that \bl > wz from -part g_ﬁ)
\) ;‘: ' Conversely, suppose wl"' > xpz* is false, so that
¢1+(g} < zpz'"(E) for some measurable set E. Let ng,NZ). be a

Hahn decomposition for "’2‘ Then
$ (0 Ry + ¥, (B0 Py = b (& 0 Py ((since y,7(Ry) = 0)

| ; o .
PR (EnP,) + En P,

R % S Vo SBlgl v 4y PR Taie |

# ) Hence w;’ + wz-z 1;:1" + w;', nglﬁ wz,kgr\from,épa«:st (ii).
\_/ Finally, if wl" (B) > zpa'(E) for some mg&surable E, let

poee

(:_E_'l ’Nl) be a Hahn decomposition for wl. An argument similar
to the cnﬁ‘just given, but with E n __Is}l in place of E n Py,
again shows that y, > ¥, is false. WS O

!
| \
% mwﬁw%

|
&

It now follows -easily that the narrow ordering > reduces
to the ordinary > when the pseudomeasures are ordinary signed

measures, For, letting u and v be signed measures, and



. “Proof: The case I = {A,#} is left as an exercise. (The space of

maasuxable set E.
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identifying them with the pseudomeasures (u+,u"), (v*,v");”’
respectively, we have that (“+1H~).i (vF,v7) ise ut 3'v+
and 4~ < v~, which is necessary and sufficient for M >vin
the ordinary sense. Our notation is therefore consistent,
Narrow order is anti}symmetric. For if wl > ¥, and
¥, 2 ¥; are both true, then wl > wz > wl », and *1 3 ¢2 <$1 ’
so that ""1. = “’z and xpl = “’2 -eimenis,, ¥y = ¥ye
It follows that wl > wz ifg wl > ¢2 and wl 7 wg. Applied
to the theorem above, this yields criteria for one pseudomeasure
being bigger than another‘ ?nr-axamg&a the pseudomeasure

(u,v) > 0 iff > v, and u(p) > v(E) for at least one
8/

Theorem: Narrow order is pncomplete, except when Z is the

trivia1<ﬁ¢gma ~-field {a, g}.

pseudomeasures is isomorphic to the xea;'numbers in this case,

if 2}& #
If I is not trivial, there is a;ﬁeasurable E® such that
neither E? nor A\E®? is empty. Chaagé points a ebﬁﬁ, b_e\A\g?,

and define the measures u, v by

“u(F) =1 if a€F, u(F) =0 otherwise;:
v(F) =1 if be¢ F, v(F):b 0 otherwise

- all Fe I. Then u(g?) = v(ﬁ\E ) = 1, and v(E') = u(A\E 2) = 0,

so that yu and v are not zerofyand they are mutually singular.

Hence the pseudomeasure (u,v) is not comparable to 0, and the
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@b narrow order > is incomplete. |M LW

«—’”ﬁr With the aid of narrow order, we can ganeralize the
standard inequality theorems for integrals to pseudomaasure
int:egrals. In the following, > or > when used between pseudoS
measures refers to narrow order, while the axpressien f >9g
between 393.3_13:_ functions £ and g means that £ (a) > g(a) for all

aEAé )

«-‘-&A \
Theorem: (inequalities far pseudameasura integrals) ﬁ Let y; and

R

éﬁ?

zpz be pseudomeasures, ;!‘.’ and g‘ real--valued measurable functions,

all on measurable space (a,2).

—

3 (i) If Y, > 0 and £ > 0, then fdw 90.
,,/f' 1S g 1

&7(;1) | If y; > 0 and £ 2 g, then [ £ d!bi j g,dvy.

qak‘pz

o K’\/ //’/(11.1) | If !}Il 2 ¥, and ? ? 0, then ﬁff\@w}. ij

(iv) | 1€ tkl > 0 and g“i‘) > 0 for all a € A, then ] f'dwl > 0.

N

/
’E%Q‘}; (v) If ¥y > 0 and £(a) > g(a) f‘cr all a ¢ A, then

[£.av, > [ 5.av,.

(vi) If ¢, > ¢, and f(a) > ijfor all a ¢ A, then
1 2 5 -

[ £ dwl I dtpz
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R
| é% Proof: (i) By assumption, wl” = 0 and £ = 0, so the g
‘ £ 2.0 : =
expansion of [«fﬁgwl by 46 of the pre /reduces
-~ to || £5.av,*, 0]. Hence [[ £,av,]" = 0, so that [ £.av, » o
1 = el o NFASTL ; e 9 S
7

q}* {éﬁ_‘) L;f«.@‘f’l - I&g r«‘@?’l = [r(ﬁﬂ-g)&ﬂlbl 3. 0, frm&} (’i).
e ~ Hence L_gﬁgwl > [ g,ay,.

= f;,fnﬁ""l - “'2)3. 0, from (i), Hence I g,\gwl 3_[ frgf’%’
N = bt N N

i g (iv) since ¥;.> 0, w;’ () > 0; also £ is positive, so, by a
standard integration theorem, ] £ "-dw;‘ > 0. Hence,
O :
+ + 0 : ~
[ 230 = ([ a0, o] >y oy

() £ay, - | g Ay, = | (£-g)dy, > 0, from (iv). Hence
S A= 'y 1 ™ " 1 A ix 1 > bt -
I;\g 5“‘dvd;l » [ﬂ g f‘q‘bl‘

b (vi) since ¥; > ¥y, (¥, - ¥,) > 0. Hence
Iﬁfhﬁaﬁ“'l * Lf}é‘i’g - f £4(p, - ‘312} > 0, from (iv), so that
I:-;f d‘pl » I”‘f‘ 514’2" Wﬂﬂg
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Standard Ordering of Pseudomeasures

While narrow order is quite ugeful,'it is literally too
narrow to represent preferability relations among pseudomeasures
in an -intuitively plausible way. Consider, for axampl@,‘ghe

representation of preferences by definite integrals over Time:

g R £ 7 e
AN - [0 £(p,t)at,. 9 o

P being a policy. Going from definite.ta indefinﬁ%e intagralsry\
and thence to sighed measures, -one can translat&jthe criterion
(2) as follows. With each policy is associated a signed
maasuxe, up. Policy Py is at least as gocd as policy Py iff

(A} > u €A). ‘Note that the value of %p on the universe set
”ﬁiis all that countsg&»;his corresponds gracisely to the use of
the definite intagrai in (2). We have g%gued that this sort of
criterion is counterintuitive when bogﬂ signed‘maasures are
infinite (of the same sign)} But it;is perfeétly adequate for
comparing pdliciesvif their corresgdﬁding signed measures are
both finite. ;

~What we would like, then,z&n‘an ordering on the space of
pseudomeasuras such that, when two pseudomeasures are in—fact
finite signed measures u, v, tka relation between these agrees
with the criterion above: u is at least as good as v iff
ugg) 3ﬁ¥(§). Narrow order does not accomplish this: ’fake any

e’ e
two finite non-zero measures ,which—are mutually singular.

(These always exist if the:s£§§a~field I is not trivial)gj These
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comparable
are not comparable under narrow ordering,ﬂbut they areAunder the
criterion just stated.

Standard order, which we are about to define, meets these

desiderata. We first need a preliminary result.

o

PR 29T, and V) < a 3

is a convex cone.

B
e

)

R T

Proof s Clearly 0 belongs to this set. If ¢y is a pseudomeasure,

R

and b a positive real number, then (P¢)+ ajg-w*, and (Pw)" =
Q‘ww. Hanceggif ¥ belongs, then by belongs.

"Finally,‘auppose ¥y+ ¥, both belong; we must show that
*1 + wz belongs., Pirst, from £33 . wi"gg) < w:(i =], 2).M Also
(b + ¥,)7 < $1" + @2" (from the minzmizing property of the

Jordan form). Hence

- e (\b\—:;x‘r‘i
(@1 + ng) (ﬁ) < o, "“m
Also |
+ - PR - + +
N’l + “’2) @) 4 ‘91 (é) 4 @2 (f)j‘ Wl + wz) (’f-\)‘f"#l (3}) + 1{'2 (ﬁ)ﬁt

by the equivalence uriterionggﬁﬁ%
Since wl"(A) and wz'th) are both finite, we may subtract them
from both sides of (5) to obtain
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\
\\ + [ 3 + +
(h + 4207 = (g + 907 19T A) = 4T A) + 9,7 () - )]
s :E’{j - (3346
& 2 0y + 97 _ 62,
5 since (3) applies to ¥y and ¥,. ;TETQand (6) show that (3) is
|  satisfied by ¥y + Py i}*?_ffif
G
Wm
We are now assured that the following definition is
A consistent. v '

";&”Definition: Standard order, i; on the space of pseudomeasures,.

is the vector partial order whose positive cone is
}'Nt)[ ; ) g . = ~* ‘ &% }
- ' {wa {ﬁ),ﬁ P g%) and ¥ &é} < o}, : <7

y/;;;%“ii»'"we shall use the notations » and > to distinguish standard

from narrow arder,‘respeatively; éhahd > are the corresponding
strict inequaliﬁy signs; the indifference sign v will refer to
indifference under standard order oniy; (It is not needed for
narrow order, sineé.indifference coincides with equality there&&

The positive cone (7) consists precisely of those pseudoS
maasures)\ which are signed measures u»satisfying u(a) > 0. It
follows that a pseudomeasure is comparable to zero under
standard order iff it is a signed measure.

Bk us first verify the claim made above,; that if u and v
are finite signed measures, the relation between them under

gt ;

standard ordek is the same as ﬁhat given by the comparison of

u(a) and v(a). Hera.u and v are identified, as usual, with the

pseudomeasures (u*,u“), (v+,v"),'respectively. (In particulax,
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the ordering of finite definite integrals is the samé as the

.,  standard ordering of the corfesponding indefinite integrald?y

~4ﬁ | Theorem: Let u and v be finite signed measures on space (5,2).

%5}! then (¥ ,u7) > (vF,v7) iss u(a) > v(n).
ﬁ""j Proof: Sinca § is a vector partial oxder, wh o s whovT) i e

o= €"j % ng P
ey = ) - 0T el +8)

§(H+ v, v
Let (\",A”) be the Jordan form of (u v , v +u),

5:2;; " By the equivalence criterion,

. - = of gﬂi « Ty fg )
e v g aaTaw® v 9)-

Since all measures in (9) are finite, we obtain

9 s

A (B) = X (A) = [u (A) - u (A)I - vt (A) -V (A)l = u(a) =~ v(A)‘

g ,  'ffﬁi

pr S

(h) holds if€ A" (A) l'(A) > O,-a@ffiﬁ) completes the proof. L}Tgfgﬁj;
. trict inequality and inﬁiffexence take a simple form for

[;L standard orde#. The following rgsults are immediate from the
el definitions. J
NI S : :
ﬁgﬂ‘; Theorem» Let ¢ be a psaudomeasure on (A,X).
D T AW e 0 se vt > V@),
e (if) w noo ifE ph (a) = v (ad and these are finite;
o (£ii) | $, dﬂnot camparahle iff w (a) = s (a) = =,
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(“’y As with any vector partial order, we then have, for
pseudomeasures Y, and y,, ¥y > ¥, LfE (Y3 = ¥5) > 07 ¥y v ¥,
Aiff (wl - Wg) ~ 0, *1' wz not comparable iff wl - wz, 0 not

comparable.

;f”ﬁiﬁ? Theorem: Standard order extends narrow order.

A

§§g Proof: Let wl > Wg (narrow order); then (¢1 - wz) > 0, that-is,
5

;ipi (‘!’ e \pz) (f:) = 0, while (d’l o Wz) (A) > 0, Hence (‘Pl iz @2) > 0,
\;;. S50 that wl » wzn :

&

The corresponding result for indifference is trivial,

since > is antisymmetric. L}*{ Juy |

i,

5

@ww””#*ww (*”' If I is not trivial, then this extension is proper; ﬁﬁét
| 8., there are *1' ¢2rwhiah are nogicomparable under narrow order
but comparable under standard order. An example is given in the
proof that narrow order is incomplete. The same example shows

that standard order is not antiysymmatricp except in the
trivial case I = {ﬁ,A}.

¢ theorem: Standard order is incomplete, except when I is a finite

’Qlf s&§;a~f131ﬂ¢

\

;ﬁ*f}Praaf: Let I be finite. Then it is generated by a finite

-Eh-A- ) | pe
partition {gl,...,an}, If p is a siqaaufinite measure, then
u(Ai) is finite for all i = l...n, sou is in fact f£inite.
Hence & {a), v (A) are both finite, for all pseuﬂomeasuras P /s

and all pairs are comparable. ) is complete.
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Conversely, let I be infinite., ILet F e I be infinite and

countable, and let G consist of all F~sets,f&e§e%her with their
For each a € A, let E(a) be the intersection of

complements,
It may be shown that these sets

all G-sets to which a belongs.
{(Petails are

E(a) form an infinite measurable‘partition,
omitted).
There is thus an infinite sequence (§1.‘£2,...) of nons#

empty, measurable, mutually disjoint sets, Choose a point

a € E foralln=1, 2, ..., and define the measures M, v by

L 3

Py

u(E) = number of points a, ¢ E for which n is aéd¢x§

V(E) = number of points a € E for which n is evens

- for all measurable E. Thus u(Ezm ) = v(E ) = 1, and
b q
l) = 0, all me= 1, 2, 3, ...ﬁ}u and v are aééma"

u(?zm) = V(E,
: (e
' Hence the pseudoz;

finite, infinite, and mutually singular, -

measure (u,v) is not comparable to 0 under standard order:

is incomplete. L+T€L]Lf£?

A
»

The case where I is finite is not very interesting from our

present point of view, —Foxr in thié'case all pseudomeasures are

finite signed measures, and,w$nm£$et, ¥ is isomorphic to
ordinary n-space for some n = 0,51, ..:, as we have noted above.

Thus we may say: Nhanever pseﬁdamaasures are interesting,

standard order is incomplete.
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Applications

We sheall consider here only the more important category of
applieations{&the use of pseudomeasures to represent preferences.
Let P be a set of conceivable alternative options in a cgrtain
situation, and lgt $~be a preference ordering on P. ﬁ;fis a
partial order, t%é%mis, a transitive, reflexive relation). We
represent this ordering by a pseudomeasure-valued utility
ﬁunetianug > w(p), mapping P into ¥, the set of pseudomeasures
over some space (g,z). (Set A migﬁt be completely unconnected
withsg@ but usually there is some connection wﬁéﬂﬁ makes the

representation "naturally) That is, for any two options p,,

Py € P, we have

,?15|§2 iff »w(91>"> w(yz) ‘ 41;4,

N | 3
Here "»" on the left is the preference ordering, while "»" on

the right is standard ordering on the space f:%%

oy

Thazﬁsizeﬁﬁéomparigbn between two given pseudomeasures is

usually quite simple to make. For the great bulk of'apglicag

tions in this book uﬁénd this will probably be true in further
applications as we;%-g w(p) takes the form of an integral,»in
which either theiintegraﬁd or the measure does not depend on p.
Thus, in the fixed-integrand case, wé ﬁead only worry about

whether a statement of the following form is true:

iy v Jd2x)
LU y
Iwgﬁdul >j[ﬁfhdu2 <12)
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®,
% (All indefinite integrals are over apaae‘gﬁ

CTfﬁ the fixed-measure case, the relevant statements are all of

the form

i3 ), '
Igfi?ﬂp » [ffz?du.“‘ : \ﬁ%%pﬁ“

In turn, both of these statements are logically equivalent to a

L £, du ?\ 0y | ; “14)

statement of the form

To go from (13) to (i4), let £ = £, - £,. To go from {12} to
(14), let u = py = Uy. (If g, u, are both infinite measures,
interpret By = Uy as the pseudomeasure (“l?“2)5\) If p in (14)
should turn out to be a signed measura,zthen the following
simple but important result shows that th@ “gize }comparisan of
pseudomeasures reduces to the evaluation of an ordinary definite

integral.

?. o ' 3% X
| Theoxems égtandard integral theorem)' Let u be a sdgma-finite

N
signed measure on space (A,IL), anﬁ 1et f. A + reals be
‘measurable* Then (14) ~sin the sanse of standard order'w is

;7w~\ true if£ the definite integral f
F 4 = 5’ i i 0 T A e
}{; 4 ﬁw g ] (3, 518
b | I £,au | e

| bl =5

s

is well-defined and nonrnegative.
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ﬁu»wﬁqif“ﬁgraafz-'rhe Jordan form of P o= jﬁfaﬁﬂ is

4 bl b " be
wh,97) = Lf"; ant +*I £ ap”, '[ £ apt + Lf’* ay
£ g4 £

/o)
el gl

(*4) is true iff ¢ (A) o v (A) < o, “tha%uie iff the double

inequality 4 : 7 o ,
{ | o o i { -
i*ﬂff«siu**éfﬁﬁzcm sl {eat || £ au™ < w
| ' ! k

haldé. ‘But this is précisely the condition for (15) to be
well~defined and non+negative. l}ﬁﬁi L7
\vww“‘”agkmiff—ffﬁonsiaer the procedure of Ramsey in his na&afamcus axticle‘%}f
f Here each conceivable pelicyng is a tiﬁglpath of consumption
\ and labor over the entire positive half-line. The total
utility resulting from polieyrg has the form
Cak ’
&Y e : o
‘ ;’Io i}J prt)dt ot

H
i
1

w

where g(g,t) is thefgomentary utility from consumption net of
the disutility frgé labor at instant t under policyj?%: oﬁe
need not be cancé;ned‘with the exact form of this function).
The trowble is that {16) will diverge for good policies.
Accordingly, Ramsey us%fﬁnot (16) but
)i e : (323.17)

R st)1dt 17
]0 b - 9(p,t) a1 San
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as the objective function., Here b is "bliss™, the highest
attainable momentary net utility level; (17) is the shortfall
from constant bliss, and is to be minimized. The integral igﬁl
finite except for ver& poor policies, which may be ignored,‘
Preference is now represented by an ordinary xaalmvaluedqﬁtility
function,~n§§;i§, the negative of (17).

We now treat the same problem by pseudomeasures. Let
(A,Z) be the positive half-line with Borel field. The utility
assigned to policy p is the pseudomeasure :

B £)d
¥ (p) f&g{p F%ﬁgz’ |

zhég“'of course refers to Lebesgue measure on th@'positive half<
line). For two policies, p; and p,, we then hava;pl'> Py iff
3 ~.'; ,/“"‘
[Lstereraes [ swamae

(standard order). By the standar@jintegral theorem, this is

true iff the definite integral raiatian
- o { 2N g

{S’\ﬁ)lq b }
¥y

IO {g(?llg) “» ?(?21'9) ]A\it 3'. 0 +18)

holds, the integral being weii»definad. It -da easy to see tha§
(18) determines exactly the éame ordering a@ong policies as
does (17), with the minor exception that (17) does not
discriminate adequately ambng alternative very poor policies

for which it equals +«,
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Thus the Ramsey approach is in this case essentially the
same as the pseudomeasure approach. What is gained by using
the latter? First,'ﬁgé;avoidq the slightly gg_ggg."bliss”
procedure, which may not be available?for oﬁher problems. But,
more impoxtant,’é%a»has a unified pégaedure, which works for
multidimensional and abstract spaces, which works when the
measure iather tﬁan the integrand varies (as in Bernpullian‘
utility discussed below) , etc. '

het us also sharply distinguish the Ramsey approach from
the "overtaking" approach wh%eh grew out of it.“““0vertaking
depends essentially on the order or metric prcperties of the
real line; the Ramsey approach does not. It turys out that,
just as the Ramsey approach is a special case of standard

ordering of pseudomeasures, the““ovextaking“;épproach is a

special case of extended ordering., This is a¥k discussed bepow,

-~ The following simple'problem offers further insights into
the use of standard order. Let (A I,u) ﬁe a probability measure
space; t§a€¥is, y is a measure with u{A) = 1., Let £ A + reals

-
be measurable, and let the definite integral

[ £ ay
§=
exist and be finite, with value c;IZ Consider the problem of
‘ o :
minimizing A 1 R r (3519
veo = [ iga) - x1?uaa) ")
= al = ;
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over real numbers x. It is well=known that the unigue

minimizer for this problem is x = c, provided the integral (i9)

is finite for all %, If (19) is infinite for some x, then it

is infinite for all x, so that every real number is a minimizer.
We now show that the use of pseudomeasures allows this proviso

to be dropped.

Thus tet-us now rewrite v(x) as ¥(x), and interpret (12)

as the indefinite integral. There are two preliminary minor
points to take note o£. First, we are minimiziné, so "smaller"”
is "better"; but under standard ordéring "larger" is "better"
in an obvious sense. This difficulty may bef;emedied in either
of two equivalent ways: i) insert a'%ﬁ#jfin front of (19) to
convert it to a maximum problem, oi ﬁ%ia ﬁse reverse standard
or&exing rather than (direct) standard axaering, defined by{
¢1 p ¢2 in the reverse sense iff wl < *2 in the direct sensep
we shall use the latter approach. S@aand,'@aa should remember
;hat standard order is, in generalgfnot complete, so that there
are two possible senses in which érsalution may be optimal: Jﬁt

t §
may be bes#, or it may be merely unsurpassed. In the following

:. g,_ ghowne
\

theorem the stronger of these t?a senses may be asserted,

QQQ‘QTheorwm:' Let u, £, and ¢ be as;hbova‘ The problem of minimizing

y(x) over real numbers x has a unigque best solution, namely

P

X = c, ("Minimization" is gﬁderstood in the sense of reverse

standard ordering).)
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wwm
'

u%érlProaf: Let real x # ¢, and consider the definite integral

20
[ e - 02 - @ - o ?jaa)
% . = P 2]
- ol
;]i) \ ’1I 12(c = x)£(a) + x° = Zlfutda) = (¢ - 02 > 0.
!; ! Aé - - - - a— — s sedae
> B Bae

et ?

f Since this is well-defined and positive, it follows that the
|

indefinite integral satisfies
- 15 2
[ te@ - 0% - @ - o jutaa) » 0

/ (standard order), by the standard integral theorem., Thus
\/ <% -

-

¥(x) > y(e) £236)

(standard order), all x #,Ef Thus ¢ is best unﬁéx reverse
standard ordering. Because indifference is precluded in (20),

¢ is the unigue number with this property. ,L$1; iny 4

; In probability terms, then, we may say: '?he second moment

i

e

of £ about x is uniquely minimized when x = expectation £
(even if the second moment is infinite under conventional

calculatioﬂ)‘

‘y; Bernoullian Utility under Staﬁdard Order

a
Let {9,2) be, as usual, a mepsurable space fixed throughout
the discussioﬁ, and 13t,? be the set of all probability measures
on this space. We are concerned with preference orderings over

P. The modern discussion offfhis subject arises from the
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observatiaﬁ%éfthat,;under certain quite plausible assumptions
concerning the preference ordering, », a rather strong conz
clusion could be drawn (for I finite): Eﬁﬁmﬁhy43”t$ a

38
maasurablé}lunctian u: A + reals; such that the mapping P e

}f ‘u dp, which assigns to each P e P the expectation cf u with
resgaat to p, 15 a utility function wh&ah represents p. This
is the expected utility theorem.

This result has been generalized in various ways, but these
generaliaations alwaégrgaa up against the obstacla that the
integral ;* u dp m;st be\wellwdefined and finite. In practice
this means either that u is bounded, or the p’s must be
restricted to a small subset ofhgi(once*@ae goes to an infinite
sﬁg;awfield: if T is finite, u is automqtically bcunded)(*ﬁ’

Both o€ these restrictions are objéctionabla@ The
restriction of“g to_finiﬁely ﬁcncentrgted probabilities (see
below) simply does not allow enough scope. The objections to
bounded u require more discussions

”  Consider the following ”Arehiﬁedean“ postulategy, Lgt ays
2y, aq € A, with ay > az > a3. than thefﬁxevlzt@ a numbar X,
0 < x < 1,»such that
j (3:3:21)
[(1 = x)a; + x a3] » a,> 21)
(Her:ezﬁ\'jjemi'é refers to the prcbébility measure with all mass
simplylcghcentrated on pointfai, i=1, 2, 3,‘7(21) states that

some probability mixture ofiyl and ag is preferred totgz.)
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Supposeeg and:3 are situations whieh differ’énly in some
trivial respectrzﬁsé& having this morning's egg boiled for 3
minvtes vs. 3 minutes and 1 seumnd, while‘§3 is a hgrrendous
situation such as a world pandemic or thermonuclear war. é;;‘
may argue that (21) is still satisfied by some X whieh—i8 Vv mwég
“uux close to 0 in value. The point is eentroversial,

Now suppose the expected utility condition holds, with a

function u that is bounded below. We claim +hat this has a

LA ok

consequence is less plausible than (2i) by an order of
magnitude, Without loss of generality 1et‘g(§l) = 1, 95?2) » O,
and let »M be a lower bound for u, where M is a lafge positive
real number. Then, for an ~;¥ choice of 2y, (21) ls satisfied by
x=1/(M + 2)§ for the 1e£t side of (21) then has utility at
least aqpal to 1/(M 4+ 2) > 0. That is, the mixture praportions,

x and 1 - X, may be chosen in advance of knowﬁng g no matter

how horrible. The Archimedean postulate a}lawswgrto depend on

a4, SO that progressively more horrible gituaticns may be

counterbalanced by being given progress%%ely less weight.

There is a similar implausibility;;rgumant for u bounded
aboves Start with the "dual” Archimaééan postulate wh%éh
replaces all¥*>“ysigns by§*<“f%lettgi,m§2 differ trivially as
above, and letrgs.be some highly daéirable situation such as
universal salvation or utopia. ‘f

In general, bounded utility %pgears to characterize
orderings with a certain pettifoéging quality, in which there
is no Pascalian wager, no Faustian aspiration, no Promethean

ambition. To exclude these preferences would be to exclude the
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values of many makers and shapers oﬁ history, not all of whom
are irrational.

what these thoughts awmount to is this: (Amy axiom system
wirich implfis that "rational” preference orderings satisfy the
expected utility condition with bounded utility function is
simply too restrictive.

ﬁut if the boundédﬁéss restrictign_an‘fvis removed,7what

E e v 142 :
sense is one to make of the integral IA uhdp; Our recommenda-

rd

tion should not be too surprising: “Reiéterpret thisfan an

indefinite integral, and let size ordering among these entities

be given by standard ordering of pseudomeasures,

But why should one do this? Just as the ordinary
expected utility condition needs justification, so too does
this standard ordering condition. We now give a set of axioms
whieh impéies it. These axioms have about the same general
level of plausibility as those in customary use ;ﬂé-bi; more ,
plausibility in-faek, since they are:ﬁeakened to the point
where they do not imply that E‘ia bounded.

The main limitation impo;ed-is that I be generated by a

countable partition of A. Thig’limitaticn is regrettable, but

still allows the main point to come through: :hura’exists;gn
axiomatic basis for the use:éf unbounded utility functions and
standard ordering in the gféatmant of uncertaintyfgi

Without real lqss oﬁfgenerality, we may assume that each
element in the partitiqﬁ.generating I is singleton. Thus we
get¥£.§ countable, an¢£z = all subsets of A. This is the space

on which we work. ﬁich probability measure p on (A,Z) is
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completely determined by its values on the singleton sets

{ahg 1% fact, it will sometimes be convenient in what follows

and we write p(a) instead of the technically correct p@g}).

Probability measure P is said to be finitely cenaentratad

iff there is a finite set E g A such that p(A\E) = 0; inwe%hew
~weords, p(a) = 0 for all but a finite number of points. g € A,
The set of all probabilities will be denoted by”Eﬁ%as above,
while the subset of finitely concentrated prebabilitiealwill
be denoted by F. '.
In axiom 4 the following concept is usedg ’Rea1 sequence

LY xz,g.‘ is mcnotcne iff it is either nanwincraasing or non+

}l,%ylg decreasing, either X > > Xy 2 eeey OF Xy £ 3 xz € soe o

4 ﬁ' Axioms conaerning partial order » on Pi} DR
% gﬁQﬁ waw . Any two finitely concentrated probabilities are
Y. % 3 camparabla.

) WY ¢ Agt}‘f_z_ Let py, 9y € Pr let py, g, € F, with py v q) and p, > qzx

% v S e
)

let x be a number, 0 < x < 1; then:
(1 = x)p; + x 7:;?23 > [(1 = x)gy + x g1, (22)

“’Ax“ 3: Let Pl' 9y € P with Py - ql, then kha@afﬁml t) 'Pyr 9y é F,
and a numbar %X, 0 < x< l,ﬁsuch that Py < q and (22) is true.
”T”éﬁfzé- Let p, 9 € Ps let pk'ﬂﬁk' k=1, 2,..., be two sequences
of finitalgwcancentrated>§£6babilities)such that, for all a ¢ A,

the three sequences (pk(a)j,(qk(g)), and (p, (a) - q,(a)),

é‘“"':« T S SIS :
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and
k=1, 2,,.., are monotone,, such that,ffcr all a ¢ A,
>, Q% { \%% y i ""'""”

O

é‘a"

lim-pk(a) = pla) *and lim qk(a) = g(a),

k_-nn

and such that, for all §fn 1, 2;000s Py > Yt then it is false
that q > pe 2 it

Ax@" Let »' be any partial order on Pswh&eh satisfies axiams
1 %h%@ugh 4 and- w&éeh extands kz

p>» q implies p »' ¢, and

P v q implies p ' g;
iR = = 7 =
then » and »' are identical. “

[ Axiom 1 is a weak completeness axiom. AxicmfZ‘is a form
of the strong independence axiomtrand asserts,‘raughly,ythat
mixing in a pair of indiffereht p;ohabilities dées not 5isturb
order of preference. Axiom 3 is a weak axiom‘wgiéh“assarts,.a
roughly, that for any Py > 4;,-0ne can find. finitaly concen~
trated pz < 9, for which the preference intansity is not
infinitely stronger than the original. axiem 4 is an
Archimedean axiom of sexts, and asserts\that, under certain

ey

conditions, if sequences pk, qk eonverge to/p, g respectively,
it cannot happen that preferences b@tWeen p;ﬂgnd e all run in
one direction and preference betweag P, g runs in £he opposite
direction, (The monotonicity claugé in ;xiam 4 has no
intuitive appeal in itself; but n@ie that its insertion weakens
the axiom, and thereby makes axié# 4 more plausible in the

logical sens%;§ Finallg,axicm 5, like axiom 1, is a weak

-~
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completeness axiam, and asserts that > has maximal enmparat
bility in the class af partial orders satisfying axioms 1v¥e
 (The assumption that an _;g two probabilitias are ;”

|
comparable - which we do not make «.woulﬂ imply both axioms

m
1 and 5)., ki j J
 The fcllowing lemma asserts that axioms lxﬁhmaugh 4 alone
@éﬁ guarantee the exiatenee of a functian udwhéah proviﬁeséa “non1
\\‘ 5 %

faithful®" representation of » in the sense of aumanna‘

%#ﬁkw Lemma: Let P be the set of all probability maasuras on (A,E),
where A is countable and I = all subsets of A iat > be a
partial ordering on R satisfying axioms 1 thaamgh 4@

“Then thewe exists a function “2/A - rea@sasuch that, for
= # |

i o all p, g ¢ Pl ; : A f
P> g implies I u, g_ > ] u dg,y S 239
7 2 - f'
pvg implies I uidp v I'ggégﬁi‘ : 424

F
"

(Here\“ " and A" on the left refer tn the partial order on P,
while ™" and o on the right rafe: to standard order on the

space of pseudomeasures over (h;X)g)
Proof: Let us first prove anotheé%?ﬁxchimadean“ﬁéonditian: ,ff
q, P, P € F'(i.e. #hey are finiiely concentrated) , and

(‘;’

T

?i;D p' *» g » p. then thaae<axaatg a number %, 0 € x < 1,xsuch that
§ (1 - =x)p + §§:f<mg,3
[
V4
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o To show this, define the two sequences p, qk,&ﬁ 'Y, ssisy by&i
Py = {sz%;]? + [32%1‘]9'
and — ,
| *”\X
J{M ] ~ e
/ D j - ,‘3}5‘ e

i The pk, qy are all finitely concentrated, they cenverge paintw

| wise to p, q,vrespectivaly, and the monotonicity alause of
axiom 4 is satisfied. But the conclusion of axiom 4 is false,
since q > p; hence the remaining premise of axiéﬁ 4 must be

false,iéa that there exists a 59 for which gk' > qk is false.

By axiom l, it follows tha§ 9k < G o Thete are twe cases:
Q

‘pﬁﬁ < gy » then (23) is verified Wiﬂw{% = 1/(k_ + 1),c.L
‘,f__g o 5 "M? >

if Pr ~ q ¢+ We apply axiom 2 to obtain
=1 "k, y

A {J 7 /a L el e U, : v \ o 'Q
; oy A ! ¥/ 2 % Uy
1A ‘“ﬂ\ k +1 d k +1
A - . Q. 1
P (ﬁ ¥ EJ?k % (E'¥§}E < {E:¢ E}Qk ® {2 ﬁﬁdg
*o ¥ 34X g " g g
= )

which verifies (25) with X = l/(kv + 2).

By a similar argument (interchanging the rolas of p and P ")
we can show the existence of a number x such that (25') is true,
where (25') is obtained from (25) by substituting ™" for <™.

Axioms 1 and 2,«tage£hax,with conclusions (25) and (25')
and Theorem 8,2 of Fishbﬁrn‘ . imply the existence of a function

us_ A + reals, such that, for all finitely concentrated Py q,

we have
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7

;%;?&5 p>q iff [A u dp > IA u dq. +26)

We will show that this u satisfies (23) and (24).

e

1:!3,

TR A s M s S

;f To prsve (23), let p, a € P with P> q and define the

function f: h + reals by

£(a) = u(a) [q(a) - pla)lo /s

The hardest part of the proof will ba to show that the sum of
the positive terms of f(a), summed over a € A, is finite.
Arguing by contradiction, suppose that the sum efng (a) is +=,

Then there exist4 a number § > 0, and an enumeration

ag',al’ «ss Of the points of A, such that
e 3.5 39
,f(ag) + £a;) +...4 f(a )'i 8 5 +28)
for all n=0,1, 2,.¢.dtglat a, be any point with f(a ) » 0,
- -0 remamm&
and let § = f(ae); then enumerate the p itive and negative
terms, and choose enough positive terms to overbalance the
first ﬁegativa term, enough‘pesitivg:terms’aftex that to overt
balance the next negative term, etg;}
Nextﬁ.define a sequence (pk);jk = 1, 2, vss, of finitely
concentrated probabilitias as follows.
i -\ 7
x,,r\l
AN gk(ﬁs) - p(ae) " [p?ak+l) f Plag, o) +eeel ;
Sg ; w.“" NG )
p(a;) = play) ' Jfor i =1, ..., k, (29)
i i I’J b

Prla;) =0 ifor i>k, j

Va4
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(A

i
Vi
v,

A sequence (qk), k=1, 2, ..., is defined similarly, with q
taking the réle of p in ($&).

We claim that p, >ﬁqk,for an infinite number of k-values,

| For suppose this were false4ﬂthen5 by axiom l,qu pe pk,for all

k past a certain value k,» Furthermore we have

.

-ﬁgﬁﬁgl Py (a) = p(a))~§nd lim q (a) ﬂ,gia)
o - K e ke ~2- ST

s -

for all a € A. Also, each of the three sequences (pk(a)),
(qk(g)). and (pk(a) - qk(a)). k=1, 2, ..., is monotone for
all a € A except possibly for (pk(a ) - qbk(a )))b (fince, for

as= ai, i# 0, each of these sequences is | 0 for k < 1 and is

constant for k > i}. As for a,, we note that any real saquanee

4@

; -8 ock
has a monotone subsequenae; hence there is a subsequence which
satisfies the monotonicity alause'fer all a € A, including gg.
Axiom 4 now implies that p » Via false: contradiction. Hence,

1né,au, Py > M infinitely often. Let k1 < kz € +ee be the

k-values for which this ia,true.

Now apply (26) to each such k « Evaluating the integrals
m

in (26)Zﬂfwhich are jusu finite 3um§ — and substituting from

(29) and then (27), we/ obtain

£ + £ ...+ £
;—N/ (ae) (al) + (ak‘%) >
/ k : ( .33

for n=1, 2, ..*'.

(ap

\ oz
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This, howavar,»aonﬁradicts (28), for as n + « the suﬂgpf the

f~terms remains > 6 >0, while the bracketed expression in

(BO)CJ

for auftieiantly large n.

converges to 0; hence the left side of (30) is positive

¢ :
We have now achieved our contxaﬁ%@ianﬁland conclude that,.

indeed, the sﬁm of the positive terms of f(g) must be finite.

pee—

'}

? Next,xeonsider the definite integral ‘
2R 3 q

f v, d(g-p) = J u g«,é(q*p) + f Ju, dg-p)

A’ CA X ‘

‘ !‘,? [ |

‘ =t : e A ‘ ' }/.z‘ -
(b2, \= U u” d(g-p) " +j u d(q-p)]
4 = s ;f? ,

| g
\ !

Tha sum of the first two integrals on the rith equals the sum
of §+(§) over a € A. Since this is finite, the integral is
well-defined; furthermore, the sum of §(§5 over a ¢ A converges
to the same number (possibly ) xegazdiéss‘of the order of
ﬁummatien, and this number is the value of the integral. We
will now show that this value is ncnvpositive.

K Let ~a91 v AR be any enumera#ien of the points of T and

define Py @ as in (29). fThe argnmant above shows that‘yk > qk

b )
infinitely then; hence, via (25) ‘again, we obtain (30), a$&3uﬂ
n + o, the left side of (30) converges to the sum ofvf(a).

Hence this is < 0. We have proved that
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iy ]o é“’P ( i
}ip?,{ j ~u,dlg-d) 20, (31)

In turn, this implies

[ “Ad?; Lac@q | /ey

(standard order), by the standard integral theorem. 'To
preference

establish (23), we must strengthen this to strici:

By axiom 3, there exist p " q € F and a number :f, 0 < x < -

N

with
p 4 ( Rydeh YD
p' < q' C(33)
and / ‘
Fsied 30D 3ut)
(1-x)p + xp' > (l=x)gq + xq"+,  / bﬁ"
Relalio ng &
= {33) and (26) yield v

..:ﬁ* I/I gg “ff \,‘1\ - . “*y !4:‘ }
NS [ g <] waar 35)

L2y

Q0
while the same argument that led from P> q to ($2) now leads

from (-54') to .
-7 fl : ’Z,ﬂi‘? ,-; (3:3.%6)
g & [ u, &l {l=x)g + xq' - (l=x)p - xp'] £ 0. (36)
v Am - Sl — f . e VE aPay

i

b “‘“"\ (3J ) and (?u) in turn yiald the reapaetive inequalities:

]
U
) 8
—

’)1 A o9 (3.3.37)

A



-;1 Thus the integral in (31) is actually negative, which
Pretevence,

ﬁ sﬁrengthans (32) to strict imegquatity. This proves (23).
:\___..__N

L ————

L/!{‘he proof of (24) now follows easily. Let P " q. If u is
constant then (3‘3) z.s trivial. If u is not constant, then
there ( ,“,A;p " q € Fﬁm.t:h p' > q'. For any x, 0. < x < 1, it
then follows by axiom 2 that (34) is true. The argument above
‘then yields the left inequality in (37). Since X can be

arbitrarily close to 0, (31) must be true, which yields (32)

Interchanging the “rBles of P and g, the opposite iuequality

must also hold. Hence

, = [h?@ n ]f\g&g)‘(st&nﬁatd order) , MJ /¥
[} . s

}iWe now come to the main result.

7 S

(&,., i‘l‘heoremz Let P be the set of all probability measures on (A,I) ',
e o s i : WA > TR
where A is countable and I = all subsets of A; let » be a

partial ordering on P. Then each of the following conditions

- WA
i B implias the other: g )

/{ (i) » satisfies axioms 1 hh%ough 5

i\

, xists a f\mction uz A + reals) such that for all
i) ﬁene ‘e ¢ A .
P, g€ P, ' :
- - WA P ) <
Qgtﬁ'iﬂ”"}
£38)

p>q iff Iﬂg,@g; [ u dqe.
- § ! A ; - \
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fii? (Haré%“h"“on the left refers to the partial order on P; on the
{ e

right it refers to standard order on the space of pseudomeasures
over (a,2)))

.| Proof: Let function u satisfy (38); we must show that » on P

satisfies axioms l:%h;éugh 5

22§ by 205 %
o If p, q € F, %hen the definite integral f u d(pnq) is well~
/ - WN
Y jD ‘ defined; hence| /[ u.dp, f, u dg are comparable under standard
order, by the standard integral theorem; hence p, q are
comparable by (38). This proves axiom 1.
| mmmm————
i G 3
f”ﬁ Lé;ﬂt Pyr 9y gzg 32 satisfy the premises of axiom 2, so
[ that, by (38),
5’

and

(standard order).

By elementary pseudomeasure operations we £in@,£ar

0 < x < 1, that

f,. Bdlidenin, + upy) » L“@“i“"’ql + 2yl e

EE——— A ———————
I

{éhis,_with (38)/ yields (22), and pfbveﬁ axiom 2,
i ﬁ%(——_—'——;et Py > qyi it follows from (38) that u cannot be
J
constant, for this would imply universal indifference; hence

| thexe exist py, q, € F wmth Py < qz Choose any positive x

w

less than




—
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14 &

291 )5 ) e
(Both definite integrals in (39) are > 0, and J uﬁd(qzupz) < o,

1571 u d(pl~ql} = o, interpret x as 1; in any case 0 < x <1,

S0 that X exists.) One casily verifies that

25 287
V\l f W Al (len)p, + % By » (L) N R
A A= o R Nl e

This, with (38) and the standard integral theorem, yieids (22) .

and proves axiom 3.

_/—N-—

ZgIEstahlishing axiom 4 is the difficult part of tﬂé proof. We
shall argue by contradiction. Let: P, 9, and sequences Py qk,
k=1, 2, ..., satisfy all the premises of axiam 4, but also
let g > P. For each k define the function fﬁ’v,A + reals by

£ (@) = u(a) g (a) - pkjan.

and, similarly, define f as in[ﬂ??) Let 1 be- enﬂmana#ian
measure on (A Z), so that integration of f with respect to u
is the same as summation of fk(a) ove; ac¢ A, which in turn is

the same as integration of u with rgépact to signed measure
c}”‘ & ?‘, Q:E; 5’)

A £ du = [A )3 (9Py) L. AeeT

J,i)

% a. ]A u,d (A,pl”ql) Hh ud (I?l"ql) + J% u, a(@z"l’z’] ‘\* 439).

AN
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k=1, 2, «ev « A similar relation holds for £, p.and q (just
drop the subscriptﬁ*kffin (40)).

/éﬁﬁég?ﬁ% shall daduce the contradiction
30

; h L[ c
A~ A k"'" & T S A Vi

s

The equality in (41) arises from the fact that

> 59
s
A lim £ (a) = £(a)
koo ™ - e

-

for all a ¢ A, so that the intégrands are equal{ The left
inequality in (41) arises from the fact thatvﬁ > P, tége&hef
with (38), the standard integral theorem, and (40) without
subscript "k". The right inequality lng(dl) arises from the

fact that,hfor each k, Py > 9, 8O thgt,‘by the same argument,
oty  sppee

£ .du < 0

L

-~ for all k=1, 2, ... . ;
This leaves the middle inequality of (41) to be verified.
This is the conclusion of Fatéu's lemmaﬁlan& may be asserted
if we can show the existencé of a functionﬁg:’\h + reals such

(O

that\;k > g for all ko and such that

5 Qg  G ' (3342
\)’3 J 9. du > == “

| We construct g as follows, Define the two subsets of A:

E = {alpy(a) # gy ()}, |n = {a]£(a) < 0},
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and let ! (8
i |
SN i e

(\’B

gl(a) = -|u(a)| if a g E/

(34543)

g(a) = £(a) if a ¢ N\E, {43)

gl(a) = 0 if ae ANy E).. l
Wa_
,géémus first verify that,dfor each a € A, we have

£, > gla), {44)-

k=1, 2, «. « This is obvious for ae E, gince pk, qk are
probabilities. For a ¢‘£, we utilize the fact that
(P (@) - q.(a)), k=1, 2, ..., is a;monctone sequence. This
implies that fla), k=1, 2, .., i: a @onotone sequence for
each point a. Sincavfl(a) = 0 for a é E; it follows that fk(?)
lies between 0 and the limit f(a) for eéchlg.\‘For a € N\E, ve
hav;7f(a) < 0, so that (44) follows from (43). For ae A\(N U E)
we haﬁé!f(a) > 0, so that fk(a) > 0, again verifying (44).
£ Finally Fet—us verify (42), which is true iff the sum of
the negative terms of g(a) over a ¢ A is finite. The set E is
finite, since Pyr 9 are finitely concentrated. The set
A\ (N U E) makes no contribution to the sum. On the set N\E we
have g = £4\bnt the sum of the negative terms of f(a)-is finite
by the left inequality in (41). Thus (42) is verified. We

may now assert Fatou's lemma, yielding the contradiction (41).

This proves axiom 4.
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{;; Let >‘ be another gaxtmal order on P satlsfyzng the
premises of axiom 5. Then >' satisfies axioms 1~th¥aagh 43
hence, by the pxacﬂéing lemma, tﬁaﬁefé m.tw a function u':7

!

if p»' q then ﬂu'{dp > ]hu‘f&q S xasy-
(standard order). Furthermore, if PraE€ F, then the "if...
axXio
then" of (45) may be afigngthened to "if and only i%’, by'( | 2
,/'(}.i (f

»' extends * and * is complete on F (prcof of axiom 1
above). It follows that »' and » coincide when restricted to
F. u and u' are then two Bernoullian utilitié& representing

LN :
the same ordering on‘F. It follows that u‘fiS‘a positive

Advy

affine transformation of u: “Fhrere (exist real numbers x, y,

with x> 0,:such that‘
= u'(a) = xu(a) + ¥ ;

for all a ¢ A. %j But then, for any F, q € P we have

25 S 25 47 R
f u' dlp=q) = x I u d(p-q) + [ y,d(p-q)
T e T g, SHEaEES

v . —

§%£

£ Al | “}‘{"
Pux f Pﬂ.d‘?"ﬁ’/‘

(provided the left=hand integral is wallwdefineﬁ).
Qe follows by the standard integral theorem thﬁt the conclusion

in (45) implies
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[ u dp » I u dg |
AT = e

(standard order). In turn, (46§/£§::;es p ; qr by (3%), which
in turn implies p > . since »' extends ». This, with (45),

closes a circle of implications, and shows that, for all p, q e

;P; |
p > q iff‘p > q.

— This proves axiom 5.

B

f) Half of the proof is now complete; the other half now -

ﬁf
A
Let » satisfy axioms 1 #haeugh 5, By the

fellows rapidly,
preceding lemma, there exists a function u: A -+ reals “non+
2.3) xZ’%‘ X

faithfully" representing » by (#3) and th4.

partial order on P determined by u according to {38) .
vBy the first half

Lét %' be the

We show

that >' satisfies the premises of axiom B

of this proof, »' satisfies axioms 1 theeagh 4. Furtharmo:e,

if P> q, then .
f u,dp > ] u dg’
A hE \ = N2F

by (23), which in turn implies p »‘jﬁf}by (38); and,if p ~ q,
then ' :

L ufx;gp ke f:’},uA@q -

by (24), which in turn implies p "t 49, by (38). Thus >' extends

». The premises of axiom 5 being satisfied, it follows that >

and »' are identical. This ;,e‘)m,;,lea_rferg the proof! W, gmlﬁ*
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10 A few concluding ccmmentg; If universe set A is not
ﬁgzély countable but finite, #hen any utility function u must
be bounded, and standard order reduces to the ordinagy éize
comparison of definite integrals: ‘yé are back to yﬁé con=,
ventional expected utility condition. There isvaﬁcorrasponding
simplification on the axiomatic front in this é;seg Every
probability measure is now finitely concantrated (F _P), so0
that axiom 1 now asserts the completeness pf ». Bs mentioned
above, this implies axiom 5 (Proof: if >fis complete and »°'
extends #, then »' = »1);:; hence axiom 5 may be discarded, Also
axiom 2 now implies axiom 3 @1nt. Let Py = dyr 93 = Py
x = 1/3; mix %(?1 + q,) into both si&es of py » ql); hence
axiom 3 may also be discarded. We are left with the conventional
three axioms of completeness (axiom 1), strong independence
(axiom 2), and Archimedes (axiop 4). (Exercise: Show that the
monotonicity c¢lause in axiom {fﬁay now be deieted to yield an
axiom logically equivalent tafthe originalgw

Going back to the general case, let » have a representation
(38) with u unbounded. What conventional axioms will » not
satisfy? Strong indepen%ance still stands, but » is definitely
not complete. For ther&fwill be a sequence of points Byr Bgrees
in A (not necessarily axhaustive) such thagqu(a )} > Zn, all n
(if u is unbounded abnve), or such that u(a ) < waB , all n}(if
u is unbounded below)@ let p(a2 ) = q(azn*l) = 2", a1l n=1,

R it w1th zero vaiues alsawhere. then



326

= [waw [va

are not comparable under standard order, so p, q are not
comparable under.ﬁ. |

Furthermore, the Archimedean axioms cannot hold in géll
generality. Specifically, if u is unbounded abave,%hﬁ%%m
show that (25) cannot hold for every probability trip%é
g' »qE»p (It does hold for E', Pr g e\ﬁ\as proveé?gégVe).
Take a sequence a;, @,,... With u(a ) > 22, all n, gnd, say;}
u(a,) > pgal). Let p'(an) = 278, ali n (the "Pete?sburg"
distribution), let q = az;' P = a;; then p' » g » p, but tt-is
easy—to see that fﬁ%i\is false for every x, 0 {}é < 1.
Similarly, (25') is false for u unbounded belogi

These considerations give a clue as to hg@ one might set
about modifying existing models ﬁh&éh are to§ratrong in that
they imply bounded utility., For example, iﬁgArrow's model it
would be interesting to see the effect of relaxing his "monotone

continuity" assumption, which has aﬂm‘Archimedean* flavor.&ﬁ

3.4, Extended Ordering of Pseudomeasureé

The virtues of standard order may ge summarized again as
follows: (i) It resolves the blurring;ef preferability reléz
tions which érisas when objectivénfunqéion integrals are
infinite; (ii) it extends the scope qf comparability by

admitting policies whose integrals aie not well=-defined, and,



327

fimaldy, (iii) when alternative policies have integrals)which

are well=-defined and £inite§ the standard ordering criterion

reduces to the ordinary size‘comparison of definite integrals,

The one disquieting property &%qﬁaé is:thath\generalxyg;
standard ordering is incomplete, and this raises the quegtionz
Is it worthwhile to extend standard order,-se-as to magéfmore
pairs of pseudomeasures comparable?' The affirmatiVe;iQ based
on the feeling that one should be able to compare aﬁy two
options; the negativeg dﬁithe feeling that any f;iling in of
th;&*gapséﬁieft by standard order involves arbitrary decisions
which lack ﬁhe intuitive appeal of sgandard ofder.

Let us examine these issues. First of-all, tha order to
be concerned with is not standard order/ggg se, butﬁihat which
it induces on the set of feasible alteégétiggé. That is,
although standard order is not campleté, it is cé%ggivable that,~—
in any "nonﬁartificial" problem,wfcxfany pair of feasible
alternativas_pl and Por the aorreéﬁénding pseudomeasures wl
and v, are compar%ble. Aeeua$%y1f§his is probably the case for el
the. great majerity-of problems ﬁéing pseudomeasure evaluations,
However, therewgggb"natural“ pioblengu even in classical |
location theo;fdu for which 56Q§comparability arises. (The
Léschian problem 6n the unbéunded plane is an example).
Secondly, completenes§ is not crucial. From the point of

view of the theory of choice, the ideal situation obtains when,

for any of the range of problems under consideration, there is
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a unéque best choice. For this to occur, it is in general
neither necessary nor sufficient that the order be complete.
Consider a pseudomeasure wh:ch is not comparable to 0
under standard order, so that ¢ (A) = (A) = o, Let (P N) be
a Hahn decomposition for ¢. ﬁae can think of y intuitively as
an infinite positive mass placed on P, coupled with an infinite
negative mass placed on ﬂ One possible way of achieving |
comparability with 0 would be to "cancel" patches of nagat1Ve;ﬁ
mass in N against patches of positive mass in%?,”and to come ﬁp
with some kind of "net" mass, which may be positive, negative,
or zero. The problem is to determine the method of "matching®
up”the patches to be caﬁceled. This involves some more-or-less
arbitrary rule; butﬁkif the space A has some structu:elin
addition to its sigma-field I 4—@n particular, if it has a
metric) —there are some fairly "natural" ways inmyﬁ*ah this can
be dane.‘ \ ;w
Consider, ﬁgr akémple, a space A with meagﬁréble partition

(Ql, Az,...}, and measures u, v with values qﬁ these sets as

follows, , ;' ‘]
‘g% el 7R ; 24
e e el Yo ol Sl - ) Beea
\ P ! / (2. V)
H 2 E 0 2 : 11 ¢ PR &)
v 0 5 1 0o / o liese

i
,gf

LS

p and v are both infinite and mutualiy singular; Wesee they are

not comparable under standard order. Yet p seems to be higger.ﬁ___:::..:>~



329

Actually, if the partition is arbitrary this feeling is an
illusions By clumping BAyr Bys B, together, etc,, one can make
V seem bigger. But if the partition is somehow naturally
ordered as it stands, -then one may try cancelling 1 against 2
with a net bigness rating to u. Aﬂ example might be where A,is
the non+nagative real numbers, and the A, are a sequence of
intervals in natural order.

We shall now consider some orderings which—are baséé on
the principle just outlined. Unlike narrow and 3tandard order,
which- are uniquely determined by (A,Z), there will in general
be many of these "extended orderingQ“wjand it is afmatter of
ad hoc judgment as to which, if any, aﬁmthmse is«to be considered
| correet“ The extended order is determined by an extansion

class, which we now define. f

4

lgﬁ&mﬁ Definition: Let (A,Z) be a measurable space., A collection of
$ \s

measurable sets F 13 an extension c¢lass iff

Lw(i))far all ¥y, F, € F, there is a_set FQ & F;éuéh that F, y

'(ii) thara is a aountable subcallaction F'xﬁhich covers A
(M, Aqu'). "

We give some examples. s

"g"“fwﬂwjf;ié The class consisting of the gﬁiverse set A alone is an
Q;é’fg\qh'é extension class.

it ..(1%) More generally, any collection of measurable sets

ineluding_é is an extension class.
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CZE)* fé&i) More interesting examples a?ise when A is a metric
space (and all open and closed discs are measurable). The
collection of all closed dises {ald(a,a ) £ r} is an extension
clas&@ &&kewise the collection of all open discs.

(&v) Let A be the non4negative real line. The class of all

sets of the form {als <ag< am}, for a® ¢ A, is an ext&nsian‘;f

e S

classﬁ

One or two more prelimina#y concepts are needed,

"Ei;rfsgfinition= Let y be a pseudomeasure on (A,2). The ra&trict&d

ffisﬁ domain of ¥ is the class of all measurable sets E sush that
e ¢ (E} and ¢ (E) are not both infinite. ’

”
ol F
b &
/ I

[ We denote this class by E¢ Clearly EW coincides with ¢
iff at least one of the two measures w . ia finite -w§$§&s
ds—to-say, iff ¢ is a signed measure. 1

i< Definition: The value function of psauﬁome§§ure ¥ has domain

A
jSi by d to all E¢ & i th lue y*(8) - b (R)
(L yt 8n¢ to all E ¢ I, assigns the va ue; i il

R
4
]

L}

Without risk of confusion, wemﬂﬁgﬁi‘denota the value of
the value function of § at the set E,é ZW by the symbol v(E).
The latter is therefore an exteadad real nunber for any such E,
-Nete-that whan pseudomeasure Y is in fact a signed measure, its
value function is precisely ﬁhaﬁ_;igned measure in the ordinary
sense of the term: a countably édditive function on the séé;aJ
field I. 1In all other cases, hawever, the domain £¢ of the

value function is no longer a aégmamfialﬂ.
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We now come to the vector partial order on Y determined by
an extension class F. As with standard order, we first prove

a preliminary result to guarantee the eonsiétency of the for@hﬁ

‘ﬁT“~mEihah:?ming definition,

SL"PV\' Lemma: Let F‘be an extension class on measurable space (A,E).
The bollowing set of pseudomeasures is a convex cone:

(§£> ~dthe set of all pseudomeasures | satisfying . (3.4.9)
; Léfi)’ F g~z¢ﬁ;\b /
[ &N i ¥
B T (ii) for all € > 0 there is an F-set F_ such thaﬁ; for all
i A : )
F-sets F containinngE,
\ {
- Gt
% V(F) > =ef / 3)
: -fs—a—convex Tomes
, =

/,/”T;V—ﬂéroof. The zero pseudcmaasure satisfies (2) and (3). Let ¢

§ satisfy them, and b be a positive real aumber, The restricted

v

4
(b&)(E) = bW(E). Given € » 0, chooseﬁFk_é?j; then for F-set F
containing this set we have $(F) > n@/b, so that (bw)(F) > =g,

i domains of ¢ and b¢ are tha same, andg for all E ¢ 2$,
ii/i} 7

Hence by satisf;es (2) and (3). ;

It remains to show that, if wl and ¥, satisfy (2) and (3),
so does @l + wz. First oiupil wi and wz are finite on all
F-gsets. To see this, leily € F be such that y,; (F) > -1 for all
Fe F containing F,. Choosingggn arbitrary F ¢ F, there is an

H;/ﬁ F-set, F' 2 (Fy Fy)m hence Y(Ff) > =1, implying w;—(F) finiteg
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M for “’z* Sinc{ "’3. + zpz > ”’1 i+ Wz’ , it follows

that the latter is also finite on all F«sets. Hence ¢l + ¢2
satisfies (2).

As for (3), we start with the equality

e ‘ ! ' (244 )
‘1“#}1 "l"ﬂ)z.;” ("’1*’&2) e 4

+
¥y + 9,) «wfl M:z,%

which follows from the equivalence criterion. For F ¢ F, all
the lower variations in (4) are finite, hence we may transpase

them and combine them with the upper variationsfﬁe obtain

: (*Pl + ‘;’2) (f’) - “’1(?2 i *2 (F) =y / K“(”ﬁ'}

|
|

Naw, far given € > 0, choose Fy F, € ? 8o that wl(F) > -g/2
[

ig | F 2 Fi' and wz(F) >~g/2 1£ P o FZ. There is an F»set

F o2 (?1 U Fz); and for any Fwsetig ¢ontaining F_ we have,
from (5),

(b + V) (F) > =e/2 = e/2 = ¢,

sincavf 2 Fy and F 2 Foe

; o)
Hence Y, + ¥, satisfies (3). 78
: =¥ ¥ * %

Deﬁinitian: Let F be an extension claés on measurable space

(A,Z). The extended or&er,ﬂetermin&& by F, »rj on the space

of pseudomeasures, is the vector pagtial order whose positive
cone is

> {¥|y satisfies (2) ana (3)1}.

o

S e,
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The intuitive notions underlying this construction are as
follows. The extension class # determines a generalized sort
of convergence toward the universe set A via successively
larger sets F ¢ ? Condition (3) then states, roughly, that
$ catches up to Y~ as F-sets get larger.

Our next result is the crucial property of extended ordei.

R

C@ Theorem: For any extension class F on meﬁsurable space (2, E), >g

h;;f is an extension of standard erder, -
””i:::%;zgggéggz First we note that for any extension class ? there is a
| seguence (F n = 1, 2, ..., (finite or infinite) af F=gsets
{ such that Fl o F2 ©«e., and whose union is A, To see this, let
'ffiiiﬁ {r}, F3, «se ) be a countﬁble collection of F-sets whose union
?N;Mff is A. Then, suaceasively, these are Fmsets 1 2, Fl, Fz 2 (F U Eé),
F3 2 (Fyu FY), etc., and these uﬁbrimad E‘s aatisfy the stated
j conditions. = :
; - Now let ¢ » 0 (standard order), so that \& (2) > v (hh ¥
§ is a signeqigeasure, so its restricted aomain is all of %,
% Thus § satisfies (2.), If w (A) = w, the sequanae pt (F,)
é surpasses any finite number as n -+ w.? Hence, for N sufficiently
large, ¥'(Fy) 2 ¥7(A) + 1, since ¥ (a) is |finite. 1£ y* (a) is
finite, then | =
L W , (34.6)
fm s \ VIS (P TV z;»";gn > 97 (A) o »
 ﬁTA :

The seguence ¢ (F ) approaches (A) as n +> @, Hence& for N

sufficiently 1arge, ¢ (F. ) surpasses the middle term in (6).
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[ 74

/ Now let F be an F-set containing‘yn. We get
f + : o L - . (.“NH“}‘}

VE) = VTR - pT(R) > TR - vT(R) > by «7)

A where gyis a fixed positive number not aepending on F, This
% = implies that ¢ >% 0. Also (~) ># 0 is fglse, since any F=-set

2 has a larger ?»set;‘?,}satisfying (7), so that (~¢)(§) < =b,

| Thus ¢ :s--;: 0. | :

a For any pair of pseudomeasures, wl > wz implies (wl - wz) >
E 0, sa7that (wl - wz) > 0 whmch implies Wl 3 wz. This

4 /"‘

*¥§__~__f§fffifshas the desired implication for strict inequalitg;

k ) /,:Next, let  ~ 0, so that $ (A) = - () < o, Againféﬁ) is
iy 4

'%g satisfied. Taking an Fwsequance Fy & Fy gev. whose unicn is A,

o\
AP
e
=

both ¢ (F ) and ¢~ (F ) increase to thair common 1Lmit~w (A).
Hence for any € >0 there is an F such that, for any Feset F

containing F n' both y* (F) Fnd V- (F) Iie 4n She interval:>

wh e - es2, v* ™1,

~ Hence |y(®) ] = |¢*(F) - ¢~ (F)| < €, which implies ¥ v 0,

e ST
g AT ST D RS B

~é§l»Finaf&y¢ by v $2 implies (¢; = ¥,) ~ 0, hence (*1 i wz’ Vi 9
gggghat wl g wz This- a@ﬁp&e%es«%hamﬁmxuuh Wr

’/4 This is a very comforting theorem, but it does not

" guarantee that any particular axtend#d order >F is a proper
extension of >}3~tha$~$s, that some pairs gf pseudomeasures not
comparable under » become comparable unde§;>r. And in fact

there is one case whege »p is definitely hqt a proper extension;



3358

~this—is when the universe set A belongs to ?. For in this
case, by (2) the only possible pseudomeasures comparable to 0
are signed measures, which are already all comparable under
standard order; hence *F and » coincide. We can only hope far
a proper extension when A does not belong to F. '

We shall n@ﬁgshow that the "overtaking” criterion qéQQlaped

4 in recent yearé*a?is just a special extended order. Let Py and
2 2
Py be altarnative‘hevelopment policies leading to gayoff

Setee ?';} ns

streams"™ V f(pi,t)dt (i =1, Aﬁ\respectiVelyf Then policy Py
is said to catch u up to policy P, iff

4& G - l?ﬁo\ v y s
¢ \3»&;}5‘?(
* 9 1m ine [ teeye - 2oy,010e 5 0, ¢8>

" rw. N
\ L A

?5 & TFhat is, for all € > 0 there is a t2(e) 3“33 that, for ail
;} t > t%(e), the integral in (8) exceeds ne;aek But this is
precisely the extended ordering >F that arises from the extension
class F consisting of all closed inﬁervals [G,a}, ae¢ A (where
universe set A here is the non+nagative real half-line),
~Aetuwally thés account is ovgrsimylified in one respect.
There are in-faet a number of minor variants of this criterion,
some found in the 1iteratura, nthers of which can be devisad.
However, most of these otﬂers turn out not to be extensions of
standard order. liow standard ordering is intuitively much more

- compelling than any evertaking vaxiant. Hence if some pairs of

paeudomaasures are given ane order by >, and a different order
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by some other criterion, this constitutes grounds for dropping

the other criterion as counter~intuitive. We shail therafcxe-a&

not bother with any variants of the overtaking criterion otﬁar
than "eatching=up-to"., ;

This criterion is a proper extension of standard oféerﬁ‘.a
Ebr&a%amala the pair of measures u, v in (1) are not ¢omparable
undex\;. But — taking the ordered partition (kl, Az, sen) toO
represent successive intervals on the half-line [0,&) - they
are comparable under catching-up;u and in fact u ’F J?‘

Tﬁ;\“aatching*up“ criterion appears to be somawhat
specialized, and it is not immediately clear hﬁw to generalize
it to spaces other than the real half-line. We naw show,
however, that it can be rqfintarprate& in axhay wh$uh

generalizes to any metric space.

M : : ' ) £oN
(J7 | _Theorem: Let A be the nontnegative real ha&f~11nef F the

extension class of all closed inﬁervals [0 a], 0 < a < «, and
6 the extension class of all closed ingarvala [al, az},

0 28 fa, <= Then the extended orﬁerings determined by
these, > and >z ¢ are identical.

b

4
&

Proof: Special case of next ﬁhacrﬁmg; |11

eorem: Let F and G be two axtensian classes on measurable
| e o

space (A, L), aatmsfying: (3) F g Gﬁk(ll) for all G ¢ G there
is an F ¢ F with Foa G¢\an& (1113 any G-set containing an F~set
is itself an Fﬁset. Then »g agﬂ »g are identical.

~ :

6 4
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/ We use an obvious notation for F-sets and Gusetglj

Proof:  Let ¢ »¢ 0, so that F g 2 ; and F 2 F implies ¢ (F) > -¢g,

—— N F (/] = : =

We _have
all ¢ » 0, For any G, there is an F 2 G; since F ¢ Ew, G ¢ E¢;
v 3/‘ )
o5 thus G § EW /\F is itself a G—set, and if G 2 Fer then G ¢ F,
‘“wl> } so that y(G) > —e{ This proves that ¥ >G 8
= Conversely, let ¥ »g O.f Since 6 < Zyr Fa 2,0 G2G,

implies ¥(G) > -e. For F, we choose any F-set containinglge.
Then if FaF,F sze; heﬁce ¥(F) > -e4 since F is also a
G-set. This proves that ¥ %F 0. &444£‘1i3’i3f

‘dw““"ékﬂﬂﬂﬁm

class of closed boundedgintervals on the real half-line. This

Thus "catching-up” ?s also the order determined by the

suggests that for any matria space (in which all closed discs
are measurable) a natural generalization of th;v}catchingwup"“‘
criterion would be to use the extended order d#termined by the
class of all closed discs. We shall actually use this
{6: procedure for the Lcschian prcblemﬂ in which the universe set
: A is the plane. ™one could also use open discs and open
3 y>

intervals throughout insteaa of closed)."

:‘\‘;{

Let—us now raturn to the study of extended orders in

general,
(%Q; Theorem: Let (A,I) be a measurable space, and ¥yr ¥y two pseudoz
ff *; neasures which—are not comparable under standard order. Then
xdfg there exists an extension class F(such that wl >F ¢2¢
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L e

éﬁ£§}éﬁ£&£= Let ¢ = §; = ¥,. We must show that ¥ %&xo for some

h extension class F. Let (g,p) be a Hahn decomposition for .
Since ¥ is not comparable to 0 under standard order, w+ and §"

e are both infinite; in particular, w (P) = o,
@fr u-\ \\3 Let {5y, Wy,...} be a countable measurable partition of N,5 :

such that w“(Ni) is finite, all i, PFor F we take the class
(P U Ny, Py Ny UNy, e It-is-clear—that this is, an '
extension class. Also, for each set F ¢ F ¢ (F) = =, and

w'(g) < «, which implias b>g 0. kLLF7A;’

ﬁa!"‘““ e

* o~

By symmetry theré is another extension class é giving the
opposite inequality:fnwz >é;¢1. This underscores the great
diversity among the possible extended orders, and the need for
some "rational® salaetion among them (in the occasinnal cases
in which standard Qrdsr does not suffice).

Any pseudama&sure not already comparable to 0 can be made
comparable under:%he appropriate extension class F; In general,
#gdepends on the;pssudomeasure. é%n one make the stronger claim
that there is aﬁr%:éﬁiéh_simultaneously makes all pseudomeasures

comparable to Qf(hance to each other)? Our last theorem shows

that the answer is no, except in a trivial case.
{ =N

£¥§,¢’Thaorem: Let (A,X) be a measurable space. No extended order on
f:ZQ the set of pseudomeasures is completeﬁwunless Z is a finite

s&gna—field.
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J—
s

?;Proaf. If I is finite, then standard order is already complete,

2 and all extended orders coincide with >

\ Conversely, suppose there is aﬁ extension class ? such
i “that >F is complete. Then F - X@ ‘for all pseudameasures U,
by (2). Suppose there were a sat Feg F whﬁvh-cantain&ﬁ an
infinite number of measurable sets~ The proof that standard

order is incomplete if I is igfinite shows how to construct a

% pseudomeasure ¥ such that ¢*€§) = w"tg) = », Then F would not
é belong to the restricted damiin of y. This contradiction shows
that each g?set aantains-ag*maat a finite number of measurable
sets. |
Let‘?l ~ Fg Gses be én increasing sequence of F»sets whose

unio isig, We may assume that F #£ D, n+1\F # ¢ for all
n = ds By ssil» W% shai%'aasume this sequence is infinite, and
reach a contradiction. Let ¥ be a pseudomeasure such that ¢
Y(F F) =1, §(F +l\F ) = 2 if n is even, and W(Fn*l\F ) = -2 if
n is odd, (bin%e the numbar of measurable sets in aaeh of these
sets is finite, it is trivial to construct such a ¢§9 Then
¢(F ) = 1 if n is cdd, and ﬁ(F ) = ~1 if n is even.

" Now let F be any F~set. The measurable sets contained in
F are generated by a flnxta partition G of F. Each G € G is

contained in some ? Qf the sequence Fl s Fz Sees} henca F is

czﬁgained in the unian of these, which is another F, wf? )

B B L A A A a3 O O Bl A

and y(F +l) take on tha values +1, -1 in some order. Hence for any

F € F, there are F-seter', F“, each containing P, with y(F') = 1,
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— P(F") = ~1. This shows that ¥ is natvbomparable to 0 under
. ]},’ ;ﬁ, eoﬁtradigting the assumption ogféampletanesﬁ off;F.

~ Thus the sequence F; ¢ F, c... is finite, so I is finite.|]]

Note that for the case ing%hich suma{;#'is complete,
standard order is itself alrgﬁay complete. Thus the situation
is this! Jf standard order;is not complete, then; while some
of the gaps can be filled ?& using one or another extended
order, it is impossible tq;fill all of the gaps. We qlase on
this slightly passimisti@fnote.

SN Conclusion

Standard order an;ihe vector space of pseudomeasures over
measurable space gg,Z);has great intuitive appeal as a
representation of yxeéerences. It appears to carry cne
éatisfactorily thrbqu the great bulk of problems :ﬁ§§ﬁ=arisaQ
{(Standard order suffices for 99% of this book; only in the very
last subsection of tim wapy last section of the last chapter
do we go beyond iﬁﬁé

When the incoﬁ§leteness of standard order causes trouble,
-one can use an extahéed ordering to f£ill in some of the gaps.
The problem here ié to choose the appropriate extension. The
most appealing-ahaiea-aéa#whasmbeen suggested is th;$“aatehingc
uggrér%Eovartakinéﬁwbriterian. This has been applied to some

special cases, and the generalization suggested here is to the



341

extended order determined by thé;closeé discs (or the open
discs) of a metric space. T?b;intuitive idea here is that

Q\\“nearby*'§ositive and nega@i&a masées may be cancel}ed,
In all interesting eﬁi&s even extended ordering remains

incomplete.
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FOOTNOTES - CHAPTER 3

i ib. Carath#odory defines a similar operation in ¥is

Algebraic Theory of Measure and Integration, F. E. J. Linton,

transkate*v P. Finsler, A. Rosenthal, R. Steuerwald, edt&ess
(Chalaaa, New York, 1969) pagas 299»304, in the context of
"regular outer measures" on a aigmamring of samas{o But he
then takes the difference of the two variations (on the somas
where this is wellhdefined} and thereby misses the following
theory, which depends on getaining it s A_ as separate entities.

f'gd 'gﬁor discussion of infima and suprema of measures, see

N, Dunford and J. T, Sthartz, Linear QQerators, vnl. 1, @&gas
162~163.

5, 3Fcr the concepts involveﬁ see N. Jacobson, Lectures in

Abstract Algebra, VQlcgﬁ (Van Nostrand, Princeton, 1951),

pages 162«167g

4 13@ good general referenaa is R. Duncan Luce and H, Raiffa,

Games and Decisions (Wiley, New York, 1957).
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&, The material in thlsagection and the ‘next is well known,

but terminology is not completely standardlzed, and we have

Ctn ot
selected those aspects which are relavant for our particular

purposes.

T Fqne customary mathematical term far this concept is

maximal“m

7 ‘7A point is said to be Paretafeffiaient for the family of

partial orders (>3), i € I, over H iff it is unsurpassed in

their Pareto ordering.

£

See, fer~examp&qf Je L Kelley, X. Namioka, et a%y

Linear Topological Spaces (Van Ncstran&, Prinaeton, 1963), p. 16.

o
4

S 1 ?his relation may be written B > v, This notation is
consistent with the corxespondgng ‘pseudomeasure relation
(u,0) > (v,0). Note that u > v does ?gs‘mean that u(E) > v(E)
fér all E¢ I. In fact, the latter conditicn Egggg_hvlds, since

ot ! =
all measures are zero fes E = ¢

W sv‘tﬁWhis ambiguous usage should cause no confusion. We =shall

also consider below some "th+faithful" representations, in

which either the "if" or thé "only if" of (11) is relaxed.
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i g, . Ramsey, ®a hathematical fheory of gaving,*

Econon&e-aourna% 38:543~559.(becunbonﬁ_lBZB} Reprinted in

Readlngs in Welfare Economics, K. J. Arrow and T. Scitovsky,

edshers,élrwin, Homewood , :11., 1969), yages 6191633.
}}\ f

lpgxiﬂIn this probabilisﬁic context, £ is usually called a

random variable, with exﬁéctation C.

13in J. von Neumanﬁ:and 0. Morgenstern, Theory of Games and

Eccnomic Behav1arV(Princaton Unive:si#y Press, Princeton, N.J., 1941)

: pagpa 617*628. The axiomatic discussion was

flawed, one of the basib axioms being concealed implicitly in an
operation, as was noted by E. Malinvau@/h (reprﬁneaé on paga 271

\Lﬂ ;Jf
of the Raadings}mentiongd in -footnote). The idea of

maximizing expected ut;iity originates with Daniel Bernoulli,
1738, ‘

i My so-called "mixtura spaces" the utility function need

not be bounded, but here it is not expressed in the form of an
integral. See I. N. Herstein and J. Milnor; @An ﬁxiomatic
Approach to yaasurable,ﬁtility* Econometrica, 2g 291»297,
ﬁ&g§§$§~i§53* reprinted in/Readings in Mathematical Economics,
vol. 1, P. Newman, edibar (Johns Hopkins Press, Baltimore, 1968),

mpégaa 264~270. In our lemma below we use a theorem of Fishburn

which is very similar to the HersteinelMilnor result.
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" “W&?:mﬁf ke ﬂ%@&@@f@44k

/5 &33. 9 Aumann; “Utility whaory ?&th@ut tha gamglataness

ﬁxiam,“ Econometrica, 33z445%3633{;962;

'*\

Lo Moy . Fishburn, Utility Theory for Decision Making

(Wiley, New York, 1970), p. 19?i

+7 iq?bis result is well kgawn. See, for example, Fishburn,

- My, g, Arrow, Essays 48 she Theosy of Risk-Bearing

(Markham, Chicago, 1971Q[§&gee 48-49, 6365,

& %géaa C. C, von waixsﬁakex;‘%ﬁxistanca of ¢ptimml fxogrammas

of Jecumulation for an fntigite ?ima ﬁbriaan, 3 Ravias=a§
Eccnm Stulies, 32:85«»1&4. g\prﬁn 1965; Ravw Economic
studﬁ, m... 34, J&nmﬁr;,, 1967 (entire iasua is on Gpt:imal
Infinit.a Pm«;xma) * ch comparison with the earlier and

Ufljf Clitsng QA PN oA

distiuat appraach aﬁ Ramgay see above, page

P’(‘,» w}’“v‘ “’>

.

24 *&.‘Q. Gale, @en ¢ptimal Pevelopment in a b&ultiw,secwr

%anomw) Revbmmamﬂ Eecnam&a Studﬁbmﬁ 3& 17;8, Januau§* 1967}

5
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%ﬁ; zicOncernlng closed versus open discs, we can prove the

following result: The pseudomeasure orderings determined by the
following three extension classes - the class of open discs; the
class of closed discs; and the class of all discs, open and
closed -~ are identical, provided at least one of the following
conditions is satisfied: either (1) every closed disc is compact,
or (ii) any two points belong to a set isometric to the real line.
TBoth these conditions are satisfied by the Buclidean and city~

block metrics, for xample. For "compactness" see 7.4; for
"isometry" see) 2.7)




