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3f 'x;tfiE CQMPARISON OF INFINITE M;ASURES)/ 

This chapter develops the theory of pseudomeasures. These 

are extensions of signed measures which enable one to carry out, 

for example, the operation of subtraction even for infinite 

measures. Etmfiflaaamnutwthatkguch of standard measure theory 

generalizes to pseudomeasureé; and that many theorems can be 

stated without qualifying conditions as to finiteness, integrag 

 $bility, etc. Thus the theory should hold interest even “for 

"pure" mathematicians. 

The theory also has numerous applications. First, it 

enables one to "net" freely, even when both "grosses" are 

infinite. The subtraction of consumption from production has 

already been discussed, Another example is migration: Oae would 

like to get net migratiofi by subtracting gross outi\fiom in- 

migration, even when the latter two measures are infinite.™ 

‘1@hi§ might occur,-for example, on an infinite plané, or with 

an infinite time-horizon). End, in general, it enables one to’ 

perform arithmetical‘accounting operations freely on measures, 

without worrxying about the appearance of the meaningless 

expression ® -« =, A 

Second, it allows one to compare different "infinite 

utility streams" éuch as arise in the evaluation of economic 

development programs. The "overtaking" and similar criteria 

which—have-been developed to deal with these problems find their 

natural place within the theory, and emerge as special cases of 
Y 

a general approach.
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Even more generally, psefidomeasures ‘urn-out in many cases 

to—be a natural way of repiesenting preference orderings. ‘That 

-is, instead of representing preferences by real-valued ufiility 

functions, one uses pseudomeasué;valued utility functions, with 

various natural orderings on the space of pseudomeasures. This 

arises for infinite~horizon development programs, for problems 

of location theory on the infinite plane, and for preferences 

among uncertain situations, 

3.1. Jordan Decomposition Theory 
  

The formal development of pseudomeasure theory goes through 

two stages. The first stage involves a generalization of the 

concept of Jordan decomposition. This operation, which applies 

to any pair of measures, has an interesting and elegant theory 

by itself. In tfigléfiesent section we shall develop only that 

portion of the theory which lends directly to pseudomeasures,._ 

or which has direct applications elsewhere in this book. Some 

other results will;be pres%nted as exercises (which are generally 

v%airly difficult éo prove) . 

Pseudomeasugéefigggflig arise from the application of the 

Jordan decomposifiiofi to sigma-finite measures. This enables one 

to define algeb;aic operations, integration, and ordering rela- 

tions in a manner'wfiéeh is fruitful for applicationsg_and also 

of considerableimathematical interest in itself. \ 

Let (5,2){be a measurable space. All sets referred to 

below are assumed to belong to I, and all measures and other set 

functions are essumed to have I as their domain.
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Hfififla Definition; Let (u,v) be an ordered pair of measures; the upper 

  

variation of (p,v) is the set function ar given by 

    

e { (3.1.1) 

A*(E) = suplu(F) - V(A |F & E, v(F) < =}, <) 

L";,s all E e zo 

L; " That is, to find A+SE), form the difference u(F) - v(F) 

for each measurable subset F of E for which v(F) is finite, and 

then take the supremum over these numbers. Similarly,fl%fl“fihffia Che 

M ‘i‘ " i " : 

ifii“. Definition: The lower variation of (u,v) is the set function A~ 

given by j 

“5;,,..‘-”""“"“"-\\; 4 ..' 

& A (E) = sup{v(F) - u(F)|Fc E, u(F) < =}, ) 

Cj_._,/ .all E ez 

,,rfl“?gff Definition. The Jordan deéomposition of the ordered pair of 

fj:? qt——-measures (u,v) is the ordered pair of set functions 

(*,i7) given by (1), (33.Y 

  

f;%;fi;‘t Theorem: The set functions A, A~ are actually measures. 
Nt 

“wwwi%qfe'broofa It—is—eclear-that A and A are nonsnegative (since ¢ s B, 

for all E¢ I), and #ha%—l+(¢) = A (#) = 0. It remains only 

to prove countable additivity. 

;fiwl Let fgn), n = i) 2, ..:,be a countable measurable packing,, 

v with E = U{#n}. Let_E_satisfy:” Fc E, Fe I, v(F) < »; then 

F N E, fulfils the same conditions with E in place of E, for   ff all nm? 1, 2, ... « Hence
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= u(F) = v(F) .- 3) 

Taking the supremum over all such sets F, we obtain 

y* (El) i (E ) i > i (E). 5 i4¥7 

It remains to establish the opposite inequality. If A+(?n) = o 

for any n, then A+(§) = », since A" is clearly monotone fiEQi 

decreasing; in this case we get equality in (4). The remaining 

case is where k+(§n) is finite forvell_g. Choose a real' number 

€ >0, and, for each n = 1, 2, « s+ Choose Fn :-En such that 
— 

3 T -} 

3,05 ) 

WD = vE) > x"'(_E?{) -’28, 5 

Noting that {fl-Ui;iu_FN) ;’E,{Qnd adding (5) over n = l,...,y, 

we obtain 

i x"‘gs) > [u (F)) - v(Fl)]+...+[u(F) = WilE)) 
4 Qw 

2t (Ey) + ..+ At (Ey) = e(2”l +{ 04 2'};)-\_ (&) 

Letting N + « in (6), we o@tain ey 

D o s - +aTEy) + 2T (Ey) +.... 

'ksince € > 0 is arbitrarytfwe obtain (4) with inequality sign 

reversed. Hence A+ is cduntably additive. By symmetry, so is 

V. WMEDe
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| How does this operation compare @ith the ordinary Jordan 

- decomposition of a signed measure A?;:We know that A can be 

expressed as the difference of twovfieasures(say A = Al - 12} 

where Xl or Az is finite. ILet (Af;h-) be the (generalized) 

Jordan decomposition of the pair:(ll,lz). It is then easily 

verified that A+, A~ coincide wifih the ordinary upper and lower 

variations of ), respectively._ Note that the operation above 

is well~defined even if u and v are both infinite. In this 

sense it represents a true generalization of the ordinary 

Jordan decomposition. 

-bet-us write q(u,v) for the Jordan decomposition of_(u,v). 

Let py, 0, be set Sudetlionas - e write p, < p, to indicate 

that p;(E) < p,(E) for all sets E € IZ. Then we have / 

#i Theorem: Let (AT,A7) = J(u,v); then 

1‘7&! A+ i u and k- f- Vo.}\ ‘ ‘:'}’ 

M" 
& 

mwflf;;T”;}cof- Choose E € L. For any F < B with v(F) < ®, we have) 

u(E) > u(_lg‘_) > u(f‘_) = vg_g)- { 

f,l{j " Taking the supremum over all such F, we obtain u(E) > at). 

Thus u > A*. The pioof that v > A~ is similar. }*figjlf 

  

Thus J is a "shrinking" operation. We shall see below 

that J in effect removes the common part of u, v from each of 

them,
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Let u, v be measures, withfu > v. We went to define the 

operation of subtracting v from:u in a reasonable way. One's 

first impulse is to take u(E)v; v(E), but this introduces the 

meaningless operation ® - « if ¥ and v are both infinite 

= »\\\measures. 

2 f/:5 o 
__---"5‘“"““’” 

‘; 

bk Definition: Let u > v be measures. u - v is defined as the upper 
D)) / 3 

';EE' variation of the pair (u,v). 

~~ Note that u - v is énly defined for the case 2 V. One 

easily sees, incidentaljy, that the lower variation of (u,v) is 

0, the identically zerq’measure. 

The following theérem shows that "minus" has at least some 

of the properties of ordinary subtraction. 

#$a§'Theorem:3 (i) Let uw > v be measures; then 
' 

/Q\ = (0= V) + v 48) 

  

f?(ii) Let u, v, 6 be measures, with u = v + 0; then 

e?_(u—\))fi' 
.(.g__i 

(If v is efiéfia-fimite, then (92) is an eguality). 

W \=~ 2\ - ¢4 
v |4 

fi;;" g (U G X \ \ 
f 

(1) If v(E) = », then u(E) = », and (8) is satisfied at 
    

‘f,Proof: 

”N‘ E. If v(E) < «, then, for any F < E, 

RE T 50 — 7 
W u@ - v@ = ) - v+ (g\;;)j- V(E\F)] > u(F) - v(F), 

so that u(F) & v(F) attains its supremum at F = E; hence
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(n = ) (E) = u(B) - v(E),- ' (10) 
1o ) 
W which again verifies (8) at E; this proves -part (). 

é Cfi j(ii) Choose E ¢ I. For any F o E such that v(F) < =, we have 5 
% o & ] e 

! * a2 g L iy ¥, ) : B(E) _>_ G(F) ==;u(F) -_v(F). 

b Y Taking the supremum over all suéh_g, we obtain (9). Finally, 

-;;I)} let v be sfié%a-finite, so thatffhere is a measurable partition 

(a), n=1, 2, ..., of A such that v(a ) < =, all n. S0 

O(E N A) = u(EJA) -v(ENA) 

= (0 =+ VI(ENA), *(%, 

from (10). Summing (11) oéer n, we obtain (9) with equality. Lkrggf 

- }“““ Note that the inequagity (9) is sometimes strict; e.g., let 

A consist of one point, afid let ui@) = V(A) = w, e(A) = 1, 

Ly e }Exerolses. 

. 1q 
() Let My 2 Hy 1...3,g; be measures. Show that 

\\_/;\u/\’& (ul o~ lin) & (ul = Hz) 4 (UZ s UB)+...+(u9_l = ua) o / 

(Hint: Prove for n = i and use induction; consider separately 

the two cases (un i u )(E) = o, < wfia 

3 Lii) Let u > v > 0 be measures. Show that 

-(u = Vv)=(u=-29)~-(v=-20). 

W (Hint: Hse the result of the preceding exercise for a staréf@ 
S i O
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We now define two further operations‘bn a pair of measures 

(4,v). Consider measures 8 satisfying © g_u, 0 <v. Is there 

a largest among them? That is, is there;a measure 8 satisfying 

these conditionsnxand > 0 for any © sagisfying them? There is, 

and it is known ae the infimum of u and v, written inf(u,v). 

“In=fact, one can give an explicit fofihula for this measure: 

inf (u,v) (B) = influ(F) + V(E\F) |F < E},. ) 

l~all E € I. | 

<:Note the distinction between the two "infs" in (12)! The one 

on the right is the ordinary infimum of a set of extended real 

numbers, Qfigéigi u(F) + v(E\F) 'for all measurable subsets F of 

E, 

Similarly, the sugremum;gf y and v, written egg(u,v), is 

the smallest measure > Y, Vg; The formula for this is the same 

as (12), with (ordinary)“‘#fip "“in place of "inf" on the right- - 

hand side.Z” 

H$~rffTheorem= Let u, v be measures, and let (A*,A7) = J(u,v); then 

€§§;;/ B+ A éfv + 2t = sup (u,v) . ' 13) 

   
   

| Proof: First we prove gie right=hand equality in (13). Choose 
q%wf!_ 

E € . If V(E) = =, &his equality is -elearly satisfied at E. 

1% ”QT;\ If v(E) < », then) . 
D) it 

V(E) % (E) 5V(E) + sup{u(F) - V(F)lF :Q?} 

i\- sup{u(F) + v(E\F) IF o E} = sup(u.v) (E),
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so the right-hand equality again holds at E. In a similar 

, V manner, with p in place of v, we prove that 

W+ AT = sup(u,v), 

which establishes (13). 1J4/£" [7"A 

This result has several applications. As a first, we show 

that the Jordan decomposition operager is idempotent. That is, 

sincexg(u,v) is an ordered pair of‘fieasures, we may apply the 

J operator again; but it=tu@ne~euei%hat nothing new arises: 

32V = (@) = T, 
- M Y J 

‘},f% Theorem: The Jordan decomposition operator satisfies Jz = J, 

-_/‘T"i 3 P | Proof L V. be m e v and t fon) e : Let ue, g P measures, lgt (Mg ev9) = g(ue,ve), nd le 

fff”a (pz,vz) n*g(ul,vl). We must show that Uy = Uy Vy = Vyo It 
- > 

suffices,-in-fact, to show that Uy ; Wy» Vo 2 vy, since the //ML gvh[ 

opposite inequalities are alfeady known,;by (7) caboves Choose g 

X B ¢ L. We then have | 

uy (B) = suplu; (F) - vy (F)|[F e B, v o'® <=} (14) éffo 
; 

| To see this, note that ‘ 

| | (F) + v _(F) = u_ (F) + v, (F) £x5) 1J%¢% Wgas Q- “9,. 1’ 

/ E by (13). abeve. Also flg(F) < » for the sets F in (14), and 
e ] 

vl(g) 5-%9(F) by (7). Hence we may transpose the v-terms in
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(15) to obtain- 

(::.::} F - F = - ) N =g (F) = v, (F) ,‘,1,9(5’1) ve(?*)...i..x l?&&t_fi 

from which (14) follows. ‘¥14)§gn turn'implies that 

\ 
[ = o\ 1 i 

i 
g P& 
1\‘)} ¥ 

R S — s e 

e
 

Ladlg ) 
My (E) < sup{uy (F) - v, (F)|F/c E, vy (F) < =}, \ 63 

§ For the set of numbers over which the sup is taken in (16) is 

% at least as large as the set in (14); since v, < Yo" But (16) 
erg 

states that u, (E) < u,(E). Hence My = My. The proof that [QM” 

V; = v, is similar. ||| 

st 

The following important result is a second application. 

&H Theorem: Let Uyo vl, Uyr Vy be measures such that 

| - (2.1.17) 

; Uy pvq) = T(uy,v,) i’ ) 

‘ L/ then 

Uy + v, = vi + Uy (18) 

    

-/ Proof: By contradiction. Suppose that (A*,A') is the common 

Jordan decomposition of (ulpfil) and (uz,vz), and let (18) be 

false, so that there is anflgge L for which, say, 

; (3./:14) 

Wy (B) + \’g(i*?) < vy (B) + u,(E). 9y 

Hence u,(E) < =, so that A?(§)< ® j also v,(E) < =, so that 

A"(E) < w. Now we have . . 

\/ Nm_.!. (8) + l-(E) = \)i (E) + A+(,E) ’



245 

\ i=1, 2, by (13). Adding, we obtain 

\@ uy(E) + AT(E) + vy(®) + 27 (®) =- vi(E) +2T(E) + uy(E) + AT (E). 

&Ehe A—terms, being finite,jdrop out, and we are left with a 

‘
Q
g
i
}
 

  conkradicticn of (19). 1If the inequalitj in (19) is reversed, 

é the same argument again leefls to a contradiction., Hence (18) 

is true. |78 k 
o K I e 3 oI 

It will turn out, under sigma-finiteness assumptions, that 

(17) and (18) are actualiy equivalent, a basic result for 

pseudomeasures. 

  

%&/”// Theorem: Let u, v be measures, let (A A7) = J(u,v), and let 

’;67 @ = inf(u,v); then 
S 1 N ) W ax (o W Sl e (ol 50 

\— Ao w8 RoRcn i L 

+ 1 & ,‘,.¢!«‘ > § 

Wim A o+ 8 (h v =X o+ o0, ~21) 

“ "“""’:W Proof: (u - @) is/the upper variation of (u,0), while A* is the 

ji;i upper variation of (u,v). Since v > 8, and the upper variation 

is a nonfincrea§ing function of the right-hand component of the 

pair (u,°), itffollows that 

l i (u £ e)fj fifl’) 

To prove:the converse inequality, choose E ¢ I; for any 

F ¢ E such that 0(F) < », and for any finite € > 0, there is 
¥ =3 N o 

A 

s
 

<o
 

a measurableig < F such that 

<



s
 

e
t
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0(F) > W(F\G) + V(&) = £, 23) 

by definition (12). We then have 

WF) = 0(F) < u(G) - v(€) + e < A (E) + e {24) 

The left inequality in (24) follows from (23); the right in< 

equality is true by definition of h+,fon noting that G c E and 

v(G) < 6(F) + € < », by (23). 

Taking the supremum in (24) over such sets F, we obtain 
e 

S (w- 0 (E < x*u;,)..-+ . 

Since € is arbitfary, we obtain (22) with inequality sign 

+ :\' reversed. This establishes A (u - 8). The proof that 
e 

A" = (v - 8) is similar. Hence (20) is established. 

Finally, (21) follows from fza;, eng.. 

“ v+ S i e) o=, 
g‘. R —— 

e 444” Om 

The results (20) are intuitiVely appeallng. Inf(u,v) may 

be thought of as the mass disnribution wheeh B and v share in 

common . \(30) then;states thag the Jordan decomposition operator 

subtracts out this common par; from u and v, respectively. (One 

should not jump to the conclueion, however, that at, A7 nave 

nothing in common: inf(k ,A7) is not always 0. See below5§ 
ey
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It follows from (21) and (9) that 

& = i — A\ 62 (u=4A4") W 02 (V=2 ), {25) 

with equality if At or A7 is e&gma-finiteQ\respectively.“»{4354 
(Q)J 

(in general¥gannot be strengthened ‘to equality: fieke A = {a}, 

u(A) = =, v(a) = 1)) 
Results (21) furnish alternative proofs for two preceding 

theorems of importance: the idempotency of J, and the equality 

(18) for two pairs with the sefie Jordan decomposition. Taking 

the latter first, assume (17waith (A+,A') the common decompoz 

sition, and let 0y B-iflg(ui'fii)’né = 1, 2. Then 

L"(fik 
x;4x By + v, = (4 el)+(x + 62) = (A" + el)+\x +0,) = v, + “2' «ffiLc 

s (34.34) n-ub“( 

Tt2ey | (5 
%?) 

by (21), which yields (18). As for idempotency, let (Uy,v4) = Atflg<q7 

1£'°/ J(ue,ve) and (uz,vz) =ug§ul,v1). The hard thing to prove is 

£ that Hy > Hyr Vg 2 Vg3 butfxby (21),iwe have 

(“1"’1" =J(uy + 6, vy +0), 2% 

g / X where 6 = inf(u ,ve Considering @ in (27) as a variable 

measure, ‘one eaai&y—verifies that upper and lower variations 

are both nonfiincreasihg functions of 0, so that, indeed, 

: 2 My £ Uy Vi 2 Vg implying‘g = J. 
e 
e 

————————————
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QfflJ? Exercises: 

g 

s ,, 
o j ] § 

% @ Let WY,A7) = J(u,v). Show that 

S A VAx + oo 
v/ A" = sup(u,v) - v, tnat A = sup(u,v) - u, and that 

AT s ;:p[sup(u,v) - inf(u,v)ik 

O
 

r L} ; “y 

" (Hint: start with (13)§ 

§§ %éi§ Let 39“1' l) = J9M2;v ). Show that the common value in 

(18) is 

i’sup(ul,vl) * inf(pz,vz) = inf(ul,vl)lz)sup(uz,vz). 

A 

(Hint: this follows easily from (21) and (lB)N) 

{§S€fikif’;fif;7 A final cluster of ideas centers on the concepts of Hahn 

| decomposability and mutual singularity. These have already 

been discussed in connection with signed measures, and we repeat 

the definitions here for convenience. 

S ""»"‘»-'a‘r‘gj" i 

k) Definition: An ordered pair of measures (u,v) is Hahn 

f{j;fi decomposable iff universe set A can be split into two measurable 
\n 

‘ ) ( pieces, R and N, such that u(E) > v(E) for all measurable Ec P, 
o 

And 
4;?3 ;_V(F) for all measurable F g N. The ordered pair gP N) 

is a Hahn-decomposition for (u,v). 

  

s-) Definition: An ordered pair of measures (u,v) is mutually singular 
  

a;f_ iff A can be split into two measurable pieces, P and N, such that 
{(\/ ot ’ - 

v(P) = 0 and u(N) = 0.
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| It-is-elear-that mutual singularity implies Hahn e 

decomposability, since the pair (P N) is a Hahn decomposition. 

‘fiéwmiffiheorem: Let u, v be measures, withg(l+,l ) = J(u,v). Each of 

,5 
¥ 

s 

B the following conditions implies ;fie other two: 

; 5 /gp(i) (p,v) is Hahn decomposable; 
JefE S 

ti1) (F,27) is Hahn decomposable; 
. 

tH (iii) a7y is mutually sinqfilar. 

& GfiilJ’Proef~ (i) implies (iii)‘ Leti(P,N) be a Hahn decomposition for 

  

(4,v). Then A~ (P) = o0, since V < u on subsets of P; similarly, 

9. AT =0, ‘ 

qa 2(111) implies (ii)g ;Slear?; 
e 

~ 9 (i) implies (i)} Since J is idempotent, (A*,A7) is its own 
i;:zf ~ Jordan decomposition; henée (A+,l') is mutually singular, by 

the argument showing tha§ (i) implies (iii). Let (P,N) split 

| A so that A" (P) = 0, A*(N) = 0. For any E c P such that u(E) < =, 
? we have ? 

I >27() > (E) - u(E). 

" Hence v < U on subseté of P. A similar argument yields u<y 

onng}ywwe now have a ?losed circle of implications, so these 

three conditions arefequivalent. W oe 

y;aa»,w41<”m¢‘ We are interested in conditions which guarantee Hahn 

decomposabilitys
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X 
e 

  

-C;¥r Theorem: Let u, v be measures. Any offthe following three 

fmw} =% conditions implies that (u,v) is Hahn decomposable: 

g (i) wu is abcont; 

Efii) v is abcont; 

™ (iii) inf(u,v) is sigma-finite. 

   Proof: (l) Consider packings of sets E € I satisfying u(E) > v(E). 

There—exists a maximal packing G/ of this sort -ehae is, a 

packing not properly contained in any larger such packing. 

(This inference requires the a§iom of choice, say in the form 

O
 

S
 
e
 

) of Zorn's lemma§. 

We show that G must be céuntable. Since y is abcont, there 

exists a finite measure p with U << p. For each E ¢ G, u(E) >0, 
e s 

hence p(E) > 0. The class of G—sets E on which p(E) > 1/n must 

T
 

A T
R 
D
 

O 
I
 

T 
S 
g
 e

 

be finite for each n = 1, 2,5..., since p is finite. G itself, 

i as the union of these classes, must be countable. 

We may then write G = {El, Eys sas}se For each m, v(Em) < op 

hence, restricting everythihg to E , u - v is an ordinary signed 

T
 

T 

i measure, and so has a Hahn decomposition P U N =B \ 

—~ We claim that (P A\P) is a Hahn decomposition fOr (u,v), 

A 
G
 

where ____ 

s ey 

 To verify this, let F c P; we have 

A
 
P
 

P 
TR
 P

 
RS
 

22 

W(F N B) > v(F N By 28) 
[ e 

§ ¢ 

I for each m; by summation, u(F) > v(F); thus u > v on P. 
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I 

{ 
Conversely, let F ¢ A\P : F may be. written in the form 

c§fj&// F=[F\(UG)lu (FnN;)u g% NNy U eee s 299 

OB \}We have | 

/ VN B 2 uE 0 Ry 57 

() for each m. Furthermore, we have 

¥ 

\] V(F\UG) > u(F\UG) “(31) 
:&%; Y;' 

\""“ For ,A\if (31) were fg'lse, we; could form a larger packing on which 

u(E) > v:(mEj) by including ghe set F\UG; this contradicts the 

2 maximality of G. Adding (31) to the sum of (30), we obtain 
T - 
N u(g‘) > v(F), so that v > u on A\P. This concludes the proof. 

4\' /éf (11) Same as (__Lj , with rdles of u, v interchanged. 
,fl"‘fl-&ar)‘ 

A e, 
3{ M (4liti) Let (A)), n=1, 2, ..., be a partition of universe set 

— 

_;5 such that 

o 

5,:9,?(3.\?) (_An) < », K\‘ 

= ik n. For each n the!;i"e is then a set Fn e An such that 

Pk \ 
u(:n“n) < . l v(%\i’a) < o £32) 

(W i 
g\?}’ (32) showll that, when Ve 

  

8 restricted to F ¢ Or to 

‘é:\Ffifb \Fn, yw-visa s@gned measure and thus has a Hahn decomf 

D position. Let P be ghe union of the pieoes_of the decomposié 

tions on which u > v; and let N be the union of the pieces on 

which v > u. Then (?,fi) is a Hahn decomposition for (u,v) by
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{ ]} / ; 
\ ;// M (fi)," 2 

‘ __the argument of +239)}-above. |} Zjfii 
   e o} Exercise. Show that each o£ the three premises in the S 

preceding thecorem implies the following condition, and that - 

this condition in turn impliee;taht (u,v) is Hahn decomposables 

There exists a set E ¢ Zfsuch that u restfieted to E is : 

abcont and v restricted to A\E is abcont. 

/?e For all we know to thia point, e Z pair of measures might 

be Hahn decomposable. The following counterexample scotches 

this possibility. 

e —— 

#% | Theorem: ~There exists a pair of measures (u,v) whéeh is not Hahn 
sy, 

_127 decomposable, and wheeh, furthermore, is its own Jordan 

decomposition. 

\“"“;g;gwwa 
M 
qw Proof: Letlé be uncounogble, and let I consist of all countable 

] subsets of A and theig complements; split A into two uncountable 

z - pleces, P and N (not@gthat(P,wy are not measurable), and let 

5 #, v be enumeration éeasure restricted to_?,wfi,flrespectively. 

/ l}; That is, for E ¢ Z,féf E N P is finite, then p(E) = number of 

points in g}n P; otfierwise, H(E) = o; v is defined similarly, 

with N in place of ?. One easily checks that these are bona 5 
{ fide measures. 

hen 

§ Now suppose (?, A\E) were a Hahn decomposition for (u,v). 

% Either_E or A\E mq%t be countable. If E is countable, then 

\// P\E is noniempty;fohoosing a, € P\E, we have 

&5, ) via } = 0 < 1= ulal,
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so v > p is false on A\E, contradietion; If A\E is countable, 

‘,éfi’ then N N E is non-wempty; choosing a, egk n E, we have . 
J 

n{fo} =0 < 1= V{f.‘o}/ 

so u >v is false on E, contradiotion; Hence there is no Hahn 

decomposition. _ ; 

Jfiénextgklet (1*.A”) = J(u,v), and;let E be a countable set. 

v(E ”,9’ “.0' hence & 

  

ATE) 2uENP) - v(ENP) = u(E). 

Also, P\E is infinitefifflence eontaihe an infinite countable set 

F. Y(F) = 0, so that 
s ) s 

+ ; (3'4:?’14,) 
AT(A\E) > u(F) = v(F) = o, (34) 

Lot ‘ 

‘{33) and (34) show that A% 2> u, so these measures are equal. 
A : 

A similar argument yields A~ = v. Thus (u,v) is its own Jordan 

decomposition. ,LH; gl        

  

   

7 iR For this counterexample, one easily verifies that inf (u,v) 

 takes the value 0 on countable eetsfi and, the value « on their 

Q\g complements. Thus inf(l*.l“) is not always 0. 

  

- - 25 

(| Theorem: Let u, v be measures. If the pair (u,v) is mutually 

singular, then (u,v) is its own Jordan decomposition. 

‘ww{$r”fiy roof: Let (P,N) be a measurable partition of A such that . 

o 

= ) St
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e Bt A = J(u,v). For any E¢ I, we have V(E n P) = 0, so 

AT(E) > W(ENP) - Vv(ENP) = u(En R = ulE). 

Hence ok > ¥, 80 these are equal., A similar argument yields 

A" = v, fThis-coneludes—the-proof. ,L&fi'iflfifif 

  

The counterexafiple above shows that the converse of this 

theorem does not always hold.cf 

   

#f,/%§§ ‘¢&§ Show that the following‘oondition is necessary and 

sufficient for (u,v) to be‘its own Jordan decomposition?d 

~For any E ¢ I, if (u.u) restricted to E is Hahn deoompoeablejz 

then (u,v) restricted to_g'ie mutually singular, 

% féi% Let (u,v) be its o&n Jordan decomposition., Show that 

ol 
N 6 = inf(upv) can take only the values 0 and o, 

> (Hint: Use (21) to deduce that 26 < q)b 

— This last exerciee may be compared withfthe result: 

“inf(u,v) = 0 iff (u,v) is mutually singular. For a proof seef‘, ‘ 
p- 000 . pel 

gf\. 3.2, ?seudomeasuresf 

From now on allimeasures will beaeigee-finite, unless 

explicitly noted otherwise. All measures are on the same space, 

(A,Z). We shallabe concerned with ordered pairs (u,v), of such 

measures, Among these pairs, the enee~%hae—a£e,mutually
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7 

some characterizations of these gfiirs. 

Thggfollowing theorem gives 

#fl Theorem. Let (u,v) be a pair of eigmemfinite measuree, with 

  

eent 

£ @) 
(ii) 

(1ii) 

(iv) 

Proef~ 

£ 

  

abl e 

A BV 5 
75"‘\) : » 

:v ' o) ¥.) 
7\ 

& Nt . 

Jordan decomposition (A WA )., 

(5) implieé (i) 

{The middle equality is from 3 

(v) im glies (vi)s . 

9rog§{$iee, 4hen it has all ef them: 
7:"547 

u,v) is mutually singular; 

(u,v) ‘is its own Jordan decomposition: 

nf(u,v) = 0; 

AT s g 

AT = v; 

AT e AT = u s 

At + A7 = sup(u,v); 

%o v = 33}9{31,\)). 

elready proved. 

§§§ fl 3}(11) implies (1V) &nd (V’® ObVi°“5' 
R i 

{ \ 'i 
| T, 

0 | p 

; (iv) implies CVl)‘ 

= vy + A 

(ii"’\’q 

5 C\\@) 

At e A” = u+ A" 

  

»»—"'J : 

';. + A" ai\"‘«!-vax*-l-u#“*'uf. 

f (vi) implies (vii) and (viii): 

ohe 

*iufl"flm(mv) f_u"’\‘fi.‘ 

If (u,v) has any of the following 

T
 

O 

(3.3.1)
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uiagvéfiflffiwv4 

inequality (The equality is from fi§4-3h0$a4 the right-hand 

follows from the éefinition of\sup(u,u});x Since the two 

extreme expressions in (1) arefequal, the middle expressions 

must equal each of them; this;%ields (vii) and (viii). 

9} évii)_implies (vl 

ni)“ , equality holds in general: f 

" \ &) 

By assumption, the right side of (2) equals 

As is eesily verified, the following 

B+ Ve %P(M,V) + {f»f(u:v) €0 j(l%} 

fi N TR Y (3:3.2) AT 4T+ inf(u,v) =AY+ v o= suplu,v) = At 4 AT, ) 
% (151) obseclige:d, 

éCfi) ‘\7>$he left equalit%lin {i) arises from €2%) ebeue& the middle 

R 

& 
I8 
[~ 

(111%) o bsechien, 
from (+3) ebeviggz} and {3) together yield (vi). 

(i) implies (iii)} *éjmay be split into P, N such that u(N) = 0, 

v(?) = 0; hence 

inf(u.v)(a) < u(N) + v(P) = 0. 

V(.u.fix 
fiii) implies 4#&&&% This follows at once from (2). 

¥ so far we have made no use of the siémeuriniteness assump= /! _< 
tion. We now use it to show that (viii) implies (i). This 

establishes a closed circle of implications,rand shows that 

all eight properties are logically equivalent.
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\ oy 
1 e 

| ™ & / 
j¥& (yiii) implies (i)3 By sigma-finiteness, (u,v) has a Hahn 

= ~ decomposition (P,N). Let G be a coufitable measurable partition 

of P such that u(G) <'®» for each G é G. Since y > v on every 

subset opr, we have 

{ \ ~ u(g) = §3E(H,V) (9) - 11(9) + V((E)' ) 

':implying v(G) = 0. This is true for each such G, so that 

v(P) = 0. A similar argument yields u(N) = 0. Thus (u,v) is       mutually singular. ||| & « @ 
DA " e 

e 

m__——ct Now consider the set || of all ordered pairs of wigma~ 

finite measures (u,v) on (A.Z). Two such pairs are said to be 

equivalent iff they have the same Jordan decomposition. This 
\ L 

eqoivalence relation determines a partition Y of M; ngfigfié, 

each element y of ¥ is the set consisting of all pairs having 

some particular (A+.l") as their common Jordan decomposition. 

: @ ‘Definitio 
4 

Each element ¢ € Y is called a pseudomeasure. The 

common Jordan decompositioniof all members of y is called the 

Jordan form of pseudomeasure ¥, and will usually be written as 

w¥, ™) the measures7w+, V- are called, respectifiely. the 

| “pnhl 
upper and lower variations of y. f% itself is the space of 

7 pSi 
pseudomeasures over (A,I). 

e e 
I 
> 

i Theorem: Let y be a pseudomeasure, and let A be split into two & 
= 

measurable sets P. N. Bach of the following conditions implies 

the other two:
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e * 3 14 (i) l(P,N) is a Hahn decomposition for every pair of measures 

(im,v) belonging to @3 _ 

(ii) ) (P,N) is a Hahn decomyosition £or at least one pair 

(u.v) belonging to QJ 
N, ~ 

(‘“ (111)1 v (P) = ?’ ‘,N) = 0, 
= 

  

fi% éroo 2 {i)_implies (ii&; Obvious, since § is not empty. 

| 1( 111) implies iiiL, ¥ >von subseta of P, hence W"{?) = 0; 

cfiM (111) implies (1)3 Suppose (i) is false, so that there is a 
T 

| 

g ; > ¥ on subsets of N, hence fl)"' (W) = 0. gig < 

77 peir (u,v) € ¢ and a eet_§‘suoh that, say,eg c P and H(F) < v(g). 

;Ei) But then ' 

¥TB) 2 v(E) = u(E) > 0, 

so that (iii) is false. If, instead, Ec N and V(E) < u(E), 

then | 

v > u(E) - v(E) > O,   
so that (iii) is again false. 

A 

This establishes a closed circle of implications. so the   

  

three conditions are loqically equivalent. 144 
o N 

fiu Definition: (P,N) is a Hahn decompoeition for pseudomeasure P iff 

“'Q; any (hence all) of the con&itioas above are satisfied. 

I 
| Every peeu&omeesure has a Hahn decomposition, since any i 

  

pair of a&gna~£inite measuree is Hahn decomposable.
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The basic relations between peeudomeasuree and their 

Jordan forms are spelled out in tfie following results. 

§1§~«‘¢Theorem: The mapping wfiéah aesociétes each pseudomeasure with 

| iggs Jordan form establishes a 1ml correspondence between Y and 

j> the set of mutually singular e@fima«finite pairs (“'“)'ik 

“”i 3 ~ The Jordan form of ¥ belongs to ¢. In fact, ¥ consists 

0{?? of all pairs of measures of the form (¢ + 0, w + 0), where 6 

ranges over the set of n&gne~£inite measures. 

Proof: -Obviously, different pseudomeasures have different Joxrdan 

  

forms, and vice versa, 80 we have-to show that the set of 

fH;j‘a Jordan forms (w+,w") coincides with the set of mutually singular 

)/ measures, If (u,v) is e Jordan form, thenfi\by-tge preceding 

theorem, (u,v) ie mufiuelly singular., Conveisely, if (u,v) is 

mutually singular, then it is its own Jordan decomposition. 

| Hence it is the Jordan form of the pseudomeasure to which it 

% itself beggngs. : 

| Let (u,v) belong to pseudomeasure ¥, 80 that (@ ) 

= J(u,v). But then, by %afi@-abevea we have 

X 

. w +q§g§(u.v). v=y o+ inf(u,v), 

so that (u,v) is indeed of the form (V" + 6, ¥~ + 8). con& 

versely, let (u.Vi\be of this form, and let {A*,A") = J(u,v). 

Choose E ¢ I, and let F ¢ E satisfyt ¢ (F) + 6(F) < ®; then 

S vtm > vt > e + (M) - TE) + (Pl 
\“/“'fill' — , b Y ey



S
—
—
 

D) 
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Taking the supremum over such sets F, we obtain 
e 

W@ > atE. 

  

"1 1o prove the reverse inequality,flet (P,N) split A so that e cmé&f 
{‘ ¥ e N 4 

¢"(P) m\p*(u) = 0, and let G befa countable partition of A A7 ,N&‘my[ 
J" N ¥ (, 

such that 6(G) < =,|all G ¢ G. | For any such G we have ;%\ (y z@gfi' 

| //’ §§fl1 MQE w(EnGnP)«o(Bandée(Enanp).g.. P 
¢ 

80 that Wt 

\‘;*\;fi% s 
+ 1T+ 717> 
AM(ENG 2 (ENGAP) +9<EnGnP)l 

i 

- W (EncEnP) +0(EnCn P 

=v'@Enenp =y*Ena. 

) 
o 

Adding these inequalities over all G ¢ G, we obtain - 

e > . 

thus AY = y*. A similar argument establishes A~ = y~. It 

follows that (u,v) belongs to V. J}fi‘aui 

- R 

T Thus a pseudomeasqie is a collection of pairs of measures, 

.among which is one spe@ial "canonical® pair, the Jordan form. 

This is the unique peifijzeieh is mutually singular, whieh is 

its own decompositionéffihiah has the smallest left component 

among all the pairs,fl§eé~else the smallest right component, 

(Proof: Let (u,v) not be the Jordan‘form, hence not mutually
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0 singular, hence At #u, AT v§%‘ The Jordan form may be 

5 recovexed from any pair (u,v) By subtracting out their "common 

N ‘o 
i//part” inf(u,v) from each of them. 

The following result eatablishfis.a.vexy useful criterion 

for equivalence.    
F—Linsenm (equivaience—§h3033m1° Let Uys V30 Ugs . Vy be sigua- 
2 

B = 

g:ifig finite measures. ,(fii.vl) is equivalent to (u,,v,) iff 

uy + ?2 = vy oty e “44) 

wfimwy»ggf*'§roofs Half of this theorem has already been proved: 
Sus 10 ok Sediont} 

implied by J(ul.vl) s J(nz.vz). 56&44 ~-{18) 

(4) is 

Convereely, let @§fi; hold. Let Gi be a countable partition 

of A such that vi(Gi)_< « for all G, € Gi' i=1, 2. Letting 

AW
 N
 

A
\
 

)} 

Gy Gy be sets from‘these reepective parfiitions,fwc=note that 

vy and v, are both finite on subsets of Gl N Gy, hence may be 

4) 
subtracted from both sides of €331 on such sets. This justifies 

the middle equality»in the following chain. ILet (li+. Ai“) 

- Q(ui.vi), i_fl 1, 2, and choose E ¢ I. Then 

+ : 
Ay (En G n 92) 

A
N
 

A 
S
R
S
 

—
—
"
 

\ fl_eup{ul(F) - vl(F)l? s (En Gy n Gyl 

sup{uz(F) - vz(F)tF s (En G n Gyl /j> 

._..o‘ 

S Az (E n Gl n fig)
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| . 
| vy, L5 Lo / 

5 4/2 ding over all G, ¢ G,, all G, € G,, we obtain A, (E) = A,7(5). | ¢ HE % %2 ¢ % g g \B 
| A eimilar argument yields Al~ = Air. Hence (ul.vl) and 

;{g { (uy,v,) are equivalent. W ”"I’P & 

;fiimxeroise: Show that this;éesult remains true if the s&%maé" 

finiteness assumption is weakened toi inf(uy,vy) is sigma~ 

finite for i = 1, 2, . 

  

s’ ;g We now make a few:notational oonventions. Pairs (u,v) 

75 I%’?fiwill generally be used to denote the pseudomeasures to which gl ; 1 | A 710 

they belong. quivalence be%ween pairs will be‘denoted‘hy the 

equality sign. Thus'(ul,VI? "1A“2;“2) does not mean that 

Uy = Ugs Vg = Vo3 it means ihat these pairs belong to the same 

pseudomeasure, so that onlé (4) is true. Similarly, we write 

(u,v) = ¢ to indicate thatiiu,v) belongs to pseudomeasure V. 

Sigma-finite measures and signed measures may now be 

thought of as special kinas of pseudomeasures. ’Specifically, 

the measure u may be ideétifiied with the pseudomeasure (u.fl). 

(Here 0 is the identicaliy zero measure). If u is aflaéggea 

finite signed measure, Qet (u*,u7) be its ordinary Jordan 

decomposition. We now fidentify u with the pseudomeasure 

o s 

Pseudoneasure 3 is?bounfled iff both w* and y are bounded 

measures. The class oé bounded pseudomeasureeimey be identified 

with the class of bounéed signed measures, Next consider the 

case where exactlx‘ggg;of w* and y is infinite. The class of 

these pseudomeasures may be identified with the class of infinite
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(sigma~finite) signed measures. Finally, we have the case 

" where both w+ and §y are infinite measures. These "proper" 

pseudomeasures are new kinds of entities,fland provide the rationale 

for this whole development. 

The Algebra of Pseudomeasures 

; ~ 
We now define various algebraic operations on pseudoé/ 

measures. The result we are aimingfat'is that, under various 

. natural definitions, the set of ali pseudomeasures, ¥, becomes 

a (real) vector space. First we define addition. 
e ——— 

’iS‘%§ Definition: The sum of the two psefidomeasures (ul,vl) and (uz,vz) 

o is the pseudomeasure (u, + u,, v + v, e 3 2 l 2 
— T LT 

e This definition is not quite as straightforward as it 

appears, because the pairs (U,VXistandJnot for themselves but 

for the pSeudomeasuree to which;they belong. For this definie 

tion to be consistent, the pseuaomeasure represented by the sum 

must not depend on the particuler pairs chosen for the summands. 

That-is, if another two pairs.;(ui,vi) and (uy,vy) are 

respectively equivalent to (“f;vl) and (uz,vz), then (ui + ué. 

vi + vi) must be equivalent to (ul + Uy, vy + vz). This fact, 

is, however, an easy consequence of the equivalence criterion 

just proveds and is left as an exereise. (Note also that the 

sum of two stqfia-finite measures is s&gna—finite.) 

We now want to verify that the properties of vector spaces, 

insofar as they refer to addition, are satisfied by this definig 

tion, It is obvious that ¢1 + *2 = wz + wl’ and that
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Yy + Uy + ¥y) = by + ¥,) + ¥3. We now need the concepts of 

zexo and negation. 

i?i ) Definition: The zero pseudomeasure is the one whose Jordan form 
> 

) is (0,0). 

—====""" this is the pair both of whose members are the identically 

zero measure. We shadl denote this pseudomeasure simply by 0, 

if no confusion is gossible. From the equivalence criterion it 

is immediate that the-e%gma~finite pair (u,v) belongs to this 

pseudomeasure iff py = v, 

’flg;w Definition: The negation of pseudomeasure (u,v) is pseudomeasure 

iy vou). 

Once again this definition must be checked for consistency: 

  

Fhe negation of an equivelent:pair must be equivalent to the 

negation of the original paifi. This follows immediately from 

the equivalence criterion. flegation will be denoted as usual 

by a minus sign. Subtractidn is defined as follows. 

44— Definition: Yy = Yy = Yy + (-vy). 

™ These definitions again satisfy the conditions for a 

vector space: ' § + 0 = flor any pseudomeasure Y, and =y is the 

N unique additive inverse of PP + (=p) = 0, 

(}\g- \\\‘;7 Next we define scalar multiplication.
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nl—— 
b = Definition: The product of the real number b and the pseudod 

measure (u,v) is the pseudomeasure (bu, bv) if b > 0, and is 

{eo 7 the pseudomeasure ((-b)v, (=b)u) if b/< 0, 

Here by is, of-course, the meaenre;éfiiéh assigns the 

value b-u(E) to the measurable set é. Note that measures are 

always multiplied by noqfinegative eumbere, so that they remain 

measures. Again, a proof of consistency is required for this 

operation, and the proof is trivial. The second part of this 

definition could have been fremea in terms of the first part as 

follows: Zf b < 0, then by = (=b) (~}). 

The remaining axioms for a vector space may now be verified 

routinely® For real numbersmpl. Ez,gand pseudomeasures *1' ¢2, 

by by + 93) = byyy + byyr (By + by)dy = byvy + bovys 
b,y (byyy) = (gléz)wl; l-wl = $;+ The only minor complications 

arise with the second equality, where the various sign combinaZ 

f,{,t..:’.t, 

omitted. To summarizeg ¢« .- 
=g 

%¥$~§“Theorem: Under the foregoing definitions the set of all pseudo? 

:”j}, measures, ¥, is a (real) vector space. 
A =N i 

ragist? 1 

! i ; y t 
> 

#wfiwflflééfifi?' As we discussed in;2.6, the set of bounded signed measures 

is a vector space. This property is lost for the larger set of 

sigma-finite signed measures, because addition sometimes leads 

to the meaningless expressfon o - o, and is therefore not well<” 

defined for certain pairs. What we have done, in effect, is /. 

embed this set in a still lerger set, and extend the domains of
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‘addition and scalar multiplication in such a way that the 

vector space property is restored. : 

Note that subtraction of measures is compatible with 

subtraction of gseudemeaeures wherever both operations apply. 
A 

To see this, let M > v be e&gme—finite measures. U= Vv was 

defined in the preceding section by thetrelation 

(W= v, 0) = J(u,v) . 459 

Now, identifying # and v with the pseudomeasures (u,0), (v,0),. 

respectively, and using the new definition of subtraction,'we 

obtain 

(u,0) = (v,0) = (u,0) + (0,v) = (u,v) = (p=v,0), . 

This last equality follows from (%), or from the equivalence 

theorem (4) upon noting that 

N oH 0= (u=v) + v. \ 

Thus 4 = v in the pseudomeasure sense eguals the pseudomeasure 

(4y=v,0), which may be identified with the measure u - v, 

subtraction being defined as‘in (5)., Neither subtraction concept 

may be subsumed under the otfie;fit;ihoe their domains of 

definition differ. 

To illustrate these conbepts, consider the case of a 

finite si§;a~fie1d L. Except for the trivial case A = ¢, I is 

generated by a finite partition of universe set A into nogiempty 

sets, say Al,...,A . We claim that the space of pseudomeasures 

.....
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with the usual definitions of addition and soalar multiplication. 

To see this, note first that a measure onggg,Z) is completely 

determined by its values on the partitiog elements-fil....t§n. 

Thus measures may be "coded" by n~tuple3;of non}hegative % 

numbers. This establishes a 1-1 correepondence between the set 

of csig;a =) finite measures cn (a, z) an& the nonsnegative orthant 

of n-space. Furthermore, this correspondence extends in an 

obvious way to a 1rl relation betgeen the set of (sig;a~) finite 

signed measures and all of nmspeoe. If we identify the finite 

signed measure )\ with the set of all pairs of finite measures 

(u,v) such that y - v = l, one*eaeiiy checks that this is 

precisely the operation of gaghering these pairs into pseudo% 

measure classes. The correspondence 

~ pseudomeasures +*> signed measures ++ n-tuples 

is then wasily verified to;be an isomorphism among vector 

spaces, in the sense thatfit is preserved under addition and 

scalar multiplication inffihe respective systems. 

Thefe would be littie‘point in constructing the elaborate 

machinery of pseudomeasure theory if one were dealing only with 

finite s&gma—fields. The point is, of course, that these 

concepts carry over tofarbitrery measurable spaces (A,I), 

yielding results that are far from trivial.
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Integration with Pseudomeasures 

Just as the concept of addition was extended above with 

the use of pseudomeasures, so will the concept of integration 

now be extended. Recall that everything is defined on the 

fixed measurable space (3,I). 

M’m ¥ i 

i;;' Definition: Let f be a real-valued measurable function. The 

(indefinite) integral of f with respect to the pseudomeasure 
i 

P \ 
# ID} (u,v) is the pseudomeasure 

oy Iyl J 

i ~g6)‘is to be understood as follows. First of-all, f+ and 

£~ are the nonrnegative functions given by 
" 

_f_"'(ia) = max (£ (a), 0>5&§§"(g§ = Ififi%(‘;‘é(@: 0) . 

Hext, the four integrals in (6) are oréinary indefinite 

integrals. The indefinite integral of a non;negative real-" 

valued function with respect to a e&gmaflfinite measure is itself 

a eqéma~£inite measure. Hence aG) is a pair of s#gmawfinite 

measures, and as such it represents a pseudomeasure., 

A consistency question agaih arises with respect to this 

fiefinition. Namely, if a pair (u',v*) equivalent to (u,v) is 

sufistituted in (6), will the resulting pair be equivalent to 

the origimal (6)? The answe: is yes, and the proof is again 

an easy consequence of the equivalence criterion, together with
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the elementary integration rule, 

Jgan+ [aa,=]sa0,+200 o 

Details are left as an exercise. ’ 

Note that () is well-defined for a any real-valued measurable 

function and any pseudomeasure., In particular, it is valid for 

any (sigma«finite} signed measure, interpreted as a peeudo¢ 

measure. This contrasts with the usual definition, which someg 

times leads to the meaningless expression « - ®», From our point 

of view, what happens is that the operation of indefifiite 

integration sometimes leads out of the class of sigfied measures 

into the essentially wider realm of peeudomeasuree. fiust as 

addition sometimes does. It isweae&iy-seen that, when the 

ordinary indefinite integral is well-defined (and the integrating 

?~finite), it yields a signe& measure 

  

signed measure (is 

equivalent to Thus our definition aflfiflflklfluééflhfi 

extend the ordinary definition. : 

We shall use the notation | 

[ £f d(u,v) or ljkdw{ 
K" ‘\ h' : 3 

\’ffor integration with respect to a psendomeasure. 

Most of the elementary theoreme concerning integrals 

generalize to pseudomeasure integrals. We shedl consider,a few 

of these theorems involving equalitiee 1n thme imctiofl 

ATheorems involving inequalities will be disoussed later). 
,,"l‘ /’17
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<W“§jum-="f‘t"’“ D 

%fiflmLTheorem= Let £ be a real-valued measurable function, and let 

wl and wz be pseudomeasures. Then 

  

. ‘ (3:3.%) 

f.fAflW; + I £ay, = [ fn‘dwl + Py)d 18) o b b (= 

  

- Proof: Choose arbitrary members (ni,vi) of wi {i = 1, 2); then 
“nj i 

;fiul + Ugy Vg “2) belongs to wl + Yy Expanding the two.eides 

of (Bftgith these according to the rule {6), the left (right) 

  

!/%E;§ side becomes a pair, each measure of which is ‘the sum of four 

&wjx/ (twg) indefinite integrals., Eguality of these paire is 

I established by applying the rule (7} four timee,‘for the nonfi\ 

| negative functions §- f or g = f , combined with the measures 

Aiuui(iml,z),orluvi(ifll,z). M’*"gj 
P _ | 

,flw””§§f”7;heorems Let f and g be real-valued measurable functions, and ¢ 

N\ a pseuflomeasure. Then 

"Kégfi , (3.2.9) 
[ravse [gav= [+ av. ) 

@i Proof: A rule of the same form aeQQS) holds for ordinary 

indefinite integrals with two qéfi&negative functions and a 

fi§§; measure. Let (u,v) be an arbfi%raxy member of ¥, and expand 

} both sides of (9) by the rulé {(6). The left side of (9) 

e becomes : 

L3 L R 
g%\w’* [fi(g“' +g")du + ]\ W o8 [ (€7 + g7)au + [fleg* - g‘*;\fi{l.
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\ while the right side beoomes a similar pair with (f + g) 

   place of (fi 4 9 ), and (f + g) in place of (f +g b3 

two pairs aré]equivalent if the fol;éwing eguation holds., : . : 
S 

1 

1 
Kyixé Teeting by the[équivaienee criterion (42, we find that these™ 

¥ 

Frgtr e = ag v itr gty ey 

But the valiaity of (12} follows at once from the fegt:that 

(g* -£) + (gt - g7y = £+g=(f+ g)* - Qg’+‘g) j}{éfimfl 

  

Theorem: Let f he a real~valued measurable function, v a peeudo~ 

  

measure, and b, ¢ real numbers. Then 

    

| wojaen = b [g,ssm . ) 

    .i”§*§r¢of: A rule of the same form as (11)gfiolds for ordinary 

  

integrals, andfl choosing an arbitra§§ member (u,v) of ¢, 

fxéy expansion of both sides of (11) byffule {6) yields a routine 

I verification, (The four possible sign combinations of b, ¢ must 

be dealt with separately.) kaé;V'JAV 

fg §¢ is a pseudomeasure, it makes perfectly good sense to 

In explanation of the followieg theorem, note that since 

integrate another funetion £ with. reepeot to it. The left side 

of (i2) represents the xesulting i#erated integral, and (12) 

states that this can actually beAexpressed‘by a single integral.
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by | Theorem: (iterated integral theorem), Let £ and g be real-valued 

(,fl:%a measurable functions, and ¢ a pseudomeasure. Then 

D 

» 

L?.@U 9.@@ ® Lf_géwu RN 

##wflfir‘fl?roof: A rule of the same form holds for ordinary integrals for 

  

two nontnegative functions and a measure. Choosing an arbitrary 

pair (u,v) belonging to §, we first expand / g dy by (6), and 

then expand the integral of £ by this pair, again by (6). The 

result is a pair, the left measure of which is 

¥y 7/ 
e\ 

” . 13) 

[ s [efavs [t av s [ a3 

and the right measure of which is obteined:from (13) by switching 

# and v. The equality of this pair with ghe expansion of 

{§:§fg(u,v) follows from the fact that 
~ &r 3.3 i ) 

(£)" = £'9* + £7¢7, [and |(£9)™ = £'97 + £7g"., b 
{The validity of (14) is established oy considering the four 

possible sign combinations of £, g separatelflf& L}ffikgjgf 

me,»waflflzeu_A These four theorems all follow the same pattern. The 
I 

equalities (8), (9), (i1), (12) afe already known to hold for 

ordinary integrals with nonsnegative functions and measures, 

and this fact is used to show tfiet the expansions of the 

corresponding pseudomeasure ingegrals are eqguivalent.
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Let ] be the function everywhere equal to 1. The 

following is easily verified: 

f 1.dp = y. /+418). 
F oW 

[T These results concerning integrals % t8), (9), glé), and 

{15) «-mey be summarized in algebraic terms@ 

_ Let F be the set of all real=-valued measurable functions 

on (A E).E{F is a ”__g_in the algebraic sense, under pointwise 

addition and mul;iplication. In fact it is e_oommutatiVe ring 

with unity,-thgnegement being 1 Define addition on the space 

of pseudomeaeures ? as abQVe. define “soalar multiplication", a,_ 

as a mapping from F x ¥ to W, ae§§&§fi\ s 
3 

g Mf\faw» 

Then tfieee.r§sults, together with the preceding ones, state that 

Y is a (unitary).module over the ring F with respect to these 

eperationsoff‘w as a real vector epace may -then be thought of 

as a module over the subring of constant functions if we 

identify the real number ¢ with the const*nt_function £ = c, 

We wikl sometimes need the Jordan form of an integral. 

This is easily founde 

" Theorem: Let (¢+.¢") be the Jordan form of pseudomeasure Yy, and 

let f{:A + reals be measurable. Then
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is the Jordan form of fthgw. 

  

/ff’fifiljf Proof: It is wlear that the pair (1¢) belongs to pseudomeasure 

fu§\q¢' The only thing left to prove is that (16) is mutually 

singular. Split A into P, N so that w”gk) = w*(N) = 0, Then 

the two left integrals in (16) are zero on the set 

6" {al£(a) > OD U ,€rx {a]£(a) < 03., 

_xfif;g while the two right integrals in-(}6) are zero on the 

v 
oomplementary set 

én {a]£(a) > @ v 64’1 {a|£(a) < 9. U/fl 

This-completes the proefii.LPF" 

“f“wmcfirfl-ififigflifiigfl= The ESEE&.XEE&EEEQ&,Of«pseudomQ?Sur
e ¢ is the measure 

D + - . 

e 

© e 
B ancs 

  

This is a direct generalization of the;same concept for signed 

measures, We shall denote the totalffiariation by |v]. 

¢ 
kY 

‘Nexfij recall that, if u and gfare two measures, p is said’ 

to be absolutely continuous withfiieepect to v iff, for any 

measurable set E, if v(E) = 0, then u(E) = 0, The notation for 

this is: p << v, We now extend this concept to pseudomeasures, 

  

- [ This is well:defined and not circular, because lel and 

¥,| are ordinary measures., The same notation will be used:y 
2
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P << Y, 7 

" ' subs 
We end thisnseotion with two generalizations of well-known 

theorems, 

i*é“  Theorem: Letbf be a real-valued measurable function, and P a 

/rk pseudomeasure, Then 

‘Qfij 

-U@géflii = [ 121 a1l 

e————(Here !fil = max(f ,- f), the absolute value’ of £. The 

expression on the right is an ordinary indefinite integral, and 

the claim is that it equals the total variaticn of the pseudo* 

measure f £ dw). 

; "“*fl_‘ ; : J,’fi:' 

cg&‘LProofz Since (16) is the Jordan form of / £ éw, the total 

;fltfk variation |/ £ ap| is the sum of the four integrals in (18), 

| ; which &8 . 

I (£* + ff){\flwfi' +¢P7) = [ lf(Ld]ggj, Mw 

M = 
¢ o : e gfi Theorem: (Radon—Nikodym theorem for pseudomeasures)  Let wl and 

¥, be pseudomeasures. “there exists a real-valued measurable 

1)/ 8 function'g\euch that wl = f.?kng iff *l << wz. 

flwjiziggiioof: The "only if" part is simpleg.;iet wl = [ £ dwz, and let 

E be a measurable set such that !w21(§) = (0. Hence ¢2+(§) = 0 

and wz"(E) = 0, We have proved abowve that (16) is the Jordan 

;f form for an integral ngflgw. Since both measures in (i€) clearly 

equal zero at E for § = wz, we have ¢1+£§) = WI"(E) = 0, so that 

lwllgg) = 0., This proves that $1A2< Ve  



%&f%e wikl now show that £ is the requirefl funetion. wl 'Afi.fiwz 
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4 Converaely, assume y, << §,, so that |y.| << |y,]. These L Bl 1 2 
are both ségmamfinite measures, hence, by the ordinary gAdon- 

Nikodym theorem, there exists a nonenegative real-valued 

measurable function g such that lwll = f ghdlwzf 

© Now let (P ,Ni) be a Hahn deeomposition for vy (i =1, 2), 

and define the functioe f as follows. 

fla) = g(a) if aé€ (P n Py) U (N, N N,), 

£(a) = ~g(a) if at (P nN)u (NN ?z)r ! 

  

Expanding the integral in the form (16) for ¢ = wz, we wikl 

show that the pair of megbures in (16) is, in fagtt, (@;*, wi“). 

It suffices to prove this equelity for measurafile subsets of 

each of the four sets (Pl n Pz)' (N n Nz), (E n Nz), (H n Pz), 

fox, since these partition A, equality for any measurable set 

follows by summation. We will carry out the analysis for 

P1 N N + the argument for the other three sets being similar. 

Sincélwl (Py) = 0 and Wz () = 0, it follows that |v,| = wl 

and lwzl = wz‘lyhen all measures are restricted to P, NN 

Also, from“13§$*_f is nonfpositive on P, N,, so that f 

and f = g on this set. Hence, restricted to Pl n Nz, the four 

2. 

(1) 
integrals in 639% (with ¢ = wz} reduce to (0 + gxd$2 E?b + 0). 2 

Now ¢1 ug§§on Py N N,, while wl = || = f g.dlv,| = s W4 d&z;] 

  

oanl n Nz' proving equality. L*fyé_jf
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Applications of Pseudomeasures 

Having formally introduced pseudomeasures, «%gééfis coneider 

some of the ways they can be used. A number of the following 

examples have elready been mentioned, but we can now qive—a 

more coherent d&sentstonflef“tHEmf We.shall assume that all 

measures discussed are e&gma-finite.‘ 

Let u and v be measures over Spaoeffifie,aegoniverse set, : 

with the intexpretetiofi§f p(g):: gross éroduotion'of'a certain [‘7h€Q 

resource in region E.,§g§) = gross ooneumpéion of that resource 5, 

in E. If both measures are infinite, they cannot be subtracted 

to yield net produotion.: We can, however, represent net'producg 

tion by the pseudomeasure (u,v). Whgt can be done with this 

representation? gl : ' | 

Consider first a£=eti the Jotdanvform (A*,A7) of this 

pseudomeeaure. with a Hahn deeomposition S?éé). We know that 

¥ > v when both are resfiricted'to P, and v > u when both are 

restricted to‘§. Thus (E,N) sPIits Spaee into the region of net 

production and the region qf net consumption, and z* " e give 

these respective "net" meeeures. ‘When these pseudomeasures 

reduce to ordinary measuees or signed measures (which occurs 

when A" and 2™ are nbt»fioth infinite), they do so in an intuitively 

appealing way, for exemple, suppose production is everywhere 3 

times consumption. The pseudomeasure (3y,v) has the Jordan form 

(2v,0), which is the ordinary measure 2v, and states that net 

production is 2 times consumption.
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Problems involving infinite "gross" measures often arise 

when the horizon is unlimited: the infinite plane of location 

theory with unlimited space horizon, or economic development 

programs with unlimited time horizoo. In such situations it is 

convenient (though not usually essential) to frame thefiéroblem 

in the form{cx“find the Optimal pseudomeasure such:that ves® 

We have just discussed one broad category og*epplicetion 

for pseudomeasures: the representation of physical situations. 

Another, perhaps more important, application is to the 

representation of preferences, Consider, iat“examgle4 an 

economic develogment program with infinite horizon, Typically, 

one represents the "payoff" from a 9olicy~p by an integral of the 

form 

|&2— %;‘fl S\ '\’53 24 

where £(p,t), for example, may be determined by total consumpél 

tion under policy P at time t. One chooses the attainable 

policy wh%eh maximizes (17}. There are two difficulties with 

an objective function of the form (17)., First, suppose the value 

+» can be attained with several policies, Are these to be cofia 

sigered equally good?' Simple examples suggest otherwisel 

—zgygiose-thak policies p and p are such that f£(p' ,t) > £(p”,t) 

for all ¢, buizghat both policies give the value +» in (17). 

Intuitively, one would be inclined to say that‘g' is the better 

policy. This meens that (17) does not properly represent the 

structure of preferenoesraueéfie—aggez_limitv
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The second difficulty appears to be even more troublesome. 

What about feasible policies for which {17) is not well- ' 

defined-« Ehee—isfi\where its evaluation leads to the meaningless 

expression ® = ®, These policies would simply be inoompareble 

with others under the objeotive function (i7). Yet in many 

cases simple intuition does suggest that some of these policies 

are better thag others - £e§maaam@le when they are related as 

p and 9 above, Thus again (17) does not properly represent 

the strueture of prefereneee. 

: ¢Y1§S is an integral over‘fime. But the same problems can 

arise with integrals over Space, et.SpaoenTime. or abstract 

ePecee. | 

M) & Are these difficulties eerioue? One can of course frame 

models whieh avoid them,lend insure that all integrals (17) 

wk&eh arise are well-defined and finite. "(This is done in 

practice by trancating at a finite horizon, introducing time= 

discounts, etc.) But theeeirestricgions prevent one from 

coming to grips with‘many significant problems. Several of 

these arise in location theory and will be taken up later -in. 

this-book. We she%i mention one or two others here. 

Consider the problem of global welfare maximization, We 

adopt a terminology and yoint of view wh&eh is currently out of 
AASR.. 

fashion, Suppose 

  

wante to maximize the balance of total 

"pleasure" over total “"pain® in the world. Both of the foreZ 

going difficulties may arise., Because the time horizon is 

infinite, all integrals may diverge to +® no matter what policy
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is followed. (A pessimist would maintain that all integrals 

diverge to ~», which creates the same difficultflflé hn&, if the 

total amount of both "pleasure" and "pain" is infinite, none of 

the integrals will be wellndefined. , 

A rather different example is that of Bernoullian (or 

W/ von NeumanneMorgenstern) utilityiéf Abstractly,.ooe.isféiven a 

measurable space, sg,t), and the problem is to charaoéerize 

these preference orderings that a "rational" man miéht entertain 

over the set of all possible probability measures\on (A,Z). The 

main result is the "expected utility® principles }br a rational 

man there is a measurable function g{:g + reals, such that he 

prefers probability By over u, iff 

‘L(N"’ W QC‘ ¥ | }} 3 }\3’.} | [ ' Vi ; \ s u dy, > I u dp, ey ) 
‘:’\J ng'\ " §~ ¢ _?} o A Exw &fi? 

| 
Wow there is no difficulty if u is a bounded function, for 

  

g 
&7 

then the integrals in (i8) are always finite. If u is,-say,. 

unbounded above, however, one can show there are probability 

measures for which the integrals (18) = 4o, And if u is 

unbounded both above and below, there are probabilities for 

which the integrals (18) are not well defined. 

= NHOW-p we shall argue below that there is no compelling 

reason why u should be bounde&g There are perfectly reasonable 

preference orderingsmwh&eh call for an unbounded utility 

function_u. But in this case what are we to make of the integrals 

in (18), and how are we to compare them? One possibility is to
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restrict comparisons to probability measures whieh=ar 

  

centrated on a finite number of points, for with these the 

integrals (i8) are finite even if u is unbounded, This unduly 

restrictive solution nmay be avoi&ed, however, if we interpret 

these integrals as pseuflomeasuresF and the order relation as 

standard ordering of pseudomeasures. All this will be fully ,‘ 

explained below, and an axiomatic justification for this 

procedure will be given for the case of a countable univeree 

set. ' 

We shall also discuss the ideas of Ramsey, and of 

succeeding writers such as flizsacker and Gale, en how to deal 

with unbounded sums and integrals. (i theee 

  

ideas — the so~oalled Yovertaking” criteria };droo out as 

special cases of the‘development below. Thus. the use of 

pseudomeasure-velued utility indicators leade to a unified theory 

wfiieh includes not only oneadimensional unbounded integrals (the 

"overtaking" case) but also higher-dimeneional cases (such as 

spatial integrals in looatioo&theory).}afid, at the same time, 

incorporates Bernoullian'utility theorgfwith unbounded utility 

functions u. _‘ 

Starting fror ordinary integral§ of—the-sort (17) or (18), 

the first step is to‘go'from the definite to rhe indefinite 

integral. In comparing unbounded integrals, merely taking note 

of the value +» loses essential information(: One-,-wam—ee take 

into account the entire distribution pattern. 

The second step is to note that an indefinite integral is 

a signed measure. The fact that it appears in the form of an
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indefinite integral is irrelevant for the following analys;s. 

The problem has become one of comparing signed measures. 

The third step is to allow for integrals fikigh are nog,Wellfil 

defined in the ordinary sense by interpreting them as psefi&oi: 

- measures. We recall that ffifaéu is always a wellwdefined 

pseudomeasure for any real-valued measurable_g and any pseufiofig 

measure p. (In the examples above, u is just an orflinary 

measure ;»Lehesgue meaeurefilfor the development problem, and a 

probabilg;y measure for the Bernoulli problefi). Thus we allow 

pseudomeasure=-valued objective functions. 

We now have a problem:ohioh embracesnell the others as 

special cases: ?evelor a plausible crioerion for deciding when 

one pseudomeasure is largermi-or ”bettfi%figfi than another, 

Our investigation will be guided partly by intuition, and also 

by the regquirement that, when the pfieudomeasuree reduce to 

bounded signed measures, the»ordering of them should be compas 

tible with th%h induced by the oomparison of finite definite 

integrals. | 

O \Owhfie have introduced pseudooeasures in connection with the 

difficulty of ill-defined inregrals. -Tt—-turns—out, however, 

“hat. pseudomeasures are also essentially involved in the 

difficulty of comparing uobounded integrals. From our point of 

view, both these difficulries are the same, and, insofar as our 

program is successful, hoth are resolved in one stroke.
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son of Pseudomeasuresi Narrow and Standard 

  

The problem we have just formulated is: ?iven pseudol 

measures $1 and wz, zo give a rule for deciding when wl is to be 

considered larger than wz. Our discussion will proceed through 

stages of increasing concreteness. First we take up compari? 

sons in general, with a discussion of partial orderinge. _Oor 

development makes essential use of the fact that the pseudo@) 

measures are a vector space, and, accordingly, we next discuss 

partial orderings on vector spaces. We then come tofthe space 

of pseudéZ%easures itself, and the discussion goes rhrough 

several more stages. 

/ 

  

= ) Partial Orderings in Generalg/ 
Y, 

£ Let H be a set, A relation on His a subeet of the 

cartesian product H x H., The particular kigds of relations we 

are interested in are called partial orfiers. and will be denoted 

by > or ». 1If X and y are members of H, the notation x > y 

will indicate that the ordered pair (5,.35 iszrhe relation i. 

Y £ X means the same thing. 

g?&~§Definition: The relation > is a partial order iff . 
(i)/)for all x, y, z € H, if x>y anu Y > 2, then x > 3z 

(ES} (transxtivity)) St - 

‘ffia T%(ll), for all x ¢ H, x > (reflexivity). 
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| " The interpretations we have in mind for > refer to "size" 

or to “preferrednessr@;and the statement x > y may then be 

reedxr “x is at least as big as -or, at leaet as good as «-y@,’% 

depending on context. Transitivity and re!lexivity are 

fionditiona with obvious intuitive appeal under such inter- 

pretations. ‘ 

Given the partial order > on H, we now define two further 

relations, Let X, ¥ € H. 

: QQQ-Qnofinitionéi x>> x,itf x > y, but gggky > x (strict order). 

/<:§9 x vy Liff x > y und y 2% (indifferenoe). 
— e ‘5 

;w*‘“;bf:r}{igwi ?‘may be read: "f‘ia greater than — or, better than - 

yfig x vy may be reads: *x is as big eaxx-or. indifferent tofwjz@. 

| For any pair of elements X, y there are now four 

possibilities, exactly one of which must hold. Q&) X m:y; 

(fi’ X >y (idi) = < y (%hat—&e,flg > x); (iv) none of these, 

which occurs when X 1_& and y > x are borh false. In the first 

three cases we say the; x aodmg are cofigerable (under the 

relation >), in the last case, incomparable. 
b a‘ A w 

4 

C}i-ignefinitioéé' A partial order > on H is complete iff any pair of 

fzég elements of H are comparable., > is antirsymmetric iff x ~y 
implies x = y, for all x, y € H._fi 

    
e i 

either (x,y) or (y,x) (or both) stand in the relation >. A 

Thus a partial order is complete iff for any pair x, y € H    

partiel order is antijsymmetrio iff no two distinct elements 

are indifferent., (x % x is always true, owing to reflexivity). 
ol
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flere are some examples, The natural ordering on the 

real numbers is both complete and anti~eymmetric. In utility 

%§ \ theory one customarily assumes that a dooieioghmaker s ; 

\y preference ordering is oomplete, but not necessarily ant%ff 

QO;\§¥ symmetric. Suppose each of a set I of different peopleffias a 

'(%~' preference ordering »; over a set of alternatives gfi&ivs I), 

The Pareto ordering, ;,\determined by these is giyer byg X»Yy 

iff x *i iy for all i € I. This need not be eithér complete or 

antiveymmetric. In what follows we "shia¥l make no assumptions 

concerning completeness or anticsymmetry. ff 

  

| Definition: Given partial order > on H, a éoint x° € H is 

  

) greatest, or best JAEE =2 > x for all x e H. Point x® ¢ H is 
[ 

unourgassed§/iff there is no point x e H such that x > x2, 
el 

  

The following result is immediete. 

e > 

m;F‘ Theorem: 1In partial order > over H, x® is greatest iff x° is 

g 
o 

:;Z§ unsurpassed and comparable to all other x ¢ H. 

Tr“ Thus any greatest element;is unsurpassed, and, if > is 

complete, the two concepts coinoide. There may not be a 

greatest, or even an unsurpessed, element::goithe“othermfianfl. 

there may be several. Any two greatest elements nust be 

indifferent, any two unsurpassed elements\either indifferent 

ib/ or Apcomparable.gf
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Cf<| befinition: Let 5 and 3, be two partial orderings on set H. 
Ao SRR >y iff, for all x, y € H, ’ZDJA% SN S —— 

UL(l) X % ¥y implies x >, y, == 

7/ q () x v ¥ implies x v, y. 

That is, :Q\extends >i iff, whenever two elements are 

comparable under q&, that order relation is retained under :2. 

In our ensuing discussion we fiha&l place a number of partial 

orders on the space of all p#eudomeasures, each an extension of 

the preceding. 
- . . 

i;% ‘Definition: Let g{:gl + H be a function, and let zé\re-a 

s partial order on H,. 
  

The partial oxder induced on Hliflz'f is 

f Llw the relation 3& on H. satisfying;) X 2 ¥ iff g(x) 3. f(y), for 

all x, v € gl’ 

Cne easily verifies that 24 is,Ain&eed,_a partial order. 

Note that the induction here is backwardg, from the range space 

to the domain. ' ‘/é? 

e 
| Definition: Let (Hy, ;) and (H,, >,) be two'pertiallyiordered 

spaces, (H,, :&) is representable by (§2.’:Q} iff there is a 

ffl%gf' function f. Hl + Hy such that x :mvy iff;?(r) :@Yf(¥),ifor all 

— X, y € Hy, B 

M»«f»éfi”’"g””” These two definitions underlie the representation of 

preferences by utility functions, forfexample. Here the space 

H, is usually the real numbers, and;ié\their natural ordering.
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)gl is the space of possible alternatives for the problem in 

\ 

hand, and f #8 the utility function. 1In our discussion H, will 

be the space of pseudomeasures, ¥, and 24\ will be one or 

another of the partial orders fi; be specified. Our claim is , 

that this space provides a convenient representation for some 

problems in which preferences are not conveniently repreeefirable§~e% 

or not representable at allj%-by the real numbers. 

Partial Orderings on Vector Spaces 

Let V be a vector space, so that there is anfoperation of 

addition (from V x V to V) and of scalar multiglication (from 

the real numbers x V to V). We are interested in a certain 

;wfmqj restricted class of partial orders on V. 

    

_ Definition: A relation > on a vector spao% V is a vector partial 

5 ordex iff 

;g (1) > is a partial order in the orfiinery sense, and 

2y, then x + 2 >y + rf;for all x, y, 2 € V,/-and 

> Ye and b is a positi@e real number, then bx > by. 

2 AS an example, take n*sgaae; with the definitiouz 

(xl,.,., ) > (yl....,yn) iff xi > yi for all i = 1,...,n (the 

second > referring to the natural orderinq of the real numpers). 

- Ft-turns—out-—-that vector partial orders may be 

characterized in a very eimple and useful feshion:v/ First we 

need one more concept.
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,_A‘:——-— 
| Definition: Subset P of a vector space V is a convex cone iff 

™ "“};(nx 0¢P; and ‘ 
_M_dfin“ (11) lf Xx€ Pandye¢ P, then x + Yy € P, and 

(&iil if b is a positive real number, and X € P, then bx ¢ P, 

  

W,ffgfi;:i;;eorems Relation > is a vector partial order on the vector 

space V iff there is a convex cone P such thatfi‘for all x, 

  

Y €V, 

' i (3.3.0) 
X>y iff x -~y € Po ¢ ) 

— |7~ DLetting y = 0 in (1), it is clear that P = {x|x > 0}. 

This is called the positive cone of the ordering > If P is 

an arbitrary convex cone, and we use (L) to define the relation 

2>, it follows that this relation is a vector‘partiel order. 

This is.dn-faet, generally the most convenient way to specify 

vector partial orderings. 

One easily verifies that x > ¥ iff (x - y) > 0A an&hgimug 

iff (x - g) v 0, for vector partial orders. 

.'137\\ .~ Narrow Ordering of Pseudomeasures 

We now come to the vector space, ?. of all pseudomeasures 

over a fixed measurable space (A Z), In‘tfiteléuoeeceion we 

shall define a vector partial ordering called narrow order; in 

the next subsectionfl another one oalled standard order, which 

extends narrow order; finally,\a variety of extended orderings 

which all extend standard order. 

If u, v are a pair of measures, or signed measures, we 

have already used the notation u > v to abbreviate the condition:
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n(E) > v(E),Tfor all measurable sets B, We now define an 

ordering on pseudomeasures uhéon generalizes this relationQ‘and 

wirieh in—-fact reduces to it when both pseudomeasures are signed 

neasures. 

Ldana 

&r- Definition. The narrow order,\>* on the space of pseudomeasures, 

M;Q is the vector partial order whose positive cone is {¢I$ = 0} 

The pseudomeasures whose lower variation is zero are 

precisely those which are measures, so that the narror order‘is 

the one whose positive cone is the set of (ség;anfiinite) 

measures. (One verifies immediately that thisiget is, in fact, 

a convex cone, so that the definition is oonsietentffi 

The following theorem gives several neoeosary and sufficient 

conditions for two pseudomeasures to be related by the‘nerrow 

ordering >. These confiirions are all in the form u > v, where 

# and v are measures, and this is to be interpreted in the 

ordinary sense that p(E) > v(E) for all E ¢ I. 
e = K% ; = 

Theoren:;fi}i) Let (u,v) be a pseudomeasure; (u,v) > 0 if£f uw > v, 
2 w‘% T 

(ii) Jfet (ul,vl) and (uz,vz) be pseudomeasuree, 
.a--« 

: (ul.vl) > (uz,v?) iff ul * v2 3.v1 + “2‘ 

¥ 1 {iii) | Het 9., ¥, be pseudomeasures; -~ 

s 

: + ' - - ¥y 2 ¥, LfF ¥, g_wz*‘ and ¥;~ £ ¥, 

(i) Let (A+,A") be the Jordan form of (u.V)S (u,v) >0 

  

iff A" = 0. It is immediate from the definition of A~ that
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7 u>v implie‘g,fl* = 0. Conversely, if v(E) > u(E) for some 

}__measurable B, then 1™ (E) 3,F’ (E) = u(E) > 0; hence (u,v) fi 0. / 
& 

7 _(ii) Since > is a vec$orjpartial order, (ul,vl) > (uz,vz) iff 

(hy + Var vy +up) = (V) = (uyevy) 2 0o (fhe equality 

comes from the equivalence theorem). The result now follows 

,;;;W_hgromm (i), _ 

+ - - - + - - & % »{9‘(3_-_3_-_:!:) If ¥y 2 ¥y andlxpl £ ¥, s then y," + ¥, 20 + ¥y, 
L 

s0 that ll)l > “’2 from -part 5&3;) 

  

\) j ~~  Conversely, suppose “’f > w2+ is false, so that v 

ypl’"(g) < zpz"'(E) for some measurable set E. Let (pz,Nz). be a 

Hahn decomposition for “'2‘ Then 

‘J’l+(§ N Pz) + 11'2”@ fi fz) - dll*(§ n 32) é(since $2~(§_g) = 0) ) 

4 f 

  = 

— : 
..... o A¥y BARRE v 4 BABede 

# ) Hence \pl+ + q)z',z 1;;1" + zp;', sg,, tplfl wz,lw_\from;;pa*t fi)’ 

x\—/ Finally, if tpl“ () > wz'(g) for some me&surable E, let 
poee 

<o tm < vt = vt 0 Py (since v 
——    

(1_?1 ’Nl’ be a Hahn decomposition for wl. An argument similar 

to the oné*‘just given, but with E n _lgl in place of E n Py, 

again shows that y; > ¥, is false. ,LH’(‘ & 
£ 
| ) 

el —— 
”’/’k’*:fl 

~ 
It now follows -easily that the narrow ordering > reduces 

to the ordinary > when the pseudomeasures are ordinary signed 

measures, For, letting u and v be signed measures,, and
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identifying them with the pseudomeasures (u+,u"), (v*,v")/*’ 

respectively, we have that (u*,u")li (vF,v7) iff ut g'v+ 

and u_ g.v", which is necessary and sufficient for U > v in 

the ordinary sense. Our notation is therefore consistent, 

Narrow order is antifsymmetric. ior if ¥, > ¥, and 

w > wl are both true, than ¢1 > wz > *1 », and wl < wz <$1 ’ 

so that “'1. = “'2 and ¥;" = ¢,” = that-is, ¥y = ¥y 

It follows that wl > wz ifg *1 > wz and wl # ¢3- Applied 

to the theorem above, this yields criteria for one peeudomeasure 

being bigger than another. ?orfexamolo the pseudomeasure 
) 

E , (u,v) > 0 iff > v, and u(p) > v(g) for at 1eaet one 

9/ i 

Theorem: Narrow order is pnoomplete, except when Z is the 

trivia1<9¢qma ~-field {a, gl}. 

" Proof: The case I = {A,P)} is left as an ereroise. (The space of 

pseudomeasures is isomorphic to the real'numbers in this case 

if ,?é # M 
If I is not trivial, there is a;fieesurablergs such that 

J 

neither E® noxr A\E? is empty. Chooee points a ebgfl, b € A\E®?, 

and define the measures u, v by 

“u(F) =1 if a€F, u(F) =0 otherwise;: 
Vv(F) = 1 if b e F, v(F):k 0 otherwise, 

" all Fe I. Then u(E®) = V(A\E*) =1, and v (E?) = u(A\E2) = 0, 

80 that u and v are not zero.yand they are mutually singular. 

Hence the pseudomeasure (p,v) is not comparable to 0, and the
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(2 narrow order > is incomplete, _LH"K on 

«—""‘fi-—‘ With the aid of narrow order, we can generalize the 

standard inequality theorems for integrals to pseudomeasure 

integrals. In the following, > or > when used between pseudoS 

measures refers to narrow order, while the expression £f>gqg 

between gc_&._z_zg_ funotions f and g means that £ (a) > g(a) for all 

a¢ A. ) Doy 
Theorem: ‘(inequalities for pseudomeasure integrele) /} Let y; and 

  

¥, be pseudomeasures, f and g real-valued measurable functions, 

all on measurable space (a,2). 

  

— 

) (i) 'If ¢; > 0 and £ > 0, then | £ dy, 5 o0, j/;" ¥ - = po b L - 

df(ifi)sgxf ¥; 20 and £ > g, then jhg\g?{%z.j ghde' 

o T //’/(i;}m‘i) fl If ‘f’l 2 ¥, and :‘:’ > 0, then jf,\@#}_ ,{:j ?,«\@'2' 

/ (iv) If y; > 0 and £(a) > 0 for all a € A, then j £ dy; > 0. 

’t%/ (v) If ¢, > 0 and £(a) > g(a) f‘or all a ¢ A, then 

[wfxd¢l > [véfdwl. 

(vi) If y, > y, and £(a) > 0/for all a € A, then 1 2 1 R
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SR 
‘ % Proof: (i) By assumption, tj:l” =0 and £ = 0, so the 4 |- = = (& .10) ' = 

expansion of [ «ffi 51“'1 by 462 of the prew / reduces 

ag;} ‘ to (L;E v APy, 0}. Hence (ka,\gq;l} = 0, so that L £.d9, > 0. 
Y j 
- g 

® o (i) If.dtk - f g dy ==[ (£-9)dy, > 0, from (i). 8 IR rE Ty RE STy NS EYEYL - 0 18 

~ Hence ]y_g&ggel > [ g,ay,. 

\;fi‘, Iy = I;’\gflq(wl - ¥,) 2 G».{ froxn (i), Hence [\’}‘g,\g}bl > [}\fr\g‘*z' 

T\) g (iv) Since ¥, > 0, "’1* () > 0; also £ is positive, s0, by a 

standard integration theorem, I 4 £.a0," > 0. Hence, 

0 [ £.av, = ([ £ a,*, e) > . 

g (v) [f/dw - | g dy, = | (£=-g)dy, > 0, from (iv). Hence TS T L8N L s, ¥ 0, Saee 4y 

[.£av, > [ 5. 

/‘\'\ (vi) since ¥; > ¥y, (¥; = ¥,) > 0. Hence 

!»fh?‘pl "’ Lf}éfifl‘z - fjfifl(wl - t}t2} > 0, from (iv), so that 

[eav > [ gav,. =10/ 

R
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Standard Ordering of Pseudomeasures 

While narrow order is quite useful,'it is literally too 

narrow to represent preferability relations among pseudomeasures 

in an intuitively plausible way. Consider, for example, the 

representation of preferences by definite integrals over Time: 

47 sp /e _ )ucp) - [ feimyae & @) 

P being a policy. Going from definite.ro indefinire integralsrfifi 

and thence to signed measures, -one can translatejthe criterion 

(2) as follows. With each polioy is aasociafied a signed 

measure. up. Policy Py is at least as good ae policy Py iff 

(A} > u (A). ‘'Note that the value of %P on the universe set 

“firis all thet counts‘#»rhis corresgonds preoisely to the use of 

the definite integral in (2). We have ergned that this sort of 

criterion is counterintuitive when borfi signed‘meesures are 

infinite (of the same sign)} But it;is perfeotly adequate for 

comparing polioiesvif their corresPonding signed measures are 

both finite. i 
~What we would like, then,xén.en ordering on the space of 

pseudomeasuree such that, when two pseudomeasures are in—fact 

finite signed measures u, v, toe relation between these agrees 

with the criterion above: u is at least as good as v iff 

ufig) 3.3(9)‘ Narrow order does not accomplish this: ’fake any 

twoxginite nonigero measures ,which—are mutually singular. 

(These always exist if the:fiigee~field I is not trivial)., These
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AT 7&»{iemma: Given measurable space Q@,E)J The set of pseudomeasures 

) 
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comparable 
are not comparable under narrow ordering,fibut they areAunder the 

criterion just stated. 

Standard order, which we are about to define, meets these 

degsiderata. We first need a preliminary result. 

Y satisfying 
S 

i.:,g.,j’;:';‘ . 
3.3.3 ) 

: is a convex cone. 
. A - - s 

Proof s Clearly 0 belongs to this set. If y is a pseudomeasure, 

and b a positive real number, then (P¢)+ ajg-wf, and (Pw)“ = 

§‘¢~. Henoeijif ¥ belongs, then by belongs. 

Finally, suppose ¥3+ ¥, both belong; we must show that 

$1 + wz belongs., Pirst, from £33 wi"gg) < m;(i =], 2)./ Also 

(@l + wz)"i ol“ + $2" (from the minimizing property of the 

Jordan form), Hence 

= 
: (\f)\?}""} 

(by + 9)T(A) < @ ke 
Also 

i 

Wy + ¥ @) + ") 4 z::{(f)}’ (b + 90" @ )+ vyt 
7 [2:%:5) 
' Sts) 

(@Y 
by the equivalence oriterion@gfififl 

  

Since wl‘(AJ and ¢2'(A) are both finite, we may subtract them 

from both sides of (5) to obtain
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4 \ (by + )T (a) = (v, + AR A R A IR A IR PSR 
‘v;m-.%‘ e 

[ A2/ 
(DB VY 

: = 2y + )7 @) | | 460, 

since (3) applies to ¥y and ¥,. ;Té):and (6) show that (3) is 

satisfied by ¥; + V. ' | W e 

We are now assured that the following definition is 

  

o consistent. 

“'ij”nefinitions Standard order, fi. on the space of pseudomeasures,. 

  

is the vector partial order whose positive cone is 

v o Glm 2@ ad @) <ok 
el 

//;;firi”g' ‘We shadd use the notations » and > to distinguish standard 

from narrow order.‘reepeotively; é.and > are the corresponding 

strict inequalifiy signs; the indifference sign v will refer to 

indifference under standard order only. (It is not needed for 

narrow order, sinoe.indifference coincides with equality there&& 

The positive cone (7) consiets precisely of those pseudoS 

measures)\ which are signed measures u}satisfying u(a) > 0. It 

follows that a pseudomeasure is comparable to zero under 

standard order iff it is a signed measure. 

tebus first verify the claim made above,; that if u and v 

are finite signed measures, the relation between them under e ; 

standard order is the same as fihat given by the comparison of 

u(a) and v(a). Here.u and v are identified, as usual, with the 

pseudomeasures (u+,u“), (v+,v”).'respectively. (In particular.
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the ordering of finite definite integrals is the samé as the 

.,  standard ordering of the corresponfling indefinite inregrald?fi 

  

P 

i w4# | Iheorem: Let u and v be finite signed measures on space (A,i). 
D 
N Then (u¥,u7) a- (vF,v7) igs u(A) > v(A). 

o ij Proof: SineeV§ is a vector partial order, (u+,u")fl§ (v*,v“) iff 
A {9 3 .,%) 

@ - -+ - - / 

ey =t - 0T »o0o +8) 

  

.‘+ ad 
f(u” +v , v 

Let (k*;h”) be the Jordan form of (p*"% L v+ fiv“). 

;ij;} " By the equivalence criterion, 

\/ + 4 e o § o g,z'r‘;“fi} 

ATty 4y = A U ANV o, {9)- 

Since all measures in (9) are finite, we;obtain 

b 

1 (p) = AT(a) = tu (2) - uw ()] - vt (A) -9 (AH = u(a) = v(A) o, 
\ {2 LG} 

P 7' 'ftfli 

e 

e 17, . (8) holds iff 5t (A) - A7 (a) >0, 8o (10) completes the proof. LH'&?I 
5 trict inequality and indifference take a simple form for 

    

standard order., The following results are immediate from the 

L definitions. 

“‘*’"""A‘WM ; 3 

fi§~‘; Theorem: Let § be a pseudomeaeure on (3,%): 

D) o B e 0ise @ > ¥ @, 

RO r w oo iff yt(a) = (m and these are finite. 
) g AL 

J 

~ (£ii) | $: 0 not oomparahle iff pt (a) = P (a) = =,
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le» As with any vector partial order, we then have, for 

pseudomeasures ¥, and y,, ¥y > ¥, 1£E (Y3 = ¥5) > 07 ¥y v ¥, 

iff (wl - wg) “ 0, *1' oz not comparable iff *1 = oz, 0 not 

comparable. 

~:f”f§$ Theorem: Standard order extends narrow order. 

o 
   
R 

ggy ?roof: " Let $l > Wz (narrow order); then (wl - wz) > Q;-&he%~£o, 

{igg (¥, - wz) (A) = 0, while (wl - Wz) (a) > 0. Hence (¥; = ¥,) > 0, 
- 

' \’}A 80 that wl = ‘i’zo 

The corresponding result for indifference is trivial, 

since > is antisymmetric. L}*{«(fifiifi 

i 

{ 

: 
£ 

!? 
i 
S5 L,»w””#ww# (*”' If I is not trivial, then this extension is proper; fi%fit 

+#s., there are *1' wzrwhieh are nonicomparable under narrow order 

but comparable under standard order. An example is given in the 

proof that narrow order is incomplete. The same example shows 

that standard order is not antiysymmetriop except in the 

trivial case I = {¢,A}. 

  

_Jt Theorem: Standard orxder is incomplete, except when I is a finite 

  

$*fi Proof: Let I be finite, Then it is generated by a finite 

s partition {A;,...,A }. If u is a s&gaaufinite measure, then 

/ u(Ai) is finite for all i = l...n, so u is in fact finite. 

Hence w (n), v (A) are both finite, for all pseufiomeasuree P /s 

and all pairs are oomperable. ) is complete. 

o
,



  

e
 

P
 
AT

 
e 
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Conversely, let I be infinite. ILet F e I be infinite and 

countable, and let G consist of all F~sets, oege%her with their 

complements., For each a ¢ A, let E(a) be the intersection of 

all G-sets to which a belongs. It may be shown that these sets 

‘gte) form an infinite measurable‘partition. (Petails are 

omitted). 

There is thus an infinite sequence (E;, E,,...) of -non# 

empty, measurable, mutually disjoint sets., Choose a point 

a € E foralln=1, 2, ..., and define the measures M, v by! 

u(E) = number of points a, € E for which n is oéd4\< 

V(E) = number of points a € E for which n is evens 

- for all measurable E. Thus u(Ezm ) = Vi(E,) =1, and 
® « 

H‘Ezm) i V(E l) = 0, all m = 1, 2, 3, nn-eou and v are s-i-g"ma- 

finite, infinite, and mutually singular. ' Hence the pseudoir 

: > 
measure (u,v) is not comparable to 0 under standard order: » 

is incomplete. L+T‘i“1¢f£§ 

o The case where I is finite is not very interesting from our 

present point of view, —Foxr in this'case all pseudomeasures are 

finite signed measures, and,winmfieot. ¥ is isomorphic to 

ordinary n-space for some n = 0, 1, ..., as we have noted above. 

Thus we may say: Hhenever pse‘_idomeasures are interesting, 

standard order is incomplete.
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ngglicationa 

We sheall consider here only the more important category of 

anplioations{xthe use of pseudomeasures to represent preferences. 

Let P be a set of conceivable alternative options in a certein 

situation, and let » be a preference ordering on P, (;Jis a 

partial order, tha%»is. a transitive, reflexive relation). We 

represent this ordering by a pseudomeasure-valued utility 

fiunotionug +* W(p), mapping P into W, the set of pseudomeasures 

over some space (A,z). (Set A might be completely unconnected 

with Rm but usually there is some connection whéoh makes the 

representation “naturalfm) That is, for any two options p,, 

Py € P, we have 

Py > Py LEE B(By) > () | 1) 

\ | \ 
Here ™»" on the left is the preference ordering, while "»" on 

the right is standard ordering on the space ?{%9 
Thaqhsizefifié0m9ari$bn between two given pseudomeasures is 

usually quite simple to make. For the great bulk of applicaS 

tions in this book f(end this will probably be true in further 

applications as wel@-g w(p) takes the form of an integral,»in 

which either the}integrand or the measure does not depend on p. 

Thus, in the fixed-integrand case, we need only worry about 

whether a statement of the following form is true: 

ik ¢ Jd2R) 

Yo an, » e J,gfidul >?Irf“du2 <12)
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L/ 
{ (All indefinite integrals are over epaoe‘gfi 

ijn the fixed-measure case, the relevant statements are all of 

the form 

},« A \~ j/ : \ ] 

In turn, both of these statements are logically equivalent to a 

statement of the form ‘,: 

%— | " Gl 
L £.du H 0vy / —i4) 

To go from (13) to (i4), let f= £ ~Af2. To go from (12) to 

(14), let u = uy = uy. (If uy, u, are both infinite measures, 

interpret By = Uy as the pseudomeasure (“1?“2)5\) If p in (14) 

should turn out to be a signed measure,frhenrthe following 

simple but important result shows that the Bgize® oom@erison of 

pseudomeasures reduces to the evaluation of an ordinary definite 

integral. 

  

»fl _Theoxrem: égtandard integral theorem)' Let u bhe a sidema-finite 
N 

signed measure on space (A,IL), and let f. A + reals be 

‘measurable. Then (14) ~sin the eense of standard orden'm is 

s, true iff the definite integral f 

D) T 
| A 

w— 

is well-defined and nonrnegative.
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;@flflfigfi§M&§rQ°f? ‘The Jordan form of ¢ = Ififnou is 

" Ll . A 
w97 = I&ff‘au* +i] £ ap”, [ £ apt + [Af* ay 

- -~ K \ - — N E 

  

2 
(el ain 

(14) is true iff w (A) > v (A) < w,—thoe~ie iff the double 

inequality ‘ _ ; i : 

B ey | 1 | 7\ 

holds., But this is précisely the condition for (15) to be 

well=defined and non+negative. L}%fii [T 

    

e \4 11 
\ofiwflfl_ég‘“xffl—fffionsider the procedure of Ramsey in his now=famous artiole.%}y 

Here each conceivable policy p is a tinélpath of consumption 

  

\ and labor over the entire positive half-line. The total 

utility resulting from polioyvp has the form 

. 2 S 
fi‘y | Q: :.’,. v/ 

' JQ\g(p.tkép.. 116) 

  

   
where g(g,t) is thefnomentary utility from consumption net of 

the disutility fron labor at instant t under polioy_g%l V@e 

need not be oonoérned‘with the exact form of this function). 

The trowble is tfiat (16) will diverge for good policies. 

Accordingly, Remsey usee not (16) but 

)b ;’w? | @347 
% 01{9 ~‘9(p;t)lgp 7
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as the objective function., Here b is "bliss™, the highest 

attainable momentary net utility level; (17) is the shortfall 

from constant bliss, and is to be minimized. The integral ief‘ 

finite except for ver} poor policies, which may be ignored,’ 

Preference is now represented by an ordinary xeal»velued,ntility 

funotion,~ne§;§§, the negative of (17). 

We now treat the same problem by pseudomeasures. Let 

(A,Z) be the positive half-line with Borel field. The utility 

assigned to policy p is the pseudomeasure ; 

- [ ,t)d gt ¥ (p) [Xg{p F%rf/r . 

?‘gg"of course refers to Lebesgue measure on the'poeitive half< 
e i =) ‘\i}* 

line). For two policies, p; and p,, we then have;pl'> Psy iff 

L~ 

A\ 

]ng(Pl'tfifit > I“g(Pz'tkétr 

(standard order). By the standarojintegral theorem, this is 

true iff the definite integral relation 

{3\“)1‘ g ) 

o 
-3 ¥ 

Y 

holds, the integral being well»defined. It is easy to see thar 

(18) determines exactly theieame ordering anong policies as 

does (17), with the minor exception that (17) does not 

discriminate adequately among alternative very poor policies 

for which it equals +«,
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Thus the Ramsey approach is in this case essentially the 

same as the pseudomeasure approach. What is gained by using 

the latter? First,'oao.avoidq the slightly ggiggg'"bliss" 

procedure, which may not be available?for orher problems., But, 

more important,’onerhes a unified pésoedure, which works for 

multidimensional and abstract spaces, which works when the 

measure rether tnan the integrand varies (as in Bernoullian‘ 

utility discussed below) , etec. 

fiet us also sharply distingnish the Ramsey approach from 

the "overtaking" approach wh%eh grew out of it.“““0vertaking 

depends essentially on the order or metyric properties of the 

real line; the Ramsey approach does not. It ouros out that, 

just as the Ramsey approach is a special case of stendard 

ordering of pseudomeasures, the”“overtaking“fépproaoh is a 

special case of extended ordering., This inffi&% discussed begow, 

-~ The following aimple'problem offers further insights into 

the use of standard order. Let (A Z,u) Be a probability measure 

space; tfieowis, 1 is a measure with uCA) = 1, Let £ A + reals 
- 

be measurable, and let the definite integral 

» ] £ du g 

exist and be finite, with value c.lz Consider the problem of 
‘ . : 

minimizinq 1A ; B { \"fl;fi 

va = [ t£(a) - x1? uaa) Sty 
A



305 

over real numbers x. It is well~known that the unigue 

minimizer for this problem is x = ¢, provided the integral (i9) 

is finite for all‘f. If (19) is infinite for some x, -then it 

is infinite for all x, so that every real number is a minimizer. 

We now show that thé“use of pseudomeasures allows this p:ovisa 

to be dropped. v 

Thus teé¥§& now rewrite v(x) as wgf),,and intexfiiet (12) 

as the indefinite integral. There are twohpreliminary minor 

points to take note ©f. First, we are minimiziné, so "smaller"” 

is "better"; but under standard crdéring "larger" is "better" 

in an obvious sense. This difficulty may baf;emedied in either 

of two equivalent ways: IE) insert a'fifl*“ 1n front of (19) to 

convert it to a maximum problem, or t;xa use reverse standard 

or&exing rather than (direct) standard ardering, defined by{ = 

wl > ¢2 in the reverse sense iff wl < wz in the direct sensep 

we shall use the latter approach. Seaond,'@aa should remember 

;hat standard order is, in general,fnot complete, so that there 

are two paasible senses in which a solution may be optimal: Jflt 

may be basfl, or it may be merely unsuggassed. In the following 

  

@in“‘ theorem the stronger of these tya senses may be asserted, 

QQE‘QTheoram:‘ Let u, £, and ¢ be as;kbova‘ The problem of minimizing 
= o APAA o 

/ffz{ P(x) over real numbers x has a unique best solution, namely). 

X = c, ("Minimization" is ghderstood in the sense of reverse 

standard ordering).)
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e 

fi%gzProaf: Let realkx # ¢, and consider the definite integral 
"“EE” —_— 

2 2 [ e - 02 - 2@ - o ?iaa) A = - P ! 

e { ' 30 %2'0% o’lq'] 
e ; ity 2 2 2 
;D\) - [ r2te - e + 2? - Fpucda) = (e - 2 > 0. 

'~ 2‘ A§ - e ot o -3 . S iy 

o o R } 

’ Since this is well-defined and positive, it follows that the 

| indefinite integral satisfies 

[ 1@ - 02 - (g2 - ?utaa) » o 

(standard order), by the stan&gtd integral theorem. Thus . 

§ VL (:%.?ptpfifi 

N v(x) > vle) 26 

(standard order), all x #Hg, Thus ¢ is best undéx reverse 

standard ordering. Because indifference is precluded in (20),   ¢ is the unique number with this property. M- o 

5 In probability terms, then, we may say: 'fhe second moment 
i 4 

of £ about x is uniquely minimized when x = expectation £ 

{(even if the second moment is infinite under conventional 

calculatiofl)‘ 

. Bernoullian Utility under Stafidard Order 

a 
Let {g,Z) be, as usual, a mepsurable space fixed throughout 

the dismussioh, and 13tvP be the set of all probability measures 

on this space. We are concerned with preference orderings over 

P. The modern discussion ofiihis subject arises from the
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observatianx%fthat, un&er certain quite plausible assumptions 

concerning the preference oxrdering, >, a rather strong conz 

clusion could be drawn (for I finite): ?hax¢a43?~f a3 
38 

maasurablé}}uncticn us A + reals; such that the mapping P B 
< 
Ta u 4ap, which assigns to each PE P the expectation of u with 

resyaat to p, 15 a utility function wh&ah represents >. This 

is the expected utility theorem. 

This result has been generalized in various ways, but these 

generaliaations alwaéng%; up against the obstacle that the 

integral f u dp must be(wellwdefined and finite. In practice 

this means either that u is bounded, or the p’s must be 

restricted to a small subset ofhgifoncesaae goes to an infinite 

ségianfield: if ¥ is finite, u is automqtically bcunded)fi%fi 

Both -of these restrictions are objéctionable_ The 

restriction of“g to_finifiely ¢cncentr§£ed probabilities (see 

below) simply does not allow enough scope. The objections to 

bounded u require more discussions 

“  Consider the following “Axchifiedean“ postulategy_;gtlgl. 

2y, aq € A, with ay > az > a3, then thereié%ifit@ a number_g, 

0 < x < l,&such that 6 ‘ 

/ (3:321) 
[(1 = x)a; + x a3] » a,¢> 21) 

(Her:ea'ffl'jjemi‘é refers to the prabébility measure with all mass 

simplylc;hcentrated on pointfai, i=1, 2, 3,‘7(21) states that 

some probability mixture of;gl and ay is preferred to a,.) 

T—a
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Suppose a, and a, are situations which differfbnly in some 

trivial respect zfiflé& having this morning's egg boiled for 3 
At " © minuvtes vs. 3 minutes and 1 second, while‘gB is a harrendous 

i LA Yt situation such as a world pandemic or thermonuclear war. ©ne 

may argue that (21) is still satisfied by some x whieh-is ver 
i -§£ 

N 
very close to 0 in value. The point is controversial. 

g Now suppose the expected utility condition holds, with a 

function u that is bounded below. We claim +hat this has a 
L0,     conseqguence is less plausible than (2i) by an order of 

magnitude, Without loss of generality 1et‘g(§l) = 1, gfigz) » Oy 

and let 1§ be a lower bound for u, where M is a lafge positive 

real number. Then, for any choice bfq§3. (21) is:sétisfied by 

X = /(M + 2)$ for the 1e£:\sidfi of (21) then bés utility at 

least eq;al to 1/§§ + 2) > 0. That ié, the mixture prdportions,} 

x and 1 - %, may be chosen in advance of kngfiéng_§3, no matter 

how horrible; The Archimedean postulate a?icws“g‘tc depend on 

a5, S0 that progressively more horrible sifiuations may be 

counterbalanced by being given progress%éaly less weight. 

There is a similar implausibility;;rgument for_g bounded 

aboves Start with the “dual” Archimeégan postulate fik&éfi 

replaces all " signs by§*<"f%letfi§i,m§2 differ trivially as 

above, and let_gs_be some highly dafiirable situation such as 

universal salvation or utopia. ‘f 

In general, bounded utility gpgears to characterize 

orderings with a certain pettifoéging quality, in which there 

is no Pascalian wager, no Faustian aspiration, no Promethean 

ambition. To exclude these preferences would be to exclude the
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values of many makers and shapers ofi history, not all of whom 

are irrational. 

what these thoughts awount to is this: (Any axiom system 

whrich implfis that "rational” preference orderings satisfy the 

expected utility condition with bounded utility function is 

simply too restrictive. 

fiutvif the boundedfiéss rest?iatiqp_en‘uvis removed,7what 

sense is one to make of the iéteéfi&l fAuL&%;j&Our repémmendau 

tion should not be too surprising: “Regééérpret this an an 

indefinite integral, and let size ordering among these entities 

be given by standard ordering of pseudomeasures, 

But why should one do this? Just as the ordinary 

expected utility condition needs justification, so too does 

this standard ordering condition. We now give a set of axioms 

which impéies it. These axioms have about the same general 

level of plausibility as those in customary use ;flé-bif more , 

plausibility in-faek, since they ara,fieakened to the point 

where they do not imply that gflia}bounded. 

The main limitation imposed is that I be generated by a 

countable partition of A. Thigfilimitatien is regrettable,fibut 

still allows the main point to come through: mhnra:exists;gn 

axiomatic basis for the useij unbounded utility functions and 

standard ordering in the gféatment of uncertaintyiéj 

Without real lqss ofifigenerality, we may assume that each 

element in the partitiqfl;generating Z is singleton. Thus we 

get&fi.é countable, an¢£2 = all subsets of A. This is the space 

on which we work. gfich probability measure p on (A,I) is
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completely determined by its values on the singleton sets 

{Efia }fl fact, it will sometimes be convenient in what follows 

to think of prebabilities as point functions (with domain 3), 

and we write p(a) instead of the technically correct p@g}). 

Probability measure P is said to be finitely conaentratad 

iff there is a finite set E g A such that p(A\E) = 0; inwe%fiefi 

~words, p(a) = 0 for all but a finite number of points. g € A, 

The set of all probabilities will be denoted bwaflxas above, 

while the subset of finitely concentrated prebabilitiea'will 

be denoted by F. ; 

In axiom 4 the following concept is used@fykeal sequence 

Xys Rgrees is monotone iff it is either non-increasing or nons 

l,}; decreasing: either x; > X5 > +s0y OF X, <-xz S oes o 

fi‘ Axioms concerning partial order » on Pi} oR 
o 

g axww + Any two finitely concentrated probabilities are 

\J) % camparabla. 

,;% 
g 

3 b 
o 

tQ‘{}gv Afiyfla Let pyv 9y € P, let pyy 4y &\f, with Py ql and p, > ng : 

,}  let x be a number, 0 < x < 1; then 

; \ x S 

Ay A [(1 - x)p; + xp,] » [(1=2x)gy +xaq,l. (22) 
3 

” m 
','~"“ T . 

%e‘Ax? 3: Let Pyr 93 € P‘with Py > 9y then‘kha&eagfiéatjgz,”gz é F! 

and a numbak“g, 0 < x < l,&suéh that Py < 9, and (22) is true. 

*T“Axfrkz Let p, g € P; let Pk'iqk' k =1, 2,..., be two sequences 

of finitely concentrated pfibbabilities)sufih that,}fer all a ¢ A, 

the three sequences (py (a)),(gg(a)), and (p, (a) - gy (a)), 

é
m
.
m
x
m
m
A
.
#
;
;
m
.
.
 

- 
.
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W@md 

k=1, 2,..., are monotone,, such that,ufox all a¢ A, 

o, |33 \% it 72 
n 1lim pk(a) = pla) aand lim qk(a) = qla), 

and such that, for all E«” 1o Zonsnn P > It then it is false 

that q > Pe : B 

— Agg:m. Let »' be any partial order on Pflwh&eh satisfies axiams 

1 %k&éagh 4 and- w&&eh extands }z 

Pp>q impliesvg >'_g, and 

p g implies p v qi 

then ;,ané‘;' are i&ent;;ai. & 

; ?”' Axiom 1 is a weak completeness axiom. Axiom 2 is a form 

of the strong independence axiam, and asserts, raughly, that 

mixing in a pair of indifferent probabllities does not aisturb 

order of preference. Axiom 3 is a weak axiamlwg;éfi‘assarts,-; 

roughly, that for any Py > d;.-one can find finitely concen~ 

trated 92 < 9, for which the preference intensity is not 

infinitely stronger than the original. Axiom 4 is an 

Archimedean axiom of scrts, and assexts that, under certain 
——— 

conditions, if sequences pk, qk converge to/p, g respectively, 

it cannot happen that preferences begweentp;flgnd e all run in 

one direction and preference betweaggp, q rfins in fiha opposite 

direction, (The monotonicity claugé in Sxiam 4 has no 

intuitive appeal in itself; but néia that its insertion weakens 

the axiom, and thereby makes axiom 4 more plausible in the 

logical sens%ffi Finallg,axicm 5, like axiom 1, is a weak 

”~
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completeness axiom, and asserts thatg; has maximal eamparaf 

bility in the class of partial orders satisfying axioms 1,;‘f;f 

gh 4. (The assumption that an _;g two prébabilities are g’ 

  

| : 

comparabla - which we do not make -woulfl imply both axioms 

\ m 
1 &nd 5)&’) n\ , 

J 

' The fcllowing lemma asserts that axioms l:thzangh 4 alone 

&éfl guarantee the exiatence of a function uduhiah provideséa non1 
,\\ 2 ?5 “uc 

faithful" representation of » in the sense of Aumann. 

*fifikw Lemma: Let P be the set of all probability measures on (A,E), 

where A is countable and I = all subsets of A; iet > be a 

partial or&erlng on P satisfying axioms 1 thaaflgk 4@ 

“Then thewe exists a function “2/A * reagsasuch that, for 
= g \ 

2y a0, q e’P, s e Ag 

(ka 
;f K-}:\ :\ . 

P v q implies [ udp v j'954g?§‘ : £24.) 

§ 
" 

(Here\‘ " and A" on the left refer tn the partial order on P, 

while ™" and “w" on the right rafer to standard order on the 

\”*::;h_“ space of pseudomeasures over (E;X)g’ 

 Proof: Let us first prove anothef%?hrahimadean“fiéonditien: ,ff 

9, Ps P' € F'(i.e. fihey are fini%ely concentrated), and 

(:’ 

D ? P' > q> W then theae<ax
z@ts a numbar x, 0 € x < 1,:such that 

g (1”X)
p+x§)

'?< 
q% 

; 
i Tocson s 48 \ 

i 
j 

[ 
§ 

v/
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n 

To show this, define the two sequences‘pk, qk,‘fi 'Yy Bpaieg by;\ 

Py = E‘iflp > [‘523"?1‘]9' 

and 

’{/5 v T }Zk”‘lsnrk’ 
"   

B e 

i The pk, q, are all finitely concentrated, they converge paint» 

| wise to p, q,vrespectively, and the monotonicity clause of 

axiom 4 is satisfied. But the conclusion of axiom 4 is false, 

since q > pP; hence the remaining premise of axidfi 4 must be 

false,iéo that there exists a k ‘for which gk' > qk is false. 

By axiom 1. it follows thaq pk 4 e Thete are twe cases: 
Q y 

. < qk » then (25) is verified wifiw{g = 1/(k° + 1) sond 
' S > 

  

xprk ~ q, + We apply axiom 2 to obtain 
O 

11 = Cx T sy A ‘W, M 2 42 f: 3’;‘{/ !° ' Y ] 
L\ A\ k + 1) ° k #1 v\{ i & Q l l D e, « lcki] « (o), (c2ae e e Oy "¢ " 1T o 

f 4 

which verifies (25) with X = l/(k + 2). 

By a similar argument (interchanging the roies of P and P ") 

we can show the existence of a number x such that (25') is true, 

where (25') is obtained frgm {25) by substituting ™" for "<, 

Axioms 1 and 2, together with conclusions (25) and (25') 
and Theorem 8,2 of Fishbfirn* . imply the existence of a function 

us_ A + reals, such that, for all finitely concentrated P q, 
  

we have
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-1 & N e il 0 ) L) ) = = 4 (20520 
; *k Pp>»q iff f u dp > f u dq. 26 
- - - A w1 A e 

We will show that this u satisfies (23) and (24). 

;? To prsve (23), let p, q ¢ P with P> de and define the 

function f: A + reals by 

The hardest part of the proof will be to show that tfie sum of 

the positive terms of f(a}, summed over a ¢ A, is finite. 

Arguing by contradiction, suppose that the sum ofng fa) is 4o, 

Then there exist4 a number § > 0, and an enumeration 

ag',al’ «ss Of the points of A, such that 

. {i‘z 4t;i Y 

"f(aQ) + £a;) +...4 f(a ) >4 - +28) 

for all n=0,1, 2,...d*glat a, be any point with f(a ) » 0, 
= -0 remamm% 

and let § = f(ae); then enumerate the itive and negative 

terms, and choose enough positive terms to overbalance the 

first hegativa term, enough‘pesitive5terms’aftax that to overt 

balance the next negative term, etq;) 

Nextfi.define a sequence (pk);fk =1, 2, ..., of finitely 

concentrated probabilitias as follows. 
9 s S - ! 

pk(fis) " p(ae) . [p(ak*l) f Pla,, 0) +eeely 

(% 2 >4) 59 : Pelag) = plag) /Jfor i a}l, vens Ky (29) 
- 

o 

Prla;) =0 ifor i»k, ; 
s 7
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{) 
o/ 

U A sequence (qk), k=1, 2, ..., is defined similarly, with q 

taking the r8le of p in ($L). 

We claim that p, >qu.for an infinite number of k-values,   For suppose this waf; false4,then5 by axiom l,qu - pk,fcr all 

k past a certain value k,» Furthermore we have 
—— 

fin;gglhpk(a) = p(a)J~;nd lim qk(g) u;gifi) 

e : o s 

for all a € A. Also, each of the three sequences (py (a)), 

(qkffi)), and (pk(a) w}gk(a)), k=1, 2, ..{, is monotone for 

all a € A except possibly for (pk(a ) - qbk(a )))b (fince, for 

as= ai, i# 0, each of these sequences is | 0 for k < i and is 

constant for k > i). As for a,, we note that any real sgquenee 
0 

; X~ Ot 

Qo 4 has a monotone subsequence; hence there is a subsequence which 

SO
 
D
S
 
B
T
N
 

satisfies the monotonicity alaasa'fer all a € A, including §0. 

Axiom 4 now implies that p » qfis false: contradiction. Hence,k 

indeed, Py 5 9y infinitely cfiéen. Letkyl <w32 € Jee be the 

k-values for which this is érue. 

    Now apply (26) to eaph such k « Evaluating the integrals 

in (zé)zr/which are juat finite sumg — and substituting from 

(23) and then (27), we/ obtain 

j?:i: :—f/ f(a ) + f(al) *‘.ét"’ f(%fi%) > 

: " i = u(& )A[zi =k +l (q(ai) i P‘ai))] 

farn"l' 2' ees @ 

i\s 2.0/ 
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This, howavar,»contradicts (28), for as n + o the sw&xpf the 

fwterms remains > § >0, while the bracketed expression in 

(30}6“ el converges to 0; hence the left side of (30) is positive 

| for sufficiantly large n. 

We have now achieved our contxadition,\and conclude that,. 

#  indeed, the sum of the positive terms of f(a) must be finite. 
e —— ' 

  

, Next, consider the definite integral 
A 4%"! r‘] ; 1 ? 

/“’T 7 & ;27 i | i = 

f u,dlg-p) = u’, d(g-p) " + f ju”, dlg-p) 
A A A : 

  

. !‘,v‘s (a="1l ‘ |0 1 A ’s ' }/f / 
[Eo ) | \=- U u, dlg-p)* + J ut d(q*E’)] g T , § | { o 

\ 

Tha sum of the first two integrals on the right equals the sum 

of §+(§) over a ¢ A. Since this is finite, the integral is 

well-defined; furthermore, the sum of g(gi over a ¢ A converges 

to the same number (possibly ) regaxdiéss‘ofl the order of 

aummation, and this number is the value of the integral. We 

will now show that this value is nanwpositive. 

Lat-@g'_?l“‘“' be any enumeratian of the points of A, and 

define Py G as in (2@).§ The arqament above shows that_yk > qk 

infinitely cfhen; hence, Vi (2%) ‘again, we obtain (30), fiagEJ 

n + =, the left side of (30) converges to the sum of f(a). 

Hence this is < 0. We have praéed that
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S f"’ /fi' g’,’?P 
(im0 

o 

In turn, this implies 

j uAdp';,[fiu§q ' / a2y 

(standard order), by the standard integral theorem. 'To   i preference . 
| establish (23), we must strengthen this to strict 

; By axiom 3, there ewist p', q € F and a number x, 0 < x %5 
i : - AAwA, 

| with 

f» p' < q' (33) 
and ; f 

; 3.3 3u) 
(1=x)p + xp' > (l=x)q + xq".. /= <*~§~34‘a 

%’\7 ] f ; L R & W "; 

= (3 3) and (26) yield v 
s | 

"4% m g; : i (723 W5 ) 

g ‘,') [A g ,\ég“ < A u i}i &) {‘3’5) 

| « @) 
! while the same argument that led frqm P> g to ($2) now leads 

f from (34) to 

‘ . !5 ; ’Z»/;F;} §\§ 3, %06 ) 

v I u, &l {l=x)g + xq' ~ (l=x)p - xp'] < 0. (38) B : A~ i e ¢~ = —= 
1 Lo i 

55.‘ 

M“"”“\(3u) and (33) in turn yiald the reapaative inequalities: 

4§f§5 d(@??’ Efiga l;‘ukd(g'~gf) < 0. Qa1 ,l
,,
’ 3 — 

N\
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| Thus the integral in (31) is actually negative, which 
Pretevence, 

strengthens (32) to strict imegualtity. This proves (23). s | 

e 
—
—
—
—
—
—
—
—
—
—
s
 

L»/The proof of (24) now follows easily. Let P~ q. If u is 

cc‘o:rx'stant then (24) is trivial. If u is not constant, then 

me::‘;5;3‘;;@,{;;‘_'_;3”'”,‘g'? € Flwith p' » q'. For any x, 0.< x < 1, it 
thea follows by axiom 2 that (34) is true. The argument above 

E ‘then yields the left inequality in (37). Since X can be 3 

i arbitrarily close to 0, (31) must be true, which yields (3_23 . 

x‘ Interchanging the rdles of P and g, the opposite iaaquality 

\ must also hold. Hence 

,fi A Ihgi\@ n f{\g&g)‘(stmflat&oxé@t) . ,LH L/ 

  

}ifie now come to the main result. 
B it 

Fv 
G {_Theoremz Let P be the set of all probability measures on (A,I), St—— . WA ~ Ry 

e where A is countable and I = all subsets of A; let » be a 

partial ordering on P. Then each of the following conditions 
W 

& implies the other: 

/{ (1) > satisfies axioms 1 Mfiz 

  

/ G N AR - ‘/‘ b ST 3 

S it exists a function u:r A + reals)such that, for all (ii) /fiye-!e exis &i bg\’ ] ‘o 

p, g€ P, ‘ \ 
L - _ G 

: /!J o A - \ ) 

Jip € 2 .
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(Here "»" on the left refers to the partial order on P: on the 
R Y 

right it refers to standard order on the space of pseudomeasures 

over (a,Z))\    fi?r;rProof: Let functionqusatiafy {38); we must show that » on”P' 

" satisfies axioms 1:th;éugh S, t 
22§ by 205 / 

i:::) If p, q € F, %hen the definite integral ! u d(puq) is wall* 
{ D ’ - WA 

defined; hence| /[ u,dp, f, u dg are comparable under standard 

oxrder, by the standaxd integral theorem;, hence p, q are 

comparable by (38). This proves axiom 1. 

ffifi | Lg;et Pyr 9y §2, 32 satisfy the premises of axiom 2, so 

Z that, by (38), 

| - [ dey L“\dgl 

5 and 

(standard order). 

By elementary pseudomeasure operations we find, for 

0 < x < 1, that 

I" “,é[(l“x)Pl + xpz] > [Au,\d{(l—x)ql + xgzl R 

A 
S
 

e 
A
 

TN 
S
 

AT 
R
S
 

@éhis,_with (38)/ yields (22), and préves axiom 2, 

fi%f——__'_—;et Py > qyi it follows from (38) that u cannot be 
J 

e
 

constant, for this would imply uniVersal indifference; hence 

thare oxis £ Pyr 9, € F thh Py < qz Choose any positive x 

less than 

A
 

S
R
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—
—
—
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4 & 
1Y) a5 Lalresat ol 25 4§ 

33.39) 
e[ wdlp,~q) ] W, d(p,~qq) + ] u,d(q,-p 39y _[% 2P [,.,. 4 ) A 5% z].% 

297 5 ) o 
(Both definite integrals in (39) are > 0, and f ufld(qz—pz) < o, 

Ié7f u d(pl~ql} = o, interpret x as 1; in any case 0 < x <1, 

80 that X exists.) One casily VErLNM-fi that 

as’? 25 
byi& ‘ ~ ~ 

: fA ¥ Shidep + Epy - Gealny ~ gyl 200 

This, with (38) and the standard integral theorem, yields (22), 

and proves axiom 3. 
s 

Zg,Estahlishing axiom 4 is the difficult part of bfle proof. We 

shall argue by contradiction. Let: P, 9, and sequences pk, qk, 

k =1, 2, ..+, satisfy all the premises of axiam 4, but also 

let q » p. For each kAdafine the function ffi’va + reals by _ 

£ (a) = u(a) gy (a) - pk;511. 
= A vy I 

andfi*similarlyt}define f as in[fi??). Let » be- enue; i) 

measure on (A,Z), so that integration gf fik with respect to yu 

is the same as summation of fk(a) ovefi a € A, which in turn is 

the same as integration of u with rg§pact to signed measure 

: : s o 
- S 028 S%H S e 

Vo0 > B e 
-
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| 
% k = 1l, 2, «ss « A similar relation holds for £, p and q (just 

E drop the subscrmptw*k“ in (40)). 
i 
i 

)fi’ j7fi@ shall deduce the centradictxon 
A 5 5 : > ‘ L4 P 1% 0B e o b £ v (S 

0 < [ £,d [ (lim inf £ )du < lim inf [ 0, “41) 

The equality in (41) arises from the fact that 
e 59 25 

1l lim £, (a) = f(a) 

-   
i for all a ¢ A, so that the intégrands are equal{ The left 

inequality in (41) arises from the fact that q » p, tége%hu*   with (38), the standard integral thearem, and (40) without   subscript “™k¥. The right inequality lngtal) arises from the 

R
S
 fact that,hfar each k, Py > 9+ SO thgfi,‘by the same argument, 

oty ¥ e 

- fox allk“l, 2; 28 ® j 

This leaves the middle inequality of (41) to be verified. 

This is the conclusion of Fatou's 1emma%3an& may be asserted 

if we can show the existence of a functienfig:f\h + reals such oo 
that\?k > g for all k,. and such that 

‘-’\/ ~d 53 7 = % 
. ST 

\ 13’\ ¥ 
\ 5 ., ::«"“ 42 ) 

| | We construct g as follows., Define the two subsets of A: 

E = {a|py(a) # g (@)}, ||u = {a|£(a) < 0},
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—
—
—
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and let i (8 
Wy . 20l 

(1 X \3 gla) = =lu(a) |  [if a g Ep 
(33.43) 

g(a) = £(a) if a € M\E, 3y 

g(a) = 0 if a ¢ A\(N U E) . \)‘ 

J2_ 
,¥et&us first verify that, for each a ¢ A, we have 

A\ DD b i | 

£.(@) 2 gla), £44) 

k=1, 2, «. « This is obvious for ae€ E, gince pk, qk are 

probabilities. For a ¢ E, we utilize the fact that 

(p(@) - q.(a)), k=1, 2, ..., is a;monotone sequence. This 

implies that‘fk(g),r§ w Y, 3¢ suea i;ma @onotone sequence for 

each point a. Since,fil(a) = 0 for a ¢ E; it follows that fk(?’ 

lies between 0 and the 1imit,§(g) for eéch,g.\‘For ae€ N\E,’we 

hav;7f(a) < 0, so that (44) follows from (43). For aé€ A\(N U E) 

we ha;éff(a) > 0, so that fk(a) > 0, again verifying (44). 

2 Finally Yet—us verify (42), which is true iff the sum of 

the negative terms of_g(a) over a € é is finite. The set E is 

finite, since Pyr 9y are finitely concentrated. The set 

A\ (N U E) makes no contribution to the sum. On the set N\E we 

have g = £¢xhnt the sum of the negative terms of f£(a) is finite 

by the left inequality in (41). Thus (42) is verified. We 

may now assert Fatou's lemma, yielding the contradiction (41). 

This proves axiom 4. 
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i:; Let >' be another partmal order on P satisfyzng the 

premises of axiom 5. Then >' satisfies axioms 1~fih§aagh 43 

hence, by the pxacfléing 1emma, tfia&a,c-;nt a function 3'- 
» 

- V .‘9’ 

;<§£§) A - reals, such that, for all p, q€ P, | 

| 2= it p >' g then fi_u'fldp > [ky’,dq S RS 

(standard order). Furthermore, if PrdE€ F, then the “if..¢ 
axXio 

Z then" of (45) may be sfiéngthened to "if and only i%’. by'( Yo 
}& elatss »' extends * and % is complete on F (proof of axiom 1 

above). It follows that »' and » coincide when restricted to 

F. 'u and u' are then two Bernoullian utilitiés representing e - aks 

the same ordering on‘F. It follows that u'fiS‘a positive 
LYV 

affine transformation of u: -“Fheve & xist real numbers x, y, 

& 

with X > 0,jsuch that‘ 

P u' (a_) = xu(a) 4- y ; 

for all a ¢ A. %7 But then, for any p, q € P we have 
o S 35 49~ a5 7¢ 

f u' d(p=q) = x [ u d(p-q) + [ y, d(p=q) A~ e T - e S = — — 

2 ‘é;-% | o) v ¢ 

P f P@‘P"%’/‘ 

(provided the left=hand integral is wallidefined). 

(e follows by the standard integral theorem thgt the conclusion 

in (45) implies 
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   . $) M’ oF "y 

Lu@? > Ln dq }LS hcm.)%*“ 
y ‘,. W‘}g}&@* 

(standard order). In turn, (46k/f£::;es p > qr by (38), which 

in turn implies p > q, since »' extends >, This,. with (45), 

closes a circle of implieations. and shows that, for all p, q e’ 

Pe 

P > q iff‘? > q. 
s 

   

   

— This proves axiom 5. 
ettt st 

’) Half of the proof is now complete; the other half now - pf 
A 

Let » satisfy axioms 1 #haeugh 5, By the 
fellows rapidly. 

preceding lemma, there exizts a function u: A + raals “non+ 
\lft %) i faithfully" representing » by (#3) and 4. Lét »' be the 

paxtial order on P determined by u according to {38). We show 

that >' satisfies the premises of axiom 5. fo the first half 

of this proof, »' satisfies axioms 1 theeagh 4, Furtharmp:e, 

if P> q, then _ 

fre o [ ey 
by (23), which in turn implies p>' qf}by (38) ; anqL;f P Nq, 

then ' 

[wie v [iuaq 
by (24), which in turn implies g 't 49, by (38). Thus >' extends 

». The premises of axiom 5 being satisfied, it follows that > 

_ and »' are identical. This QmpleL@3 the proof! )Jfij, fgfl@ " ‘ i : ) B 

:%‘qum
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;}‘ A few concluding comment%; If universe set A is not 

figggly countable but finite, then any utility function.ggmust 

be bounded, and standard order reduces to the ordinagyfiéize 

comparison of definite integrals: ‘yé are back to yfié con< 

ventional expected utility condition. There is’aficorrssponding 

simplification on the axiomatic front in thiswfigseg Every 

probability measure is now finitely concant:flfied (E,':P)' s0 

that axiom 1 now asserts the completeness pf > A;‘mefitionaa 

above, this implies axiom 5 (Proof: if p’is complete and »' 

extends ;} then »' = »1); henge axiom S;may be discarded., Also 

axiom 2 now implies axiom 3 @1nt: Féfi,Pz = g3+ 95 = Pqs 

x = 1/3; mix g(yl + qi) into both siées of pl’> ql)s hence 

axiom 3 may also be discarded. We are left with the conventional 

three axioms of completeness (axinm 1), strong independence 

(axiom 2), and Archimedes (axiom 4). (Exercise: Show that the 

monotonicity c¢lause in axiom qffiay now be deleted to yield an 

axiom logically equivalent tq;the originalgb 

Going back to the general case, let » have a representation 

{38) with u unbounded. What conventional axioms will » not 

satisfy? Strong indepen@snce still stands, but » is definitely 

not complete. For ther%fwill be a sequence of points“gl,_gz,... 

in A (not necessarily e&haustive) such tha€7u(a ) > 29, all n 

(if u is unbounded above), or such that u(ags < 2B , all nI(if 

u is unbounded below)@ let p(a, ) = q(azn”l) =277, all n= 1, 

Re i w1th zZero vaiues elsawhere. then
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are not comparable under standard order, so P, ¢ are not 

comparable under ». | 

Furthermore, the Archimedean axioms cannot hold in fi;ll 

generality. Specifically, if u is unbounded above, M 

show that (25) cannot hold for every probability trip.'gé 

P' > g > p (Yt does hold for p', p, q € \\F as proveéfil}éifh;gVe). 

Take a sequence a;, @,,... With u(a ) > 2®, al11 n, _faind, say,',\L 

u(a,) > u(a;). Let p'(a) = § all n (the "Petersburg" 

distribution), Let g)g az'»- P=a; then p' > q » p, but it-is 

easy—to see that (f§) is false for every %, 0 < x < 1. 

Similarly, (25') is false for u unbounded below. 

These considerations give a c‘:lua as to haw one might set 

about modifying existing models wh-xeh are toa strong in that 

they imply bounded utility., For example, iri Arrow's model it 

would be interesting to see the effect of x.";laxing his “m?gtone 

continuity" assumption, which has amm"A:rc:l*éi.:rne«?leam."’w‘f:!.avor.h9 

3.4. Extended Ordering of Pseudomeasures 

The virtues of standard order may ;;e summarized again as 

follows: (i) It resolves the blurring;of preferability rela},‘ 

tions which érises when abjective-func;:tion integrals are 

infinite; (ii) it extends the scope ef comparability by 

admitting policies whose integrals aie not well=-defined, and,
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fimeldy, (iii) when alternative policies have integrals, wirich 

are well=-defined and finitei the standard ordering criterion 

reduces to the ordinary size comparison of definite integrals, 

  

   

The one disquieting property it has is thath\generally& 

standard ordering is incomplete, and this raises the questionz 

Is it worthwhile to extend standard order,-se-as to magéfimere 

pairs of pseudomeasures comparable?' The affirmative;ir based 

on the feeling that one should be able to compare afiy two 

options; the negativeA onithe feeling that any filling in of 

theyxgaps” left by standard order involves arbitrary decigions 

which lack the intuitive appeal of sgandard order. 

Let us examine these issues. First of-all, the order to 

be concerned with is not standard order/ggg se, butfirhat which 

it induces on the set of feasible altergétiggé. That is, 

although standard order is not ccmpleté, it is cé%ggivable that,~— 

in any “non#artificial" problem, forfény pair of feasible 

alternatives Py and Py the corresponding pseudomeasures wl 

and by are comparhble. Afieue%Ay, thls is probably the case for ,noU) 

the. great majority-of problems using pseudomeasure evaluations. 

However, therekgggb“natural“ problemg}« even in classical 

location theorfbu for which non-comparability arises. = (The 

Léschian problem on the unbfiunded plane is an example). 

Secondly, completenesé is not crucial. From the point of 

view of the theory of chaice, the ideal situation obtains when, 

for any of the range ofjproblems under consideration, there is
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¢ 

a un&que best choice. For this to occur, it is in general 

neither necessary nor sufficient that the order be complete. 

Consider a pseudomeasure Y ;§£é% is not comparable to 0 

under standard order, so that ¢+(§) = w'gg) = o, Let (§(§) be 

a Hahn decomposition for ¢. 8$é~can think of ¢y intuitively as 

an infinite positive mass placed on P, coupled with an infinite 

negative mass placed on fi One possible way of achieving , 

comparability with 0 would be to "cancel" patches of negative;fi 

mass in N against patches of positive mass in P, and to come rp 

with some kind of "net" mass, which may be positive, negative, 

or zero. The problem is to determine the method of "matching® 

up' the patches to be saneeled. This involves some more-or-less 

arbitrary rule; butfi}if the space A has some structure in 

addition to its sigma-field I 4-@n particular, if it has a 

metric) —there are some fairly "natural" ways im-whieh this can 

be done. / 

Consider, figr erdmple, a space A with meagfirabla partition 

(A 2,...}, and measures u, v with values qfi these sets as 

follows. | f' / 
02 e 2R 34 

Bt el Lol ol B - fo Bgpen i 
¢ ‘ 5 (g,uwfi 

u 2 g 0 2 ;' 0 eeas &) 

E o 
oo ) 1 o otk 

¢ { 
¢ S 

Lg and v are both infinite and mutua;iy singular; Wewee they are 

not comparable under standard'ordarg Yet u seems to be bigger.,___;:..:>~
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Actually, if the partition is arbitrary this feeling is an 

illusions By clumping Ay A4, B, together, etc., one can make 
V seem bigger. But if the partition is somehow naturally 

ordered as it stands, -then one may try caneeliing 1 against 2 

with a net bigness rating to u. Afl example might be where A.is 

the nontnegative real numbers, and the A,  are a sequence of 

intervals in natural ordex. 

We sha¥l now consider some orderings whieh—are baséé on 

the principle just outlined. Unlike narrow and standard order, 

which are uniquely determined by (A,I), there will in general 

be many of these "extended ordaringq“,jand it is afmatter of 

ad hoc judgment as to which, if any, afi:thuse is«te be considered 

| correet“ The extended order is determined by an extanaion 

¥ 

class, which we now define. i 

  

;pg% -] Definition: Let (A,Z) be a measurable space.; A collection of 

measurable sets F is an extension class iffl 

  

Lé(i) for all Fis Fy € F, there is a set Fg € ?;éuéh that F, u 

E‘zg F3,—aflér : 

  

(ii) thara is a ¢ountab1e subcollection F‘xrhich covers A 

g (mz-,mss, A#(}F'). " 

  

We give some examples. 5 

{,—ig"T;“t’Ti¥i§‘ The class consisting of the gfiiverse set;fi_alane is an 

Q;é’éf\" extension class. ‘ 
| ..(i%) More generally, any collection of measurable sets 

including A is an extension class.
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(Z;DT fgii) More interesting examples arise when A is a metric 

space (and all open and closed discs are measurable). The 

collection of all closed discs {ald(a,a ) £ r} is an extension 
clasa@ &&kewise the collection of all open discs. 

(&v) Let A be the non#negatzva real line. The class of all 

sets of the form {ale Lag am}, for a® ¢ A, is an axt&nsian;;’ 

One or two more preliminary concepts are needed. 

"Ei;rfgéfinition= Let § be a pseudomeasure on (A,2). The rafitrifit&d 
,:ES% domain of ¥ is the class of all measurable sets B sush that 
R ¢ (E} and ¢~ (E) are not both infinite. 3 ; 

iz 
£3 

e‘.’ 

L 
o 

/ .{' 

| We denote this class by E¢ Clearly zw coincides with I 

iff at least one of the two measures w & - ia finite -w§$fi&9 

ds—to-say, iff ¢ is a signed measure. 3 

  

N&w xDefinition. The value function of pseudoma§§ure Y has domain 

gz% Ew, and to all Eeg EW assigns the valuegfi%gg) - ¢“£§)* 

M o ; 

|77 Without risk of confusion, we “shall denote the value of 

rha value function of § at the set E,é Zw by the symbol y(E). 

The latter is therefore an extendad real nunber for any such E, 

-Note—that when pseudomeasure ¥ is 1n fact a signed measure, its 

value function is precisely that_signed measure in the ordinary 

sense of the term: a countably édditive function on the s&é;aJ 

field £, 1In all other cases, hawever, the domain EW of the 

value function is no longer a négmamfield.
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We now come to the vector partial order on ¥ determined by 

an extension class F. As with standard order, we first prove 

a preliminary result to guarantee the eonsiétency of the forghfi 

‘“T-wfi~&h:?ming definition, 

SLV‘PV\' Lemma: Let F‘be an extension class on measurable space (A,z). 
The Lollowing set of pseudomeasures is a convex cone: 

(i;) -the set of all pseudomeasures P satisfying 

§ 
{ 
1 

i 

. A : . ’ i 3.4 

g(l) F g~z¢fi>\h ¢ 

*f(ir) for all € > 0 there is an F~set F such that, for all 
o 
F-sets F containing F, 

% 
fi:-. 

"-3.1{1_, 2} 

V(F) > -ar‘\ / (2 
=N 

g 

{ -t+s—a—convex Tomes 
- X 

f,ff’T;V’fléroof' The zero pseudomeasure satisfies (2) and (3). Let ¢ 

E satisfy them, and b be a positive real aumbar, The restricted 

szy, domains of ¢ and b¢ are tha same, ané@;for all E ¢ 2$, 

» 

containing this set we have w(F) > nr/b, so that (bw)(F) > =g, 

Hence by aatmsfies (2) and (3). ‘ 

{bw)(E) = bW(E). Given € > 0, chooseng_é?j; then for F-gset F E 

It remains to show that, if *1 and ¥, satisfy (2) and (3), 

so does *1 A+ wz. First ofnnll wi and w2 are finite on all 

F-sets. To see this, 1e£1? € F be such that wl(F) > «1 for all 

F ¢ F containing Fy.   Choosingg&n arbitrary F ¢ F, there is an 

‘;/5 F-set, ?' 2 (? U Fl)nrhence w(??) > =1, implying wz—(F) finiteg
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K‘ ‘ fi%fi&i@g&g for wz. Sinciiwl 4+ wz » (wl + wz) ¢+ it follows 

that the latter is also finite on all F«sets. Hence wl + ¢2 

satisfies (2). 

As for (3), we start with the equality 

212 [23] &2 
it | , '. (a#fifl/ $ 09,7 g e” + 

+ ¥y + ¥,) +w1 -wz,% 
/Ww*\w_ 

4/ / which follows from the equivalence criterion. For F ¢ F, all   the lower variations in (4) are finite, hence we may transpose 

them and combine them with the upper variaticnarta obtain 

; .' ’jl@‘!fifi §) 

Wy U (E) = Y (R) 4y, (F)., ) 

| 5 Naw, far given € > 0, choose RITR F, € ? so that wl(F) > -g/2 
[ 

if | F 2 Fi' and wz(F) >~g/2 1£ P o FZ. Thére is an F»set 

F o2 (?1 U FZ), and for any Fwsatig aontaining F_ we have, 

from (5), 

(b + ¥ ) (F) > =e/2 = e/2 = ¢, 
J 0 

sincev§ 2 F) and F 2 F,. Hence y, + wz satisfies (3), JJ#”!E?J@‘ 

?g fiefiniticn* Let F be an extension class on meaaurable space 

  

] (A,Z). The extended order,determinad by F, >4 on the space 9 2 S - @ \ . i - ,4 
J’j); of pseudomeasures, is the vector partial order whose positive : 

cone is 

> {¥|y satisfies (2) ana (3)1}.
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The intuitive notions underlying this construction are as 

follows. The extension class ? determines a generalized sort 

of convergence toward the universe set A via successively 

larger sets F ¢ ? Condition (3) then states, roughly, that 

w catches up to Y~ as Fusats get larger. 

Our next result is the crucial property of extended order. 

  

e 

QE‘ “Theorem: For any extension class F on mefisurable space (A E). >g 

n;,ffi is an extension of standard arder, >. e o 

R 
flwagr”“?raof First we note that for any extension class F, there is a 

[ seguence (F ), n = 1, 2, ..., (finite or infinite) of F-gets 

such that Fl S F2 ©S«e+, and vhose union is A, To see this, let 
=\ 

{gl’-~§’ ¢..} be a counrfible collection of Fésets;whcse union 

is A. Then, successively, these are %wsets ?1 2 Fi, Fz 2 (F U Eé), 

Fy 2 (F2 U ?’), etc., and these ufibrimad E‘s aatisfy the stated 

ccndirians. 

R
 

" Now let ¢ » 0 (standard order) , SO that z& (2) > v (A)‘ P 

is a signaqéreasure, so its restricted &cmain ig all of I, 

e
 

s
 

S 

Thus § satisfies (2.), If w (A) = w, the sequanaa pt (F,) 

surpasses any finite numbar as n -+ w;j Hencer for N suffieiently 

large, w ( ) > v (A) + 1, since ¥ (A) is(finita. If w (i) is 

- finite, then 

/ 

t
,
.
\
 

¥ 
¢ 

} / 
| 

J 

W\ Y@ eERTm T 
The sequence w (F ) approaches w (A) as n +> @, Hence& for N 

sufficiently large, $ (F. ) aurpasses the middle term in (6).
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Now let F be an F-set eontainingayn. We get 

'
\
"
'
N
—
-
-
,
_
_
\
 

{ -l - i Cb‘l 4 1 } 

WE) = 9T - 9T E 2 TR - VTR 2 by 1 

‘ where g!is a fixed positive number not aepending onlg.- This 

% . implies that ? >% 0. Also (-¢) )# 0 is?géigg, since any éQsat 

has a larger F»set,‘fi, satisfying (7), so that (~¢)(§) £ =b. 

Thus o ’? 0. | “ 

For any pair of pseudomeasures, wl - wz implies (wl - wz) > 

0, solthat (¥ = ¥,) >; 0 which implies ¥y »¢ ¥,. This 

; eatabizrhas the desired implication for strict inequalitg; 

/,:Next, let p ~ 0, so that w (a) = v (2) < =, Againf£2) is 

  

satisfied. Taking an F~sequance Fy & Fy go0. whose union is A, 

both w+(Fn) and ¥ (fin) increase to their common lzmitfw (A). ] 
I = 7 . ; 

v | Hence for any € > 0 there is an F_ such that, for any F-set F i fod ‘: n { - 

{ containing Fn} both W*{F) Ffid v (F) lie in the intarval:> 

i e - es2, vhal. 

' Hence lw(F)l = [w (F) = v (F)I < ¢, which implias ¥ v 0, 

w» Finafiy, wl ~ @2 implies ($l - wz) %~ 0, hence (wl - wz) Vi 0, 

sogthat ¥y Vg ¥y This ae&p&e%esw%%a~§mrufiL Wr 

  

m’ " . 

S 

e ;Sfi‘Thls is a very comforting thaorem, but it does not 

\ guarantee that any particular extendpd order >F is a proper 

extension of >}3-thaz~$s, that some pairs gf pseudomeasures not 

comparable under » become comparable under:>r. And in fact 

there is one case whege > is definitely not a proper extension;
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~this—is when the universe set A belongs to ?. For in this 

case, by (2) the only possible pseudomeasures comparable to 0 

are signed measures, which are already all comparable under 

standard order; hence >F and » coincide. We can only hope far 

a proper extension when A does not belong to F. ' 

We shall n@figshow that the "overtaking" criterion qéraloped 

in recent yearéfigyis just a special extended order. Lét Py and 
2y 2 

pz be altarnative‘beveloyment policies leading to gayoff 
?';\ s 

streams" ? f(pi,t)&t (1 =1, éfi‘respectivaly! Then policy Py 
is said to catch up to policy P, iff 

4"» .40 = 1%9\ 1 0 ¢ i ) t2 \3» g ) 
mf ]M {f(Plrt) = f(Pz st) ldt > 0,3 —£8) 

to9m - —* - -—& - /\‘ = 
A 
o A 

?g 4 TFhat is, for all € > 0 there is a t2(e) sugg that, for all 

t > (s), the. integral in (8) exaeeds na;aek But this is 

praciaely the extended ordering >F that arises from the extension 

class F consisting of all closed ingervals [G,a}, ae¢ A (where 

universe set A here is the non+nagative real half-line). 

—~Aetually thés account is avgrsimplified in one respect. 

There are in-faet a number of minor variants of this criterion, 

some found in the 1iterature, bthers of which can be devis&fl. 

However, most of these otfiers turn out not to be extensions of 

standard order. liow standard ordering is intuitively much more 

 compelling than any avertaking variant. Hence if some pairs of 

paeudcmeasures are given bne order by >, and a dififerent order 
\
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by some other criterion, this constitutes grounds for dropping 

the other criterion as counter-intuitive. We shail therefore-a& 

not bother with any variants of the overtaking criterion otfiar 

than "ecatching=up-to"., / 

7 

This criterion is a proper extension of standard 9raer°‘ e 0y 

Eur*afiamala the pair of measures u, v in (1) are not aomparabla 

under\;. But —~ taking the ordered partition (Al, Ay ees) to 

represent successive intervals on the half-line [0;@) — they 

are comparable under “catching~upgj and in fact u *F J?‘ 

Tfi;\‘aatching*up"‘briterian appears to be gomawhat 

specialized, and it is not immediately clear hfiw to generalize 

it to spaces other than the real half-line. We now show, 

however, that it can be rq}intarpretefi in a<Way whinh 

generalizes to any metric space. 

M : 
,; ) w % 

{zp:rAThearem: Let A be the nofi+negative real h§1f~line, F the 

extension class of all closed infiervala [0 a]. 0 < a < and 

G the extension class of all closed ingervala [al, az}, 

02 a 2 a, < ». Then the extended orfierings determined by 

these, >r and »g ¢ are identical. 

i 
¥ £ oS 
i e 
i 

Proof: Special case of next thaoremgf 11     

   

; 

~ Theorem: ILet F and G be two axtansion classes on measurable | eSS 

  

CZD : space (A,I), satmsfying: (s) F q Ga (ii) for all Ge ¢ there 

,QW ; is an F ¢ F with F 2 G¢\anfl (1113 any G-set containing an F~set 

’ is itself an Fmset. Then > agfl > are identical.
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/ We use an obvious notation for F-sets and G-setglj 
  

Proof: L Let ¢ » 0, so that F - ; and F 2 F implies $(F) > -g, —t N F P 
We_have 

all ¢ > 0. F?r any G, there is an F 2 G: since F ¢ Ew, G ¢ E¢; 
v ANa®y "2 

: thus G # EW AF is itself a G-set, and if G 2 F., then G ¢ F, 

/ ]/ | so that y(G) > -e{ This proves that ¥ »g 0. 

Conversely, let ¢ *G 0.f Since G % Ew, Fal,, Ga 8 
\Ii 

implies ¥(G) > -e. For F, Ve choose any F=get containing‘ge. 

Then if f 2 Fs' F Q.Gg‘ hefice w(g) > -gj-since‘§ is also a 

G-set. This proves that ¥ %F 0. L & 

class of closed bounded;lntervals on the real half-line. This 

Thus “"catching-up” §s also the order determined by the 

suggests that for any métric space (in which all closed discs 

are measurable) a natural generalization of thévhcatchingoupffiw 

criterion would be to use the extended order afitermined by the 

class of all closed discs. We shall actually use this 

(O procedure for the Loschxan 1:»1:'<>b§.em,J in which the universe set 

< A is the plane. (Enu could also use open discs and open 

,i;‘ intervals throughout instead of closed)jfiag‘ 
i\',‘ 

~&e&~u& now return to the study of extended crders in 

  

general, 

et 1 o 
iF@fi Theorem: Let (A,I) be a measurable space, and ¥3r ¥, two pseudo 

o) neasures which—are not comparable under standard order. Then 

jgfifii there exists an extension class F{;uch that §; >r ¥,
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e _‘,@M'}' 

Lg%wlggggga Let ¢ = wl - wz. We must show that ¢ 5¢\0 for some 

A extension class F. Let (g,w) be a Hahn decomposition for . 

Since ¥ is not comparable to 0 under standard order, W+ and ¢ 

are both infinite; in particular, w (P) = oo, 

{25 ¢fi§ £ Let {5y, Wy,...} be a countable measurable partition of N 

such that ¢ (Ni) is finite, all i, For F we take the class 

{P U Ny, Py Nl U Nz, ..*}. It-&s~a&earwthat this is an ’ 

extension class. Also, for each set F ¢ F w (F) = », and 

¥~ (F) < =, which implies V> 0. Mfi, 

R, e 

> 

By symmetry theré is another extension class é giving the 

opposite xnequality: wz >G ¢1. This underscores the great 

diversity among the possibla extended orders, and the need for 

some "rational® salaetion among them (in the occasienal cases 

in which standard Qrdar does not suffice). 

Any pseudcms&sure not already comparable to 0 can be made 

comparable under:%he appropriate extension class F; In general, 

figdepends on the;pseudomeasure. éfin one make the stronger claim 

that there is afi:%:éfifiéh_simultaneously makes all pseudomeasures 

comparable to q’(hance to each other)? Our last theorem shows 

that the answer is no, except in a trivial case. 
f N\ 

{liljflTheoram: Let (A,x) be a measurable space. No extended order on 

i:i; the set of pseuaomeasures is completefi\unless Z is a finite 

s&gna—field.
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AANAS! 

?;Proaf: If I is finite, then standard order is already complete, 

  

2 and all extended orders coincide with > 

Conversely, suppose there is afi extension class é such 

_that >F is complete. Then F S X@ ‘for all pgeudomeasures ¥, 

by (2). Suppose there were a set Feg F whfiuh-cantainefi an 

infinite number of measurable sets. The proof that standard 

order is incomplete if I is iqfinite shows how to construct a 

B
 

AR
 

s 
— 

pseudomeasure y such that $+€?) - w"tgj = @, Then F would not 

belong to the restricted damiin of y. This contradiction shows 

that each F-set aantains-afifimast a finite number of measurable 

sets. | 

Lethl < F Gses be én increasing sequence of Fusets whose 

unio istfi, We may assume that F £ D, a+l\F # ¢ for all 

n=1,2, sou s W% sha&%-aasume this sequence is inf:i.ni’t:e,E and 

reach a contradiction. Let ¥ be a pseudomeasure such that E 

Y(F F,) =1, y(F +l\F ) = 2 if n is even, and w(Fn+l\F ) = -2 if 

n is odd, (&in%e the number of measurable sets in aach of these 

sets is finite, it is trivial to construct such a wsg Then 

w(F ) = 1 if n is cad, and w(F ) = ~1 if n is even. 

Now let F be any F~set. The measurable sets contained in 

F are generated by a frnxta partition 6 of F. Each G € 6 is 

contained in some F, af the sequence F s Fy Geee; henca F is 
!Qx 

cagpained in the union of these, which is another Fo wf? ) 

s 

and y(F +l) take on the values +1, -1 in some order. Hence for any 

FeF, there are F-satsrfi', F", each containing F, with ¢(F') = 1,
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e V(F") = ~1. This shows that ¥ is natvéomparable to 0 under 

- ;E?K e contradicting the assumption of completeness off;r. 
Thus the sequence F; ¢ F, c... is finite, so I is finite.|]] 

Note that for the case in which soma{;#'is complete, 

standard oxder is itself axrgfiay complete. Thus the situation 

is this! Jf standard ordar;is not complete, then; while some 

of the gaps can be filled ?& using one or another extended 

order, it is impossible tq;fill all of the gaps. We close on 

this slightly passimistigfnote. 

S Conclusion 

Standard order on ‘the vector space of pseudomeasures over 

measurable space QA,Z)fhas great intuitive appeal as a 

representation of preferences. It appears to carry one 
=t /] 

\LY ‘fl«%’         éatisfaetorily thrbugg the great bulk of problems - arise. 

(Standard order suffices for 99% of this book; only in the vexy 

last subsection of fi?m wapy last section of the last chapter 

do we go beyond ifl®§ 

When the incofiélateness of standard order causes trouble, 

one can use an extah&ed urdering to £ill in some of the gaps. 

The problem here ié to choose the appropriate extension. The 

most appealingrahqiea-%hafiwhasmbaen suggested is théhhaatehinga 

quYSrEnovartakinéfiwbriterisn. This has been applied to some 

special cases, and the generalization suggested here is to the
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extended order determined by thélclosed discs (or the open 

discs) of a metric space. The intuitive idea here is that 

“nearby" positive and negativa masses may be cancelled. 

In all interesting cases even extended urdering remains 

incomplete.
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FOOTNOTES - CHAPTER 3 

  

: v . — 

i *fi. Carath#odory defines a 5imilar operation in ¥is 

Algebraic Theory of Measure and Integration, F. E. J. Linton, 
transkuterq P. Finsler, A. Rosenthal, R. Steuerwald, edtters 

(Chalaaa, New York, 1969) pagas 299»394, in the context of 

"regular outer measures" on a aigmamring of somasfo But he 

then takes the difference of the two variations (on the somas 

where this is well«defined) and thereby misses the following 

theory, which depends on #étaining k*, A" as separate entities. 

  
2 }‘flfl For discussion of infima and suprema of maasuras, see 

N, Dunford and J. T, Sthartz, Linear Operators, val. 1, p&q&s 

162%163. 

  
3 3. For the concepts involvefi see N. Jacobson, Lectures in 

Abstract Algebra, val.;¢ (Van Nostrand, Princeton, 1951), 

“pages 162«167‘ 

  

4 ixk good general referanfie is R. Duncan Luce and H, Raiffa, 

Games and Decisions (Wiley, New York, 1957). 
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e - : L | i 288, “fiihe material in thisagection and the ‘next is well known, 

but terminology is not completely standardized, and we have 
Ctr ot 

selected those asgects which are relavant for our partieular 

purposes, 

  

The customary mathematical term far this concept is 

maximal“” 

  

7 ‘?A point is said to be Paretafefficient for the family of 

partial orders (>i), i € I, over gaiff it is unsurpassed in 

their Pareto ordering. 

  

€ S@e, fer~examp&qf Je Lo Kelley, X. Namioka, et a%f 

Linear Topological Spaces (Van Ncstrand, Prinaeton, 1963), p. 16. 

  

of ¥ i This relation may be wri&ten B > v, This notation is 

consistent with the correspond@ng ‘pseudomeasure relation 

(u,0) > (v,0). Note that u > v does ggs‘mean that u(E) > v(E) 

fér all E¢ I. In fact, the latter conditicn ggggg_halas, since 
ot { e all measures are zero fes E = ¢ 

  

10 ¥Wypis ambiguous usage should cause no confusion. We shall 
also consider below some "nqfi+faithful“ representations, in 

which either the "if" or thé "only if" of (11) is relaxed. 
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11 ‘; ke i F. P. Ramsey, "A Mathematical fiheory of gaving,” 

Economie Journal, 38:543~559.{beccnbanfi>1928) Reprinted in 

Readlngs in Welfare Ecouomias, R. J. Arrow and T. Scitovsky, 

edshers,élrwin, Homewood , Ill., 1969), ;ages 6191633. 
) }_ g 

  

,\izxn this probabilistic context, f is usually called a 

random variable, with exfiéctation Ce 

  

13in J. von Neumanfi;and O. Morgenstern, Theory of Games and 
  

Economic Behavmor*(?rinGeton Universi#y Press, Princeton, N. J.,*“*lb 

\ggd edi;ts&r—%§4;im«paghs 617~628. The axiomatic discussion was 

flawed, one of the basic axioms being concealed implicitly in an 

operation, as was noted by E. Malinvau@/h (reprfineaé on page 271 
e 1 

of the Raadings mentianed im -footnote). The idea of 

  

maximizing expected ut;;xty originates with Daniel Bernoulli, 

1738, | 

  

' Itln so-called ”mixture spaces"™ the utility function need 

not be bounded, but here it is not expressed in the form of an 

integral. See I. N. Herstein and J. Milnor; é’An fixiomatic 

Approaah to #easurable,fitility* Econometrica, 2r 291~297, 

fi#E§§$:~i§53¢ reprinted in/Readings in Mathematiaal Economics, 

,vo;; I, P. Newman, ed&tar (Johns Hopkins Press, Baltimore, 1968), 

‘fiéflafi 264~270. In our lemma below we use a theorem of Fishburn 

which is very similar to the HersteineMilnor result. 

 



i )& Rr”"ua,h% ) T fim‘vm Dheviapme el oofe G}}"m‘j"w” Wj& B B dose b alk s e %?Aawlfi% (L2y coneotnsted ona equmtihls ait) ovew o qéniral mugagunalls bprse 4&4«2 e fi;’iuvafifwf f,u?l.-é* /WM/K{W A o Sy ot be waw«f&&fi 

N 

i 

/5 &’33_ 9 Aum&nn, "Ut:ility Thaazy #ihhm:t the ;Zamgmmnass 

;sxmm," Econometrica, 30 445«-262@{1962} 
\ 

  !1 
te. Hp, e, Fishburn, Ut:ilit:g 'x‘hacry for Decision Making 

(Wiley, New York, 1970), p. 16?;, 

  ‘g . 
& 

2 ¥onis result is well known. See, for example, Fishburn, 
Utility Theory for-be ng, p. 107. 

  

  

TZ mK- J. Arrow, Essays in the Theory of Riakuaearing 

(Markham, Chicago, 1971), -p&goe 48-49, 6365, 

  

See C. C, von wairsacker, @Existanca of ¢ptimal f‘mgrms 

of Jceumulation for an fntix:ita ;l‘ima fiarimn, . Ravfimes 

Economie Studies, 32:85~1M, }\prflfi 196&: Ravw Economic 
AR R S TR e s 

studi-uf.. WL. 34, J&nm&':& 1967 (entire issue is on Optimal 

Infs.nite ngrams) . Fcr comparison with the earlier and 
J!jx /i?"v,{t’k f_} 

diatizwt. approach a:fi Ram&ey see above, page )( 16) £ G \% N 

. 

34 i&n' Gale, W‘”Qi'x éptimal Pevelopment in a Mult:i»fi’ec:t:or 

%conmxy) Revuw Ee:onm Studm,_ 34-1-718, Janw 1967} 
) 

  

PR 2“‘3:» 

%fi% cOncernlng closed versus open discs, we can prove the 
follow1ng result: The pseudomeasure orderings determined by the 
following three extension classes - the class of open discs; the 
class of closed discs; and the class of all discs, open and 
closed - are identical, provided at least one of the following 
conditions is satisfied: either \l) every closed disc is compact, 
or (ii) any two points belong to a set isometric to the real Iine. 
(Both these conditions are satisfied by the EBuclidean and city~ 
block metrics, for xample. For "compactness" see 7.4; for 
"isometry" see)h 2.7)!


