gj o Consider the following dataf'
//Y\ M £ Gl A - : N .
: 0y - aft~at Boston, Gloucester and New Bedford,  ~
#(5 Shonton, Glougsster, LR
Q % “<—"mm ® % i ;«»" 0
: —(miXlions—of pounds) f: ’1[, 4ff
/fﬁf; gv}a e s ,' - u}zz;“:zwﬂ,v i) T L e s
_ 1y~ Boston C [Gloucestex *)New Bedford
1 J
1= Ly 1948 1949 1950 1948 1949 1950 1948 1949 1950
-0 R e ~?W¢%>%€"ﬂ 97 7 4] T i 7.8
i CQd X34Q7 28:6 \24 4 ‘y7¢ 7.0;': "-_fsoc »"‘6:3 ‘“4 1 1“"‘5‘1
F;ﬁ'%%ééﬁadﬁoek 108.3 90,1 107.4 11,2 8.8 10,0 11,4 9.5 11.8
> wmckar&l M;3.5 }@.7 ;{;\'101 19.9 609 5.7 : l;? 320'3 T 0‘3
|Y" # . Flounder 9.2 8.1 10,0 2.7 7,6 <7.4  41.0 33.9 29.4
ﬁ;wi@k"“n Source: U,S8. Bureau of the Cenéus, Statistical Abstract of/}r
ffsjc the United States: 1956 (Washingtani 1956) , p. 720.
J )\X:w__w e
? /M*' A listing of the%“ingredients" of th&s table might run as

”ZY/ THE PHOBLEM OF DESCRIPTION
rd 7

oF

follows =

ta "univarse of discourse"” ccnaisting of certain regions

(ports), at certain time gatiods (1§4842950), at which certain

resources (types of f£ish) appear, aadg@x)
—a measure of the qnantities involvad for each possible

combination of place, time, and resaurca.

Ft-turns out-that 4hie data can; in fact, be represented by

a measure in the technical mathematié%l sense of the term, .
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Purthermore, this is true not only for the present examplecl?ut
for kha¥§reai~hulk of statistical data in general &-population,
births, migration, marriages, production, ttanspcrtation, income,
wealth, an§§ﬁ§f§§L;> ;

S Bven this rather sweeping statement undarstates the
possibilities of describing the world in. ‘terms of measures., For
-1t-turns-out—that theau kinds of data ﬁﬁteh cannot be represented
directly as meaaures uch things as prices, population
densitiea, per*capita 1ncom38)-ﬁare aexived from underlying

e
measures in ways wh%eh themselves are wellnknown pqrts of the
theory. ’

This chapter will be—devoted=te earryﬁng out thls dascriptiva
program. It will expound the coneepts. terminology and basic
theorems of measure theory as used ig;this boogjﬁ/ ﬁnd it will
build a unified apparatus for dascribing the world in terms of
these concepts. The unity arises frqm the fact that the

.

\\‘univarses of ir.!:!.vsezoumm\é over which the various measures are

defined are always built up from the @hzae basic sets of Space,
Time, and Resources, just as in the t%sh example above (but not
always in so simple a fashion). i

— Of course, the fact that this apéaratua can be constructed
does not mean it is useful to do so. %?he rest of this book may

be considered an argument for the propésitian that it is useful.
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2.1.R Measure Theory, I

This section is a purely formal axpoaitiong féo real-world
interpretations are offered. We shall in general follow| the

practice of omitting proofs of theorems when these are available
i Ve

A

in standard treatises. e
— The conda;itf.("éfr;ﬁéésnﬁre“ rests on three cthex:%tss

1) “sigmaufigifg“ iﬁ {(ii) "the extended real numbers? i and

tii) "count:aﬁla additivity". @ discuss these in ﬁ(urn.

Sigma-Fields

VWe-beginby recalling some notions from el@%nant:ary set

thaory. writ;\x\e A to indicate that x helougé to, or is a

mambax, or element, or peint, of the sat Ac; I& &« B (or B2 A)
in&iaates that A is a subset of B (that——-is, avary element cf

e

is an element of B)., A = B signifies that A:»c; D and Bg Ajr(g"

T s e

that sets are considered equal iff they hava the same members[’ﬁ
Gm use "1f££f" to abbreviate "if and only :Lf" thmughout this work). .

3 T ,,{x s Wus ...} is the set whose elmnﬁs are Xy, X., s Nix}
91 3t By Hyr ¥ge ca 0B

is the set Whlﬁh—«h&! the single member x. ¢,( the Norwegian
, 3
letter E”“‘g:;:'}a:;i:.am':is for the empty set, the agt wh«i-ehmhas no nembers.
Let P be a certain property, and let i:fhe symbol

)

{x|x has the property P},

stand for the set of all objects having the %pmparty P, Given

two sets, A and B, their intersection, wr:l.ttin AN B, is defined
b s ol

&
4
%
Y
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] ,(‘ Uiy
as the set of elements they have in eommonj.ﬁ- that-is,
=)
7 - :
AnNB={x|xe A and x ¢ B},

“The union of A and B, written AU B, is the set of elements

which-are in at least one of the two sets - thae——é:s«,
Ay B= {x|xe¢ Aorxe g; (or both)}.

‘The complement of B with respect to A, written A\B (2 slash B)

is the set of elements whieh-are in A but not in B:

A\B = {x|x ¢ A and x ¢ B}

£ pind
(A line drawn through any relation signifies that the corr:eapond-—
ing proposition is not true: thus A(g;fB, A ;é B, as well as x e' B)e
Sw'*l' Now consider a set, G, whose elements are themselves sets.
c'; & For euphc-ny, ¢ will be called a class, or a collection, of sets,

P ; rather than a set of sets. (We e-ha&-l follow the convention of

using small letters for points, capiital letters for sets of

points, and script letters tor elasses of sets).,

wite NG, the intersection of G, ig defineci as the set of points

common to all the members of C-
NG = {x|x ¢ G fo:j: all G ¢ G}

It-is—clear-that if G has as membexs just the two sets A and B,
A n B / this reduces to A n B. Similarly, ane defines the union of G v

written uG, as {x|x ¢ G for at leagt one G € 8},
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Gne-has—the basic distinction between sets with a finite and
with an infinite number of memberggtfinita and infinite sets, for
short.)| Another distinction of éreat importance is that between

countable and uacountable sets.? A set is countably infinite iff

its members can be ticked aff 1n an infinite sequence: X;, X,,

{(In- a%hur“wazés, ﬁhe set can be placed in 1 ﬁ ) 5

E e
correapon;ence with the pcsttive integers). Examples of aaunﬁ:‘
ably infinite sets are} the set of positive integera, the set of
all integexs, the set of national numbars, the set of lattice
points in the plane (%ha@»&s, the set of all points (m,n) where
"ﬁ,;:; are both integers). On the other hand, the set of ;&&
numbers is not cauntah1§ infinite.

—~ A set is countable iff it is either finitel or countably
infinite. The follewiag result is used repeatedly -in—this-book,

////,7ﬁ generally without axp@icit mention.

(2$ !Thecram: Let G be a aountabla collection of sets, each of which
(ji) is itself cunntahlu. then UG is countable.

e

T We are now read& to define "sigma~-field" (sometimes called

% At t 2
"sigma-algebra”). Suppose ome—is given A, a set, and 2, a

/)“ggggf collection of subseﬁs of A.

Cn4[§§g?nition= z is a aigma~£ield{(with universe set A) iff i’;
? %’* (1)9g ¢ z and A¢ I; and
<§5> ~‘\m' &mu£?;:) ifEe I and Fe¢ I, then E\F ¢ I; and
;fu 1%%“ (iid)} if G is a gountable collection of members of I, then

u5 and NG are both meﬁ%qga of I,
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w2
| -<(6ne expresses (ii) by saying that I is closed under
differences, and (iii) by saying that I is closed under countable

., unions and intersectlons.)).
—/2

¥

CJQ/ {?etinition: If 2 is a aééga-fielé ylth universe set A, the pair
’EZi;D (A,Z) is called a measurable ggg@e; the members of I are
called measurable sets. '
A :
ﬂg} " The definition of aigma-fiela given above is redundant; in

f?iipx”the sense that some of the‘conditions follow from the othexrs,
.
To verify that a given c@llecticn of sets is a aigma~field, it

is then useful to have a stripped~down criterion, First, if

the universe set A is glven, then A\B is simply called the

complement of B, 5 \\ﬂ““

F e i o~
(gél ﬁ%eorem: Let I be a?collectiun of subsets of AB Zis a s&é&a

_ y field (with univetse set A) iff ge I, and I is clcsed undexﬂ//<¢%ZWJW/
/éjii) complementation and countable unions (tha%—&s, E e Zimplies

that A\E ¢ I, aqd uG ¢ I for any countable collection 6 of sets

belonging to z)§

:222;25;’f}~* Thus we nee@gto verify only half of conditions (i) and (iii),

and a weakened farm of (ii).

X

. g - We now giva some examples of ségaa—fields.

e

41% The collaction of the two sets A, ¢ by themselves constitute

§'¢$? a rather trivial*ﬁ*ﬁmﬂ field.
(T 20
B {ié% The eollaction of all subsets of A (including A and #) is a

~~~~ Z e
eigma -field. \ 3
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- 3¢ thod
(g{i} Por this example we first give some definitions whisch are
(];) quite important in their own right. Let G be a collection of

| subsets oflg.

. s g v
A; F}efinxtmzq? G is a covering (of ) iff A g y6; 6 ia 2 packing

iys, A iff no two members of G have a point in common (tha%—%s, if Gy
F Ve / and G, belong to G, then & ﬂ“§2 =9); 6is a partition iff
@ff it is both a packing and a covering.
;;///,fwﬂ.r~—~—whese definitions may also be expressed as follows: é is
at | £ ’
f ff |a covering iff every pcint of A belongs to at least one member of
"I 8y @ 4n a paeking iﬁf every point of A belongs to at most one
F;ﬂg;‘ ' member of P; ¢ is a; nartition iff every point of A belcngs to
/ﬂ < exactly one member cf 6.

Now let 6 be a qiven partition of RN and let I consist of
all sets of the ﬁorm uF where F rangaes over all possible subs,
v(i) classes of G €Since U = &, the ampty set belongs to 39 Bne
may verify thaﬁ L is then a a*gma -field, |
An impaxﬁant special case ¢risas when G is a £inita

. partition. If G ha;*non+empty member sets, shen the s%gma field

I has 2% mam?er sats., It may be shown that all finite s£§5a~
=~/ fialds are éf this form
;diﬁsé In tha three examples above,-eat could giva a simple
T property charactarizing the measurable sets ebhae-és the membars

| of 1), Usually, however, this is not possible. Instead, one

; tyﬁically uharactariza’-u&gmautields as being generated from a
| class of;sats given in advance. We ﬁow turn to this important

concept.
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Let S be a non+empty collection of s&gmavfielﬁs, all
relative to the aam@ ‘universe set A, One may verify that n§ is
then itself a ﬂ&gua~£iald relative to A. (Notice that § is a
*third~-ordexr" caﬁstruetz )ii is a set whose members are sats,
the members af'%hese in turn being aets; nS is then a "second~
oxdex" constrﬁbt, a class of sets -which in-fact turns out to
» bea siqﬂﬂ“ﬁzaldly |

»ﬁaﬁinitiom Let G be a ccllection: of subsets of A; the M

| field generated by G is ns., whsre § is the collection of all
C:::::) a*gua—fields (relative to RA) eontaining G as a subclass:

{"L

H )

S = {zlz 1& a sﬁgma~fiald and G z L},

/#,//**ﬁnfgg‘As an example, let G be’; countable partition; then the

ganerated s*gma—field is pzaciaely L as constructed above nnder A

“rTﬁﬁﬁi. 7o prove this, ene ‘shows first that I is indeed a a&gma
field, and second that every member of I must balonq to every
~si§ma-£ield containing G: this second statement follows at once
from the fact that-sigmnwfields are closed under countable
unions)

One may say for sharg that the aégmauﬁielﬂ ganetated by a

collection G is the snalinst' i&éﬂn field containing G. The
discussion above explicates thé concept,, and shows that, indeed,

\

there is such a smallest aégma«fiald.
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with the aid of this concept we mhy now define what is
historically the granddaddy of all aiﬁﬁanfialds. the Borel field

on the real line. Here the univers% aet is the real line, and
the Borel field is simply the aéénarfield generated by the class
of finite open intervals ——that—%&@kall sets of the form {x|a <

x < b}, where a and b ranga cvcr the real numbers,

This a&gma ~-field is quita important, and it is useful to

note that it may be ganeragad by a variety of different collecs,

tions., Besides the finigchpen intervals, it is generated by the
class ot sats of the £cr§ {x|x < b}, b ranging over the real
numbcra kalso by the ckaas of sets {xlx'? a}. A ranging over
the fgala@ furthermore, it is generated by any of these classes
when a or b zagges merely over the rational numbers instead
of the reaﬁ”ﬁu&heﬁgéé/,Finally, closed sets could be used in any
of these cases insiead of open sets (just substitute the d%@k
inequality“‘<‘ £or the strict inequality ‘<“) """

There is no; éirect way of characterizing the real Borel
field, and so cne must be saﬁiufied to define it in terms of
genaration\{ g *

i
{

not the exceg%ion.

this situation is the rule,

The Extended Real Hﬁﬁbera

We now turn to thegaecond concept needed in the definition
of measure: the exten@eﬂ real number system. The ordinary real
number system is augmaatad by two "points é; Lnfiniuyﬁj and the
relation of order and %ho operations of arithmetic are then

extended to these 1daa@ points,

L

1§£lx>é}
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é%jyfwtinitian: The extended real number ayatem aonsists of the real
TETTT :
numbers togather with two new points, writtanm‘+w“ and"‘-»“:

a>b, a fig, a ¢ b, etc., retain thei; usual meanings when a

b / = 5

and b are both real numbers; when qﬁe or both of these is

4+, the order relation is extended @% follows:

do > a, a > moog oo > =m0, for any real number &o)

! The operations of arithmetic are axtended as followaa
(&)
ﬁadaition,

22 + (¥®) = (¢=) + a = +=; a + (*@) = (=) + &= for any

{real number R L Dkriyg

| \.‘;@:’* C(#w) + (@) = (4e); (=) + ‘..,.; = e,
b =

~ (The axpressions (+m) + (-w)ﬁknnd (-m) + (+<) are not defined,,

and are to be considerxed maan#ngless.)
awmpaéé;ian: ;

')_-¢+~) = =) (=) = oo, ;
T&vﬁubt;aétian. ?

-

5The rule: a - b = a, + (ub) definigg subtraction in terms of
additian and nféatian.

'ﬁigult;plisation.
» 1f a "is an extended real number )0, than
»

o(+u)u(+n) -aa+w;a& (-»)a(m) -au«n./

o | 2 is an extende& real number <0, then

t,m

(+»)u(-§u} can-eafau(-u)a(..m) -aa.q-o ﬁ»’i'

§ﬂk-‘a = a’+ 0 = 0 for any extended real number a.

et e e

4&"“——-—/ s : 2 .\‘x 9
X f o i s,
A >

A\
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]
i

Y—’* All of these extensions are "naturafﬁa)axcept perhaps the
rule that zero times any extended real ﬁunber, including +e,
yields zero (which is useful in integration th;;ry). The fact
that addition (hence subtraction as weﬁl) is not always defined
reveals a basic disparity between reail«ang extended rea&yﬂ
arithmetic. (Division by +« has alsé not been defined, but this

is of no impartance, since no oacasion arises in this book where

one would want such an operation).;

The number '+~“ will usually »e abbteviated simply to*“%‘ﬁ/ -

The Borel field of the extended rqalpiaubers (or the extended
real line, in geometric terminology) may be defined as the tténa"
field generated by the class of wets o£ the form {xlx > u}, where
& ranges over the real numbers‘?\YThesa sets are now subsets of

the extended realpﬁunbnaa, so that the number +e belongs to all.

R )

It may be varified that thisvaéqma-field consists precisely

of all sets “which have any of the tollowing four forms:

~E, E u {=}, EU {-=}, g,gii'»} y (==}, |

'whereug_ranges over the Borel field of the real numbers.

Countable Additivity

First we recall the definition oém‘funetion‘. A function

£ with domain A and values in B, writﬁen f{:A*B, is a set of

ordered pairs (a,b), where a ¢ A and b € B, each point of A being

the first component of exactly one suc§ pair. For each aé€ A,

(A= 8B



A

T

the point of B thus assogiated with it is called the value of £

at a, and is written ffa). The set

: ﬂglba £(a) for at least one a € A}

’g ~ is called the range @f £. It need not include all of B, /
@ !?}:;; Given a measurable space, (A,I), consider a functioxi‘
w
3—/‘?’ Z -+ nontnegative extanded raalf*/ nm '#ha-e—ei-a, W assigns to

each measurable set a value %Fh’ﬂre'ﬂ is either a non-megative real

i number, or +v,

%Definitiom W is f.initely additive iff, for every paiz: of

neasurable sets, -, " m@a are d:.ajni.nt. (&a&»&s, ENF =g,
@ we have 3 ]

" f{(@ U F) = u(E) + u(F).

Theorem: Let u:vz + nontnegative extended real aumbews be

s e

@ finitely additive. If BE @G P, where E, F are measurable sets, '[keg): \

then p(E) < u(F).

e ;
@-Lm:oof: 8ince E, F are measurable, so is F\E, riso E, E‘\E are

@ disjoint, and EyU (F\E) = F. aence,-by—ﬂr)\ H(E) + u(R\E) = |
“‘m' Bg"‘g@ u(F\E) > 0, 1t: follows that u(E) < u(F).L:J-H%EF' \n

ﬁr_ﬁ'M _)__
[T The property expresszed by this theorem is called mnotcnicity, \

V7 s;
and implies that u takes on its maximum value for the universe e

set A.) )

> If u is finitely additive, and E, F, G are three measurable
sets no pair of which have a point in mm@n ('t.hat:«i»s the class
conaiat;oof these three sets is a packing) » then



‘l’/ M(EU FU G) = u(E) + U(F’U G) = u(E) + u(F) + u(e) /’

E

éwisaa&ear hy induction %hat & similar rule extends to any
ﬂf‘ fihite packing.

Hewevar, ‘we want to go furthex. and define such
additivity rule for gll countable packings of measurable sets,
not just for all finiﬁ% packings.

an

] Bafinition' Let M, take values in the non¢negat1ve extended real

et o e Lo
numbars, its domain being s&gma-fiald Z. . iﬁﬁéﬁ ably

v
additive lff,;for any countable packing of measurable sets, G,
we have g

‘ . Eo

ouG) s "(Gl) + u(Gz) + n(G Ve

v
G
in a sequence, and the right-hand side of (1) is to be under-

(Here G,, G,, G,y ++o i8 any.gnumeration of the members of
i U s B |

stood as the ordinary sum of an infinite series.) ™
‘_&W‘;{_ﬁﬁ— §

F The possibility that u may take on the value » causes no

problems. If u(Gn) = » for some n, -then the right side of (1),

hence the left side, equals «; if the partial sums on the right

increase beyond any finite bound, thea both sides again must
equal ®,

Y, ) MHeasures

//’,,,__;ti We now put all these concdbts together.
(5o ;

€j§>(1¥#4ne£1nition: A measure, U, is a function

e N

+) whose domain is a xi ~field, ¥
)&-{) m §o

% S N
Ml =~

i
}
i
3
i

4
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; ﬂ%%l)which takes values in the noﬁ%gegative extended real
% e
‘ { nunbers,

(iii)|which is countably additive,

(iv) and for which u({g) = 0.

fllp 7
<~ (There—is exactl# one function whieh satisfies eonditiens.
Apto, o

i) , (ii) and (1i1) but not cemditien (iv), mamely, the function

aggigning the value » to all sets. Thus {iv) serves only to

%T__;ﬁiww
q&r_%”ﬁéfin;tzon~ The triple (A,I,u), where A is the universe set, I
ii::> y a a&gma ~field (relative to A), and y a.measure with domain I,

is called a2 measure space (whereas tha first two alone, without

W, constitute a measurable Bpacafma&;,;fg,a,m-.n loned

ts for measures.

N

,,:’i;ZijT§§forem: Let (a, :U) be a measure spaae. and let Gl' Gz' ..,,ba

=

a sequence of measurable sets wh%eh.is increasing; tha%-&s,

» G e 6= m3 S seep then limit LM?&) as n » ® is nﬁJG), (¢
(j:) being the collection of all the g?%).

- If instead the sequence is decré%sing (Gl =2 Gz 2 sse), ané
u(G&) < » for some }_{,, then lim u(G‘E) s u(ﬁgf

-

7=

-
- ﬂ]/ﬁ

“(To prove the first part, partition uG into sets G \G -1 and
apply countable additivity; to prova the second part, take
complements with respect t°“§1 and ngply the first partf.

b
i
5,

;‘\.
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,&; . We ﬁi:ni:sh this section by giving some examples of measures.

e

Ogl)‘g‘" b 4&) Let (A,I) be any measurable spaea; the function assigning

- the value zero to every member of I is/'a measure (the identically
7 ()88 numl
zero measure, which we will write simply as “¢"); so is the / s

: gt
¥ function assigning the value = to eéary nontempty member of I
(t:he identical}l infinite measure, written“"w"r)m 28

-(-ﬁ?ki Let the s-igma-ﬂald L be Qi::it:e. As-has-been mentioned, 8 '

: Q is then generated by a partiti.cm G, and we may assume § ¢ G..

Assign non-fneqative numbers a:bitratily to the members of G; any
member of I has a unique reptaaentaticn UF, vhere ? c 6 7 assign
to this set the value equal ‘to the sum of the numbers assigned to
members of F The result :t.s a measure,
mﬁiﬁ Let (A,I) again bg any measurable space. Defineb; by: )
u(E) = number of points in E,E\it B is finita,‘\"z e t ->

u(E) = ©, if E is infinite,{‘z € L.
u is a measure, tha M measure.
(-i-v-) Again let (A,X) be arbitrary. Choose a fixed point a, é A, ond
define u byf’
'-u(5) = 1 iifa € Eand E¢ I,

u@)aO;Mgoegmmgez.'

——

u is a special kind of measure, an atomic measure (we -shall
discuss this more fnlfy later). Note that we need not assume
that the singleton sst; {a } is itself measurable.

«(v)“ Our last empm is the most famous of all measures. Let
A be the real line ,)\an%d let I be the Borel field on it., It may
be shown that there 13% exactly one measure u having the property
that = ‘1

Sm,
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- u{x|5<:§-"’<g} 'b-a\

i B
"~ for all pairs of real numbers such that a < b; tﬁiﬁiis, U assigns
to any finite open interval its 1engt%bg is known as (one=

dimensional) Lebesgue measuye.

— |
~I\) 2.2. Representation of the Real World bz*ﬂeaauxess Preliminaries

Having at least defined the cpneept of maasure, we novw go on-

[N n

to real-world interpretations. ( e~a§i&%~£ollow the practice

: * of alternating :ormal development of
measure theory with interpretation#ﬂg |

?1rst5;§oﬁa general philosophiﬁalﬁaommants. We can start
with some portion of the real worlda\aad represent it in the
language of some formal system, Ortkw? can start with some formal
system and interpret (or "apply"”) the statements in it to refer
to some part of the world. The first bxoceaa clearly involvéya
severe abstraction (only a small fraction of fﬁﬁta about the

\&- world can béQEranslated into the formal system)\é/ ‘The point-is

"tha&<tha second process also involves &n abstraction@ it is not
always possible to find a "fact" corresponding to every valid
statement in the formal theory. One mugt then be satisfied with
a partial interpretation of the formal Qgstem.

As an example, consider the repreaegtation of time by the _
real numbers. It is easy to interpret ségtements like:s fpl > Eth
or ﬁ51<'-32 =t3 - 53%4 Bué}what facts céxrespond to the state-
ments "t is ikrational', or "every Cauchy Qequence Lgn} has a

limit"? As far as facts are concerned, one could do jﬁat as well



&

o

56

representing time by the rational numbers; hqﬁevar, the real

numbers are more convenient. J

In exactly the saﬁa way, while measugé theory is a remarkably
flexible and natural instrument for dasqubing'the world, -Qﬁﬁﬁcane
not expect every statement in it to canxaspona to a fact. The
formal apparatus of the theory is desi@ned for mathematical power
and elegance, and as a result aae-miqht say the theory outruns
what can be observed or measured in;the real world.

What kinds of real-world factggare repreaant%hle by measures?
As a first example, think of the qéuntriea of the world as being
identified with their territcries;: Consider the set of all
locations on the surface of thejg;rth‘ﬁ (We idealize by thinking
of each location as an extensiaqiess point). The United States
is a certain subset of these pugnts, Switzerland is another sub2
set, etc. Furthermore, no twaiéf these subsets have a point in
eomnon‘é/ Thus the collection éf all countries is a packing., If
we add to this collection the set consisting of the rest of the
world (it will include the high seas, Antartica, etc.), we have
a partition of the surface of the ﬁarth. This partition generates
a ﬁigua-field, n;;z&gAiall setp of the form dF, where F ranges ) f*jﬂf'
over all subcollections of thigmpartition. ' | s

Now choose any fixed date, and to the set uF asaign the

A/
number whach is the total population of the territory uF at this
date. The function thus ‘defined on the nigua~£ield is a measureg,
For, obviously, the total population of the union of gwo disjoint

regions is the sum of the populations of the respectiﬁn regions,
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so that the function is finitely additive., Furthermore, since we

have a f£inite a*g;awfiel&, finite additivity is equivalent to
countable additivitv in this case. This proves we have a measure.,

It-is-elear—that any territorial magnitudes wiskoh havé She
finite additivity property can be represented as m&asuxes in
exactly the same way as population. This includes tarritorial
area, wealth, coal reserves, miles of highways, and (for a fixed
fimakinterval) steel production, steel cansumption, births,
deaths, marriages, divorces, murders, Phn@a grantad, and
innumerable ethers@yf Hoeaxthat measuramant uaits can be quite
varied -numbexn of objects, mass, dollar valua, acres, eto.

Statistical tables presenting data of this sort will not
typically write out the entire measure. Iﬁ the surface of the
Parth is partitioned inte, say, 130 nations plus rest of world, a
complete table wowtd“havalta assign a valuﬁ to each of the 213l
members of the a*gwmwfialﬂ. This is abv&euslymimpoasible in
practice¢%and also unnecessary, since iféﬁe are given the values
for the 131 partition elements, the valu; for any other measurable
set is given by the addition of the valﬁ%s of the appropri%ﬁa
subclass of partition elements. Thus i@épractice/tables will
just give values for the generating paréﬁtien, plus perhaps a
few other "marginal subtotalﬁx) ; %

~ Any table of statistical daﬁa( if it can be represented by a

measure at aiﬁ» can be represented in the foregoing simple form,

with thexsﬁgna~£iela generated by a !inite partition.
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For a second example, suppose one wanted tﬁbrepresant the
concept "quantity of fima%% We represent time itself as usual by
the real numbers, each number representing agf*inatanﬁig‘ We want
to assign numbers to various sets of tiﬁééiaitants to measure the

quantity of time embodied in that set. ?qfan interval {glg <t <

b} (where a, b are real numbers with a < b) is assigned the value

oo N o
b - a. Also, it seems reasonable that Qquantity of ﬁimagwshauld

be at least finitely additive. This sgggeats that Lebesgue
measure, on the Borel field of the rﬁ#l line, is an appropriate
mathematical representation of thia_igtuitiva concept,

This simple example is quite iﬁ#tructive in illustrating how
the requirements of intuitianﬁkund eonsidaxationa of mathematical
power, combine to suggest the appxepriate representation. First,
what is the appropriate class afysubseta of tna real line for
which the assignment of a numbsr representing \quantity of time®
is to be considered maaninqﬁul& Intuition demands that it
include all subsats for which, conceptually, an obsexrvation could
be mada (say bp observing th¢ angle through which a eloéﬁihand
turns) -»henca certainly alx finite intervals shauld be included.
Mathematical elegance demanﬂs that it he a a&gna-fielﬂ. To
satisfy both &f these demaads, it must include at least the

; i
entire Borel :!ia].a V b

-

— This requirement leaég again to thexkoutrunningé of the
facts by the theory, argwhat obsexrvation could confirm the
statement:; "The quantity of time embodied in the set of all
rational timevinstants is zezof?
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Consider next the various additivity conditions. As
suggested above, finite additivity has strong intuitive appeal.
Jfut measure theory comes inta its own with the stronger require+
ment of countable additivitva/lﬁewz§t may perhaps be contended
that if a real-world magnitude is already finitely additive, it
is intuitively plaugible%i-or even demanded by 1ntuition¢k;that
it be in fact countably ;dditive. We know of no philosoéhical
N discussion of th;s issaa?gggince it seems to be of some

importance, we offer some reflections es=3t in an appendix to

this section, /

( \;J ﬁppendiﬁ on Additivity

o

Let ufba a function defined on 2 sigma~field with range in
the naéféégative extended reals, representing some real-world
data. ﬁé suppose that y is finitely additive. There is then

__Some p;ﬁuaibility for the view that it should be countably
a&ditiée. But why stop at countable additivity? Doe?n@t
e

1ntuition dﬁmanﬁ~that a real-world-representing u be unaountubly
a&dig}va? ) f

C% V Z\\ Hére we have run ahead of ourselves, since we have yet to
give a dafin;tion of "uncountable additivit ’L) First ,we need

_ another aangept.

%£“1 Definitions Given a set of extended real numbers, E, the
Yhe
suprem bf E is ﬂ&_smallest extended real number whieh—is at

least as §arge as every member of E.

i %



t Ik
I e
j For example, the supremum of the real numbem is «; the

supremun of the negative numbers is 0. One of tha advantages of
the extended real’numbers is that every subset of them has a
supremum, :

Now let I be an axbitrary nonrempty set Wl finite or infinite,
countable or uncountable, Let f. be a function with domain I, and

range in the non+negative extended ream Take any finite

subset of }%;:j- say {11, 12. see ¢ w “1':“'3 q% the mim;) 5

f{il) + f(iz) + eee * f(i ).

~“fhe summation of £ is now7def1nad as the supremum of the set of
these sums formed by ranging over all possible finite subsets of
It is easy to verify that,}\if I is finite, the summation of

f is simply its summation over I itself; if I is countable,
suxﬁmation of f is simply the limit of ‘the series formed when the
element’ ot‘ 1 are arranged in any aaqmnce. The generalization "
then, arises when I is uncountable .&\3/ A

P ; £y

i~ With-the aid-of these concepts we may now formulate the

# }’Eéfinitienz uis uncounta.blz additiva iff, for any packing of

_§ measurable seta,}\@, such that UG is ‘measurable, the summation of

— 4 on G equals n(uG).

2 ["— _Zr(ﬁere ¢ plays the role of the index set I above, and u(G)
with G ¢ G corresponds to f S}) with i € I; need not be
countable) . ™ 4\ .
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Uncountable implies countable additivity.;fﬁnvarting to our
argument above, it is hard to see why intuitiéﬁ should swallow

b @%u %raﬁb&a«&twthat uncountable aﬂditivity appears to be too
strong a condition for many purposes. Fog example, Lebesgue
measure daﬁs not satisfy it, To see thié; note that if the
function £ on tha index set x is 1danti¢ally zero, then its
sunmation equals zero. 8Since any set %s the union of a packing
of singleton sets, it follows thatf{iﬁgu is uncountably additive
and p{x} = 0 for all singleton sets {x}, ¢ must be identically
zero. But lLebesgue measure assigns ?alue zero to each singleton
setflgna is not identically zexo4\h§mce it is not uncountably

additive.

Possibly the difficulty can b&gresalve& by going beyond the

(standard) extended xealunumbex sy$tem. In any case, we -sheil in
5%~

assume dhat our representations
are countably, but not naeessaril@ uncountably, adﬁitivabﬁ-tﬁat
8., We assume that they are maasuéas in the ordinary sense of

the term. This allows us to ayplé the great resources of measure
theory to real-world problems. Xé this respect we -are merely
following in the footsteps of the%great prebabiliita and
atatisticlians. ;

2.3. Space, Time, and Resources

We can,—ané—siall, give many ﬁare exanples of the

representation of facts by measures, But we want to do more than
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thiss We want a unified‘ééy of looking at the world,so that all
of- these examples fallvaﬁt naturally as $peciallzations,lan& 56—
that-we do not need an ad hac argument fox each new case.

= The claim is that this unified view can be built up from
three basic sets: "Resources®, the set of rasourc;Ltypasg “Space®,

the set of lccagians; and "Time", the set of instants, As—a

e ahbreviate these here, and throughout the hook, as

M

R, 5, T, resgactively. N

S In this saction wa describe these three sets, In later
sections wa put them together,

Tima'v+“~- pentioned, is wallLregresented by the real

numbers’ (smaller numbers being gricr to larger numbers in the
tampo:al sense), The measurable subsets of T will always be

e takanftn be the Borel field on the real line,

.

m}:ﬂ .

w@ﬂ%ﬂeﬁn&tiom A subset of Time is called a period iff it is measur’”

~ Space is thought of éﬁst naturally as a.xg;ee—ﬁimansional
/" continuum. Somatimesfﬁﬁﬁﬁﬁéd, it is more useful to identify
Space with the surfaca/of the €arth, since almost all human
activity takes glacefin a thin film at the surface (even in the
Fﬁmspace aégii. In tﬂi& connection one often makes two further
idealizations, Fi%st, the‘ﬁarth is taken to be a perfect sphere,
Second, the aphefiaal surface itself is flattened into a planar
region, or even an infinite plangf\ thus three dimensions

collapse to twb.
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When dealing with Spaee andJﬁinn=jointly,53$§fneed$ a con=
vention about what locations atﬁéwo different times are to be
considered identical. wb=#hai&5always assume that the ﬁarth is
at rest. Thisw“gaacentria” éonVention would not be made by aj
g%;ggééékfﬁhut for social sci@nce purposes it is by far the most
convenient. Thus ‘Portugal‘"?an be identified with the same

ﬂf subsee of Spage at difterentgtimes, whereas it would he waﬁderiag

about under any ather convention.
]
Let us turn to the gruﬁlwm of defining an apprbpriate-ag;ma’“
field on 8. By "apyropriate" we refer to the following somewhat
vague ﬁesi&e;ata. first, any subset of Spaee on which,
eeneeptually¢ an absarvatian could be made should be included.
In particular, the various simple geometric figures ﬁ&gubes and
spheres in 3-space, squares and ¢ircles in the plane, atc. -
should be included, 9n~&he~a%h§%ig;aéi one should not go much
b@yona the ségganfiald generated by thesﬁgkbeaansa there (arise
Loth mathematical and conceptual difficulties in defining
measures on these very rich classas. On the real linﬁgéthe Borel
field fits these specifications gﬁae%y wall, &%awemia(g natural
generalization to higher dimensional sets wiich serves much the

same purpose,

s
ﬂwM“ g -

Mfinition: On the plane,, the (2-dimensional) Borel field is the
AT sié&a—flelu generated by the class of open rectanglea~*-hhat—&ﬂ,
() il

= by the sets of the form {(x,y)la <x<h, &< y < d}, a, b, ¢, 4,

g being real numbers,
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S g‘
~ Just as on the real 11neﬁ§this sigma-field is generated by

many other simple alasses}k?ﬁawmssanp&e, by the open disca, the
sets of the form}

».‘/L

sl

iuéii_p, b, ¢ being real numbers; also by the closed rectangles or
aises{ obtained by substitutin§\‘£? gg;.“{*;g All ordinary
geomat#ic plane figures (thought of as including their boundaries)
belong to this aég;n~£ie1d.

Similarly, in 3-spacaﬁ\the 3-dimensional Borel field is that

generated by the“%open prisms™<~

{(51' §2'ﬁ§3)’§i <%y <b;, i=1, 2,3},

v
S
and this sigma~field is also generated by the open discs
2 2 2 2
Ly Xp0 X3) | (x)-a)) " + (5y=ay)" + (xg-ay) " < b7},

Finally, given a subset E of 3-space, such as the (idealized)

surface of the y%rth, the relative Borel field of E is the class

of sets of the form \

W ) I

= {Bn F|F ¢ 3~dimensional Borel fielﬁi:>

* Por example, if we take a plane or a line embedded in 3-space,
Py =3 -
their relative Borel fields according to this definition may be

shown to coincide exactly with the 2« and l-dimensional Borel
fialdsk respectively,
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These constructions give reasanahly good solutions to the
problem of the appropriate a&gna-fialé on 8, In some cases
another choice may be better. In particular, it is often suf-
ficient to work with a small subclass of the complete Bora} field
(as in our example of population distribution by country). ///

In much of this book it-turns-out_that the particular
structure of Space (dimensionality, shape, etec.) is irrelevant.,
In this case it suffices to think of § as just some arbitrary
measurable space. This gain in generality is important, because
we often want to deal with Space of a highlyk‘non~ﬁucliaean"
character, its structure determined by the irregularities of
transportation cost and land quality.

§£;f£5;~fa;;;ﬁ&;¥~nf'thit”buoh; we use the term "region” in

the following technical sense,

e

{:4f Definition: A subset of Space is called a region iff it is

Y

L‘, A

o'

measurable,

~ We now turn to Resources, & This has a much more compli-
cated structure than Space or Time. Fcrtunately a great many
results do not depend on a detailed knowla&ge of this structure.
Also, there—are certain coneagtnal pxoblams tiad up with R, We
shail accordingly preaam:A *naive" description of R in—the rest
of-this-section, reserving the discussion of difficult}es for an
appendix,

An object is identified by specifying where it is, when it
is, and what kind of thing it is, Space is the set of possible
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answers to the first guestion, Time to the seqc&d, and we mean
Resources to be the set of possible answers t§ the third,

The elements of %h‘wﬁ&%ﬂﬂfﬂﬁ‘ﬁﬁﬂ*ﬂﬁi are types of things
rather tﬁan specific éntities. Thus "water" is a resource (or
rather, a set of resources, since it can be differentiated by
ﬁ%mperatdra, pressure, purity, etc.)s but any specific drop of
water must be identified further by its position 1nn§paee and

Times

What types of things,then, are included in R? All possible
types that are relevant (for the problem in hand, and with as much
fineness of distinction as is usé!ulggggwtheﬂprﬁb%em«inmhand,

This will include natural resource typ;az soils, minerals, water,
air, vegetation, animals., It will include manufactured
commodities, crops, machinery, and structures. It will include
sewage, garbage, trash, and junk. It will include all types of
people, distinguished by sex, age, race, skills, beliefs,
attitudes, tastes, personality, and any other relevant traite It

may even incluﬁe such intangibles as light, sound, elcctricitgiand
/v»

gravityf%gyf

Two apparent difficulties may be cleared up at once. The
fixst refers toExésgureé;types-wk%ahwa:e\paéigxistent Should
"unicorn® be included in _R? Actually, it does no harm to include

ncn%existenta§ as we shall see, existence is described by a

measure placed on %z}@@t by R itself. Second, can uniqueness or

A '[
individuality be represented by a model uﬁ&@n deals only in

types? The answer is yes, grev&éeé the distinctions made in R
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are sufficiently fine., If one gives a very detailed description
of a certain peuaonwtyéég there will be at most one person at one
time fitting that description é-say George Washington at ﬂbon,
July 4, 1776,

Cne sometimes distinguishes hatween difﬁetent resourceitypes
and different varietias,\or qnalities. of the same resource typa 45
aag. minax variations of brand-name goads. From our present
paint of view, different varieties are also simply different
types@a'hh do not take account of the fact that a codfish is
somehow more similar to a mackerel than it is to a cabbage.

%:£%a§ turn to the problem of finding an "appropriate® d&g;a:“
field for R, Following our previous approach, we should include
all subsets on which, cﬁnceptually, a meaauxement could be taken.

o

Thus manuy "£ish",) "water", "glove", f’car“ determine sets (the

7L 36'\ ¥yt

set of :esource typas whach are men, fish, etc.)

should be

maasurahle. tﬁne could systematically go through the dictionary,
and most nouns and adjectives would aetegmine measurable subsets
of R in the same way. @he—&*eub%c~&a~th;t most ﬁnglish words are
more or leas'vaqua, and borderline cases arise: "Is this

ﬁw‘*‘

creature to be considered a fish or not?") Once the clasﬁrof

conceptually observable subsets of R is determined, the a&gumﬁr

field generated by them would be the reaommandeansigaanaieiéz
Unlike the case of _Spaee and T&ma, where the Borel fields

are the natural choices, the proper choice of n&gaanfield for

Rsaausenn.ia still:aﬁ—ia—the—air7 as -the—paragraph—above
indlaatas. Fortunatsly,.as-weﬁhaveumaatioaedq nothing 4 PPN
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‘book hinges on a detailed specification, and it is sufficient to
suppose that R comes supplied with some ség;a-fiald, making it a

measurable space.

Appendix on Resources

We discuss certain additional problems concerning the set of

Rasouroes.‘“

kﬁf Fiist-ia the problem of self-reference. Among the attributes
of people will be their mental statfs ;-their beliefs, perceptions,
thoughts.-ctaa But to describe these ‘one must refer back to R
itvseif dauis (ond 4mid to S and T and measures over these sets,—ese.).
Further complications arise if these mental states refer to still
other mental aggkea, and we can even get an infinite regress of
the kind sometimes discussed in connection with uﬁgtegy and
games: "He thinks that I think that he thinks...fb We shalis
take’this point (up again in the more general context of multi+
layered theor’e%ék ;seJtm\ %‘ sroeliow) .

Second is the problem of inclusiveness. Whan~3§3“takam
account of our limited infcrmatien, and the fact that there are
*more things...than are dreamed of in our philosophjﬂijanything
smaller than the set of ™all possible® resourca~typa; may he
descriptively inadegquate. But the concept of an all=-inclusive

R is not very clear, and may even‘gntail a logical centraﬁitian.

- 'Third is the prohlem o§§*camplex‘ resources, It will
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as a single resource-type. Instead, gﬁé“thinkq of it as a
spatial canfiguratigy of resources: water, soil, txeas{gféads,
houses, people, eee.~” But the same reasoning applies to each
of these smaller units, An automobile of a certain*ipecific type
is just a spatial configuration of steel, rubber, glasa{f?&intg%
ete./h and we could continue down to 21‘: molecular-atomic level.

From the practical point of view, whereJéae stopy, $n this
analysis depends on the size of the unit ena“£a~iatefeseeé~&a
The physiologist may take a person to be a configuration of
tissues, the biaahepiat may view him as a configuration of
molecules. The aaggggscientist rarely has occasion to split
people up apatially in this way.

—Now, for'ﬂi useézgémwﬁ$§h#ﬁwfmmwmmxting the set R, to call

something a r&sourca*typa;;ggea-is actually hataroganaous spatial
configuration, involves distortionp amd the distortion is greater
the larger the object iaamumhuaae§§é§7£a~$hat we use the concept
of resource-location pair, (r,s), referring to a resource#type £

located at a point s g-wh:eh is somewhat ill-defined if the

“‘rasaaraewtypa’ iz by its nature spread over 2 region of greater

or lesmer extent,

B L0
~O

For the scale on which social science) models typically
operate, the distortion involved in treating people as resource
types is negligibi& for the most part. The same is probably true

At ot

for most ordinary e@mmoditiea/\although,maa—mantianeﬂ~abovey we

would draw the line at resources as bﬁg as entire river valleys,
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This discussion raises the question@‘ﬁgf we steadfastly
refuse to admit spatial configurations as f;souchEtypas. what
becomes of R? Eba £ teiven wo. wansivn. soe configuration iﬁ&o
its components, and these into further components, untll pre~
sumably, o#€ arriveg at a small number of” elementarg particles™>
out of which everything else is built up. :ﬂbw frﬂm the practical
point of view this procedure is absurds ‘éne hardly expecty atomie
physics to be a prerequisite for social scignce. Nonetheless,
“there-is the chance;that a mathematicallyféénvenient theory can
be built up by following this route, and we offer a few
speculations as to what it would look like.

There is a general tendency for the number of kinds of things
to become less as ;ﬁé descendy the ipatial hierarchy. (A great
many different types of houses can he constructed by arranging
one type of brick in different wavs)., Suppose, to make the theory
as simple as possible, that everything ultimately reduces to just
one kind of thing: "matter". The objects of everyday life would
then be identified with certain distributions of matter over
Space (cr5 possibly, Spaee and T&ma)gl-thaeuis, with measures
asaigneé}to each region the guantity of matter in ity all of
these regions fgrming a 3&gma~field relative to the universe set,
which is the region whieh the object in question actually
occupies.

Ahere—are two great virtues to, such a thggfj/ First, it
avoids the distortions igé;; arise on treating people and

commo&ity~types as members of R. Second, it eliminates R itself
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(by reducing it to a single pcint)gxand thus aimg;ifias éhingé
and avoids all the other difficulties ¢onneatg&fwith R whiech we
have been discussing. Ugff

In the remainder of this book we g@é;i for—the-most-part
ignore the issues raised in this appgﬁéix, and 2n£§k§iy§ interpret

R as outlined in the main body of this section., This is done

partly for pedagogic reasons*ﬁj@@scriptivaly'the theory runs
closer to intuition): but mainly because we have not yet arrived

at satisfactory answers to the issues raised.

} 2.4, Measure Theory II-
o j

We return to pure mathematics in this sectioﬁg\to define

some concepts needed for further developments.

Restricted Measures

Let (A, +¥) be a measure space. Just as with any other

function;kwe may conaider the restriction of u to a suhﬁwomain

of its domain 85 Ehat—&s, we take a subclass L' ¢ 8.‘and‘define

B

a funttion u' with domain I' by the rule | (z.4.1)
u'(E) = u(E), 'all E ¢ I'. )

The only special condition we insist on is that I' itself be a

sigma-field (not necessarily relative ta the original universe

One Says
set A). enawségtssythat I' is a subwa&ggg-fiala of L.

It is then immediate that u' is a maasure)-iax-tha fact’ that

it takes values in the nontnegative extended real numbarsg%and
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—ehyat=it is countably additive,,\( :ellwﬁﬂ at once from its
definition. - (;I.) .S

3Two special cases deserve mention.

HE
f/{filp Definition: u' is an aggregation of uy iff A ¢ L',

-

- [ That is, A still remains the universe set, although I' is a
"thinniniéut" of the original -n*?‘m-ﬂeld. As an example, let A
be the surface of a sphere and I the Borel field on A. Let é be
a finite partition of A into Borel sets, and let I' be the -s-igaa-’-‘
field generated by G. ° ('rhe distribution of population by
countries fits this model} (ﬁea section 2) It is clear why the
term “"aggregation" is used for this relationg !Ihile U gives,

WJ( g?’ say, the complete distribution of population, “ just gives; th;é

distribution for entire countries.

4
,_.awm

{ﬁ»ﬂ?l:ﬁnitim: Given measure space (_1-1..,):,;,1)._lk and B ¢ zj\ p' is the

restriction of u to B 1£ff u' is the restriction of u whose domain

D)

I' is the class of all measurable subsets of B.

@,ﬁﬁ”{m ( One- easily verifies that this L' is ,\kindced,,_] a*sut-g;a-ﬂald,

whose universe set, however, ia__B, not A,

As an example, again take the case of population distribuZ
tion over the surface of the ,éarth. One may be interested only
in the distribution within some particular region B, in which
case one studies the restriction of u to B. 1In general, the
notion of restriction to B enables one to isolate particular

ocbjects, activities, or situations within the overall description. ~
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Each different measurable subset B yields a different restriction.
Sometimes one is given, not the entire measure p, but piﬁeeea
atches, each defined on the measurable subsets of s;me set B,
If these patches cover the entire universe set A, the question
arises: Can these patches be put together to vield a single
measure on the entire measurable space? The following theorem

gives the answer.

- 7 o e ¥ A
%‘MM’E T"gltching theorem™) Given a measurable space (A,I), and,

for each n = 1, 2, ..., a measure space (or "patch") (B, I, 1),

K (M : A n n
satisfyingAﬂ Copmabitordning §

giaen 334 2

;i’ (l) B, € I for all n, and B, the collection of all the B }s,

N L n

& is a covering of A (%at—- 1s, UB = A
&Y (1) £ = {E|Ec B_ and E ¢ I} for all n; d
i ‘> “i do nt
Y ’H {(iii) the W Vs a::oe compatible. in the sense that, if Eeg !(zz Yivica
Mool i \5 | S—
i ), then F%(E) = ‘u%(n)g all Dys Dy and E,'?J
g } then there is exactly one measure u on (A, I), such that u is the
i rutri.ction of u to Bn, for all n. a0
; Wof : First we prove that there is at most one such p. Let
|
g 731‘ = By, Bz = Bz\Bl, and.\ in general B o= B \(Blu...us 1).
fg Now suppose u satisfies the conclusion 01' the theorem. For any
b e 3 o
L Rl t ls o« i} ® 5 : ( 3%/
i ] i » e
b u(G) = 29,1 ui¢n B ') = gzn,léu (nB M.

(The first equality in (2) arises from the facts that the sets
{ens’ |n =1, 2, ...} are a packing whose union is G, and that
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¥ is countably additive; the second equality arises from the
facts that G n By' ¢ t and that ¥y is the restriction of u to
z).a‘ .

< 8ince u is explicitly determined by tha 33 in formula (2)

\ - it is unique. 2
fi%fﬂaﬁﬁﬂﬂmﬂgé reﬁéina to show that the u defined by (2) does actually

satisfy the theorem., TFirst we show thattﬂfex each n, u is the

restriction of u to E.» 1@77 G € E + Foxr all k > n, G n Bk’ - B

For all k < n, (G n B ‘) ,ﬂ (G n B """ '). by conditions (xi)&ﬂm«

(i1ii). Hence, by (23
Al ‘
- vy / 5
B(C) = Ik‘l\t plG N By') = u (G0 By = M (6D o

-

proving that My is the restriction of u to B_.
Next, u(¢) = {, since u () = 0 for all n. It remains to
show only that u given by (2) is countably additive. Let G =

{G lm =1, 2, ...} be a measurable packing. Then

H? 5 1% A

ue) = ‘ un((uf") n a’j

{ ]
uE(G§ n Bn )
r%f?& ; | }
-1 )\ [

' i b

oot e

(Here the first and last eqﬁalitias come from (Z), the second

ﬁ from the countable additivity of each W and the reversal of
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summation order in the third equality from the fact that all

summands are nonrnegativa.) This proves that p is countably

additive. ML o) ot

My,,ﬂwéﬁﬂﬁ/ The most important case of the patching theorem is where the
: ¥ .

class B is a partition of A. In-this-case we say that measure

space (A,Z,p) is the direct sum of the measure spaces i?n'xn'“n)‘a

.

and write

Jp— sk | 161
(@ ) A=B B 0 . T
S f - xlf‘a By ® eae i)

- n E ul %\ uz & s e ’:i

gl
i

or, for short, u = e u , atc.

y,/;-»

In'fact, it is easy %@»saawthax,,given any countable

collection of measure spaaasfiyith &isjaint universe sets, thara

}\ ' d & A; 4 % (!
is a unique way of combining them into a direct sum (see ﬂ‘_ :: hi

4 -page for full definitio@% The direct sum should not be
confused with the (ordinary) sum of measures, which is defined

&
only for identical sigma-fields; see below) 7

Product Spaces

Consider any function with domain I and range in{g. If one
is mainly interested in the range space, such a function may be

written as

-
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and is referred to as a family of elements of ¥, indexed by set 1.

"This is more general than the notion of "subset of elements of

E“ since it allows for repetitions:; the same Y-element may be
assigned to more tna;:na E-alementﬁ?’é W':_ej distinguish families
from subsets by using parenthas%ad of braces {}. The
elements of Y themselves may be of any nature )';‘__'-ﬂ:‘ﬁmﬁmx's,
functions, or sets,-for-examples )

Consider the case where Y is a cqi'lectien of sets;} l;t%
rewrite it as € to conform to our cuétamary notation. We then

have a family of sets indexed by 3? Wy

MU EX R

-,

~ — where each G; € G,

Wefinimcm The cartesian product of the family (Gi)' iez,is
the set g

em—
y \ .
L J/
“«,‘! s >

{
= 1{(gy)s i€ Ilgy € 6 for all fe I}

i Thét iz, ecach momber of the cartesien product :i.s{ itself a family
of elements of ué/é indexeé by _}'; spacifically,[; family having
the property that the element assigned to index 4, 95n always G
belongs to the set, Gye ‘assigned to index i in the o;iginal

€ family of sets (gi), i € 1. The cartesian product will be

denoted by %‘iéft?i , or even by ‘Hg-}i if no confusion is possible.

/ If all ef th‘eﬁr;g‘;i;a are iﬁenticai (= G, say), the cartesian

|

P " product is written t .
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If the index set I is finite ,the cartesian product assumes
a fairly simple zoxm. uﬁex~aaaaple let I contain just two
elamantsi&-aay I= {1 2},~ and let ;#a family be (31,82) fthat
(%a; set A is assigned to i = 1, and B to i = 2). The cartesian
product of this family may be identified with the class of

ordered pairs

" {(a,p)]ae M hen,

¥ Here A and B may overlap, or even ba identical. The cartesian

praéuct in this pasa is written A x B.
éﬁTﬁL»”” Similarly, if the family of sets is (Ai)' i=1, «esp ny
+hen the cartesian product may be identi!ied with the set of

ordexred n-tuples {al, .--v;, a ), wherefai e 51 for-all i = 1,

sy Iy and these choices are mada in all posaiblu ways, This
may be written A, x A, X,..X A, Again, some or all of the ai}s
may be identical. If all Ai = A, this may be written Am

~As an example, let each of the ni‘s bajtﬁeg;eal line. Then
Ay x...x A, is simply n-space, tgzyaet of all nwtuples of real

sk
numbers.

g W
fet—us now introduce measure-~-theoretic concepts. Suppose

we have a family of measurable spaces; {(Ai,zi)), ieg x. éﬁi&’
1&&, for each index i there is given a a&qma~£iald 31 with
univprse set Ai. There is a standard method for dgtining a
n&gmamtield on the cartesian product nai. Firat)we introduce a

preliminary concept.
—_—

A

o
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Cﬁ. ‘Definition:

[t

iff‘khera is a family of sets (Ei). ie1 Lneh that Ei i Ai for / .

3y =

@ all i € I, an%s = IE;.

Subset E of the cartesian produ¢t nai is a rect angle

Fn.‘
By
>

P e
4‘,##*"“7“’“ As an examplegklat,é be the real liﬁé, and 1et4§l, E, be two
@ finite intervals of real numbers., Then El x is 1itaraliz a

[—
[ ™)
N

/, \ rectangle in the plane;*tha plane being, of course, the cartesian
"4

product A x A, This is the origin ot;ehe abstract concept

"ractanglé, "(E.;

43¥\ ﬁefintticn: Given the family [(Ai,zi)], i€ I, the product tiggg

field is the s&gma ~field on the cuﬁtesian product “31 generated

by the class of all rectangles E = ggi having the following
2 proparties- e e
éjZ( 1}(1)&Ei € Bi for all i, -and

" id)] E o Ai for all x, except fbr at most one index i_.

'gggg““;xixn-eeaééxéan (ii),\the yhﬁase "at most one" could be
replaced by “at mmst a finite number of" or "at most a countable
numbexr cf“jl wha¢~&a, one can ahow that all three of these

classes of rectangles ganerate;the same ség;a~field. It follows
that, if the index set I is céuntable, eordition géé),is trivia1¢l
and may be dropped from the définition.fi‘aectangles satisfying

conditien (m) are called measurable.

The product s&gma ~field is denoted by Kx&I iﬁkﬁ nzi, and the
resultingjgxoduct ueasurable space is then (nai, nzi). If the

¢ e

(Ai,zi) are identical _for all I (= (2,2), say) this may be|

?

4
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written (A},EE),\or perhaps ‘3'3*;Q~ ﬁh?n I is finite, so that
'the_gamily may be written [(Ai,xi)], i= 1y ceny nibthe product
3 ai%ma~field is written 51 # 8 XeaoX L , and the resultinq
5 product space is then (A L TP An' 31 XoooX E ) 1&
¢t7égﬂflaﬁx pet I be the Borel field on the real line. Then
one may verify that I x I is simply the Borel field on the plane’ ¥
and in fact this provides an alternative definition for that
s&%@a-fiuld. Similarly, Z x £ x I is the Borel fleld in 3-space,
and we may define the Borel field in n-space (or even in
arbitrary cartesian products of the real line with itself) in an
analogous way.
Suppcse one is given a measure space of the form (A x B,
L' x I", y). That is, the produat maasurable space is built up
from the two compeonents (3,2') and (B,i") in the manner just
described, and a measure y is given whose domain is the product

@

& sigme-field I' x I°,

Ckkkxgéfinition: u', the left marginal measure of u, has domain I',

e

Y

;[D} and is given by .
N > u'(BE) = u(? X B),-

,A—:w*"’:. all E € X ' ®

It is easily verified that u' is indeed a measure. One may

e
]

i
¥

think of u' as being constructed in two steps. First, ome
considers those members of X’ x I" of the form E x B, where

E¢ I'. These form a submaégma field, and u restricted to this
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sué}domain is an aggregation, as defineai;%é#g:y S8econd, since
the "right side" of all ef the rectangles E x B is the same, we
may regard u as a function of its "left side" only; this vields
u's.

‘S In the same way, the right marginal measure, u", with domain

", is given by

“um(F) = u(a x F),

{

2

As examples, take any cross~c$assi£icationéi-éay ;Opulation
classified by location and hair caloxﬁ\or shipménts by origin and
destination., If u is the total distribution by numbers or mass,
then the left marginal u' will give the distribution of popula~-
tion by location alone,lor of shipments by origin only. The
right marginal will giv;ApOpulation by hair color, or shipments
by destination. '

&?§§atistica1 tables frequently give daﬁa for product spaces,
and it is customary to give the maxgina; measures in addition to
the original measure. (More aecurately:Aéolgivé the data for &he
generating partitions of the component measurable spaces. These
are just the "marginal subtotals§;§§ 3

““The "marginal" terminolégy apﬁe;;s in particular in
probability theory.

N
)
%
o 2
o |
1
e

| Definition: A probability is a measure vihich assigns the value 1

to the universe set.
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t> ] If u in (A x B, L' x I", w) is a probability, one verifiae
inmediately that u' and u" are also probabilities — the left and
right marginal probabilities, respectively.

Suppose one has an arbitrary product measurable space, -

Ty

t

(Hiexhi' 16121)' Let {1', I"} be a partition ¥f the index set
into two nonﬁ@mptiipieces. One may verify that the product space

is the same as

[gezn) * Bierade @perimy « @ezery]-

That is, we arrive at the same résult by firss taking the
products over I' and I*, respectively, and then the product of
Shesh praduens. ., \

== Thus an arbitrary product space can be expressed as the
product of two spaces in many wavs. Fgg_ggx_such factoring one

can define lefty and right marginals exactly as above.

-\
B Measurable Functions

Let (A,I') andsg}z") be two measurable spaces, and;g a
function with domain A and values in E:;
_g;naeenthtt, unlika measures,/which assign values toisubsets
of A, f assigns valuas téihndividual points of A. It is
customary to refer to the former type as set functions, and the

latter as point functionsfa\
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'“Eéfinition. £ is a measurable funetién (with respect to L', L")

@ O iff @axz Ee I {a[f(a) € E}% 1)

‘,,fﬁfwﬁﬁk The set {a|f(a) € E} is anllgd the inverse image of E, =o
that the definition may be parapﬁkasad: f is measurable iff the

inverse image of every E"»maasug%ble set is a I'-measurable set.
- If there is no ambiguity, ﬁhe reference to L', I" mavy be
omitted, and one simply writesfﬁ??f is measurable (or not)“l%?
~ We give some examplesi |
® s 4i} Let i' = all subsets otfh. Then any function is measurable,
3 GiiJ Let I*" consist of the ﬁwo sets @, B. Then again any
function is maasurable (ainea the inverse image of B is A, and of
g is gy ;
&éié% Let f be a constant . G&hﬁ%—iﬁ, there is a b € B auch that
,?iz;;:> 5(3’ -h for all a € A). gThan £ is msaauxabla. (Proof: 1If
b € E, ;he inverse imageﬁbf E isafi ipro'e E, the inverse image
is A |
fxva et A = B, and " a Z' Then the identity function,

o

\h\given by f(a) = ay'is mgasurable. (Procf: The inverse image
of any set is itselﬁ). f
1v4 Let (A,I') and (B,E') both be the real line with Borel
field., It may be shown that any continucus function is measurable.

bs
Tvi) Let (g ') = (B x C, E" x ") . Let g(P,c) = b, Then £ is

neasurable. (Proof: Let E € I"; the inverse image of E is the

set E x C, which alwaya belongs to E" x T'v,) ¢

i““W“@hts last axampla ‘has an important generalizatioa. £ is an

example of a projectinn operator.

Jest
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‘&

q)‘/:wj Definition: The projection from the cartesn.an productz Kie If"i to

the i ~th componant; spac:e A.t is the function wh&c&a assigns to
~o
the po;.nt @i) » 11, tha value a;@ *

[ That is, it picks out the }g:‘-th "coordinate” of any element

é?" of the cartesian product. This function is written LIPS These
)

projections are always measurable, the proof of this fact being
a minor elaboration of that gi*ven undexr exampl;\\%f

The following émeorem giVes a very useful criterion for the -

. measurability of a ;unction.

g
J

j&y | Theorem: Given measurable sgaees (A,2), (B, I:') and £ | : A+ By Jet

7 G be a collection of sets whzich gaanezlra:lmft '. Then £ is
GG— GZl measurable iff {a!f(a) € G} ﬁ L, for all G ¢ 6.

g_x;_g_gg_ : The "only if" staj&ement is trivial. Conversely, let F be

| the class of all subseﬁ;t of B whose inverse images are I~
o A measurable, By assumpféion, G < F, 'If__g € F, then B\E ¢ F; this

D follows from the fact 5£hat, since {alf(a) € E} belongs vto Z, so

| does its complement A\{aif(a) ¢ E} = {a|f(a) € B\E}. Similarly,

’%‘ if H ¢ F and H is countable, then uH € Fa to see this, note that
GH}GZ {{*lf(lj € Ij} ¢ I for all He Hs hence, the union of these sets over
H ¢ H belongs to I; but this union is {a|f(a) ¢ U#H}, the inverse
image of uﬂ. -A-h'o-ﬁ-e—-F—.- : |

— It follows that F is a s&-gma ~field. Since it contains G

which generates I', we must have F 2 I'. Hence f is measurable, .
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Let us apply this theorem to the case where B is the real

or extended real numbers, and X‘;Ehe corresponding Borel field.
;2‘ is generated by the cl;ss of sets (§1§ >‘E} where b ranges
‘over the real numbers, and the same is true 1f ™>¥ is replaced

by any of the three signéé*<“ﬁ %3?} “<", Hence to verify that

some tunction*g’is‘meaaurable. it suffices to check that

{altta) > b} € I for all real b, or to do this with any of the
;kgthe: three signs in plgce of“‘>‘ finwfacﬁvmiﬁmsaﬁiiees—ae
ggheck this for b raticﬁi%ﬁh) '

This proof above gives a paradigm far proving general
statements about all the msmbera of a stgnu-fialdz Prove the
property for a generating alasa? and prove that the class
possessing this property is elﬁked under complements and countable

unions. Another useful theorem proved in exactly this way is

: the following. §
il i

i
3

\Theoxem: ??yaasurabla sactionftheoraﬁ‘lanet (A xB, I' x I") be a

fﬁf} product space. For all E e (5 x £%), and for all b ¢ B,
e faltam) e E}e 2.
M
%L Proof: Let F ba the class Qf subsets E of A x B having the property

/:ES“E that F is alosed under eamplemantntian and countable unions.

sk Next, consider the mﬁasgrable rectangle E' x E", If b ¢ E", then
{af(a,p) € (B' x E")} = E'; and if b ¢ E", then this set = ¢,
Hence all such rectangles belong td ?. But these generate L' x.

" HH= g
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Suppose we are given a !unctiq& £. A xB=+C, For a point
2, € A we define !(a e *) to be thg function with domain B and
ranqe in C whose value at bg B is f(a » b). This is the right
k;gk' 3 -section of f. Similarly, for/ b ? B, the left b,~section of £

written f(', b ), is the functiqn with domain A whose value at
a g Ais f(a, ge). Here the se&s A and B may themselves be

cartesian products,

c:%,‘; Theorem: Given (A x B, L' x z"j and (C,Z), suppose shat g, ('iAXB-)Z\'(
:Eiﬁv AXxB=»C is measurable. Than all its left and right sections ~\og.hth;}

are measurable.

w,;fggfigggggs Consider any left sectioa_f(',_pgi. For any E ¢ I, the
set {(§,§)l:(§,§) € E} belongs to I' x I, since £ is measurable.

jgfj“§ ﬁenae {alt(a,b ) € El ¢ I', by the measurable section theorem

5f£f;g above. But this set is the inverse image of E under f(-,b ),

hence the latter is measurable. The procf for right sactions is

similar. L (7 B,

#“g el

Suppose one is given a measurable space (g,z) and a function
f{}g'* B, We shwll use f and I to define a certain s*gia-field

. _on By

} Definition: The alass. z'; of all subsets E = B havinq the
# property that {a]f(a) € E} & 8 is called the gggmawfield induced

by £ on B.
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o i L \",} R ; 6».
? It is-easily verified that z'-‘ is a'ﬁagna-fielﬁ,}\and that £

is measurable with respect to I, z' In fact, L' may be
characterized as the largest M:ma ~field on B such that £ remains

measurable with respect to z, z'
“h:.s approach also works in reverse. ASuppose this time | shat

"

(B, E') is the measurable spaca, and again f: A+B is given.
=" Sya { )
@' | De%initiam The class o L, of r’a.ll subsets of A of the form

{a|£(a) ¢ E}, where E ranges over L', is called the sigma-field
Sf’n“*"‘ﬁb o - e e -
é/" inversely induced by £ on A.

: 'r;.._i

tiaat £ is measurable with respect to I,i'. In faetj I may be
characterized as the simlleat ﬁ%&»tiolﬁ on A such that 5_

remains measurable with respect to I,I°'.
S F ;2:“ ‘
#/~  Induction applies to measures as well as to sigma-fieldsa

Again, one verifies routinely that 3 _5_.3_ a s«&%n-vﬁelﬁ,t and

@ﬁ'&» Dafinit:icm Given mehsum space (A,IZ,u), meaaurable space (B, £')
and measurable :Eu:mtion z: A + B, the measure, u' 3 “induced by £

P *} on L' is given by (2.4 3)
u'(E) = u{ajf(a) ¢ E} / 3)
,all E¢ I,

/ one eaail?}’ verifies that u’ is, in fact, a measure, As an

example,. take ‘the pxcduct space (A x B, I x I', u)gﬁ‘ the

component sp&ca (B '), }nd let fs A x B + B be the projection,
&
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given by g(g,b) = b Then, for any Ee 2'. we have, by (3)
N S ,f.,,.., S 718 s —//

s ST —

But this is pxecisely the definition of the right marginal measure
J

80 that this concept could have haan defined as the measure
induced on (B,2') by the projecﬁion of A X B on B, ﬁkaf course,
the 1eft narginal measure is that induced on (A,Z) by the
projection of A x B on A§ i

- These inducticns can ba ebmbineaz Starting with a measure
space (A,I,u) and a function ga A+ B, one may first induce the
sé;%a~tield L' on B, and theq the measure u' on (B,I').

Heasurability of functi?ns is preserved under a grﬁ%t

variety of operations. We gﬁnclude by listing a few results of
this type. The operations éhemselvés are guite uaafulT apart

A\ from any question of measux&bility.
K—-——‘?" \;

h 4
\ ,
gg nafinition. Given sets A, B. C and functions fa/A * B and g1 B -
\

<y fha composition ofaf §nd g written gef, is the function with
“domain A and range in C given by (gef)(a) = g(£f(a)).
. =

2 ~
ng:”‘ Theorem: Given measurable spaces gg,z), (B,X'), qg,x"); if fija +
fﬁD‘ B and g{:B + C are measurable, then so is gef,

,1r{fn proveﬂ merely notefihat the inverse image under gef is the
inverse image undar‘i ﬁf the inverse image underAgfﬁW\

We have uiﬁﬁuéyaéefinud the supremum of a set of extended
real numbersg~ aaxa&%q as the smallest number not less than any
X € E. Now suppose ﬁé have a collection of functions ;, all

extended real-valued with common damain_g.
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3
<

’ m v ;‘; v
M§Fk;§ve£initionz The supremum of F, wr;ﬁten sup F, is the function with
*;lg)‘ domain A whose value at a ¢ A is sup{f(a)|f ¢ F}).

§ ¥

; 3 if

o m

ggkgnaﬂinitien: Similarly, the iafig um of a set of extended real
numbers E, written 1n£ E, is %he largest nunber not greater than

§;1%,§ any x € E. The nfiﬂ ur of gollectinn F is the function whose value
at a ¢ A is inf{f(a)|f ¢ {}.

: 7
| Theorem: Let (A,Z) be a méasurable space, and F a countable
. collection of extenda& xea1~va1ued functions with common domain
f oo} v
(;;25 A, If each f € F is maasurabla, then sup F and inf F are

measurable.

product may be dezined in the usual pointwise manner; 8.9,

/ ~
Given two functions ?'9{/%.* reals, the sum, &ifferencebanﬁ_
(£ + g)(a) = 5(5);+ gla), If £ and g are measurable, so are their
sum, diffexen&g)an& product.
Similarly,fqiven a sequence of funationa_gn{lg + reals,

n=1, 2, ...,ftheix pointwise limit (if it exists) is the

function £ whbse value at a € A is lim sofp(@)e If all f  are
fmaaaurahle, ?&ea £ is measuxable.

) Given f: A+Band E s A, the restriction of £ to E,
[ //

7\ 7~
(’: %

written f!E@ is the function with domain E which coincides with
f there. fiven (A,2) and (B,I'), if 5.13 measurable and E ¢ I,

} then £|E fs measurable,
i};h“&“!hm - .i

: SQPE;Thearemz ¢iven a measurable space {A,z), a family of measurable
: spacas'ﬁ(si,zi)fﬁaya and a corresponding family of functions
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i
,1

a)
(fi)lexf where f, ‘vg B”} all i, laé g;WA + IIBi be given by

g(a) = (fi(a))’lel’ Then g is measurable iff all eof the functions

fl, i e I, are measurable.

/

Representation of the Real World by Measures: General Theory

£
i

We now have the tools to §uild a unified framework from the

three basic sets, Resources, gpace)and Time,
Histories

Suppose we had a compléﬁe description of a person at some
instant of his life. Thisf%ill include his ggggg“i(height, weight,
blood pressure, skills, at%itudes, thaughtg.-e%e« From our
previous discussion of thé set of Resources, this state may be
identified with a point in R. It will also include his location,

which is a point in 8. We may identify this complete description,

then, with a pair of pq’ints, one in R}L\ﬁ”cne inms _;. and thus with a
Qoint in the cartesian product R x 8. ‘

This is ﬁ;% a single instant in Time. To give a complete
lifetime picture of afperson, we must repeat this procedure for eqcl,
such instant of his ¥kfe. Suppose a person is born at time t
and dies at time’fz,;so that he is alive in the interval

/ be
t<t }fﬁgfgh complete description would thepArepresented

ety <
by a f\;mc::t;icnmL whose domain is {tIt £t s t } and whose range is
in R X S. Equivalently, it is represented by a pair of functions,
both with domain {gl}z 2t < t,}, one with values in R and giving
the person's state;at each moment of his life, the other with

values in S and giéing his location at each momens/.
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Next consider a machine. It is “borﬁ" in some factory, is
transported to another, lives out a prodﬁctive life there, moves
into simiiretiremant, and finally "dies?von the scrap heap. All
of this can again be described by a fugction whose domain is an
interval of T, and whose range is in‘g X 8.

An apple is "born" on the brancﬁ'of a tree, is harvested,
moves through the channels of trade;to a household, and ends its
existence in somebody's stomach. Ascertain rock was formed about
when the ﬁérth was created,;and wiil persist until the}ﬁarth is

=4

destroyed. And so it goes.

_ e one can think of
the world as a concatenation of piocesses of this type, each
representable as a function whose domain is an interval of Time,
and whose range is in R x 8. |

There--are certain problemémégnnected with this point of view.
First, by the léw of the conseévation of mass, "births" and
"deaths" are of=ceourse transférmations from one form of matter to
another. In principle this q%n be handled by our apparatus: The
apple disappears, but the pe?son who has eaten it becqmes slightly
different in state: less hqhgry, better nourished, Ggéghﬁé;;.

Second, there are ambiéﬁities in the description. Suppose a
handle and a blade are combined to make a knife. One possible
description of this event @é that the handle and blade both cease
to exist at this instant, énd the knife begins to exist. Another

possibility is to have thé‘blade and handle maintain their separate

existences, merely being éombined from then on in a certain spatial
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configuration. In this second approach,?“knife“ is not a
resource~type at allbtbut the name for certain spatia; pgnfigura—
tions of other resourées. ”(The.difficulty here is e
that discussed eaxrlier in the Qppendix on Resources of gectionﬁé.
If the program suggested there;could be carried out, it would avoid
this problem as well). The sblution lies in making conventions as
to what is to be consideredAé resource, as opposed to a spatial
configuration of zgher resoérces.
o A third problem concenhs resources that are "continuously"”
spread over space. The precise meaning of this term will be taken
up later, but for the presént we may take it to refer to such
resources as air, water, ;oil, wheat, cemeng)and steel, as opposed
to people, animals, carséand machines which are more naturally
thought of as "discretefjparticlesﬁizf All the examples we—have.
given are of the "discréte" type, and the question arises,sgan
ene describe the contiﬁﬁous resources in the same terms? The
answer is yes. fnrfaeﬁngne of the great advantages of the
measure-theoretic appéaa;h is that it can handle discrete,
continuous)and mixed ﬁistributions with qual facility. We shall
takéithis pointiup}léter when the approach has been more fully
expounded. ;

We now return éo the main line of argument: -Fo—repeat, the
world is being viewéd as a collection of processes, each of which

can be represented as a function whose domain is an interval j%

Time, and whose range is in R x 8,
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We need not exclude the possiﬁility that a given process has
no birth, so that its existence sgretches indefinitely into the

past; or that it has no death, sdkthat its existence stretches
'—r,{/i L\- 5
indefinitely into the future; onAnelther birth nor death. The
.Nu'éﬁhafollow1ng definition formalizes these considerations.
: iﬂtkna} vuue_,‘z;\ BXS [ and,
“*—Lnefinitions A hxstogz is a function whose domain is a closed oIe

intervalbi thatwis a subset ef (the real line) of one of the
following four types: either {tlt £t < £, }NXYwhere £ <_§2 are

real numbers), or {tlt < tZ}, or {t|t > ty}yorT itselfx~eaad

,TriThe history of a person —-ehaewis, a history svsich takeﬁ
on only person~types as valuee in R~ may be referred to as a

biography. ).
ﬁﬂ#y Definition. For a given history ‘h, the function whiech taked on the

fgzwf value S (es) when h take on the value (r,s) will be called the

itinerary of that hisgnry.
%~ : , t:E

K#% Definition. The funct;%nuwhéeh takeefon the value :A(eR) when h
P

takes on the value (f,s) will be called the transmutatioﬁlpath of

g that history.

R

—

history in the course of its existence; the transmutation-path

Thus the itine}ary traces out the locations occupied by a
sl ]

traces out the stetes in the Resources set through which the

history passes.



\V

~93

'\ For example, if we take the biography of a person, his
itinerary will trace out all his movements, trips, visits, migra;
tions ‘and commuting patterns over his lifetime. His transmutation-,
path will trace out his progress from infancy to childhood to
adulthood to old age, with the accompanzing moods, experiences,
activities, speech, etc. N f

V We sheil denote the itinerary of hastory h by _ h , and its

¢
transmulatlonipath by;pr. Thus\g}r takes values in R, and hs takes

— E

values in S.

Wow let Q? be the set of all possible histories\r thétwis, the

set of all functions from closed_g—iqiervals to R x 8 (not merely
those histories realized by an actuai "particle”). We now show
how the world may be described as a‘keasure space (2,Z,u) with
universe set Q. :

The measure u has the followihé intuitive interpretation.
For a set of histories E ¢ I, u(E) is the total "mass" flowing
through the locations and forms at the times indicated by the
various histories of E. This vag#e characterization will be
elucidated in the next few pages..

Along with the measure spacei(ﬂ,z,u) we shall consider certain
families of functions, all with domain a subset of 2, and with
values in various product spaces built up from R, S, and T. Each
such function corresponds to the:asking of a question, the answer

to which appears as a measure oﬁ»the space in which its values lie.

S

B ot Formally, let f be one su¢h function. £ takes values in a

b

set A whieh is typically of the form R~ X 8§ x‘?g for some non+r
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negative integers a, b, Cs though it may be more complex. We

assume that R, S8, and T come supplied with appropriate s&gma fields,
Zr, ZS, Zt, respectively, and these determine a product s%gma—field
on A. Then for any measurable subset G g_é, we assume that the set

of histories

> {n|£() ¢ 6}.

> belongs to Zfi-thé&gﬁs, we assume that £ is measurable. £ then
induces the measure u onto the measurable space A, and this induced

measure is{ intuitively,uthe answer éo the guestion embodied in the
f A ‘-’.‘\ .
function £, We now illustrate, beginning with specificszvthen

2
)

generalizing.

,'i% Cross-Sectional Measures

Consider the question, "What is the total quantity of water
in Lake Erie at Joon, January 26, 1970 (in tons)?™ The answer is
given by the u-value of a certai@fset of historiesc E. Specifi-
cally, E is the set of histories;ﬁhose transmutatioﬁﬁpaths at the
moment Woon, January 26, 1970, li; in the subset of R-whinhais
labeled "water", and whose 1tinerar1es at that instant are located

o 5%
in the region "Lake Erie." ° E can be written symbolically as

o

\‘}“Lf’/ Questions of the general form;m“What is the total quantity of

Vot ,gi:”Lxesnurggﬁmgfhfzpes F in region G at time }7" (@f which the above

\ 6 is an example)*-ma be called cross—sectional questions., It should

b(ﬂoon, January 26,51970) ¢ (water x Lake .E'.rie)}.J
: Y

N\

be clear that any cross-sectional guestion (with F ¢ zr,tg € Zs'

,,,,,
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t [ T) has as .answer the u-value of a certain set of histories,

'M? {2 ‘;H lﬂ‘)

Pl A |
87

\.&

(aln(e) € Fxcl, 42)

A

ﬁh&ewas consider the logic of the situation. The various drops
or molecules of water in lLake Erie at the moment in question had a
variety of past histories: some fell di?ectly as rain, some flowed
in from Lake Huron, some entered as sewage, some as industrial
effluent. And they will have a variety of future histories: some
evaporating, some flowing out to sea,;oome entering samples taken
by pollution researchers, -ebte. AllAgi these combinations, and
more, will be in the set of historie? (1). But cross-sectional
questions are not aimed at eliciting this detail; instead they
lump together all such histories}“ﬁfom whatever source derived"” and
"to whatever destiny aimedﬁ} and tﬁis is just what sets of the form
(2) do.

Before giving further exampios, kef;as examine the assumptions
behind this whole approach. At first glance, what—is—involved
seems to be a conservation of mass assumption@ the same total

Py
"quantity of matter" is carried alteng through time along the paths

traced out by the histories, m&rely changing its form and location.
””Ttﬁke*is redistributing itself over R x s). And, indeed, this
literal interpretation of mass" is perfectly adequate for many
kinds of histories. }
Trouble arises when oae;considerg biographies of personsg

~It—is—elear—that mass in the literal sﬁnse changes as one advances
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from infancy to adulthood to corpu%eat dotage. But éaé;ﬁaaﬂa
certain freedom in choosing measuréﬁent units. In the case of
resources that come in "natural u@its;f¥(éuch as people, cars, or
cattlé)i-it is common to measure;in terms of "number of entities"
rather than in terms of ‘number;of pounds.‘%g/
Lhgtl sk Pl

Which measurement units e choose? We enunciate the principle:
choose measurement units in such a way that the resulting "mass" is
conserved as one traces out the path of histories through time.
Thus,xfor most social science purposes the "number of persons"”

measurement approach is the correct one, because it gives each

person the constant "mass? of 1 over his lifetime.

ﬁ~///////;rom now on we @&nﬂﬁ#'drop the quotationfﬁarks around "mass|,

it being understood thab’the appropriate units are being used for
the various histories.?awheehezathey—be*pounds, numbers, acres,
yards, board—feetgeee;£ Two points should be noted. First, there
is no theoretical objection whatever to adding together measure=
ments using differen; units for the different components of the
sum., \DM S0 long as the various units are known, the measure u carries
the information w1§hcut loss. Furthermore, if we switch from one
system of measureg;nt units to a completely different system, a
simple formula qubles éaéfto translate the 0ld measure u into a
new measure u' iéterms of the new units{}9/x

-~ Second, it ?s not clear glgriari that one can define measurel
ment units in séch a way that the Aesired goal of mass conservation
is attainable, even approximately. For further discussion, see the

Appendix 'ho%awc
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To generalize, consider the function f (t being a fixed real

A
number) wk&eh assigns to history h the value h(t), which is a

point in R x S, Here the domain of f consists of thesg histories

e

which=are in existence at instant t. f is assumed to be

measurable (with respect to I restricted to the domain of ft; and

with respect to Er Es the-e&gma ~field of R x S)@ £§ induces

,v

the measure u onto the space (R x s, 2 X Z ).
What value is assigned to the measurable rectangle F x G

(c R x 8§)? The value wheeh u assigns to the inverse image <=
=i __-_._//

A\

Sl m e Fx ok

But this is the same as the set (2). The measure induced by.—:_‘:'t

is the cross-sectional measure giving the distribution of mass

over R x S at time t. This measure provides the answer to any

question 35§;w$§§es~&e~ask concerning the world at time gﬂdﬁuthat

'ée; to all possible cross-sectional questions. All this informa-

tion is contained in the origina1 measure u over the space of
possible histories (ﬂ,z)ckand is extracted from that measure by
means of the mapping ft' Let ui be the cross—sectional measure

for time t, so that

. (E) = ui{h|h(t) € E},

- for all E ¢ Z )

s
In general, one will not be interested in the entire realm

R x 8. A regional geographer, who wants to know everything about

Austria at time t, for example, will restrict ut to R x Austria.

Sk



98

~@nmthewethe;;%ené, someone who wants to know everything about
steelmaking at t ol wherever it exists, will restrict ”@; to F x 8,
where ' F is the set of resource=types having to do with steel?
making (?re, coke, slag, blast furnaces, steelworkeré, ete. -In-
generarzone makes both restrictions, narrowing attention to a sub3
set of resources in some region.

This is perhaps the time to bring up the question of practice.
Even after restricting ocne's attention, the resulting measure is
a very complicated business. In practice, doean“twonewtnve to
simplify drastically-in-order- to say anything at all?

-~ There are three answers to this question. First: oeegdees
indeed simplify in practice. The most common method is to
aggregate into seme simpler sub—s*gma field, usually one generated
by a finite partition. The rsgult, of course, is still a measure.

The second answer is that;it is possible to simplify without
aggregating. Practice demandé that a description be specifiable
by a small number of numericai parameters. Aggregation does this.
But it can also be accomplished by having a stock of standard
measures available, indexed by a small number of parameters. If
the stock is well chosen and versatile, éne can find an element
&hieh is a good approximation (or "£it") to the actual measure.
Examples are the Pearson family of distributions in statistics,J\
and the approximation of functions by polynomials or trigonometric
sums. Indeed, the general oractice of approximating things by

other things in a smaller, simpler family is a universal principle
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of scientific work; i&ééé:literatureggexisfgon how to find the
best approximation,‘or test fork“gpéaness of £it®,

The third answer refers to thé division of labor between
practical and theoretical work. Consider numerical calculation.
In practice one needg only the rational numbers (or even less -~

N /«-'-\\ o
say -these rationals of the form?N « 10 %0

..... /

for theoretical work this would be a cripplingwrestrlctiong, The

» N an integer). But

real numbers are needed even for evolving and Justifyigafpractical
procedures cf numerical calcqlation itself.

“ In the same way, even if the only measﬁres ever to be used
in a practical way are the aggregations into finite s&gma ~fields
(a premise we do not grant), oae would still want to use measurefh
theory to gain theoreticai‘insight.

We now return to crqss-sectional measures. It has been

mentioned that "complex" resources may be thought of as spatial

configurations of simpl@r resources. We are now in a position to
pin down the concept of;“configurationﬁga Consider a certain
building at time t, fof example, which is a configuration of bhricks,
wood , plastﬁr, glass, aﬁe. Let E be the region occupied by this

2%

building.{”” The configuration-wk%ch is this building is then

simply the cross-sect?onal measure W, restricted to B x E. This
restriction tells us ﬁow much of eve;f kind of material is present
in each part of E, which is just the information we need to
describe the buildin§ completely. -And in general, any "spread-out"

entity at a time t méy be identified with the cross-sectional
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measure U, restricted to R x E, E being the region occupied by
the entit;‘in question.

This [takes caré; more or less) of a spécific entity at a
specific time. It is also of interest to define the concept of a
;ZR_ of configuration, not tied down to—sq; specific fregion or
t1me~1nstant. We shall delay giving such a definition until
certain further mathematical concepts have been introduceégﬁwﬁﬁ

Different configurations with the same R-marginal may beh“
referred to as isomers, to borrow a term from chemistry.

w&&:ﬁarbye have been dealing wiﬁh facts involving one point in
Time., We né& go on to facts involéingﬂgyg’points in Time, which
introduces transformations, transgbrtétionjand storage:‘

For example, how many peoplg.alivé at timeptiAgéve died by

a
time t, > £;? The gnswer is <
o 5 (Ls,§>

Cxup

U 2lis not in the domain ofw#}h 3)

h

'bepl) € person, and t

The set of histories in (3) is:exactly that called for in the
question., (It is assumed heré that for histories of this type the
measurement units are "numbefs of entitxesﬂ.Jasm&tscussedmabgvef:
If instead, t2 precedes;tl, then (3) gives the number of
people whe-wexe born between t, and ty Ghd weere sﬂ,'rahve Ei f1
How many people migrated from region Fl at time % to region

_F, at time t2 (t > ;1)? Tbe answer is )

wdhlh(t,) € (person x F.), and h(t,) € (person x F,)¢t. *F#T
el L] -1 A e -2 .
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amtnuikg?»eaa,should qualify this statement. \(4) gives the number
of people whe-wexe in region F atwgl and in regionﬁ?z atﬁ}z.
Hence, firstjcé—aii it says nothing about their itineraries within
the interval; these may involve all sorts of spatial maneuvers.
Secoﬁd;x, it gives the number of people physically present in these
regions rather than being resident in them, change in residence
being the usual definition of migration. Residential location
could be represented, but it is a more complicated concept than
physical location, involving mental states and legal documents.

As a special case of (4) we could havey?l =h?2 = F, Then

(4) would count the number of people who stayed in region F
o i
throughout the intexval, but would also count those who wandered

out of the region after time tqrbut returned by time t,.

How much cotton yarn at time‘gl has been converted into

F

shirts at_FZV(tz >1?1)? The answer is ,1‘535?
&1
u{é‘hrgyl) € cotton yarn, and h.(t,) € shirt%}._ 15)

"fLQMV (5) gives the mass of the set of histories whose transmutaS
tion&é&th was in the resource-set "cotton yarn" at instant t, and

in the resource-set "shirts" at 1nstant t,. Again some qualificaZ
tions are in order. As above, thére is no restriction on what these
histories do in the interim pe@iéd. More serizus is the fact that,
depending on how histories are défined, (5) may give a "wrong"

answer. Recall the discussion of knﬁﬁes, blades and handles “

:%7 )%hera it is pointed out that when a given history is "born"
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or "dies"™ is partly a matter of conveqiion. If things are defined
50 that cotton yarn ends its existoncé when converted into shirts,
then (5) gives the answexr zero. The diftisulﬁy haarkins back to
the problem of defining hheeﬁasaﬁﬂqbs set R in a satisfactory
manner.

/{JCL////;;stead of considering questions piecemeal, let us set up a

@//measure answers all such qgestions systematically. We have
atready considered the case of a single moment_go and the
rasulting cross-sactional measuré on universe sé; R x §. Now we

e

consider two moments, and get a measure over (R x S) Such

.

neasures are called trwo-»-timingf (or pexhaps doubla-cro%s~sec¢ional).

Given two moments, tl and t2 (w&%k~t1 <t ), define the

function £, . by
L3

£e < s

The domain of ft' ts is thé subset of histories which-are in
1 i

existence at both times t gand t,. It is assumed that £ is
"lf "“‘2 t/l 'tz
measurable. Hence from w it induces a measure g% g, o0 the /
4 07 e

_ t
1
range space (R X § x R x S) :

>

The intuitive maaning of "t @2 is as follows. Let E and F
i g

he measurable subsets orER Xx 8., Then U t & (B x F) is the total
f ingdteg B>

mass of all histories having a value in E at moment t,, and in F

at moment t.,.
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Again, we may let the sets E and F themselves be rectangles

in R x S: Let G

Gy, 62 [ zr and H

T ):s_..'" Then

s

“.Si:ﬁﬁ.ngl x Hy) x (Gy % Hy)]

is the mass embodied in the histories whieh—are in resource set G,
LAt
and region H, at time tl, and -meve—te resource set gz and region
%2 at time tz. » { i
This measure gives no information concerning histories which
are "born" or "die" between_g:1 and;gz. To answer such questions
systematically)géénean proceed as;followsﬂx (ﬁetails concerning
measurability are omitted). We add an artificial point zo-@
signifying non+existencepa'to the set R x S, \
- tl [ tfz
defined as in (6), but its domain is now all of Q3 if history h

is again

is not in existence at time t.;then h(t ) is to be understood as

Zg. This extended function induces a measure ut . onto the
= ] b G
space [(R x 8) U {zo}] i ébf*example,

S = ) ::.

> ¥, . [(person x 8) x {z_}]
Z§1€52: s -2
would be the same as (3)\4-£he total number of persons alive at
time ot who have died by tz.
Having gone from one to two timelpoints, it is simple to go
A Ih‘;mrc
to three, to a finite, or even to a countabl% numbeq#ofmtime

-points., For example, choose a measurable setg:t c [(3 x S) U {zo}]
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7“fo’ ‘ 2 ) :

.. “/ for each integer EK(#Z + 1, * 2,..). The measure of flo <ot
S A e : ,; 5. )

S {hln(e) € Eot=0, +1, +2, ...}

= gives}the m&ss of all histories paséiné thréugﬁweach of the sets
E, at the respective integer times. One could even do this for
all the rational instants_g, since these are countable — as good
a monitoring system as one could hope for.

” e
>} } Production and Consumption

A broad category of question§7concerns births or production
over time, such as, "How much cornfwas grown in Iowa in 1948?"’0{)
““"How many people were born in New York in 19342"=

2

' To give a general method for draw1ng sgch descriptions out of
\ 3 ke g & P
the measure space of histories (9” Zou), we first restrict Q to the

om\%, / subset _ consisting of all hlstories whé:ch“fhave a date of birth =-

ILI "

eV

ehaemis do not exist lndefinitely fpr back into the past. Then
define the functionrga Q_ - §‘x § X gﬂby{“ (2 fﬁf;

£(h) = (h(tl)r tl)' ~H-

where t, is the moment of birth of the history h. That is, £
assigns a pair, the second ?omponent of which is the moment of
birth (= the earliest timefat which h takes a value in R x 8), and
the first is the valueowhi;hng;takes at that time.

In terms of £, the aﬁount of corn grown in Iowa in 1948 is the

measure of the set of his?ories
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/ (B2
{h|£(h) € corn x Iowa x 1948}, 8)
since (8) is precisely the set of historieg:whfehmase "born" in
the time interval 1948, whose transmutatithpath starts in the
resource~set “corn", and whose itinerary starts in the region
"Iowal, '

Assuming f to be measurable, it induces the measure ¢

Oh. A ;
e (restricted to 2 ) onto (R X 8 x T, I x I x I.). betcus call
SHLL%ﬂfﬁ o s e E 8 t
9 *” " this induced measure Al‘ On reetangles Al can be given a simple
A‘“LA% intuitive interpretationgs ILet E EZ; FE Zs, Ge¢ Et, then E €Y

r
J
‘A (E x F x G) = total mass of all histories starting at some instant

Qgtﬁfﬁr fevg in region F in resource-set E. Thus Al gives the distribution
of "births" or "production" over ggeonweesﬁXSQQeg)and Time .,

By an argument exactly parallél to the one just given we can
describe the distribution of "deaths"” or "consumptionfil Omitting
details, we restrict 2 to these histories having an end in Time,
then take a function g having as:value the pair consiséﬁjof the

at
date of death, and the point in R x S occupied by the history ef

that moment. Assuming g measurable, it induces a measure,ﬁhz,} f' XL\\
= : ' \eanbds

3 ] q

onto (g x s xT, Er x Zs x Zt). The interpretation of kz on $h§z;

N

rectangles is:’
h (E x F x G) = total mass of all histories ending at some

penod )
instant in in region F in resource~set E.

b
Finally, we consider the joint pattern of production and

consumption. First, restrict © to the set of histories having

both a beginning and[an end; call this ﬂo. Now define the

function



given by k(h) = (£(n), g(h)):)

<?;;;;e f is defined by (7), and g is the éimilar function defined

above. That is, 5(@) is a gquadruple giﬁing the point in R x 8

at which h starts, the time it starts, the point in R x S at which

it ends4 and the time it ends. v: ‘ od.
On (g x 8 x T)2 we take the sixtnple product field (zr X Zs X xga
i e — FRsss
t) Since f and g are measurable, so is k. Let v be the “*

measure it i;EPces on (fR X 8 x T)z; (E X Z x I )?l)gn rectangles
v\ i

the inte%?retation of v is as followsg

llL».

- Let E,, E E € 2 ; Fl, F e 2 : Gl’ G € Z then v(E x F, %

1
Gl x Ez b Fz x G, ) = total mass of all historie;tstarting at some

instant an f in region F, in resource—set El' and ﬁnding at some
instant in,\é2 in region F, in resource—set E,. ¢

If wéj&pink of (Rx 8 x T) as the product‘;f (R x 8 x T) by
itself, then=h1 and Xz are prec#sely the left and right marginal
measures of v, respe :.‘I'\ve).“  )

By this time the main 1ines of development of our descriptive
program should be clear. yExtensive magnltudes" in general may be
represented as measures, and a large variety of these may be derived
from one underlying measure u;on the space of histories. We could,
ir—faet, extend this sectionhindefinitely, systematically deriving
more and more complex varieties of data from the underlying measure
space (2,I,u)3 but-this would begin- to- strain the reader's patience.

%

"\
—~—)
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jb(As an exercise, the reader is iﬁvited to puzzle out how the
fishing example that begins this chag%er may be derived from
(Q,Z,u). This is more complex than g&r previous cases; because,
€.9., codfish are not produced in ﬁﬁa port of Boston, but arrive
there from elsewhere. The solutioéwi as a restriction of a
measure over R X § x Tgi-involvesébsunting each history the number
of times it enterﬁpa given subset of R x 8, y o

‘ éne final comment on the sccpe of this program. Our examples

have been drawn exclu31ve1y from statistical data i-thabmés- the

kind of data that appeaﬁ’ln tabular numerical form in census
reports, etc. These data have a certain precision whieh makes
them easy to discuss. However, since our model deals with the
redistribution of matter in the most general sense of the term,
both in location and in form (= resourcelstate), in principle it
should be able to handle "1§terary“ data as well-#(history,
travel, biography, belles ;éttreéb ete. ”:he swept her up in a
passionate embrace" 222£§,£e translated into the language of

measures; the only concepﬁual difficulty lies in the vagueness of

the description. f

!

Appendix on Histories

One disconcerting féature of our mo§el is the extreme

generality of the conceét of "history@@ Between birth and death

_any function with value% in R x 8, however erratic, is an

admissible history.
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_> This in itself is not disqualifging. Ifﬁxin the real world,g
frogs do not turn into princesfkand‘br. Jekyli does not become
Mr. Hyde, this is indicated by assigning the measure zero to the
appropriate set of histories. But élfficulties remain.
Trouble arises from the dlversity of measurement units. The
more a given history wanders ogér the set of Resources, the harder
Vi://'it becomes to assign units in %uch a way that "mass"” is preserved
C}S.. over time. This |suggests thegfollowing kind of modification - (or
rather, restriction - on the;;et of histories Q. The set of
Resources is given a partitién, é into measurable subseté?¢such
EeR( that the elements of any sat E @ R are similar";:o @ach other in
X some sense. In partlcular, they are similar in the sense that the
same kinds of measurement unlts are applicable to all the elements

of any given set of the partltlon. zThus ené would not put into

-

the same set resource types witdeh come in ™natural units® and //

/ £ /f
resource types wideh lend themselves to measurement by weight) .
Thig=ds ak

line of- app&eaéhw
Having set up tha partition, R, of R into fairly "homogenecus™
subsets, we now admit only these histories whose transmutation
paths stay entiralng1tnin»some one set E € R. This restriction
on the sét of histéries'alleviates the measurement unit problem.
Bach E € R may now be tagged with 1ts "natural" unitl{whetherwrt
(Pounds, numper of entities, acreéﬁ“etd} In setting up a smqma

O
field on the restrlcted ¥, one may begin by taking the set of all
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/ 4
histories with R-values in set E to be measurableﬁgfor each E € R,

(In contrast to R, Space requires no such "breaking ug”. Because
of its homogeneous nature, the wandering of itineiaries over S
creates no measurement unit problems.)

The restriction just discussed is a kind df “boundaéness“
constraint, limiting the "distance" over which any transmutation<’
path is allowed to wander in R. A different kind of restriction
also suggests itself ;-one prohibiting "disabntinuous jumps§;§
(The quotatlon marks are used in this paragraph because so~far we

have not deflned any structure on Ror 8 which would give meaning

to them.)2

NP [
Without going into amy details at—present, suppose the cong¢ept
of continuity for histories has been défined, and in such a way

that the maximhhggturébnon facit saltum, is validf%garThis=ﬁaet /@5}
S 3 \

-again does not by itself disqualify qﬁr original schemes It just
means that measurable sets of &iscog%inuous histories get assigned
the value zero, However jin this cgée there maybe some advantage
to restricting our original Q to tﬁs simpler subset of continuous
histories.

Finally we mantion the measérability problem on the space of
histories. Asnwe-hawa—é&scusseéy thxs*;roblem of identifying which
seats gf histories correspond to observations that might be made, at
least conceptually. The crlterlon of "conceptual observability"
is itself vague; but even if it wvere pinned down one would still
have to classify systemat1ca¥iy the possible kinds of data{ and

find the subsets of Q corresponding to each.
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*WE“?&tﬁtﬁwﬂﬁWmtemthe*axp§sig&enwefwmeasnre~thee¥y1 This
section differs in style froﬁ?zii’énd 2.4 in two respects, First,
the ratio of theorems to definitions is higherz>{wg shall be
more concerned with stating the results of thgséheory, and less
with merely outlining the concepts of<the—-theory. Seconq,we
shall-give illustrations not only from pure mathematicsﬁ but
also from the applied concepts we have been building up kg, 8, T,
histories, etc.) No confusion should result from this mixture.

As Sefore, we ah#kl omit proofs unless they are very short or

instructive, or not readily available,

Finite and Sigma-Finite Measures

L]

A first é%stinction is between finite and infinite measures,

the latter being those that takéhbn the value « at least once.

Since a measure attains its maximum value on the universe set

‘. h
A, a measure u is finite iff u(ﬁ) is finite, and infigite iff

ua) = =

;féfﬁefinitionéé Consider any function £ whose range is in the

,__ﬂw—

extended real numbers. f 1s flnite above iff it never takes on

the value +», finite below iff it never takes on the value -»,

finite or real-valued iff it is finite both above and below,

w

On the other hand, £ is bounded above?(bounded below) iff there

is a real number I such that £(x) < L (f(x) > Lﬁ for all x in
the domain of £, £ is bounded iff it is bounded both above and
below.! Equivalently, £ is bounded iff there is a real number L
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such that —L < (x) < L for all x in the domain of f, which can
also be expressed by writing |f(x)l < L,yﬁll X, vertical bars
indicating the absolute value of a number (lgl = a if'g > 0;
|aj = -a if a < F0).

-~ Note that f bounded above, below, or both implies £ finite
above, below, or both{ respectively, but thgﬁ the converse is
not necessarily true., For example, the ;déhtity function
£(x) = x on the real line is finite bupfhot bounded.

However, for measuresﬁlthe progefties "finite", "finite
above" "bounded", and “bou;ded abdQe” are all equivalent. To
see this, first note that measures are automatically bounded
below, since they are nogkneggtive; second, if y is finite, the
real number u(A) provides anfupper bound : u@g) < u(a) for all
measurable E. Frem~new—cn§fthe terms "bounded measure" and

"finite measure" will be used interchangeably.

A related very lmportant concept is aégmanfiniteness.

-W o
f‘?«t

. vgugf[Pefiﬁition' Let (A Z,p) be a measure space. M lsas&gﬁn-flnite

e

iff there is a countable partition G of A into measurable

S

flnlte.

B [ Exampless
5,,e—‘””‘(#ffr} Any flnlte measure is ségma -finite. (Proof: let the
C:) partition Q have as its only member the universe set A itself).!

2.6Ei) Consider Lebesgue measure on the real line. This is
certainly not finite, since it assigns the value « to the entire

line. But it is &égﬁa-finite. (Proof: take the countable

V
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measurable partition consisting of the sets {fln‘i”g <n+ 1},
where n runs through the integers 0, +1, +2, ,:T};u is finite

on each piece - in fact u{x|n < x <n + 1}-5 1, a1l n).

u,-;g

ii4) Any measure whieh assigns the value » to some singleton
set {x} is not.sﬁgma-finite.(Proof- fer any partition G, if

v

x E G € G, then the restriction of u to G remains infinite.)
fiv% As a less trivial example of a ncn—s&gma~f1nite measure,
let A*Pe the real line, I any~aégma—field on A, and u the
egg;g;ggien measure (u(gE) = number of points in E). (Proof:
&}et G be any countable packing of measurable sets such that

u(G) is finite for all G 6 G; then each G is finite, so uG is a

‘ countable set; since A is uncountable, G cannot be a partition).j

The importance oﬁ sigma-finite measures stems from two
facts: gﬁhey have many useful praperties not shared by measures
in general, and moat measures ﬂ%&eh come up, even in theoretical

investigations, a;e s&gma-finite.

Atomic and /NonrAtomic Measures

We havezgésaady mentioned infermally the distinction
between resgérces which-are typically distributed "discretely"
over Space;;nd those whieh—are distributed "continuouslxg&«and
we now wa§¥m%e define these concepts rigorously and abstractly.
Actuallgﬁit~eurnsw®u¢@thatﬁ; two entirely different
concepg; explicating the notion of "continuous distribution",

one qf them involving a single measure, the other a certain

relation between two measures. We give the fifsﬁ'éne_nqwg
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pr Definition. A measure u is nonzatomic iff, for any measurable

‘i}ﬁ set E for which u(E) > 0, there is a pair of measurable sets F,
Z G such that FN G =g, FU G =E, u(F) > 0,and u(e) > 0.

Wﬁgmgw”“;”

i

can be split into two pieces, each of positive measure.

Briefly, u is non-atomic ifffény set of positive measure

A ,Examples' gﬁ
RSO C——— , f'
{4) . It may be shown that gébesgue measure on the real line is

e

57
4
i

non+atom1c. Vi

S

%i:+- Let u({x}) > 0 fqr some measurable singleton set {x}; then

- (The converse éf this statement is not trues There are

()

measures for which u({x}) = 0& all x, yet which are not non+

atomlc)\ ff ; /fﬁ@f Z

-~

: i}? Definitlon- Gifén a measure space (A,I,u), a set E € I is called ~
an atom for;ﬂ iff u(E) > 0, agd, however E is split into two

XEET\ measurable ‘sets F, G (Fné=¢g,FyU G=E), either u(F) = 0
>

4’4‘!
or u(G) = Oﬁ%(Thus a measure is non+atomic iff I contains no

atoms.);;
&jf“’( e At the other extreme we have the /

i
e bals

q&, Definition: Let (A,I,u) be a measure space. yu is an atomic

N

A

' maaga¥e iff A itself is an atom, e
£ /7@/@

9 “That is, u(A) > 0, and, for any E € I, either u(E) = 0 or

u(A\E) = 0.

If y is finite, then u is atomic iff its range
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congists of exactly two values, 0 and u(A). (This follows at
s o

onﬁe from the-equation u(A) = u(E) % u(A\E) and the definition)?

L?efinition: ¥ is s@wplykconcentrated iff there is a pcint‘g e A

having the propertys:

£

.6 1)

Coevr=2=2

M(E) = 0 4f a, ¢ E,\u(B) = u(a) > 0 if a € B, 41

for all measurable_g.

A simply concentrated measure is atom;éé)glthough not all
atomic measﬁres are simply concentratedtyéhe latter is the most
important kind found in practice. Chgé;ing an arbitrary point
a,, an arbitrary positive number fqr;u(g), and u according to

if) gives a simple recipe for consﬁructing atomic measures (the

pointng need not be unique, in general).

/¢L~ Deflnition. u is a~aigma-atomic measure iff there is a countable

f;:) measqubli partition, G of A, such that G is an atom for all
-.,{
G. Otherwise expressed is -atomic iff the universe
;ﬁﬁégbkh_g_e Xp ¢ U s&gma

set A ‘can be split into a countable number of measurable pieces,

! such that u restricted to each piece is an atomic measure.

q%a;Theorem: ("atomic decomp031tlon theorem") Given measure space

N\ (A Z,u), with u. s&gma finite, Then there is a set E ¢ 3 such
™ Ai‘ press
; +__that

\lggi) u restgicted to E is non+atomic,-and

@ (i) u regtricted to A\E is sigma-atomic.

g L%,” (£ amoTher sal salishysh ‘ Mie Thevrens ; ey Mm(ENE') =0
3 ; / Y < 1 i et "’ o c il
fhd A LENEY 50 1B s ol 65| Wwighe Fuy .L\i.,V'moY(:, iLc ¢lOm¢
i 7 S ) t 2’ '

'o

s Any 5 Saeh </\Q:~:-»‘ﬂ“";>aizifw-‘; mav Le Pq""ﬁﬁf sbl wwels Mgt

\ A - 2 \ o 2 fe
6 /S 1Ay, velalisin 5/\.(,:3 &4 sctWed - Ca el Pe Y‘ o(' :&,T@‘m i
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This is the first of several basic decomposition theoremsﬁ\
whose aim is to represent measures as built up in one way or |
another from simpler measures.

:gﬁggi’ We illustrate with a real-world example. Consider the

"~ rural-urban distribution of population over the surfacé of the
Farth, It is a useful approximation to think of the urban
population as being concentrated in cities, each 1ocated at a
single point 22 the Farth's surface hqgay at By az,,..fa-while
the rural population is "smeared" over the surface. If I for
this example is the Borel fxeldﬁ “so that all singleton sets
{gi} € 2 3f;hen an atomic decompositibn is elearly given by
A\é = {al, ays «ss) » That is, on, this "urban set" population
distribution is s&gﬁa—atommc (eaah gingleton set {a } being an

g atom), and on the complementaryf"rural set" it is ncn+atomic.3x//

Having decomposed u atomically, one is then in a position

to take advantage of the spgcial properties of each part. For

non+atom1c measures the fqilowing property is very useful,

'gﬁP4Theorem' Given (A 2.8, with na non+atomic measure. Aet u(E) be
finite. Then, for any?real number X such that 0 < X < u(E),

+there-is a set Fe 2 such that u(F) = X.

A -i‘ A

[Ef U is flnxte and non+atom1c, this-means—that it takes on

every single real value in the 1nterval from 0 to u(a).
- Suppose nexttﬁham # is infinite but sigma -finite. It follows
easily from the definition that, for any real number x, u

§akes on a real value greater than x. Combining this obaprvation
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(1 &~
with the theorem just stated, we conclude:  An infinite, sigma~
finite, noqigtomic measure takes on all positive real ngﬁﬁers

as values,

Kﬁfa\ Inte . @ﬁﬁ
L gration r
>/

We start with a measurable space (A4, E).{ The integral will
be a certain function wh%eh assigns an axtended real number to
every pair consisting of i) a measure u on (A,I) and (11) 2
measurable function £ with domain¢§, and with values in the

125

nonfnegative extended real numbers Our notation for the

integral is

o) (\"} oD
> 2‘ ‘;}i & A 0 et \
\ 2 ' \7,-’-; "W
[ £ du ) or I £(x) u(dx) .. —2)-
AN ' d T N

l We start with a;éertain special kind of function f,
)k : ' &

q*g;ﬁefinition: Functigﬁ_g (with domain A) is simple iff it is
'ijfi measurable, reaklvalued, nonzhegative, and takes on only a

finite numbergéf values,

As anﬁéxample, the constant function £(x) = ¢ (where
© > c i:ﬁ3 is simple. Another example, which merits a definiZ

tion qﬁfits own, is the following.

m,,—wﬂ-
51* Definition: The indicator function of set E (notation I ) is

(D/ givenby!(a)=11faeE;I(a)=oifaqE. =
‘,pﬁf*

The indicator function of any measurable set E is simple,
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Now let f be simple, and let {51, ,..,_xn} be its range.
Since f is measurable, each set {alf(a) = xi}wis measuféble, and
the collection of these, for i = 1..3n, constitutes a finite
xj . partition of A. We now define f ﬁﬂgu to equa;;

e N 3 u vd
“1In evaluating (£), recall the rgles of arithmetic in the

& X X
extended real number system. In particular, 4 - w = @ if % > 0,
and 0 ¢ o = 0).

Examples ; (1) For the conétant function f(x) = c, (3)

2%l
SRRl juStﬂgne term"“*"‘*? @y o u(d). (ii) For indicator
functions, _ ﬁg
. 1% v UL

N
o

8 ]A ,IE?sﬁ- =1 3“@ = u(E).
We now define ghe integral in general in terms of its value
for simple functigns. We use the notation £ > for two

functions on A we indicate that £(a) > g(a) for all a ¢ A.

Also 'sup abhreviates "supremum”,

qaﬁl}nefinition= Given measure space (A,I,u), and non+negaff/§

— measurabla function £ on Ay “Fhen : (2.6.4)
; ] fmdu = gsu f” g du g<f, g simple . {4)
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%’That is, we consider the set of all simple functions bounded

above by £; for each of these we form its integral, and the

integral of £ is defined as the supremum of the resulting set of

extended real numbers;ﬁﬁ/ 3

Note that (4) is not circular, since the integral of simple

i;,f”cf‘éx, o iy

function has already been defined by (3)\\“(4) is also

consistent in the sense that, if £ itself is a simple function,

then (4) gives the same answer as {3} .

A useful extension of this definition is tqqintegration over
a measuﬁgble subset¢ E, of A. é%li is denoted }E f&dﬁ%&;Ld is
simply the ordinarﬁ integral (?) when f and u are both
restricted to E. (For E = @, we set it equal to zero.) This

may also be written as an integral over A, In fact,

. )
,{'H" \\/C‘ |§ Y

ﬁ)'] N 17 IE'fﬁd%f\ sk
g N g -8B T AT

(_E /

for all E€ I. (The function being integrated ;%hthe right is

the product of f and tha indicator function of E, so that it

coincides with £ for points of E, and is identically zero off FQV
-het—us gompare this with the pﬁdinary Riemann integral.

Let f be real*valued continuous . ,and nonrnegative on the closed

interval {x|a < x ¢ b} (a, b real numbers). Then

ol
g 5

/tb -
i f d = 4 i
fa . ('x)"- = [{x|§<x}<‘1‘:} : [ f 4/“
.#/ : \- ' A {X‘Q (374 (L?

\ 'I/C‘
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gHere the left~hand expression is the Riemann integral in its
usual notation, uy on the right is Lebesgue measure, and;fé)
shows how to translate the Riemann integral into tha form (2).
~liif(5) is valid for any function £ having a Riemann integral.
for some "pathological " funclions
éEﬂﬁEiﬁa?)ﬂSEE_EQEHE—E’EIIEEEiy richer sigma field &-the
"Lebesgue completion" of the Borel fiel§;~ ﬂor (5) to be valid
for any such f This concept is unimporggnt for our purposes
and we pass over it.) : i
The integral (2)%(4) constitut?éﬁa triple generalization
of the Riemann integral. First, tﬁe class of functions f
possessing an integral is broadened. Second, the integral is
defined not only for Lebesgue measure,xbut for measures in
general. Third, the integral is defined for any abstract
measurable space, not qut the real line. _
-~ In view of this ensrmous genérality the following theorem
is surprlsing, because it shows that the general integral can be
expressed in terms of the Riemann integral f\in fact, as the

Riemann integral of a monotone ncnfxncreasing function.

Q¥ | Theorem: Let (A Z,u) be a measure space, and f a measurable nonf

negative function on A. Then

(“‘e L <] ‘{f
W oo gy AL A 2:";- Pheke s
] f dn = ] ula|f(a) > tlat = [ ul{alf(a) > tlat.. 6)
A A = - =~ I\ - f\ 15‘3
-w'o’ A 0 S)

1. G P
/: 'j? Z

»«;(Here thevmiddle and right expressions are improper Riemann
integrals defined by the usual limiting processes. Since the

integrands are monotoniq)there is no problem of existence,
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5‘ At li}ﬁ‘ W
though +» is a possible va;:;t) ?(6) is proved by comparing the

Riemann sums approximate-!.-y the middle and right integrals with
the integrals of simple functions approximating the left
expression. The middle or right-hand form in (5} will be

referred to as the YOung integral.4””

To il;t:xstxate (6), take the constant £unction £(x) = c
c > 0). ‘*ki{a&[f(a) > t} = A if ¢ < ¢, and == b if t > c; hence
the middle integrand% equals u(A) h-; t@ t = ¢, and equals 0
beyond that point; the right-hand 1ﬁtegrand is identical excgept
at the single point t = C; hence both of -these integrals quzai
c-u(A) » Which we have already vgr:.f:.ed to be the value of
F 3 Aéi?;l. ;«

A
We shall list some stan:dard properties of the 1ntegral

f and g are assumed to be aneasurable non-;-negatlve extended real

valued functions on A.

i f‘y 0>
f £.8u > 0.
,d\;; A-. B Y

£

o )
&
b
.,:_i

Iff>0 (th-abé:sn f(a) > 0 for all a), and u(a) > 0, then

el e (36, %)
F j £.du > 0. &)
£ A g - 3 (. 2 G
£ - b D> \&v 0.1
/ e e )
I£ £ and u aré both bounded, then|/, f,du is finite. ey

;% ;f" ‘{if c is a pgj%itive number, then
{_:‘}.:‘: ‘:\ﬂ (,,.‘,} — ?:

lﬁ? w . gy P W (§u¢_iﬁQ
¥ cf f dy = f of, dio £30)

/ ~



_ (2,6.1)
YR e e S wige 19
f £ du + [ g du = [ (£ + g)du., .~ (11)
BN iy Ny
P f} : =
im}??7 Indefinite Integrals P 4
')>L'- : f»e‘
13\ 15 '

We have defined f £ du, where E Ls a measurable set. Now, )

for fixegz and U (where these are dafined as above), conﬂider
\“1

the function vﬁkwithwhomain z, whieh is™given by
IS g* :

aﬂﬁﬁngfnefinition: Vv is known as the indefinite integral of £ with

igg} respect to u. We shadl usé the notation J£,du for the inl

definite integral.

3? ’mTheorem= Lﬁ“du is a meﬁgure. If f and u are both bounded, then
;giv J£f,du is bounded. If £ is finitegkand u is e&gma-finite, then
~j§} ff du is széaa-finita.
< :

The first statement may be proved by aid of the monotone

G |
:fﬁéﬁconvergence theorem, which we come to later., We shadl prove
the last t+wo statement I f and u are both bounded, the
boundedness of J£,du is immediate from (9). Let £ be finite and
u s&%&a—flnlte, and let {G oy m=1, 2, «ssy be a measurable

partition of A such that u(Gm) is finite for all m, L?Ex)

o

B ™ {;\a € G and n < f(a) < n + %},
’ -

~ where m = 1, 2, ..., and n = 0, 1, 2, ... . The class of sets
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is a countable measurable partition of A, and" f and u are
- ‘ '».;,.'“ r— LL)’L)
g £,du is

=-mn
both bounded on each piece. Henceﬂ by (9),

finiteﬂ all m, n, so that ff du is s&gmg’

One application of indefinite ingegrals is to the problem

| =

of change in measurement units, whiﬁh we left hanging, Qmmsqzrfzﬂ»

Let (g Z,u) be a measure space J;presentinq some real-world
data. Measurement units need ﬁot be homogeneouss they may be
"acres" in one portion of‘éf pounds“ in another, "numbers of
entities” in a third,-e%qﬁ%ﬂ New suppose the measurement units
are changed in some arbf%rary mann;r. The same data will now
be represented by a new measure, V, in terms of the new
measurement units.; For example, if everything were previously

measured in kilograms, and we convert to grams, obviously u A%

gets blown up by a factor of 1000:

(a~gf£4}
% A »:\é:""! a i
v(E) = 1000 u(E)&‘ all Ee€ Z. (12)

But what ;Q the general relation between u and v?

Thejchange in measurement units can be represented by a
functiéﬁ f on A: f(a) = number of new units equivalent to one
old nnxt at point LY f is obviously realhvalued and positive.

The only other restriction we impose is that it be measurhhle.

The relation between u, v)and_f is then (

vV = .’:\'f,\g»uo. '(';'3')~ |

-
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As an example, take the conversion above of kilograms into
grams. In this case‘g(g) = 1000 for all a € A. Checking the
formula for the integral of a constant, we see that (13) does,,
indeed, reduce to (12) in this case. 3 &
Let p be a measure, and £, g two nonﬁpegativeﬁmégéurable
functions on (E,E). Since the indefinite intggréi {g«@u is a

measure, one can integrate £ with respect ;o’ig,

G+ Theorem: Let (A,I,u), £, and g be as qtéfed. Then

o ——

then £ = 1/g, and, by (14),

Tt (\’-9- o o 1
[ £a(fs.@) <f s5ion., 34)

That is, the indefinite inggéial of f with respect to the
measure ﬁkg>dn is the sa@égas the indefinite integral of fg
with respect to w. g

As an illustragibn take the measurement-unit transformation
discussed abcve.j;éﬁppose one changes measurement units accord-
ing to function{éﬁwand then changes them again according to
functionrf. ;The compositéf>result is the left=hand expression
in (14), gna thgs theorem states that this yields the same
transform&tion as a single change in units represented by
h(a) __*'f(é)f:g(?}.

In particular, if we simply invert the previous change,

S
\Qﬂ\ \3

1
LE Q(I;gréu) gt I.\lﬁéu = W

as it should.
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i%&;; Densities

Lec
We pull together two threads in this section. In—the”

girstjp%aee, we have mentioned that the intuitive concépt of
“continuous distribution” has two quite distinct explications.
One -of<=these is the concept of “nog}htomic' measure, which we
have discussed. The second, “absolqté'continuityﬁ, will be
taken up here, ;

Second, we mentioned at the very beginning of this chapter
that certain kinds of d@%a —-éuch as prices or population
densxtle% =ywhich gguld not themselves be represented as
measures, could~b; derived from measures in a certain way. The

same circle of ideas serves to accomplish this,
¥ -lm«‘{_ - : o

i%@a?”nefini;ién: Let u, v be two measures on the same measurable

;ﬁ;j“ space (A Z¥. v is absolutely continuous with respect to u iff,

whenever u(E{] 0, then v(E) = 0. The notation for this state
of affairs is{ v << y, ,- |
| It follows at once piat absolute continuity is transitive;
if A, u, v are three meégures on (A,I) such that v << p and
H << A, then v << ), 1A130, of course, u << .

s .

?}ATheorem' Let v be thefindefinite integral f\fadu. Then v << y,
L
'““j;wTProof' Suppose u(E) = 0 for Eeg 8* so that p restricted to E is
éfﬁ :

} identically zero.v If g is a simple function, it follows from
(3) that :



ff?:%é Then, from (4), this must be true for anz non{negative
fﬂ:ﬂgf measurable function g, in particular for f Hence v (E) = O.J*ﬁ;@
- i .

e’

under slight restriction, the converse of this statement is

trueg

—— \ :
= Theorem: (Radon=-Nikodym theorem). Let U, v be two measures over

(a, Z)&\such that u is«ségma~fin1te§>and v << He Then there

D) exists a non+negative measurable function f such that
\_“ ™ S
(3. 6.5
% "f £, au 15)

({kis known as the denéitz, or Radon-Nikodym derivative, of v

with respect to u, and is sometimes written dv/du )3
To make a statement concerning the extent to which the

density fis uniquely determined by v and u, we need the

following~conéepts.

i

%Hf“nefinition: ‘Let (A,Z,u) be a measure space; a property P is said

to hold u—almost everywhere for u-almost all points, iff
.?i, j F WS |
"fi ‘there—is a set E € I,such that u(E) = 0, and P is true for all
/\ -
in 5 7 points of A\E } Another way of expressing the same thing is in

-l

Eerms of null sets. A set F is p-null iff there is a set E¢g I
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such that F < E and u(E) = 0. Then P holds p-almost everyS

where iff the set {a|P is not true for a}l is p-null, In all
of this, if py is understood it may be omittedj thQS'bne says

3} simply "almost everywhere", etc,

§$??fbbe£inition: Two functionslﬁ, g are ufequivaléht (or u-almost

aiég} identical) iff the set {a|f(a) # g(a)} %s’a u-null set.
5;&‘ "~ﬂwTheorem= Let f, g be two ncgfnegative measurable functions, and
Mo
1ﬁ:w“”) M a sigma~finite measure& on (A Z). Then for the indefinite
fv, integrals we have - ;
2/ integ »-}

‘\»\

Ny ;f
= [ﬂ f’ g/:fh L ?éu N

1ff £ and g are u-equivalgﬁt.

This answers the nhiqueness question concerning the Radon=
Nikodym derivative. Ig that theorem only p is required to be
wiégﬁ-finite. If v is also-sé§;a~finitejwe can state the
stronger conclusiogjthat there is a finite density f satisfying
(i o

-Léz;;s give some possible real-world examples, and in—fact
let-us compare all this with the intuitive concept of “densityyﬁ
Take 3-dimensional space with the Borel field. Just as the
ordinary concept of length extends to Lebesgue measure on the
real line, the ordinary concept of volume extends to a measure

known as 3-dimensional Lebesgue measure in 3~spaceﬁ@9/ For

ve
simplicity, let—us- continue to refer to this extension as
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“volume"?:and denote it by u. Let v be the mass distribution

of some resourcéitype over.Space. The average density of this

resource in a region E of positlve volume is given by ﬂ(E)/u(E).
(Average density is not defined if u(E) = 00.@ Average density
is thus a set function, whose domain is a certaiﬁ subclass of
the Borel field £. This is rather unwieldy,ﬁand one would like
to go from average density to density at §;point.\}WA rough
analogy is the process of going from average slopes to the more
useful derivativesf* >‘N

The Radon-Nikodym theorem pinffaown these vague notions.
We assume that z is absolutely continuous with respect to volume,
u: (@ha%m£s, for any region E, if E has no volume, E has no

resource content). Since M ts s&gma-finite, it follows that

~ghere exists a point~functgon_*‘satlsfying (15) , and this is

exactly the property ono;%ould want a poinéidensity to have.
Now the foregoiangnalysis did not depend in any way on

the particular naturgg of the two measures involved. This

raises the possibility of thinking of a grgﬁf many other types

of data as beingg“densities“ derived in this way from two

\Measures. We give several examples:

T, Let u be population distribution over the surface of the

/}-

»&,Earth, by Place of residence (measurement unit: number of
\?

i,

people). Let v be the distribution of total income, again

A,

attributed by residence.

that v << 1, since no

income accrues to unpopulated regions. The "density"lgv[gu

in this case is simply Ee;acapita incomeg .,

{
o
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<i4)2. Let p be the distribution of economic commodities over
Spage, measured in mass units,mperhaps quite heterogeneous.
tLet v be the same distribution measured in gglgg_or wealth
terms (unit: dollars). Again v << pu., The ”dengity" dv/du in

this case may be interpreted as prices. 1In sgmewhat more

w‘

details, The universe set is a subset of R

a—-..s!' —

p(r s8) is then the price of resource-tygé r at location 8.

/,7

S, and the density

’1’“1The units in which p(r s) is measureg‘will be: dollars per

N

s-«(,ccv q,‘f'

° ,s

zcro)'/G
peje O
M\JM@

acre, or gram, or litre, ete., corrgsponding to whatever units

u was measured in at point (r,s) ji\

4£i£5 Consider the concept ofgthe "quality" of resources:
Jﬂbld has higher quality than %rass, etc. One explication of

this somewhat elusive concgpt is to define quality as the ratio

J

of value to weight. Thus'if we let u be the distribution of
resources by weight an@fQ their distribution by value, “"quality"
comes out as the densffyﬂgv/gu.

(4v)}" This and the;hext example show that index numbers may be

J Tim
construed as dengities. We are given two tnsmé X tl' with

t9 < El The uﬁiverse set A is some appropriate subset of R or
R x S. @Hs&a#are price systems, p 9, pihéf times tg’ t Ja.
respectively. Formally, pe and p, are measurable positive

functions ‘on the universe set. ={Prices may be given directly,.
){_j % ¥4 X

or may themselves be derived as densities, as under @#ﬁ%fﬁy,hlso

there;are two quantity measureil u@, Uye referred to the

respébtive times. These may represent stocks, ex production,
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ywx'°‘ consumption, e® exports, ete. We suppose that each of these

e

measures is absolutely continuous with respect to the other;

thaﬁmis, u@(E) = 0 iff ul(E) = 0, for all measurable sets E -1 A.

{f'mhe Laspeyres price index for measurable set Eg A is now
defined as

2 O
Vo ' ,
JE .Pl/\ dug 3 (:ﬂ o 1 €
,,/ du A

"(The Paasche price index substltuﬁes ¥y for uq in (16)3 As E
varies, the numerator and denomﬁnator of (lé) define indefinite
integrals, and the price index comes out as an average density
of these. The point-denslty, or Radon-Nikodym derivative of

S Py du with respect to l pgidug, is simply f(a) = pl(a)/pg(a),
since, by {14y, v ‘

J 5«40%«‘3“9) - [ Frgitug = [ o au, 2 uar?®

&) The Laspeyres quantity index for measurable E is defined

as

/}E s el

5 gty o &

‘ j Viom
“(The Paasche gquantity index substitutes.P1 for poﬁin (17);)

Again tpis is the average density derived from two indefinite

integféls. The point density of I«Powgul with respect to
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4
/Py dHgy

by (14) ’

o] galls o s | sl Al
LH?9A~ul [w?g\”{\ﬂ~4“ué) ARQ h'ue rf“ (xnpg'“uﬁ, 5

is simply_?ul/gu : Since for £f= dul(ﬂug we obtain,

©

m—ugﬁgﬁﬂggg %

VThese examples should illustrate the variety of data Q%éeﬁ
can be brought under the rubric "densitj“é) In-fact, examina-
tion of statistical comgﬂﬁations~would show that, of ﬁhe data
Whiéh cannot be represented directly as measures, the great
bulk can be represented as densities with respect to some pair
of measuresf%;/

In our examples abeve we have presented the pair of
measures first and derived the density from them. -It-should-be

noted, however, -that-in some cases the density is more readily

observable than one of the measures (in which case the measure

43;2/ may be constructed as an indefinite integral).

\T>;> (’."c:n:-::i.de:\:'Wﬁesas“:'fzaraﬂzaivavga;l.a.r the standard exercise in capital
theory of converting from current to discounted dollars. Let
U be a measure with universe set Time, having the interpreta-
tiont u(E) = value in current dollars of that portion of an
income~stream arriving in timékperiod<§. {The use of measure
language enables -one to cover the cases of lump-sum accruals,
continuous accruals, and mixtures of the two all in a single
notatioq)g Assuming for simplicity a constant discount ratef:
i, and discounting to moment t_, the income stream expressed in

-5

discounted dollars is simply the indefinite integral
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I (8619)
[[ettete) e, )

Here the density f(t) = e-é(t'yﬁj is more or less directly
observable, and the discounted income stream is constructed
from it.3g/ '

Again,&consider prices. One can ohsérve‘ilist priceéﬁ;i
if these exist. Org?ane can take thg,iatio of money passing
in one direction to goods passing iﬂ the opposite direction.
The first gives a direct observation of a density (perhaps a
misleading ene if there are tx;de discounts, etc.) The second
derives price as an average/éensity of two measures,

Before dropping thigfiopic, let—us consider the concept of
“uniformitg“. One spegﬁ%, especially in spatial economics, of
"uniform*'population;éistribution, "uniform" réscurces,
"uniform" planes,'eé§u A moment's reflection indicates that
what these terms are expressing 4s the proportionality of the
measure in queséion to some other implicit measure, usually
surface area.“ Thus if u is a real measure and v is population
distribution, then the as¢ertion is that there 1s a number ¢
such that v(E) = cu(E) for all measurable sets E((O <¢ < ),

This 1n turn may be abbreviated v = Cu.

R
?g:;’befinitibn: Let u and v be two measures over the space (é,z);
= v is uniform with respect to u iff there is a positive real
humberﬂg such that v = cyu. adij

D)
'ﬁ,«"/({/
ot »

("“;

\\
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|\ This is an equivalence relation among measuresﬁ\and implies
that each is absolutely continuous with respect to the other.
An equivalent way of stating the relation is that the density
dv/du is equal to a positive real constant (u-almost evexyf
where) . “

f‘éné recognizeg, of course, that any such relation between
disparate measures is at best an approximation. In general,
it should not be taken literally at the mlcrascopic level: A
literally uniform distribution of land and water would just
yield g&% everywhere.

# fi’ Induced Integrals

Let (A,Z,u), (B,I',u") beryéo measure spaces. Let f{:
A + B be measurable,:and-suchfihat,‘for all Ee 2,
£ { 19)
u (E) = u{alf(a) € B} %
'§(?h$5msay5«®hat u' is induced by £ from y. {t Finally, let g be

a measurable, non-g-negative/ extended real-valued function on B,

(*\V\Auoe \v\'Tﬂ Mls ﬂqeore\mJ
@( _,'I'heorem X Under the condltions stated,

(s : ] xg,‘,asiu' = I (g°f)du->\
svkﬁ'Proof: A quiak proof may be obtained by using the Young integral
()
Ay T36), In.fact, from (19),
é‘"’j/ :
w'iblgb) > £} = ufal(gef) (a) > t) ./;af
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so that %
(L\ (17 6\ i{’:(i vt ')g ‘/ Y
f g.0v° = | ege'fb!guz» > tlae - felifeﬂgjf) @ > tae | frut
f”‘“’ﬂwﬂ i LeY o
i @i et
®) r L (aenian, 111

- Here gof is, of-course, the composition of f ang 9g. If

i

g can take on ??gative values, then neither integral in (20)
has vet been defined. However, to antic%pate,~itmtufﬂsnout

that the theorem is still true in this é;se, in the sense that,
if either integral in (20) is well—defined, then so is the other,

O and they are equal.

-

ggﬂ —~> The elementary rules concegpingﬂ"substitution of variables"
in integration may be derivedlgéom (20) .
There is a more generalf%ay of looking at relation (20). 01“/

If we consider the indefinite integrals, f(gof)du, and [ g du',

then the latter is'the measure induced on (B,2") by f from the

former on (A,I).

Convergence Theorems

/ 7

The followiﬁg theorems are among the most useful in

measure theory, and will be used repeatedly,ia«%his—book, It

‘i

is convenient to state them for integrands whieh are unrestricted
in sign,‘even though we have so far only defined integration for

‘noh%negﬁtiVe integrands. (For the more general definition, see

v
the secticn on signed measures below).
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We distinguish formally between the sequence of extended
real numbers£:(§1, Xy, ...)ﬁéﬁwhich is a family of numbers
indexed by thé integers 1, 2, ...;—-and the set {xl, Koo ...}5
which is the range of this family. We have already defined the
concepts of the supremum and infimuﬁ of a set of numbers. The
sup and inf of the sequence(gl,‘§é} ..{)are defined simply as
the sup and inf, respectivaly,J@f the set {51, oo sosts Two
slightly more complicated oPe:Ations on sequences are needed
here: 1lim sup and lim inf iiimit superior and inferior).

Let (xl, Eov o) be a sequence of extended real numbers.
Let Yp = Sup {x v Xpgqr ...} for=alln =1, 2, ..., @hatmis,

b is the supremum of the numbers left in the sequence after

deletlng the first n-l in order.

;}?@finltion: Lim sqg_pf the sequence (51’.§2' eee) is defined as

P the infimum of thggset {gl'.XZ' e N

e ——

)“‘“ A similar g%nstruction reverses the roles of'ﬁégf“ and

%39?h®

‘,ﬁﬁefinitionz Let zn:z:inf {x,, xn+1. ...})ieeme&% n=1,2, «s0 &

Then sup {zl, Zgy O known as the lim inf of the seguence

(Ecll 3‘2! fO-)o }

Qd. Definitmon. Sequence (xl, Ko +ss) converges to x iff the lim

emte, e, V\ _,Li 3 L
(“3;3 sup and lim inf of the sequence both equal N s ér is the limit
of the sequence and -Ohe write$t X, * X, \ 9

o ~—-- - - e (N0
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/
|  Examples! .
“J—"’4““2;9/.Let (xl, Xy +ss) be a sequence of real-ﬁﬁmbers. This
ffzz} \\Wconverges to the real number X, in the sense of this definition
Sy q _Aff it converges to X, in the ordinary sense of the term

r 4

—y—

\A‘
J : "converge{ 5

><.€§§¥ The sequence (1, 0, 1, O, 1,;i..) has a 1lim sup of 1 and
a lim inf of 0. (Proof: Vi 153nd~pn = 0 for all E&ﬁ

- g St

-

(ii4) Let (xl, Xo0 ees) be a ﬂon&decreasing sequence, and

let x = sup {xl, oo ssm il then (xy, X5, ...) converges to K

(Proof- ,Xn -X, for all n, hence inf {yl, Yqo ...} o

B, =X for all n, hence sup"{zl, Zgr eeo} = x )) From this-

“no A\ empi:e-% note, €eFs that the sequence (1, 2 3y000)

cconverges to +eo,

‘Now let (fl, 52;;...) be a sequence of extended real~

[
1

valued functions, with a common domain_é.

‘P>{$p{befinition: Lim 1nf (£, £5, ...) is the function with domain A
whose value at al e A equals lim inf (f (a), f,(a), «e0). Lim

sup (fl, £50 ..m) is defined analogously., If these two values

":ng) are the same for all a ¢ A, the common function £ thus deterS
~ mined is called the limit of the sequence (fl, fz, ess), and

enenwritesw, f -+ f.

#ﬂ;ﬂ“’)*’—T, One special case in which the limit exists is when the

sequence is non+decreasing; tha#m&s, f (a) < f +1(a)9£a!=a%l

/ ")
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\\ .
n=1, 2, ,.., and all ae A. This follows from example:¥§!5§\

&
03 abovey which also shows that for the limiting function f, f(a)
is the supremum of {f (a)}, n=1,2, ..., for all a g A.

£

<?§heorems ‘lgonotonesgonvergence theoreml} Let (A, ;ﬁ) be a measure

e

space; let (f ) n=1, 2, ..:)be a non1decreaaing sequence of

measurable functions on A, with limit £ ;f

!; s
\ E
L\
AN ¥
iy

‘-’
\

then
<f; 10 )

e —

i
;
1
y,

f'muwﬂere we may note that the supremum of a sequence of
measurable functions is m@asurable. Also, condition (21)
together with non+decre@singness, guarantees that all the
integrals appearing in (22) are well&defined. It frequently

happens that all the f ’s are nonsnegative, in which case (21)
is automatically fuifilled.

. Another version of the monotone convergence theorem uses

infinite series rather than sequencesy,

SRS £
@4 — | Theorem: ILet (2,Z,u) be a measure space; let (f),n=1, 2, ...,

. be a sequencg'of ncqjhegatiVe measurable functions. Then

L | > !

(£, + £, + ...)du =-; fl du + | I £, a1 +... . (23
| )i

| - e
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| Here on the right we have an ordinary infinite series,’
whose sum is defined as usual as the limit of the partial sums.
On the left the integrand is expressed as an infinite series of
functions. This is to be understood pointwise: /ﬁhe value at
point a ¢ A is f (a) +"£.(a) + ... . Convergence is assured on

both 31des of (23) by nonrnegatlvity.;

N\x (93) follows at once from the applioatlon of the monotone

convergence theorem to the partial sgms Ba 4+ saup fn,up = 1,

2' so9e o f‘f

‘1'

>< A closely related result lnvolves an infinite series of

Pl
of the series -

measures. Let Myr Hor oo all be measures on (A,E) The sum

u;f+ uz Poee

5 / <
is defined as the set function pu whose value at B & I is

ul(E) + uz(E) +s00 ;; One easily verifies that u is a measure.
We then have The 7/~

*ni%i!!.uh\ jv s | 4

gaﬁ—iTheorem: Let £ be a nonghegative measurable function on (A,Z),

and let ul + ué;+... be a series of measures with sum py. Then

/!:,:: 0" TL P kabve L& %z"ﬂz o O\
”-«rﬂ" ng'\‘du - j F\dul + .‘thuz +..0 "“)
Al T 3
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'rﬁi

Proof: Apply monotone convergence to the Young integral:

f “Wil‘ Qﬂ/ Pﬁ VK\
£,.du = I p{alf(a) > t}dt = U ul+u2+...){a|f(a) > ttép
iCAl '

ngb , eq
fﬁ?ig;é A \» e o\ Ve
A = | \” \f \ i et
= J ul{alf(a) > t}dt toos = £ du; +eoe@ A1
f t W S
| #
B ey suby
These last two theoremq are used in the %e%&ew&ng section
on product measures. ‘
B

CFin“Theorem: mlFatou's‘;emmalﬁ Let (é,z,u) bﬁfa measure space; let

<:numbers whose‘n+th term is f f

(fn)',p =1, 2, ..., be a sequence of ‘measurable functions on A, .

such that £ > g for all n, g being another measurable function

on A, If
5 PR ek Bt
) ] g du > =, {24)
A i
then 66
"l/') : F L
\\ \ \L¢ {1 ?\‘&‘ %O\ { S, 3 P,
{ (lim inf f )du < lim lnf \£_ du. 625%
\‘\ ,,\ \ A \1} (slanEn

In (25), the;?iim inf“Aon the left defines a function,
which is to be integrated; the "lim inf" on the right,-en—the

othexﬁhand, appiias to the ordlnary sequence of extended real
) Se\e l*\ oo
nﬂdu. We note that the lim inf .
‘ _ = : s
of any sehugnce of measurable functions is measurable. Also

&8
condltion (24) guarantees that all integrals appearing in (?%)

are well?defined. If all‘fn’s are nonipegative, as is common,

_..we may take g = 0, and (24) is automatically fulfilled.



; &
o { e

139

An example will clarify the meaning of Fatou's lemma.
Choose two sets'El,\§2 € . Let £, be the indicator function
of Fi if n is odd, and of E, if n is even. Lim inf £ then

equals EE\%EQ; the sequence on the right of (25) is; “(El)'f
I

u(E ) u(El)...., and, finally, (25) states that u(ElnEE)f/
minimum of (u(El), u(E ). i

%»

gjﬁg Theorem: widominated convergence theoremi , Let (A ﬁ;u) be a

measure space; let (f )y n=1, 2,.s, be a segﬁence of measur=

able functions on 3, with limit £ let lfnJ < g for all n, g

“H) being another measurable function on A suah that
e &
"‘»«, .f'* -
> gl y 2 e 2
‘J ? u < o o~ S {26)
Then i ‘§4?%\ &\ Yﬁ%,bg . (B.6.27)
\ ‘;T‘ \ " 4 A v
Y \Je b oY :
Van\ 5
,|w& " ;"‘J

The condition |f | % g, ‘which states that the absolute
value of £ is dominated yy g, may also be writtenp {jg(g) <
f (a) < g(a) for all a e A, and all n=1, 2,... . As above,
the condition G%é) guafantees that all integrals appearing in
(27) are well-define& XBut even if all the integrals in (22),
(25), or (27) are gell—defined, one still cannot drop the
conditions (21),;{24), or (26), respectively, with impunity;
this may be shg&k by counte%Zéxamplesi}"
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Extension of Set Functions

~As-we- hQVE‘ﬁiréady'noted,i‘s#gma field is uaually specified
by mentioning a class of sets which generates itgi.e.g.ﬁthe
gﬂ Borel field on the line is generated by the class of intervals.
44%ww Similarly, a measure is often specified by stating its values
¥ just on some of the sets of its domain: Foimokamp%ef, Lebesgue

174 -
q> measure is the one which assigns to each interval its ordinary

length. As—aseceond-exemple;—consider—the—product—eof—(A, I, u)_

thefirstinstance not-—omati—of I X I’ but only omthe—elass—
—ofmeasurable rectangles. -

Let (A,I) be a measurable space, let R be a subclass of z,
and let u:::éj+ extended reals be a set function defined on
this subclass. The question arisess Does there exist a measure
v{:? + extended reals which coincides with p on the latter's
domain: V(E) = u(E) for all E ¢ R? In other words, can u be
extended to a measure on I? Fu;;he;;ofe; are there several
such extensions or at most one?f

We now specify certain conditions on u and R which enable

. us to answer such questions.
3

NUTE———————

LT e o~ iy
§é}~?nefinition: Set function s R + nonrnegative extended reals is

Pty ccuntably additive iff, for any countable packing E;, E,, ...

g of R-sets whose union E is also an R—set, we have
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/] £
i 1A
X

" 'This is a slight generalization of the concept of countable
;r""

additivity on a s&gma-field- The condition that E ¢ R must be
L gl

stated explicitly, since R is not necessarily clcsed under

2 countable unions.

N

qg,gnefinltion: Collection R is a semi*ring iff
e

/~) 5% |
L/ PR v¢ € ki 3
: I . ltirierid 7
—\ (11) if E, F € R, then E N F ¢ R, and
;'Qf}f% (111) if E, F e R, and E g F, then there is a finite sequence

33z
Gi \G le R i= 1’ oooAnu\

5
| For example, the collecgion of all intervals on the real
line (together with ¢);is a semi?ring. The collection of

;ﬂ measurable rectangles in a product space (and @) is a semi}ring.

ﬂb “Theorem' Let (A,I) be a measurable space, 1et R be a semi%ring
e which generates I, and let non—negative u:vﬁ + extended reals
i, LAY
be countably additive, with u(g) = 0. Then there eniées a

measure v with domain I which extends u.

If, in addition, there-ig a countable collection G = R

(&’9 )74

k
wivieh- covers A, such that u(G) < wA all G € G then there is

exactly one such extension.

i s = R
i -
[ l
sl

siderably without invalidating these conclusions.

The premise that R is a semi+ring can be weakened con-
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)Definition. Collection R is a weak semlaségma—ring iff (i) @ e R,

9=
duai (11) for all)bE, FE R, g&g can be partitioned into a

4 X
couatable number of R~set§: KR is a sem1~sigpa—ring iff it is a

Vo' s

weak semi—signa-ring, and, for all E, F ¢ 3;\3 N F can also be

-
partitioned into a countable number of R-sets.

ey
B
a»wwﬂfffﬂbw ™ any semi?iing is a semi-s&éma-ring. For let E, F € R;

then ENF e R, so the collection consisting of E N F alone is

& countable partition of EnN F 'into R-sets- furthermore, the £
/ y collection {Gi\G ’ GZ\G reess G\G l},.where qs =EnF,

Gn = E, Gi 1 S Gi' is= 1,..., n, is a finite, hence ccuntable,l

partition of E\F into R-sets.ab
T :

':“ iV

—> This shows that the following theorem is a generalization

of the preceding one.

- v
-QQ Theorem. Let (A,E) be a measurable space, let R be a semi¢

ggggg-rin which generates I, and let non+negative s R +
extended reals be countably additive with u(@) = 0. Then there

i;Z>JK exists a measure Vv with domain Z—&Xieh extends He
\// o lh
uﬁ;&:—«*‘“"ﬂlnstead, let R be a weak semi- ségna-rlng which generates
: L, let Vir Vg be two measures on Z-Gﬁich coincide on R-setsi and
R

let there be a countable collection P < ﬁswhieh covers A, such
)'\

that v, (G) = v,(G) < mA all G ¢ G. Then v; = v, throughout I.

: \ The proof of this theorem is very long, and would take us
M £ 3
5 too far afield to set down here.
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Abcoat and Product Measures

Let (é,z,u) and (B,I',v) be two measure spaces, We have
already defined the concept of the product;, (A x B, I x 3'),
of the two measgggglg spacesﬂﬂ(é,Z) and (B,I'). We now define
the notion of a measureﬂ‘x,_oﬁ the product spacerhich is in a

sense the "product" of the measures p and v,

ﬁaﬁﬁ{?efinition: Measure A on (A x B, I x I') is a ggneralized
product of u and v iff

AME x F) = u(B) = v(F) e

for all E€¢ I and F e I'.

A
g

WWHN”M Y”‘“ Intuitively, (28) says that the A-measure of any “rectangle"
(In evaluating the right-hand side, remember that 0:» = %U@ As
an example, let u and v both be Lebesgue measure (= length) on
the real line, and let A be G&éé-dimensional) Lebesgue measure
(= area) on the plane. Then (28) is satisfied: The area of a
rectangle is the product of its sides.

Does a generalizad product exist for any pair of measures?
Yes it does. IThis may be proved via the monotone convergence
theorem coupled with the extension theory just discussed. )
Is it unique? No, not always ,ﬁut if w and v are both~s%gma
finite, them uniqueness is guaranteed. 3 (Thus; twe-dimensional
Lebesgue measure is the only possible product of Lebesgue

measure with itself).™
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We are interested fn*thfs-seet&en»cnly in~ﬁhoseAproduct

4/,,

measures whteh-can be expressed as integrals. Choose

Ge (Z x Z'),;; and consider the following expression:
}I

17 z°5

“ (hoe.a3)
A(e) ”'1[

5

I

\
vi{b| (a,b) € G}k(qg) o “(29)
A - x -

For a given point a € A, the set {b|(a /b) € G} is the right -/

a, -section of G. We know this is a measurable subset of B,

hence it has a v-value. We associate this value with pointmao.
We now have a well-defined function with domain A, taking values
in the non+negative extended real nambess this function is
precisely the integrand in (29). T@e integral with respect to

u may now be taken, provided the iniegrand just defined is
measurable with respect to Qﬁ,z).ﬁ‘Suppose this to be the case
for each G € (I x Z'). Then (”9}’defines a set function A.

o A is easi&y-showawtu—be a measure (use monotone conZ

vergence in its additive form). Furthermore, letting G = § x F,

btai i ol
we obta n_; r1

B e g )

I——

so that A is a gsneralizedgﬁroduct of u and v,

. Thus the expression fZQ) vields a generalized product,
provided the sticky issusfof measurability is resolved. If v
is finite, it is known saat the integrand in (29) is measurable
for all Ge (I x I'). ﬁb generalize this result, we now

introduce a new class/éf measures, the abcont measures.
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/4 Theorem: Let (A,I,u) be a measure space. If u has any of the
following four properties, then it has all of them:

4 f 3%
Jﬁik%j there is a series of finite measures “n' n Y, 2, vesqg ON

o, ) (a,L) such that

S X (-30)
Bo= vy 4 vyt ; +30)
(LL \!
TZ? there is a measure space (B, 2',v), v sigma—finite, and a

measurable function f- B » A, such that y is the measure

f _induced by f from v;
PR ;
L. ! (}5 there is a finite measure v on (A,I) with respect to which

u is absolutely continuous (u << v);

Liv)
CK) there is a finite measure v on (A,I), and a measurable

function, f. A + non+negative extended rea nambars, such that

H = J £ dv.,
‘\—,—

//,,fiiiiﬁiroofz ) implies (#): Let N = {1, 2, ...}, let I" be the class

of a11>subsets of N, let3

-

(_B ') = (A X N, 2 % E") "\
{ A ey
— 1etﬂ§{/§ + A be the projectiaqﬁx f(a,n) = a, and define v as
’/ngf followss for any set of the form E x {n}fgwhere_g € I, s
~ = / ” R L : !

T
n=1,2, ..., let/v(E x {n}) = V (E). BAny set G¢ I' is a|

e
countable disjoint union of sets of this form, so measure v

is fully dete;bined on I'. v is signa finite, since v(A x {n})

\
%

= vn(A) <w, n=1, 2, ...;'and the sets A x {n} partition B. ‘v

g s —— i i e ) \

—

\”“‘"w»_x- =
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‘ Also, for any E ¢ I,
wé %
é Vib[£(b) € E} =|v(E x N) = vw(E x {1}) + V(E x {2]) +...

=1V (E) 4V, (E) 4.e. = u(m).

4+ Thus u is indeed the measure induced by £ from v,

S ——
» 8

> | : k&(ﬂ : : %\ t‘ t‘ [ ) ] 0
ST 62 implies IZY: If u = 0, this is trivial; hence we may assume

- U # 0, so that v # 0, Let {?1, Byr ...} be a countable measurable

| )

.4
partition of B such that 0 < V(§n) < wé}all n, and define the set

”jf . function X on (A,ZI) as followss For E ¢ Py l(g) is the summation
e / 2.,31)
- S i & £ty
2= UE3n n {b|flp) € E}] V(B ) 31)

o

; ‘
over n = 1, 2, ... . Each of these terms defined a measure on

(A,Z) , hence \ itself is such a measure. Furthermore, A(R) =

o | 2

B4 2% .. w1, ao X s finite. It remains to show that

l’u << A. Suppose A(E) = 0; then each of the terms (31) vanishes

so that _ ; SN

¥
N
i

e
"{Bn n {b|£(b) € §}] = 0y

—allen w L, 2, oaan . Adding over n, we obtain vf?ff(b) € §} = 0;

. since p is induced by f from V, it follows that u(E) = 0; hence

1;_\ 2 u << A X

P s
£ e

~ Gd ) 3
- 7%3 implies %23; Apply the Radon-Nikodym theorem,

-

¥/
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Y

#

It
}{ L(7) implies

o~
&3: For eachn=1, 2, ,.,. define £ :AA + reals
3’:"-4& \'LO
,fn(g_) = 0 if £(a) < n'- 1 ‘

: Jj fn(a) = f(a) - (n - 1) W'if n-1cx<f(a) < nf 10404

) oL it s ' b e e (0"
£.(2) = 1 if £(2) > n.
a | e
Each fn is nonfnegative and measurable. Define Vo by
1 g v
\,%

% Since v and £ are bounded, each v, is bounded. Finally,

g - ’ =

i \* |

g “"I.\f«d"“ [El"‘?z* i

\ Te— af £, @v +I £, dv + = v, + v, + -

% e \ Ia=" 70 ) =24 5 1 2 IS
establishing (30). (The tl_;"ird equality follows from monotone
convergence.)

e

We now have a clos_éd circle of implications, hence these

‘ four properties are logically equivalent. |||
T f
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“Abcont“ is an acronym for "absolutely cantinbous" and is
suggested by property (Z§ But keep in mind ‘that absolute conZ
tinuity is a relation between two measures,‘while abcontness is
a property of a single measure. -

Any a&gma finite measure is abcont. This Lsmclaam from
property (k? for if u is a&gma-flnite ,we may ﬁake (B,2',v) =
(Q,Z,u) and let f be the identity mapplng. Also, in property
(ﬁ?,wif we impose the additional condition that £ be finite,

e
we have a characterization of s&gma~fhnite measures, This also
yields a decomposition for abcont measuresg),&hen restricted to
the set {alf(a) < @}, u ls‘sagma-finlte, and when restricted
to the set {alf(a) = o}, u takes on just two possible values,

0 and =,
L { # LAEA o <
3 aexist abcont measures Mhiﬂh are not sigma~finite.

In fact, to produce such a measqreﬁaimgiy take any finite

measure v # 0, and set u(E) = o whenev;:Zx(E) >0, and u(E) = 0

whenever v (E) = 0.¢ u is eaaé&g—saanwtewbe a measure; that it

is abcont follows from the observation that

U= VEVEY L,

10 ,

N ¢ : (11}
(broperty (}?), &# that u << v (property ?%)), or that
) LV !
M = S(*)dv (property ).

Abcont measures are of much less importance to us than the
c /
narrower class of-s&gma~finite measures. There are two reasons

for introducing them, First, even if one is interested only in

jf‘*

sigma ~finite measures, abcont non-s&gma-finite measures may
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,"géheorem.< (Kﬁ‘fhe sum of a series of abcont measures on (A ) is
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appear as the result of perfectly straightforward operations,
€.ge ﬁ«lnduction as in property (Ké f For example, one or both
marginals of a sigma-finlte meaaure vV on a product space A x B
may have this property. (hxerclse- Verify that the marginals
of ﬁwe-dlmensional Lebesgue measure on the plane are abcont
non+s&gaa—finitefb

Second, in many cases abcontness is a more natural assumpf

tion than smgma-finitenessk in that it yields results that-are

-both- stronger and more transparentﬁ\withqproofsmthatwaze

clearer, This is especial;y the case in the present section on

product measures, and happens from time to time throughout the

book.
ckarqéfertzérlns

Each of the four preperties of abcont measures yields a

Ll o~
oL () E—

"closure" theorem. We gather these results
5{% 51 }
e ) 'i §

\

appont? |

(ﬁ% let (B L',v) and (A L,u) be measure spaces, and let
measurable f:/B *= R induce i from v; if v is abcont, uis abcont:
{27 if u << v, and v is abcont, then u is abcont;

tg% let measure v on (A,Z) be ahcont, and let fz A <+ extended

reals be nonjpegative measurable; then u = [ £, dv is abcont.

e

(N

m%;ffroofi ’I) Let v be abcont, m = 1, 2, ..., so that

R

K»

v = ) ml + x )

[
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for some finite measures )\ mn’ mn = 1, 2,5... 3 The sum of

the v ’éZis then the sum of the double series A fThe Als

p—

being countable and non#negative, they may be rearranged in a

4 single series, Hence summation Vo is abcontﬂ by property G;)

o

Tﬁ) Slnce Vv is abcont, there ex*s%s a measure space (C,I",A),

A signa finite, and a measurable function gs c + B inducing v

from A. But then (fog) c > A 1nduces u from A, so that u is
4 abcont by property T?% |

£ e

NiB e iT j
j /
Z,»’ ( Since v is abcont, there is a finite measure A forhyhich

: 1%
. Vv << A. But then u << ), so u is abcont by property (#).
y /

{LV? 500 el e N SR B
§rv 4) since v is abcont, there is a finite measure A and a nong

negative measurable g.JA - extended reals such that v = C g, da.

B g a f"//f
,‘ ] (fg)d)\,

so u is abcont by property %7 J/H’sc uy | i

But then

p—

ggr:us now return to{the problem of constructing product
measures. Consider agaiqgthe integral expression (29), and
suppose now that v is akéont. The first property of abcont
measures %‘that they agé the sums of series of finite measures ﬁ
is the key to the disgéssion from here on. Thus we may write
VEY R, t ..., w&ére each v is finite. Now, from what was

said above, the funcéion on A given by -
{ - S

i
i
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> A= Vafbl(a,b) € 6}

is measurable for each n = 1, 2, ,..; hence the sum of all of
them is a measurable function. That is, the abcontness
assumption on v guarantees that the integrand in (29) is
measurable, so that the integral expression (29) vields a well<

defined product measure. Note that no restriction on u need be

imposed.,

S s Next, suppose that pu and v are both abcont. In this case
it is possible to reverse their roles, which yieldgythe

expression ;
W@ 10 |
ey o (x.6:32
A(G) m'J u{gl(a,b) € G}AV(db)rrm 32}
S /5| s g o
,\;f; el S 4
We now have two product measures,yk and A. -It-turans-out,
hcwever, that these are identical. To show this, we start
N ol

from the observation made above that two finite (in fact, sigma-
finite) measures have a unigue product measure. Let v be

decomposed as above, and, similﬁrly, write §

Dome: U o= u1+"“2+"')

- where all measures u are finite. Substituting By and Yy for

u and v, respectively, 1n (29) and (32), we obtain two measures

S

whieh may be written A ,and Anm‘ We must have

I’P’?S
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%

since both of-these are products of the finite measures U, and

m

Vi Taking the double summation over m,n = 1, 2, «eop and

Sad e

applying two versions of monotone convergegce, we arrive

finally at

A= X

@' w“}fséfinition: Let (A,I,u) and (B,I',v) be two measure spaces, at

least one of which is abcont. (u x v) is the product measure

o T 2 1
'_Tizf obtained from (29) (if)g is abcont) ‘or from (32) (1f ¥ f
abcont) .
i s If both are abcont then of course either integral formula

may be used, yielding the same fesult. From here on wa\fﬂall
fefgr to u x v simply as the ggggggg of y and v. (Ft-should
ﬁ;%éeseqaxhowever, that'theyefméy exist generalized products of
¥ and v,éther than>u X v. 'Iﬁéeed, one such case occurs with u
abcont and v bounded, but wé shall not-pause-to examine this
countegfbxamplef?“” :

If uy and v are both finite, then p x v is finite (since
u(é)-vj(ﬁ) < ©), If yu and v are both ség%a-finite, then g X v
is s&%&a finiteﬁ (countably partition A and B so that u and v
are finite on each respectlve ptf%e; # X v is then finite on
each Am x B ). Finally, if u and v are both abcont, then u x v
is abcont (to see this, note that each A = above is finite).

“(However, in this case thgieiﬁbmetimes exist other generalized

products of u and v which are not abcont).



153

Since u X v is a measure, we may inteqiate with respect

to it., The following result is important,f

C;¥i~§§heorem= Let (A,Z,u) and (E,Z',v) be measure spaces, with v
abcont; let §=:§ x g + extended reals be measurable and noni,
{;;;ff negative. Then
gt PR
z[ £.4(n x v) =j u(da) j \\x(silo) £(a,b) [f
| Ax % B| S

A

BT

¥
;

\ The right-hand side of (33) iq to be interpreted as

E follows. For fixed a o € As f(a ,~) has domain B. Integrating
with respect to v, we obtain a number, whieh depends on the
point a_ ., The resulting funct;on with domain A is measurable,.
and maiwbe integrated with reépect to u. Thus (33) expresses
a single integral with respeét to product measure in terms of
an iterated integral with respect to the component measures,

Results of this kind go under the name of Fubini's theorem (or

Fubini-Tonelli's theoreﬁlf

Two observations arggworth making, First, let Ge¢ Z x L',
and let f = xG' the ind%éator function of set G. Then one
easily verifies that (%é) reduces to (29), the defining equaZ
tion for product measuée. ' Second, suppose | and v are both
abcont. Then thev;glés of y and v may be reversed., Combining
this version of Fubiﬁi‘s theorem with the one above, we see that
the same result is dﬁtained independent of the order in which
an iterated integrdiion is carried out (provided the integrand

is nonnegative).f
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The proof of Fubini's theorem may be outlined. For £ an
indicator function the result is immediate,'ﬁs noted above., A
simple function is a weighted sum of indicaiors, and the result
then follows for £ simple. Finally, not#hg that any nogi'
negative measurable function is the poiﬁtwise limit of a noﬁil
decreasing sequence of simple functiopé, we apply monotone
convergence to the result just obtaihed, yielding the general
theorem. 3‘

We want-t0 generalize thesegfesults in two directions:
Eﬁirst, to the product of more pﬂan two spaces; second, from
ordinary to conditional measuf;s. The second direction is of

greater importance for us, and we start with it.

urw{?efinitionzv Let (a,2) and (B,1') be measurable spaces; a

p—
“lgj conditighal measure is a function vgJA x L' »+ extended reals
\'{ Mﬁ_éuzh ‘that 3315
“ﬁ; _K’L\) for each a, E A, the right section v(a ¢°) is a measure on
{r:

}f\‘ (B, Z');-and

Sy (ii) for each E ¢ I' the left section v(-,E) is a meﬁsurable

&

function on (i, )\34/”
|  Note the peculiar domain of v: the cartesian product of
the universe set A of one space and the ség;a-field L' of the
other space. Thﬁs v assigﬁé numbers to paiis {g,E) cogsisting
of/a point and a set. s
el

Suppose we have a conditional measure v as aboveﬁgsegether

with an ordinary measure u on (Q,Z). Let G¢ I x L' (this is
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#
Fo,

the product e&gma~field, not the cartesian product), and
consider the expression ;‘ | Jet*
¥4 [1.° .; 2
i - (3G 2y
A(@) = JA v(@: (b ta,b) ¢ GDA"@P":_ 34)
E ;
This is the same as (29) except fo;fthe extra "a" in the
argument of v, This causes no comélications. As before, for
givenwg,ythe expression v(g, {bl(;,b) E,G}) defines a function
with domain A, which is to be inﬁégrated with respect to .
If the integrand is measurable gBr each Ge I x L', then ) is
a well-defined set function; iqffact, A is a measure, as one
verifies by applying monotonenéonvergence.
A known sufficient cond;éion for the integrand in (34) to
be measurable is that v be ggfinite conditional measure. To

generalize, we-hgéééte~extghd the abcontness concept.

St —

(J[~-) Definition: Conditional measure v{:é x ' -+ extended reals is /‘Z/-b
abcont iff there exists a serie§;of finite conditional measures
“:fsﬁ Voe D=1, 2, ..., such that %ﬁ
— / (2635
vV = vlfi Vo + een A %55%' |

*”""éﬁgg,;;;e (35) is to be understqéd as usual in the pointwise sense:

For the pair (g,E) E(@ % &@, the values vn(g,gz constitute a

numerical series whose s#& is v(a,E) (bot; sides may equal +«),
We now proceed as éLove. For given G¢ I x I', the

expression ~.__
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> Vpla {bl(a.b) € GH-

defines a measurable function on A for each n; hence the sum

of all these functions lwwhich is the integrand in (34)

.\
measurable. Thus A(G) is a well-defined measure.

— We refer to this as the Eroduct of u and vﬁ\and denote it
as above by u x v. Here U may be any measure on (A,Z), while v

is an abcont conditional measure with domain A x L',

This generalizes the preceding constructionfkif we identify

the ordinary measure v on (B,Z') with the conditional measure v

given by (2. 6.3)

j L)

i A e
; N

In other words, a conditional measgie whiéhmis independent of
its first argument may be thoughtfgf as an ordinary measure
with domain ', in which case th%;formula (34) reduces to (29).
“theégoweve;)tﬁathby taking v coﬁditiona%Awe have lost the
s;mmé;ry between u and Vg No reversal of E%les is possible,-.
even if u is abcont. ﬁ%%ekalsoﬂﬁhat with the identification
(36), conditional abcontness reduces to ordinary abcontness.

Fubini's theorem remains.valid if v is taken to be abcont
conditionals Bimply insert the extra argument "a™ in (33).

We now generalize to more than two Spaces. Let measurable
spaces (A v Zl), P (A ,E ) be given. We are also given
functions Hys ooey u : “i has domain (A x..,x A 1) X Zi, and

o 7’
is a conditional measure. That 'is, for a given point
i ‘-s

[’17 )
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ve‘ o

3 b
a5 *5 L
-

(51 Py ai 1) in the product space Ay X0 Ai -1 the right

section ui(al, ceey By l,') is a measure on, (Ai,zi), and, for

a givenfset E € Z;, the left section u(.,*, ..., *4E) is a
. :
measurable function 047(A Ry a0 Ai -1’ 21 XoooX 21-1) (u; is

just an ordinary measure with] |domain Zlﬁﬂ Finally, let a non+

6
L™
negative measurable function £ A X.,{x A, + extended reals

i

be given, and consider the expressio?
v 3 0%

L

/ / 0
.é (“al'é. s n) ‘,_} ’(‘3?‘)

F i
i
£

J

These iterated integrals are to be evaluated from right to
1eft. “%hatmésq first fix al,...s n=1*, and integrate the rxghtgg
section of f with respect to the right secticn of ¥, over A .
This yields a function with do,mainmg\1 XoooX An 1:7%Next, fix
2y ...,‘a -2 and integrate this function with respect to

n-1 over An 1% to obtain a/ function with domain A

x‘..
i 3 | -n- -2°
Contlnue, finlshing with an integration over A, with respect

to u,. ;

For this process tggbe weli-defined we must obtain a
measurable integrand aéneach stage. What conditions guarantee
this? We start with the case where f is an indicator functiong

Let G € (I} X...X z, ) (fhis is the product -s-igma-field, not the

cartesian product)ﬁ and letmf = IG'

{
{

[A f u (a]-, .oo,a. 1,6.8. ) \l
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S tovss

. Theorem: If Hor H3s ceey W, are all abcont conditional measures,

then the iterated integr;i_is well-defined for‘gvnn;G, for any

Ge (Zl XoooX Xn). The resulting set function A(G)_Israux
‘ faect, a measuréhan (A, X...Xx A Ba Hyouk L.,

ag Definxtmon. A(G) is called the product measure of Hys seey u —

e ) d written Uy XeooX Yo
KZZE; an 1 n

fﬂﬂﬂﬂﬁg’ﬁhtdy_ Note that no restriction need be pféced on u,. ©Note also
that the conditioning structure permité no‘fgie reversalsg Aﬂhé
successive integrations must be perfoxmed in the specified
7 N
order. A special case arises when the u's are actually ( /} b
epostaply
independent of their point*arguments, if so, each ui may be
thought of as an ordinary measure ‘on (A Zi). If we let G be
the measurable rectanglemgl X...x E - we-eaa&iy obtaln in this

c [ —
fase ’

oy Gy S e i WD U5 Bigie Gt R s v B

\\T generalizing the product meibure relation to n components.
. For example, n-dimensional Lebesgue measure is the product of

n dﬁe-dimen51onal Lebesgué measures.
/ ;

We next generalizef?ubini's theoremp
—ei /

- ( Theorem: Let Uor ooy p;,Aand f be as above. Then (37) is well—

7o) defined, and equalsAf

Y
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% 2

22\ J
¥ o f ,\d (u Koo oX u ) . zip
A Xeo XA - n '

’Hy* This and the preceding theorem are best proved simultanZ
eously by induction on n, the number of components. The case

n = 2 has already been diséussed, and these results may be used
to go from n to n + 1. We omit details.

Finally, we makewaamew!emarks about ;L;fproperties of
product measures. If Y is abcont (as well as Hor seer My
being conditionally abcont), -then ¥y x;..x u, is abcont. “fhis
may be proved by induction on n. If ”1' u2, cesy U, are all
bounded, then Uy XeooX L is bounde@, (Note that boundedness
is a stronger condition than finitq%ess for conditional measures;
for ordinary measures the two conqepts of course coin01dgh3
What about the intermediate case pf'sigma-flniteness? For this

s"

we need one more concept.

A At

f

§£W ¥§;finition: Given (a,I) and(B 2'3, let vs_ A x E' + extended /Axﬁi
e reals be a conditional measure; v is uniformly s&gma-finite iff PHM‘

'i:;if there is a countable collecti?h Gec oz s%gh that, for all (a,b) €
A x B, there is a set E ¢ G s_;xch that b é E and v(a,_E) < o, /Lé E

-

This property is a 1itt1e stronger than mere sigma-

finiteness of each right seétion v(a,*). It implies conditional
abcontness. As an example, let v be independent of its point-
argument; then v is uniformly s&gma-finite iff it is s&gma

finite when thought of as;an ordinary measure.

i

(
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4&m«fﬁheorem. Let My be ségma -finite, and let Hor oeey u be uniformly

% B

Ak

fﬁn
s&gma-finite; then By XeooX M, is s&gma-finite.

g}£wﬂm§;oof. First take the case n= 2. u, is uniformly séé%a-finite,

,w
“%::‘:_\‘*‘ -
<y

S0 there-are I ,-sets Fl' Fz. ses Such that, for any (al,ag) 7
there is an Fi for which a, € F. and uz(al,Fi) < o, Also there
i8 a covering El' EZ' ose OF Al such that ul(Ej) < w, all j, by
My s&gma-flnite. Define

Sijc = {#]a; € By ana “2‘91'5;{) <k} x o,

for all i,j,k = L2438, sos 2 These sets Giik form a countable

measurable covering of Al ® A2 Measurability follows from the

™

fact that u2(°,Fi) is measurable; also, any (a;,a,) e(E x Fi)

with uz(al,Fi) <® for some i j, and- so (al,a ) € G, ik for some

l

el 25 sy proving the covering property. Finally,

(uy x uy) (5%-&) < é:\; ul(g:j) <.

since the integrand has k fcr an upper bcund, and is zero
outside Ej. This proves My X My is-ﬁigma ~finite.

For ﬁhe general case, proceed by induction on n: Assume
true for n - l, so that “1 BosnX W o is s&gma~fin1te. From

Fubini's theorem we obtaln

My XeooX wp = fu) xoo.x Mpe1) X Moo
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But this expresses the n~fold product as a z-fold product, of
which the left compbnent is sigma-finite,,by induction

N )

o hypothesis, and ;ﬁe right component, u, is uniformly-sﬁqma

finite. Hence ml XaooX My, is sigma-finite, completing the

’* induction. }ﬁ uf | §)

o Distribution Functions °°

Our entire discussion of measure theory has been framed so -

%j/f
HHMp; ic
will be the one exception, in that the concepts apply only to

as to apply to measurable spaces in general.

finite products of the real lineé—-thatmis . to n-space, the set
of all n-tuples of real numbers, with the corresponding_gé”
dimensional Borel field "~ This measurable space will be

denoted (Am,z ) 4in the present dlscussion.
= ”M‘%‘“

ﬁxm Definition: Let 4 be a measure on (gﬁ,zﬁ), and 1et_£ be a real=

valued function with domain A", £ is a distribution function
S

for u (in the narrow sense) iff, for every n-tuple of real

‘5Nf;f numbersﬁx(gl, «=-¢ b,), we have
£(Bys eeer b)) = u{(xy, ov., %) |x. < b, i s, all o,
£(b,, . n’ Xy 0 ) *n 'i _?,‘._’) ( 3%) e
T‘:"““—“—-"‘WTQ = ‘l\:\ {
m i = 1, 0 0y }}} (-'Sra:) o . 2
o the ray (v "‘

For n = 1, the indicated set on the right is a—halfaway
{x]-= < x <b;}. Por n =2, it is a "southwest" quadrant of

the plane.
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”g@ﬁf”nefinition: Let u be a measure on gégosﬁ)band:f a real-valued

WW § R

e

function ongAE. f is a distribution function for u (in the

-

wide sense) iff, for every n pairs of real numbers (ai'bi)'
i = 1, see p n, with a.i < bi, the value & [1”{5 *)(f}

: ~mmﬂ§
u{(xl, ceer X )la <% < bi, i=1, .., n} . 639)

is equal to the following sum of 22 terms:

-

j "f(bl"..'-]?r%? & f(al' bZ""'br}) e f(?l' Ez’a;b3""'_bn) o -“{;*

=

(2. éktf;u

+£(a), a5, by,een,b) +...<M..ﬁ+ (-172 f(al,...,a Vi . X8

|

“(In (40) we run over terms of the form f(yl,...,y ):yhere

.

i

yi = ai or b., and all 2° possible selectlon patterns are usedp

if an even number of ai’s appear, the term enters with a W+“

sign; if an odd number, with a "~* sign)

For n ;%l, the set appearing in (39) is an interval,
including its left but not its right endpoint. For n = 2 the
set is an ordinary rectangle, 1ncluding two of its four s;des
and one of its four corners.g It is convenient to refer to sets

in general of the form (39) /' as bounded intervals. Every

bounded interval in n—space"has zawcorners, and f is a
distribution function for;u iff the measure of any interval is
equal to the sums and differences of the values of f on these

corners‘according to thé sign rule stated above.

set~ns—géve some example%.
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89 uw =0 and £ = 0 identically; then f is a distribution
function for u in both senses.
2:¢t4) w = 0, and g_is constant # 0; then_E’iSQA distribution
function in the wide but not the narrow sensé. (Proof: Ghere
are an equal number of WeW and "-% terms in (40) , so the sum is
zero.)
S.4ktd) u(E) = 1 if (0,...,0) € E, and = 0 otherwise; the
i;f&;j function f for which f(bl,...,b ) =1 if all bi)s are positive,
and = 0 otherwise, is a distribution function in both se;ses.
Fiv) Let U beug-dimensional Lebesgue measure; this has no
distribution function in the narrow sense, but the function
f(bl,....b ) = blbz...b is one in the wide sense. (Proof:
Lebesgue measure in {39) is the product (b al)(bz-az)...(b -a, )
when multiplied out we geﬁ 2B terms which are exactly the terms
of 5;52 with the proper signs.)
f“““'“—“qr-w““\ We want answers to the following questions. Given yu,
when does it have a distribution function in either sense, and
are these unique? Given £, when is it the distribution
function, in either sensei:of some measure), and is this measure
unique? : 9
A pgrtial answer cag be given immediately. It-is-—obwvious.-

v 4 2 e /
from (BS)Athat a measure has at most one distribution function

in the narrow sense, aﬁd that it does have such a function iff
it is finite on every set of the type appearing in (38).
The corresponding result for wide-sense dlstribution

functions is a little more difficultg
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Q}éuwﬁ Theorem: Measure y has a diatribution function in the wide sense

iff it is finite on everg bounded interval. If f is a wide=

‘.I_ i sense distribution function for u, then q is another one iff
3 § f

g - f is of the form hl tooot h , wWhere hi' Am + reals does not

depend on its irth cbordinate.

———— u«::»‘%‘m““““ e—— of d
s ~ (That is, a change in the itth coordinate produces no

i
change in‘hi(xl,...,xn), whatever the values of the other n - 1
coordinates) . =

Thus ifqg is a wide-sense distribution function for u, one
can add any real-valued function of'n -1 variables to“f1 and
still retain that property. For n’a 1, a constant may be
wide-sense distribution functian for u if £ is ﬂ.mhemxeasoniis
+hat- any such additions cancel out in the differencing process
(40). |

If y is finite on evegf bounded interval, one can write

A,

an explicit formula for f¢5namé&§

&f(_blv---:}?g) (- i‘_ u{(?;lr-:f‘..-cxn)lo f..xi < bj_ or bj_ ixi < 0' B O

(Here the condition 0 i X; < b; is to be imposed if b, is
positive, the conditidh bi < x; < 0 if by is negative;ithe Hyw
is to be taken if the number of negative bi’s is even, the "-"
sign if that number is odd; finally, f(bl,...,b ) = 0 if any of

DN
Ol
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the b, s equalg zero). As an examplejffor Lebesgue measure
(41) comes out to f(bl,...,b ) = blb2'~~b , a distribution
[;Pnction already referred to. The general wide-sense distric
:§ bution functloé}ls then obtained by adding arbitrary functions
h t...th to (41) , as in the theofém above.
The various conditions impoééd on u have the following
relations. If y is finite on eéery set of the form (38), then
p is finite on every hounded 1pterval ‘<and this in turn
implies that u is ségma finlté However, as one may show by
examples, neither of these two melzcatlons can be reversed

SRR SRS i 2
% \ Next we come to the relation;between wide~ and narrows °

2 senseg /

quwaheorem. f is a distribution fun@tion for u in the narrow sense

iff it i a dlstrlbutlon functzon for u in the wide sense and,

77N g
f’i} ) for any 1 = l,...,n,\and for any A = 1 fixed real numneif b1,3
s‘u, . "‘:m %4 }, \~.’

(i L l)ooa, n; i # io)' theflimlt of f(bl, eseyp bn) as hi‘ = 0o

% “o
exists, and equals zero. ‘

Much deeper and morgfimportant are the converse results,

giving conditions on £ tﬁat make it a distribution function.

We need the following concept.

PO 5
gsy{?efinition= fzvgg + reals is continuous from below iff for any

n-tuple of real numbersﬁ (xl, eeey X ), and any real ¢ > 0,
fj} —there-is a real § > 0, such that If(er---rYn) =£(Xy ro0erx, )| <€

S e any (yl,.-.,y ) satisfying xi 2 yl >(§ =9 i S

l,...,n.
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«—| Theorem: Let f be a real-valued function with domain A", 1If
e = 1
ﬁébxx lﬁ‘(l)rg is continuous from below, -and-

' “(ii) for every n pairs of real numbers (ai,b ), i=1,.,n,
k) 4 e
with ai < bx' the expression (40) is nonznegative then there
is exactly one measure u such that f is a distribution function

for u in the wide sense.

/““"By combining the last two theorems we get a sufficient
condition for f to be a distribution furiction in the narrow
senseiw Aiééiy'g;) and (ii) of the preééding theorem, -together
with (111) f(b ,...,b ) + 0 as bi *-F%y 3 for any i = lyeee,n,
the other b, g belng held fixed. -(ﬁetua—.ﬂ-y—,.(eonditlons (:L) 4

’ (ii) and (Lﬁl) aré\also necessary for f to be a distribution

function in the narrow sense) .

% Signed Measures

——

In §ection¢5 we discussed the measure #l on the measurable

space (R x S x T, Zr X Zs X Zt), representing "production" or

“birthgt/‘and also the ﬁeasure &2 on the same space, represent:
ing "consumption" or “deaths%/\ One wonders if there is any way
of representing “ggg.production?i;or "natural increaserj the
difference between these two measures,

Such "netting out" procedures are very common in practice.
Thus one subtracts importé from exports to get net exports,
in-migration from out-migration to get net migration, debts

from credits to get net creditor position, e&e.
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Formally,,one has two measures, say W and v, over the
same measurable space (A Z){%and<one»wants to attach a meaning
to the subtraction operation uﬂv. (In the examples mentioned &~
exports, migration, and debts -~ the universe set may be taken
to be Space;:s? or perhaps, if one has full “"origin-destination"

I

data( S x 8).

5

<\\ s The obvious way to define u - v is as the set=function,

é%,f: with domain I, whose value at E € I is equal to u(E) - v(E).

There are two difficulties wigﬁ this procedure. First, u - v
will in general take on negaoive values, and is therefore no
longer a measure., Second, if ¥4 and v are both infinite
measures, the meaningless eﬁ%ression w = w ig indicated as the
value of y - v for certaing;ets (e.g.ﬁfor the universe set A
-itself) ; thus things are m%t even well-defined in this case.
We shall avoid the second difficulty, for the time being,
by assuming that at lgggg one of the two measures, H, V, is
flnite; o=V is defined above is then a well-defined set
functi;n on (A,I). Thozlmportant point is that this set
function has gig.ei tho defining characteristics of a measure,

’:K ]
with the single exception that it can take on negative values.

: N This suggests the fo;lowing definition,

"Definition: The set function ¥ is a signed measure iff
*7?1(1) its domain is a aigma -field, -and
/-:--

(ii) its range lies in the extended real numbers, -and
t(iii) it is countably additive, and

L YY) uig) = o,
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—iii) 48 the only property that needs explaining. Let
G be a countable packing of measurable sets, and let Gy Gz,
G3s «.o be an enumeration of the members of G then we must

R | (2.64%)
4 “;3‘—-‘**””
WG = u(G)) + u(Gy) '+ .ot 4 42).

\

in the sense that the limit of the righé-hand series exists,
and equals u(uG). Furthermore, this eqﬁality is required to
hold no matter how the terms of the riéht-hand series are red
arranged, For measures, where all teims are nonzﬁegative, this
imposes no additional restriction, since the sum of an infinite
series of non-negative terms is invériant under rearrangement
of terms. But it is an additional}éestriction when terms of
opposite sign occur in (42). The iotal requirement may be cast
in the following convenient form@;

Consider just the positive terms among the u(G ); let the
sum of these terms alone be P (aa j&sﬁmmgntionod, P does not
depend on the order of arrangement of these terms; if there are
no positive terms, set P = 0).f:Similarly, consider just the
negative terms among the uggn)} and let their sum be N (if
there are no negative terms;~5et N = 0). Then it is required
that, first, at least one of P, N be finitenwgéébnd, that P + N
- u(UG) . ua%( \

s ijg%ﬁponsider some examples of aigned measures.::l
e —
(%) Any measure is a sigqed measure; this follows at once from

the definitions. gAnd ofgcourse any non-negative signed

74 /"\ i\
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measure is a measure.)(

W
(ii) Let I be a finite sigia-field, generated by partition 6,
‘ﬂé / where ¢‘# G: assign extended real numbers arbitrarily to the

members of é, with the restriction that at most one of the two
o numbers {+w,-w} ig uged; foMK;very F e G, assign to the set YF

TP the sum of the numbers assigned to the elements of F; finally
§ assign 0 to the empty set 2. fThe result is a signed measure;~am
ﬁ in fact, all signed measuresf&efined on finite s§g§a~fields
. are of this form. #’
e o i Rt It is trivial thatiiiﬁ a measure is finite above (th&t-is,
if—it does not take on tﬁefvalue +») , then it is bounded above.
The same property holds for signed measures in general (the
proof in this case requ;rzng some effort). ) we hav§y
&ﬁLm; Theorem- If a signed mgésure is finite above (finite below) ,
kf;?’ then it is bounded abéfe (bounded below).
- m.-»w"«'““’""'/ ; 4
[~ Thus finitenesg}and boundedness are synonymous properties
for signed measures; From this theorem we obtain the follow9
ing important property@

e LTheorem: A signedfhaasure is either bounded above or bounded
sy /
i below (or both){

N AR vﬁ,.’ . i*
- A

qi Proof. Let u be a signed measure. We show that it cannot take
- on both values +® and -», For suppose U(E) = ©, u(F) = - for

o some%maasurable sets E, F, since u(E N F) + u(F\E) = u(F),

must have u(E N F) # »; then, since u(E n F) % u(E\F) = u(E).
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it follows that W(E\F) = »; E\F and F are disjoint; but
W(E\F) + u(F) is undefined, contradicting countable additivity.
'l)" Thus a signed measure is finite above, qi below, or both;

by the theorem above, it is then bounded ahéve, or below, or
both. LS L/ W

Definition: Let M, v be two signed measu#és over the same

measurable space (A,I), such that u(a), v(A) are not infinite
of opposite sign. The sum, u + v, ig;the set function with

domain I whose value at E is given:ﬁy u(E) + v(E).

v

Y n'
(The restriction on u(a), p(é} assures that the meaningless
expression » - « does not arise;L
Cpe—|Definition: Let M be a signed measure over (A,I), and let ¢ be

P
(L/

a real number., The scalar Qiaduct,rpun is the set function

with domain I whose value a£ E is given by ce-u(E).

—

In particular, (-1l)u /is written simply as -u.

{2§M3Theoremz The sum, u + v,fand the scalar product, cu, are signed

N

N measuresgiwhere U, v, and ¢ are restricted as indicated in
s i

their respective definitionsff"

swywwﬂ’*p‘bﬂﬂ—‘—;his theorem conﬁains the statﬁment made above concerning
the difference of twb measures; for 4 - v is the same as
u + (-v),jand is therefore a signed measure, Again, if yw and v
are measures, thegiu + v is always weiiidefinedbhand is a

signed measurerlaﬁn factﬁa measure, since u + v is obviously

nonénegativ%.
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C ﬁgr .;:g#"

éﬁ;\ m[;et be the set of all finite signed measures over

space (A,I). M is closed under addition and scalar multipliS
cation. That is, if u ¢ M and Vv € M and ¢ is real, then
p+veM, and cu € . We make the important observation

N\ e

that M with these two operations is a vector space. Let us

TN

define this abstractly.

mj¥ Definition: Let M be a set, "+" a £unction with domain ﬂ x M

e

\ar
and range in M, and "" a functien with domainy¥ (real numbers

x M), and range in M. (These are called addition and scalar
VA > WA ———

multiplication,,respectively: we use the notation ™y + v"

and "cu" instead of the clumsy "t (u,v)" and "o (c,n)"? )

—respeetivelys) Then M with these two operations is(a‘léctor

space iff the following eight conditions are fulfilled~

;7;3)¥3 +u) +v=27A+ (u+ v), for all A, u, v € M,
(li) H+vVv=yv+ u/'for all u, E Nb

(iii) there is an element of ﬂ, denoted "0", such that
H+0= u; for all u ¢ M, %

\}V\

(1v) Efor all p ¢ M&_there is an element v € ] such that
H+ve=20, &

QQ b(u + v) = bu +_bv,‘for all real b, ali He, V € mj
(vi) (b + c)u = bu + cu, for all real b, ¢, all u € ﬁé

(vii) b(en) = (bc)u, for all real b, ¢, all u € M

BNAA

A

'LeﬁhP
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The element 0 in (111) turns out to be unique, and is

known as the zero or neutral element of‘M. The v in (iv) is

NN

also uniquely determined by u, and in-fact-it is equal to
(~1)u = -n. |

—APE—is—e%eai;that:$his definition has nothing in particular
to do with measures, although we have kept the measure notation.
The most familiar example of a vector space is the set of all
n-tuples of real numbers under the operationsma+" and "+" given
by |

U [ 137
(’-‘1""'-’513? 4 (,Yl""'Yn’ & (?51 i R __yn) .

c(?clr---l?Fn) | (981000-09__7__‘11) -

We now state formallys

A
LS

”kﬁﬁ ) Theorem: Let (A,I) be a measurable space, and M the set of all
[ e—— Vs

'Q' finite signed measures on it. Then M, with the operations

A% Y

W+ v and cu defined above, is a vector space.

: Qj Proof: We have already stated that\mxis closed under these two
operations. The zero element 0 iS’ﬁimpiy the identically zero
measure; the element v in (iv) is -u. (1)n(v1ii) are then

immediate consequences of the’definitions. ++T£; O

)
Q‘élus now turn to the difficulties raised by infinite

measures, signed or unsigned. Throughout this discussion we
have had-to-make qualifications to gﬁbid the meaningless
expression « - ©, Any attempt to}ﬁéke a vector space out of a

4
/f
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larger set of signed measures than )| seems to faiiy because

N

there is no signed measure v satisfying
u+ve=20

if y takes on infinite values, so that condit;on (iv) of the
definition of vector space breaks down.

This is unfortunate,abecause many situations of theog'
retical interest appear td call for a concept théh is, in
effect, the difference of two infinite measures. Take net

production, which is the signed measure over (R x 8 x T,

Zr X Zs X Xt) obtained from the differenc%,production # mfnus

-

cénsumptionj as discussed above. There is no a g:iori reason
why the two measures, production and consumpt;on,féhould not
both be infinite. Indeed, in problems'with an unlimited time-,
horizon,gor an "endless plane", the presumption is that both
will be ihfinite.

Again,ksuppose one ié\evaluat;ng economic development
policies by comparing costs and beﬁefits against some benchZ
mark. Benefits and costs can be fepresented as measures on
the Time axis. What if both areﬁinfinite, a not implausible
situation if the horizon is unlimited? éhéhwould still like to
evaluate benefits minus costs,;hnd if possible to compare two

such evaluations.®®’

We have developed the cdncept of\bseuddiheasureJto over$
i Ny )
come these difficulties. This concept, being outside the

corpus of present-day measufe theory, deserves full-scale
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treatment in a chapter of its own, so we sh&i&»not define it
here. But we do wish to indicate how it jibes with the mq;é
familiar concepts presently underxr discussion. wBE&e&Lg,»ﬁf
npseudomeasures are generalizations of s&gma-finite signed
measures, just as the latter are generalizations of~a&g;;
finite measures. With their aid sigma -finite signed measures
can be added freely, even when infinite of opposite sign.
When one extends W to all s&gma ~finite signed measures, it
ceases to be a vector space; but extending itﬁstill further to
all pseudomeasures restores this property. ‘?;rthermoreyone can
order/pseudomeasures in ways that are eleg@ét and intuitively
appealing with respect to the pxoblems meﬁ%ioned abovg. >

- The-present discussion of signed mgésures may be viewed
as a halfway point, to be suitably gen§éalized when we come to

{

pseudomeasures in;ghapter 3
We have seen that, for any pairﬁgf measures |, v, not both

infinite, the difference y - v is a signed measure, A basic

result is that the converse is also true: ;}ny signed measure

can be expressed as the differenbe of twqueasures.

‘4&wﬁwbheorem~ (Jordan decomposition theoremk%lLet U be a signed

measure on space (A E), and consider the following two set-

functions, both with domain I.

3" | [ ;ﬁ (2.6.4d%)
Okdj;// u*(E) = suP{U(E)lg < EB/Fe¢ z})/ o

W (E) = sup{-u(F)|F ¢ E, Fe I}, “44)
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/

e

i d Then,:>
\ u and u- are measures, not both infinite,

TE (In (43) and (44), "sup" abbreviates supremum, which is taken
?

&hd = u+ = u-.

over the set of all values assumed by u 1-respectivelyx =} i

on measurable subsets of E) £ =

M"“”‘m finition} :

u+ in (43) is known as the:upper variation of us

o in (44) as the lower variation of u.gﬁfhe sum u + u is

0
s\ known as the total variation of gw)amg?is denoted |u|. The
- pair (u*,u7) is the Jordan decoggpsition of u.
wawwﬂwvwﬁﬂjiwﬂk For example, let u be a measure; then n a,& and y~ = 0,

(Proof: Dy monotonicity, u(E) > u(F) 1f P g E; hence
U (E) = u(E) ince M is noanegative, the supg;emum of -u is
attained on the empty set @; hence u_(E) = 0)., Similarly, if
u is nonwggsitive (that—is U is the negative of a measure) ,
then u =0, and § = -y,

Suppose one startg with a pair of measures, (ul,uz)(not
both infinite), forms their dlfference =y - DY and then
takes the Jordan decomposition (wt /M ). What is the relation
between these two pairs? ?he answer is given byi/.

B SR !
«— Theorem: Let Hys Uy be two measures over (A,Z), not both
infinite, and let Uy - uzju H. Then there is a finite measure

D) >/
-/ M such that

(3.¢.4g)

M, = wt o4 v, and Hy = uoo+ Ve, —~45)
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q;‘r?_xgg_g I£E F€ X, and FcE, then u(p) <y, (F) < uy(B). 1t
follows from (‘ﬁ'ﬁ? that u+(§) < uy(E) ,:\au E e I, similarly,
~H (F) élgzlg) S Uy (E), so u"(g) 5,u2(§)§¥all,p € I, from (44),
'“ig% If u, is finite, so is p™; in this case set My = 0 = vy
= Vv is a finite measure, and the relation ulsF u, = TR

yields (45).

If My is finite, so is u+; set ¥y -'u+ = v, and we again

get (45). J+T€:§f"

e | Thus for given signed measure U, the Jordan decomposition
is the smallest pair of measures whose difference is ., Any
other pair of measures having this property is obtained by
adding the same finite measure v to both halves of (u+.u‘).

The Jordan decomposition also has the following deeper

propertyni)

Definition: Measures W, V over space (A,Z) are mutually

singular iff there is a partition of A into two measurable
< Q2 , ;

sets, P, N (that—is, PU N =2, P N = §) such that u(N) = 0

3 and v(g) = 0,
] g ;

- ™ J £,
(L2 Theorem: (Hahn}decomposition gheorem)g The upper and lower

5 " - ;
53;? variations, u+ and u , of any signed measure U are mutually
singular.

| This may be stated in the following slightly different
forms,
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,¢; |\ Theorem: (Hahn gecompositionﬁgheorem,$§econd>yersionxﬁ For any

ey
‘§§f signed measure u on space (A,Z),:A can be sélit into two
measurable sets, P, N such that,hfor all E grt,
)4 @) if Ec P, then u(E) > 0; and ¥ i
- (i1) if Ec N, then u(E) < o, a6y
ST We shall prove that these two versions imply each other.
Assume the first, and%;et‘?, N be a measurable partition of &,
such that u+(§) = 0 aﬁé%ﬁ'(g) = 0, If measurable E < P, then
o, u(E) = u*(E) - u (E) vlu+(§) >0. If Eg N, then u(E) =

u+(E) -~ 4 (E) = -y (E) < 0:1’This proves version two.

Conversely, assume the second versioniétﬁ(g) < 0 for

).

every measurable subset of N; hence u+(§) = 0, by (43).

Similarly, -u(E) < 0 for Ec P, E ¢ I; hence u'(E) = 0, Thus

+ .0 d o 4 ™ . S o ," S ‘, £ A\f:/‘—
u ,u  are mutually singular. Ff} Tk ohaplcles The proofy

———

<$§ Definition: Given signed-measure ¥ on (%,Z). Any ordered

o measurable partition (?,N) of A satisfying (46) will be called

a Hahn decomposition for “3 P is the positive'halfé E'the

negative half ’ Of this decompositiOn.

&—— Equivalently, this could have been defined as a measurable

partition satisfying u—(P) = 0, u+(§) = 0,

Thu§,while the Jordan decompcsiﬁion is a pair of measures,
the Hahn decomposition is a pair of sets. The Jordan decompoZ
sition is unique; the Hahn decomposition is "almost" unique,
in the sense that, if (P',N') is another Hahn decomposition,

then |u|(P n N') = 0 and |u|[(P' n N) = O, |u] being the total
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variation of u. Given P, u (E) = u(E n P)% since, within E,
¥ takes on its supremum at E N P; similarly, u (E) = =u(E n N)
Among all pairs of measures whgse difference is u, the
Jordan decomposition is the onlg;ﬁgir which—is mutually
singulaz. ‘ >
As an example, let M, ﬁgsa measure. Then P = A, N = ¢
is a Hahn decompos;tion for He (Proof: immediate from (46)5@
The Hahn and qudan decompositions of real-world signed
measures have slmple intuitive interpretations. Suppose, for

example, that ﬁhe universe set is Space@gs;.and let signed

measure M be net ggports of some commodity: u(f) = exports
from E minus igpoéﬁs to E, for every region E. The Hahn
decompqéltion theorem shows that S can be split into two
regipns,‘P andmp,asuch that every subregion of'?kN) is a net

expérter (importer)) u+ and u~ are then the export and import

7

;.

_méasures exclusive of transhipment. Q}// o
: Most of the theorems we-have discussed have ggneraliza-
tions from measures to signed measures. Becausa of the Hahn
and Jordan decomposition theorems, it is unngﬁessary for the
most part to state these separately: eﬁe s{mply performg the
appropriate decomposition, applies the theorem in question to
each piece separately, and then puts the pieces together to
get the generalization to signed meaaures. There are just two
cautions to be observed. (1) ¢heorems\%:volving ineq?alities
|

do not always generalizef’thus the simple statement V f,du >0

need not hold if £ or u can assumeanegatlve values (see below
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for definition)w? (ii) éh; sometimes needd additional
assumptions to guarantee that the meaningless expression
® = o does not arise.sg/
There are a few concepts whose generalization to signed
measures deserves exblicit mention. We have already mentioned

sigma finiteness,. whose definition carries over without changes

\.Q 4
st

,,-«-"“‘ ; 2 ‘Lﬁ- A #

P jﬁf Yﬁeflnition. Let u bg a signed measure on (A,I). u is sigma-

- finite iff there §§ a countable partition, G, of A into

el measurable sets,‘éuch that u(G) is finite for all c ¢ G.
”,,/,,é”’gw—' We now c0me§to integration. Given measurable space (A,I),
\ S Y &

the integral&féZ%}du has been defined in the case where p is a

measure and £ a ?onjnegative measurable function. We shall

now remove bothgbf these sign restrictions.

h+¥ Definition° Let ﬁ be an extended real-valued function on

f_f Oyt

domain A.¢ f and f -are—functions on domain A given by

§+(§) = mp%(f(a),o). £ (a) = max(-£(a) ,0) o~

("max" abbreviates “"maximum®; that—is, £ coincides with g
where the 1attefiis positive, and equals zero elsewhere; f"
coincides with -f where f is negative, and equals zero elses

where) ., f is known as the positive part of £;. f as the

negative part of ;.
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~ Note that both £t and £~ are non+negative functions.

i~

Also that f' - £~ = £, while £* + £~ = |£], the absolute value
of f,

#$w) Definition: ILet p be a signed measure,and f a measurable function

on the measurable space (A,Z). The integral of £ with respect
to u is given by:

65 20 S e i e e SRR B e
] fduao gﬂ@?+] fﬁ@a~j fﬂm ~[ £, au’l, @an
A A R e\ A~

provided the right-hand expression is not of the form « - ©,
e

(If it is of this form, then/fA_fhgu is considered to be

meaningless%g

~=(In each of the four integrals on the right of (47), the
integrands, §+ and £, are nonrnegative, and u* and u” —which

~§@he upper and lower variations of y)i-are
measures. Thus these integrals have already been defined, and
(47) gives the integral for signed measures and "signed

functions" in terms of these already defined integrals) 3//

!f";l At

47) is consistent in the following senseg If £ is non-

negative, and u is a measure, then the definition in (47)
coincides with the original. This follows from the fact that,

in this case, £f* = £, £ =0, ut = U, ¥ = 0; thus three of

e

the four integrals are Zexo, and the last (gives g

< «\7 S 2T
Ye| fau
A A

—
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Whéfe the right-hand expression has th ;original defiEitionf
e TG s
Two "halftway" cases arise. ;f 4 is a measure, (47)
reduces to? il
— » ‘7 q“? yihe Sg:;
. I £t au - Ié;f- au;
f ) A 1 ‘é -
and,‘if £ is non-negative, g§7) reduces té—l'/
% 7 Pl Q“Lg‘ 20—l
> [ £ apti- [ £ au”.
A l‘ A A
X{“
As an example, let f(a) - e for some fixed real number c.
% g
Then (47) lyieldsd 4
N A Y
\ S {* T
”\:’J s.?, du = cu(a),
A7 )

exactly the same formyla- as when ¢ > 0 and y is a measure.

(Proof: consider sep@rately the two cases, ¢ > 0, ¢ < 0),

o

We conclude thig discussion with a few integration formulas.
On measurable space iA Z), 4 and v are signed measures, f and
g measurable extended real-valued functxonsi\c is a real number,
Ifyg and u ara;both bounded, then

38N e N (36,4 2)

£, du (49)
A

is well~defined, ané is finite.
A



Wi 1S 2° W w2 31 (> 6.4
‘ c f £ ,du =[] of duJ t49)
% ; P g
e 8 aaeic Rl : deon B
'S § A il 2V
c [ £,du = j £,d(cu) & 569
= la A- ;
\\\ w W ) <O w/ j“"?) 2.6.<1)
] £.du + f g du = | (£+ g)an . ~$51)-
A A Sk S
g rat s e . PR
J £.du + j f dv = Jf £ d(u + V). 74521
A~ gk B A

&
&
£

/ é\”t IIKMJ k"
’ (49) thredgh (52) are to be read as followsp If both

sides are well-defined, then they are equal. (48), (49), and
(51) thus generalize (9), (10;, and (11), respectively. In
(50), cu is the scalar ptmduqt, in (52) , u + v is the sum of

two signed measures.

2.7. Activities i

The measure space of histories, (@, 2,u)ﬁa-which in
principle gives a complete description of the worldf~ is rather
unwieldy as a whole, and ane wants to focus attention on one or
another aspect of special interest. We have alxeady discussed
how certain data may be extractedﬁ%-cross-sectional and double
cross-sectional measures,{production and consumptionxﬂand*the

like. Here we continue this discussion, concentrating not so
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much on material whieh typically appeafihin stagistical
tabulations, but on less sharply defined categéiies: *situations,"
"events!, "processes", "activities".)

Thus out of the flux one distinguishes e house, a crowd
of people, a town, a seacoast} or, a drivergtraveling along the
highway, a sugar refinery in 0peraéion, a,farmer plowing his
field, an army on the march. The first four items mentioned
are "cross-sectional configurations"; Shat-is, they describe a
part of the world at an instant of time. The last four refer
to something going on over an intervaldof time,

One can distinguish situations ip an indefinitely large
variety of ways. Out of these possi@ilities a much smalle%-f;
but still enormoué]e-number are act@elly distinguished and
named in the words of some language; Why some possibilities
are selected and others;ndt is itsélf an interesting question,
to be answered on the one hand byEéelations of similarity,

5

contiguity, contrast, closure and other characteristics of

)

"good gestalt”, and on the other. by causal relationss Situations
: L)

tend to be selected so that their parts are mutually interg

dependent, and relatively independent of the rest of the world.

=We-shall-have- S*** hi

; causation in chapter
4, In-the present chap%er, however, we are concerned only
with problems of description. @hat'ge want ,~then,-is a frameq
work adequate for describing a,%ariety of situations or
processes, whether they make "%ausal sense" or not. If one

takes the stork population of Sﬁeden and the human birth rate
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of that country as constituents of a single activity, this

activity can be perfectly well defined (although not very

useful perhaps).

;; .

Cross-sectional configurations have already been disg
cussed briefly:ig;:r~“ 'f ié was mentzoned that a house, for
example, could be represented as;a measure over universe set
R x F, R?the set of resouree~tg§es, and F the region occupied
by the housese This measure gives the spatial distribution of
the resources constituting tﬁe house. —There was one point|left
hanging,-however, in this d#scussion. A measure over R x F
represents only a particu%pr house —-n;;:mélthe house occupying
the particular region F (ﬁt the moment for which the cross=
section was defined). Wé have no way as yet for representing
a house—_zg_ or config&ratlon—type in general, as opposed to
any particular spec1meq of that type. The following construc:,

1,,

tion £ills this gap. |

£ 1
<;}5 Metric Spaces and Congruent Measures

QFE | Definition: A metric gpace consists of a set, A, and a real~

4= with ¢ \
PEN % valued function;Jg V§ % %. satisfying

D)
/z‘?.,..‘i) d(x,x) = o[ﬂfor-a all x € A; and

(ii) d(x,y) >0 if :x # y; for all x, Y A; and
S (iid) d(x,y) = d(y,x), for all x, y € A} and

(iv) d(xoY) + d(y,z) > d(x,z), for all x, Yo z € A,
—



185

..'-f\\ :
(Condition (iii) is called symmetry, condition (iv) the

triangle inequality. The metric space itself is written as the

pair (A,d) d is called the metrlc, or the distance function.
If d is understood A itself may be referred to as a metric

space)

Our first example is the most familiar casen

Lmﬁ;_\nefinition. Let A be n-sPace. The Euclidean metric gives the

distance between x = (xl,.,.,x ) and . (yl,...,y ) as
/ 5 E&2n)
d(x, y) = [(Xi b yl) oot (x, - y)) 217 . (L)

- — Conditions (i), Qﬁé}, and (iii) dn d are verified

o il
immediately. 4(1v), wnlqh is a little harder to verify, states

exactly that, in the trrangle with vertices x, y, and z, the
{4 | % T = e J\

length of the side'fromgg to z does not exceed the sum of the

lengths of the other tw% sides.

7%“17Definition: Let A againibe n-space. The city-block metric

(also known variously as the rectangular, metropolitan,

manhattan, or midwestern metric) gives the distance between

I/;,\ﬁ X = (x]_l-o-rxn) and 4 : (Xl"'.f.yn) e

e . (27

i

K g S
fﬁwwﬂ,ﬂ»ﬂ*jfi Conditions g}) iﬂé;yugh (iv) on the d defined by (2) are
immediate consequences bf the properties of absolute values. )

> When n = 1 we have the real line, and in this case'(l) and

(2) both reduce to the same function, namelsys, V4Lq'“«»\\\\\
N
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/-~ Definitlon. Let (A d), (B d') be two metric spaces. _g;nh - B

ek ]
-~ T

w:dr:f

4
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\\-& N

S dlx, y) = lx_s- Ayl SN

gﬁ But for n > 1 the two metrics are distinet, The most

important case for our later Wbrk will be n = 2, the resulting

(

metric spaces being called the Euclidean plane and the ¢ ity

block plane* resPectively.gﬁ_ Wb SRt gt

As a third example, let A be the surface of a ephere of

radius r and center &= (cl, Sy G5 ). The great-circle metric

—

gives the distance betwqen X, Y€ Aas r ¢ angle (x ¢ y), the ﬁé&cy)
- G = -~ =, ~.

angle being measured inﬁradians. g

éne final example, Zét A be any non#empty set, and define
da bys d(x, y) = 1 if x # Vi d(x, X) = 0. Since this satisfies
(1) tﬁ*eugh (zv) it is a bona gigg.distance function, known as

\

the discrete metric.%

Let (A,d) He a matrlc space, and B a subset of A B can
be considered a metglc space in its own right by taking
a(x, y), for X, ¥ e B, to be the distance from x to y in
metric space B. This amounts to defining the metriec on B to
be the restriction of 4 to the subrdomain (B x B) c (A x A).
We shelil- always c@nsider any subset of a metric space to be

itself a metric space in this way. Tneppen
p ok

1= A
is a congruence) or an isometry, from A to B, iff

#
AR/

(1) £ is onto {tha%mis for all b ¢ B, there—is an ae¢ A for

whlch £(a) = b); and (3:2.3)
: ‘ LA 212
(i) d(x, y) = a' (Eg_(g). £(y))/ for all %, y € A, +3)

Y Thece twe w\étncs are €xemple of normed ""\d-\ts
% A is & vestor space, and there exisls a FuncTion’, i n,
on A (u.\\!.A & aw) Sd'lsﬁ\,m )L\\x\\ >0 fbor 4" *#‘-0 !\x+y||<|lxll +||y|l
NexU = lpl-Axl| for p real | and sucl\ that d(x,v) =0x-yll qu Xy €A
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U /“'4 (3) states that f is distance-preserV1ng. A and B may be
overlappingﬁ“or even identical, and, in the latter case, d'

__4x  may or may not be the same as d.

,ﬁL,~ Definition: Metric spaces (A d) and (B, é') are congruent, or

~
iﬁf isometric, iff there exists an isometry £f: A -~ B.

|'“‘“ If (A,d) is congruent to (B, d‘%, which in turn is con-

e

gruent to (C, da"), then (A d) is cgngruent to (c,d4"). This

follows from the fact that, if}fg A + B and g3 B + C are
q

isometries, then the composi?ioﬁ gkf: A+ Cis aﬁl}sometry.

Thus the relation of congruenqg between metric spaces is
7

transitive. Furthermore, ifiﬁA,d) is congruent to (B d'), then
(8,d') is congruent to (A d)§' For} if f- A<¢ B is an isometry,

!

then it has an inverse funcéion gi B + A (that—is, g(£(a)) = a&m v

all aea, and f(g(b)) = b& all b e B)\lfnd g is also an
isometry. Thus congruence*is a symmetric relation. Finally,
(a,d) is obviously congruent to itself, the identity map

f(a) = a being an isometny, thus congruence is reflexive. 1In

short, congruence is an gquivalence relation between metric

spaces.

Next, let (A z) and (B,L') be two measurable spaces.

Defxnition: f: A+ B is Feasurability—preserving (from A to_g) iff

i V) =
i:j;:) _ig (1)‘,; has an inverse function g: B + A, @nd
"'.\ i —

(11) both £ and g aregmeasurable.

.F‘
&
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@ﬁ§\ - 0
i -2
<

(Measurability of f means of course that {alf(a) € E}
belongs to I whenever Ee z'; measurability of g reverses

these roles, so that {blg(b) € F} belongs to &' whenever F ¢ I,
Condition (i) holds iff f is lvl and onto) .~

Let (A,Z,u) and (B,Z° ,u') be two measure spaces.
E:Definition. £: JA + B is measurekpreserving iEf

jS} (1) f is measurabllity—preservlng, and
fv»*r-"*(i,‘_iﬂ W' (B) = plalf(a) ¢ E},kﬁcx all E¢ ',

\Condition (ii) is efmegafs;ﬁﬁnwtfthe statement that u'

is the measure induced by fjﬁrom M. This is all completely

symmetric,rbecause U is alg% the measure induced from y' by the

’ inverse mapping g. )7

These concepts may nd% be combinad. Suppose A is provided
with a metricq d, and with a sirg!m-field‘5 ) and measure, u;
s thus A is both a metric space and a measure space, and we

write this as a quadrupla (A d z,u).4%/

Qﬁﬁﬁ Definitlonz Let (A, d E,u) and (B,d',Z',u") be two metric-measure

gﬁjgx spaces. These are measuzéicongruent iff thefehsxists an

= isometry f' A +lB (for the pair (a,d) and (B, d'f) which is also
measure~preserving (foréthe pair (‘g_\,x,u) and (Q,Z',u )).
e ' ;

— (ﬁﬁﬁé%;hat?ghere mﬁst be a single function which

simultaneously preserveé distance and measure”ﬂ If the metrics

are understood, one says that U and u' are congruent measures,)
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To illustrate these conceptglléaéus take the Euclidean
plane, with the two-dimensional Borel field and Lebesgue
measure. Let E, F be two measurable sets whieh—are congruent

in the sense of plane geometryj theyfﬁave the same "size" and

"shape"e That is, there is a functlon f- E - F, whose range is

\\“E >

—Zill of F,l?nd for which d(x,y) = d(f(x), f(y))k all X, Y € E,

where{é is Euclidean distance. Lettlng EE' E be the Borel

field restricted to subsets of E, F, reapectively, one can

show that f is measurabilxty*pzeserving. In fact, f is'measurei

preserving with respect to Lebmsgue measure restricted to

(E, Z ) and (F, ZF), reSpectiveiy. Hence E and F are measurei

congruent.» : g
~fMeasure*congruende is &n equivalence relation among metric=

measure spaces, just as conqruence E se is an equivalence

relation among metric spacqs.

Configuration Types

Jmmwum now apply theﬁe concepts. We suppose that Space,
\§§xhas a metric 4 and a s&gma-fleld I (e. g.js is 3-space, 4
the Euclidean metric, I ghe Borel field). Let E and F be two
regions. is:EIEEﬁlsadfaéevev these may be thought of as metric
spacesﬁhand also as measérable spaces&\in their own right.

Let u, v be two diséributions of mass over universe sets
E, F, respectively. (Weéage suppressing discussion of the
Resource set.$ for the moment- p and v may be thought of as the

marginals of measures over R x E and R x‘?,%respectivekqi} It is
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intuitively appealing to explicate the vague seia%ian, "u and

are slefemunt,
v, the same type of configuration" by the precise relztien;

"u and v are measure*congruent{ﬂ The latter requires that E
15 7

and.f’have the same size and shapeﬁiand that the distributions
over E and F have the same “patteg;j <780 that v is in a sense
just a rigid displacement of u;9%§

We now brzng-ﬁeaeﬂeees, Rﬁkinto the discussion. Let y,
v be mass distributions over spaces (R x E, E X ZE) and

(R x F, I xZ ), respectlvely; Here E and F are regions, as

r
above; E and E are the restglctions of the sigma -field z of

8 to measurable subsets of E, F, respect1Vely, and Z is the

o

s&qma ~-field of R; regions B gnd F are provided with the metric

of Spase, but R is not assu@ed to have any metric,

v

C;@ | Definition: We say that u a@h v represent the same configuration-

type iff

s_'

/? (i) there is an isometry f. E+F whiech is also measurability-

preserving [with respect ho (E, Ip ) and (F, Z )]‘ and

G x ;
(ii) for all G ¢ I, x Ig LlfﬁQE

v(e) = p{(f,'s)i(r,_f(g)) € G}y

- Note that £ is a mapéing between regionsfkand is not
involved directly with R ét all. However, f determines a
certain mapping from R x E onto R x F,<a;§§L§¢~the one carrying
the point (r,s) to Q;, f(s)) Location shifts, but resource=;
type is held fixed.s (4) then asserts that v is the measure

induced by this mapping from M.
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(Indeed, it iémaésy>te seenthat the mapping (r,s) -
(r, £(s)) is measure-preserving. First af:a%i} it is measur<,
able, since the two functions (r,s) + r aankr,s) -+ :(g) are
both measurable. Second, since_£ has an ﬁivéfse function~g,
the mapping (r,s) -+ (r, g(s)) from R xNggonto_B x E, is the
inverse of (r,s) + (r, £(s)); and it iéfmeasurable since g is).

If yu and v represent two houses, say, then condition (m)
requires that they have the same size and shape, while condi-
tion (ii) requires that the same ma&erials (wood, glass, brick}
etc.) be arranged in the same relamive positions in both
houses. Thus this definition apgears to capture quite well
the intuitive notion of "two inatances of the same kind of
thing”ﬂ §

Resources and Space are n@t treated symmetrically in this
definition. The reason lies kn the "heterogeneous" nature of
R as opposed to the “homogenepus nature of S. There is no
analog in R to the congruence relation among regions of Space =5
at least not in general.{}f g

If py and v represent the same configurationﬁtype, then

- their rightfmarginals, u' amd v', on spaces (E,I_ ) and (F,Z ),

respectively, are congruent;measures. This follows from (4)
upon taking G = R x F', where F' € Ig:
V'(F') = V(R x F') = u{(k_r._,'s) |£(s) € F'} = u'{s|£(s) € F'}.

o,

>
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We have defined the condition under which twokgpecific
configurations are to be considered of the same tyge. But we
have not yet defined the notion of configuratiqﬁitype abstractly ..
~ divorced from any particular specimen of thatf;ype. For example,
we can say that this house in Lisbon is of the same type as
that one in Hong Kong, but cannot yet speak of this house*type
not in any particular place. Recall th%t we conceive of Space,.
ﬂg, in real terms, its regions being acéial geographical places,
80 that our definition above is “tied@ to the real world.

This difficulty is easily overgbme. We suppose R and its
ségma ~field 2 to be given., A configgratioﬂxtype is then

defined as a quadruple, consisting of a set, Es a metric5 d, on
Es a s&gma field, XE' on E«aand } measure, W, on (R x E,

Zr x L ). This configuration*tﬁpe is exemplified on region F

at moment t iff there is a mea§urability~preserving isometry#{
f. E + F, such that the mass-éistribution, v, over R x F at
time t, satisfies (4) with u¢

In other woxds, the dezinltlon of "exemplification" is
formally identical to that of "same configuration~typq”, and
merely differs in 1nterpre%atxong In the latter, E and F are

both regions, and we get a relation between two particulars;

sigma-field, and we get a relation between a universal and a

$

particular. Furthermorg, ene can run this definition in

reverse, and identify tﬁe abstract configuration-type of any
S i

i
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particular: merely strip the region it occupies of all
properties except its metric and sigme field. N

~There is no need to abstract from R as we did from_?,k\
because R is already the set of t _zggg'of resources.
*L{hone comment on the relation between these concepts and
ordinary language. 3It—is clear'Ehet "house\”}"forestfug"crowd
of people" and the like refeq}not to a single configuration--.
type, but instead roughly delimitce set of such types. The
more detailed the description, tﬁe smaller the set of con2
figurations satisfying it; but e%en an encyclopedic description
does not narrow the range down io one. (Furthermorejﬁ-and
logically distinct from the ambiguity just mentionedjﬁ-there is
a penumbra of vagueness aboutjgrdinary language, so chat there
are "borderline cases" and “téilight zones" where eﬁiris séé”(’
sure whether a given configu;;tioﬁ?type satisfies a given
description er-net.)” :

Suppose one has a description of the world at some moment,
;:%qin the form of a list of ;onfiguratio;ltypes exemplified in
vafious regions, E E) . Ez; ...5. Some of these regions may
overlap: I1f Fg (Ei n Ej) where F is another region, this
means that the mass dlstributed over F participates simul<,
taneously in two configurationej {%ﬂﬁfﬂunmﬁhe the ceiling of

one apartment may be the floar of another. 1If the descriptions

are accurate, the two measures My and “j will then be identical

over F. We know from the fatching theorem ﬁne» —Y that this

is a sufficient condition 'for the wvarious ui?s to determine a
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unigue measure i on the universe set u{E laoa- X, % wiaks Yy
being the restriction of u to E . whus the complete cross=

fectional measure may be patched"ftogether.

6§ e T particular, if Ei & E. wg have the relation of par
and whole (a neighborhood in a city, a family in a nation,-ete.);
~¥ha%»is the relation of whole to part is represented formally

by the measure ek over R X E and its restriction to R x Ei'

which is B;. One frequentiy ‘deals with a whole hierarchy of

parts and wholes: ﬁlltems into packages into cartons into carf

loads into tralnloadé}1ﬁ§c.

Activities g

E

Qur discussion thus far has been confined to cross=

sectional measures. éWe now turn to "dynamic configurationﬁt
)

"Activity will be used as a generic term for

such processes. Thege seem to be several related but distinct

s
bt

concepts here. i
.44 \3 e B

VAL

-het—us start with the measure space of histories (Q,Z,u).
Just as a configuratian is a restriction of a cross-sectional
measure, one may think of an activity as a restriction of u
itself: ?ha%mis, cne takes a measurable subset of histories,
He E,’and refers go ¥ restricted to H as an actlvity.%/f For

example, H may be ﬁhe set of all histories whose itineraries

"
A

lie in region Fkbaéd whose transmutatioﬁipaths lie in resource-
set E at moment t& ‘more generally, which lie in B, x Fi at

moment ti (1 = 1,...,n). Or/ H can be the set of histories
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lying in E x F (¢ I x I g) at least once during timeJinterval
Gy or,, wh&ehklierin E x F throughout time-interval G.

A different approach starts)no;’with (Q,Z,n)ﬁhut with the
production and consumption measur§;§kxl and Azh%derived from it.
Recall that the universe set hegéris R xS x T, with the inters
pretation: A (E x F x G) = masé of all histories "produced" or
"born" during period G, and startlng in resource=-set E and
region g, 'Xf is the same, wlth "consumed"” or "dying" in place
of "produced" or "born'. An activity in this sense is a
restriction of Al or Az (or both, or net production Al - A ) to
a subset of R x 8 x T of§;he form R x E, Eﬂa measurable subset
of S x T.

It is very common énd useful to combine these approaches.
Consider, for example, ihe description of the operation of a
certain shoe factory,,;ay from time tl to t,. The appropriate
set of histories H comsists of all z;ieh act as "factors of
production” for some ?ime during the interval [gl, 321 7;the
factory building, th%gland on which it sits, the tools, the
machinery, the workeés and management personnel{é-even the air
and the gravitationag field at the site. For production and
consumption, take thé restricted set R x F x [gl, 52], F being
the region occupied éy the factory and grounds.qixzyéiil
include the productién of shoes, but also the production of
smoke, noise, odor, ieather scraps, etc. Az will include the

3
= g

consumption of rubbeé, leather, nails, glue, water, electricity,
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fuel, etc. The activity in question may now be defined as the
triple of measureé?jpi 1, 12), u restricted to Hﬁ\and Al' 12
to § X F X [Fl' 52}' or ailthe pair (u,;il - Az), Xl -1,
being a signed measure or, more generaily, a pseudomeesure.

This is by no means the only possible representation of
this process. For one thing, it omits inventories of materials; [/
raw, in-process, and finished. These may be 1ncorporated, ig
desired, by expanding the set of histories H to include them.
{The distinction between materials and factors is in any case
not a sharp one. Materials change form Xii ev‘ position in ﬁ)
relatively fast, factors relatively slowly). Gn—theuotherwhandt
it is sometimes convenientlto treat the commemting work%orce as
if it were consumed upon e?riving each morningﬁgand pronuced df
new upon leaving.' In thié representation,labor would be
recorded in the Al' Az aécounts, each worker being counted
once for each separate écmmuting trip he makes.

Let us try to claséify various activities. A first
distinction is between ‘activities whteh "stay put" and those
whieh change location over time. Letting H be the set of
histories over which e given activitysigrjis defined, the §£§E§;
tion of g at time t ié the region

5 5 § (37:8)
F. = {x|h (t) = x for some h ¢ H}. ~{5)
(Recall that hg is tﬁe itinerary of history h. The fictitioxs

point z indicating that a given history is not in existence

ol
at instant t, is excluded from this set) If;_Ft is constant
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over the interval [51' }2], the activity is sgid to be
sedentary in that interval. é

\ 4
fs Al Hhe can also define the location of an activity in terms

of the production-consumption measures, k and ) Their
universe set is P X E, and the spatial chSSosection of E at
time t; {sl(s t) € E} is the location éf the activity at t.
If an activity is defined having both!;(stock) and A (flow)
components, it is generally conveniegi to make this set

coincide with F of «8). é
Is the shoe factory activity discussed above sedentary in

the interval [ vty 12 Not according to the original deflnltion,;
because the workkorce commutes in and out of the plant site.

But if one transfersg labor( and aay other factors iﬁtering or
leaving the plantkite during the interval in questioﬂ) to the
productlon—consumptlon account, &s suggested above, then it
becomes sedentary. This shows t@at whether a certain process

is to be considered sedentary eﬁ?aat is at least partly a
matter of convention, i

A simplz*located activit§£§/;s one whose location at any

instant is a single point oé Spdne (or the empty set). If this
single point is the same over t@f interval [t,, Ezl)thsn.it is
also a sedentary activity. The %oncept of simple location for
an activity is of course an ideaiization, but a very useful

one, as chapter 8 will demonstraﬁé.

-~



by the real numbers. A, over the measurable SpacerR x FxT,
G?F% ZE x zg.x Zt) is stationary iﬁf,ﬁfor all E ¢ Z %F Eg;}and
75 for all real numbers - f
f 2 7k
ME) = Alx,s,tf| (x,s,t + ) ¢ BY +6).
é Here A can stand for produ&tlon or consumption; or, their
. ﬁf.\'g:,cgtzn»}..
W @’ difference, net production. 7(6) states that, say, production,L
(}pJﬁﬁii is invariant under 613p1§cement in time, and this captures the
VLo
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Among sedentary activities we distinguish those whieh are

stationaryﬁkor steady—state. Firstﬁieemus look at activities

defined in terms of production ané consumption, over universe

set R x F X T, F being a region.§ T is, as usualj rapresented

intuitive notion of a steady rate of production“

e
-

The concept of steédyhstate for activities defined in

terms of histories is agbit more complicatedp)
§¥£wéﬁéfinition:

Let h be a function whose domain is the real numbers
with values in a set B§ and let c be a real number; the c-

i

displacement of h is ﬁhe function ﬁ%’ reals + B given by
°(x))

(2:7.1)
47)
. ,all real X. }interpre%ing the domain as Time, (7) states that

wherever h goes, h” goes ¢ time units later (~c time units
earlier, if c is negative).

If ? is a history, then nS is also'
% a historg,for all reél C.
% Now let H be tha set of histories over which an activity q,
% : with restricted measﬁre u, is defined.

q is stationary iff

ﬁ

W/

/ B
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=3

_;-{Aﬁéi) H is closed under displacement.:- (mhat;is, if h ¢ H,
then the c-displacement of h also belongs to H for all real
c); and |

3@“(&}) if E c H is measurable, and c is real, then -

l O R TR

g = uw(B) = u{n|nt ¢ E}.

Condition (i) implies that g is sedentary; condition (ii) . R

that the cross-sectional distribution of mass for the histories
H at time t is independent of t} that the éoubléﬁcrossﬁ
sectional distribution at timeé&pl anduf:2 depends only on the
difference_tz = tl’ and, in gqheral, that the entire process
"looks the same" if shifted aﬁbitrarily through time. b

Finally, if an activity %s given by a pairri;:N;;‘- Az)
or triple (u, Ao A2l>it is t? be considered stationary iff
all its components are statiqﬁary according to the respective
definitions above!wthe-gEgg7%umber“E”§Ettgfytng—aii-stmui2%*
~taneousiys

Stationarity is a severétrequirement; Under it there can
be no batch production, only a continuous flow; no shifts,
only a continuous arrival ané departure of workers; no daily,

A

wegkly, or seasonal cycles. It is the ultimate in uneventful='

ness.

fflﬁ Activity Types

Just as with configuratiéns, one distinguishes particular

activities, located in specific portions of Space-Time, and
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aqtivityitzgg_. We shadl follow the samgférocedure as above;
Qgg;iy, first to determine when two speéific activities are
considered to be of the same type, and{)second to define
activ1tyktype abstractly., :4 ;

Let £ be a measurability~preéétving isometry of Space
onto itself. We shall consider ﬁwo activities to be of the
same type iff there is such an f whieh together with a time
displacement, transforms one gf these activities into the
other, {#

Pirst gonsider two acgivities defined in terms of produc-
tion or conéumption: sayfi on the unive:se set R x G, and )'
on the universe set R x gi (where G and G' are measurable
subsets of S x T).ﬁ%iméﬁé A' are then said to be of the same

.—)
activity-type iff there is an f. s k s as above, and a real

number ¢ fuch that ;

G = {sst)|(f(s), £+ o) € @) 8
and such that

A'(E) = @((r,s,t)l(r, £(s), t + c) € E}, 9)-

for all meaqurable Ec R x G'
i ‘{/ff{ Li
> "(8) states that the two Srace-Tlme "regions", G and G'
A -
have the same size and "shapa“; while (9) states that the

relative patterns of production (or consumption,-ete.) ﬂithin
these “regions" ts the same. ~Note=that these activities need

not be sedentary.x
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Next take two activities defined in terms of histories:
say Uy on universe set _H, and y' on H' (H and H' being measurable
subsets of Q). With f- S + S as above, c a real number, and h

a history, the C, f-transformation of h Ls the history hc'f

given by the follow1ng rules:

(For the transmutation=-path:

[
) |
L;i%*iﬁ’ Sugrtw = n e @), all te T
4 |For the itinerary:
S 'l = ghn (t = c)), all t¢ .

" s ;4 , :
sﬁ IIf h(it ~¢c) =z , it is understood that h (t) =z .f3\
#/&" 2

>

That is, the transmutationkpath of hc' is 31mp1y the c=

displacement of the transmutatlon-path of‘hs this is

c,f 0

unaffected by f£. The itinerary of h~'= is the f-transformal

tion of the c-displacement of the itinerary of h. (If £ is

the identlty, this simply reduces to the ‘c~displacement of hpd/
% _

7
there is a measurability-preserving isometry f:/s + 8, and a

[e—

u and u ' are it then said to be of the same activity=~type iff

real number © suqh that
i f (;3‘*17. ;.«3
H = {n|n®= ¢ '} 410)
and such that
(a1 11)
b (=) = uin|nSf € B}, (-

}C

for all measurq&le IR
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Finally, if two activities q and q' are both triples ,

—

(u,kl,l ) and (u' ,Al,k )LArespectlvely, or, palrs (u,2) and

(u',A"'), they are said to be of the same act1v1ty&type iff

each of the components are of the sameéactlvity type according
to the above respective definitions, with the same f and ©

% satlsfylng all simultaneously.

e e

_The similarity between these ﬁefinitlons and that of

atatlonarlty is patent. In Faﬂt, an activity is stationary
iff it is of the same type as agy time displacement of itself,
Speee being held fixed.

N

We now define the concepg'of activity~-type in the abstracb&

i

/ 0 flr t for activities of the ﬁtoduction—consumption type. We

quce of Res 30Urces, (;,Er). Let

‘7/, —are given the mea:
’zf (T' Z') be the real line ama its Borel flald. Anmactivityn
type is then defined as a ﬂuintuple, consisting of a set€>S'ﬁ
a metric, d', on 84 a s&gma field, E', on 8's a subset G' of
s' x ?' which is meas urable- gv é Z' X zé; and a measure% A! .

on universe set R x G', f

" ?°(Here the notation é' T' is meant to suggest "abstract”
Space and Time; there 15 'no need to a?stract from R 51nce this
is already a set of resourcéltypégiztk‘ then gives the produc-
tion or consumption pattern over the abstract space R x G';
if we are dealing with égg production, then A' is a signed

measureﬁ or)more generally a pseudomeasure.)
= /
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\

This activitiitype is exemplified on the set R x G

(where G is now a subset of "real" Space—Timef_g x:@) iff there
is a measurability-preserving isometry"f{:s +_§' and a real
numberhf such that (8) and (9) are satisfiéd.

The construction of activity-types in the sense of

histories is similar. WwWith S8', T' as above, an abstract history

is a function with domain T' and range in (R x 8') y {zo}
satisfying the requirements for being a history in the ordinary

-sense., An activity-type is then a measure y' whose universe

set is a measurable set of abstract histories, H'. This is

exemplified on the set of "real" histories H iff there is an
E{:S + 8' and a number“g, as above,;such that (16) and (11) are
satisfied.

Finally, we may have an activitfltype having both a
"histories" component and a production and/or consumption
component, both structures being superimposed on abstract

Space-Time, S' x T'. This complex activiﬁj~type is then

exemplified on "real" sets H and R x G iff there is an f and c_
12 5 5
as above which satisfy (8), (9), (10), and (11) simultaneously.

Scale of Activities

The question of whether there are "constant returns to
scale" remains a vexgg‘one in the economics literature. This
is properly a question of technology, not description, and we
therefore do not discuss it here. We do suggest, however, that

much of the disagreement arises from the fact that "scale" is
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an ambiguous concept. In this sectionfwe»ahn&é spell out
several of its possible meanings. _:

Given two activities, g and q '» when is q a k-=fold
expansion of q, where k is a positive real number? All of the
following answers have this in aommon. When k = 1, they
reduce to the concept defined above of q and q being the same
activity (or actlvity*type). Thus we are really seeking to x
generalize to the case wheregg and q' are somehow "similar"
but unequal in “sizq‘) hﬁ 3

Specifically, let q b@ the complex activity consisting of
the measure y over the measurable subset of histories H H, and A
over R x G (G being a meqsurable subset of § x. T);ﬁiurépresents
the production-consumptien componentsf%and may be a signed
measure, a pair of measures, etc. (the following discussion is
valid for all of these @ossxbilities). Similarly, q' consists

" of the measure y' over H', and A' over R x G' (A' being of the
{ e
s s

\,R %Deffm“\'\oh q is a k=-fold e:tpansion of g in the intensive sense iff

there is a measurability-preservmng isometry f. S » S, and a

V \ ; € 4 ps BT sty
N7 /8 ( ) - (8) and (10) are valld -and-
W Rq gl
(ii) (9) is replaced by
) =53 i
3}¥i S (31015,
7 | AA(E) = k ¢ Mx,s,t)|(xr, £(s), £t + ) € E},, —32)-

for all measurable E % R x G', and
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ﬁ'(lll) (ll) is replaced by

u' (i‘?:) = k . H{h‘hc'f € E}, 7,

for all measurable E ¢ H',

;X;‘mﬁu=k_\

|7 That is, the "locations" of the two activitigg in Space=
Time have the same "size" and "shapéb also the ;ﬁiative
distribution of mass over these locations is*thélsameA\but the
absolute levels on corresponding sets are k t£Mes greater for
q' If these represent two shoe factories, ?e would find k
times as much machinery, inventories, worke#s, etc., crowded

%
into the same area, turning out shoes and gonsuming materials

at k times the rate in one of these factories as compared to

3

the other,

This is a rather unusual conceptio%gof "scalel',/ and we

8
it
L%,
i

jgplest of the possif

list it first only because it is the s
bilities. 1Indeed, one is tempted to sﬁy@\ "This is not a
scale expansion at all: all factors, including land, must be
multiplied in proportion, while the 'intensive' concept leaves
the quantity of land unchanged!" We shu&i now try to pin down
the alternative notion of scale wh&eﬁ underlies this expos<

tulation.

”‘l“%%w

The first difficulty revolves ébout the concept "quantity
of 1and"7 "Land" is an amblguous term, sometimes referring
to a certain class of resources wh&ch includes dirt, mineralsj
and trees, and sometimeskis a synonym for Space. Now, in the

intensive scale concept, land in t@e first sense has been

H
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multiplied by k: the soil is_E times more densely packed,
etc. The protest above must therefore fefer to the second
meaning of the term “lanéxﬂ But what then is the "quantity of
apaca“, and how does one multiply it by k?

The simplest approach is to 1dcat1fy "quantity of Space“
with volume in the case of 3—Space, and with area in twe-
dimensional casesrksuch as the plane or the surface of a sphere;gg//
We shall assume that S is endowed with such a quantity measure,.
o, and refer to it generscally as. "areaf*

[f

A Next we need to generalize the concept of isometry@

N = o~

o~ Definition: Let (A,d) and (?,d');be two metric spaces;a f' A > B

o~ + is a similarity iff

D 1L (1) £ is onto; and

’w@(ll)‘ there is a positive real number, m, such that

a'(f(x), £(y)) = mfd(xéz),‘ for all x, y € A,

\ MM?*,‘Q& ) {fi‘ih% -
xxme m 1s the dilatation of f.

e Thus f has the effect of~stretching all distances by the

factor_g. (If m < 1. this is 0f course a shrinkage. f is an
isometry iff me= 1. ) I f is a similarity with dilatation m,
then- it has an inverse, 2«/52?35' which is a similarity with
dilatation 1/m. Roughly spea?ing, a similarity preserves
"shape" but not "size'. 1

Let A be 3-space, and ghghe Euclidean metric on Aj let‘f
be a similarity from (A,d) to itself, with dilatation m. Then

it may be shown that f is measurability preservinggiand that
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P, (4 )

u(E) = Vg}lBu{Valf(a) € B},

for all Borel sets E ¢ A, where yu is volume (tﬁic;i§; t§;ee:
dimensional Lebesgue measure). Thus £ expands vclﬁ%e by the
cube of the dilatation. Similarly, if (A.d) is the Euclidean
plane then (14), with m2 substituted for m3, and M bexng“uwe-'
dimensional Lebesgue measure, is valid. We ?ﬁn&i confine
attention to these two cases, ;f

Again let q be the activity given by measure u on the set
of histories H and X on R x Gs similarly q' is given by u' on
H' and 1A' on R x G' We—-then-define: ¢

= &
&ﬁg R D @,hfﬂah.q is a k=fold expansion of g q in &he extensive sense iff

there is a real numberwgfrand a similarity fz S + 8 with
f”jS} dilatation kl/p-such that (8), (10)§ (12) , and (13) are valid.

(Here D is the dimensionality of Sgﬁce. D = 2 for the plane,

and 3 for 3=-space).)

| Thus the single difference‘%etween the intensive and
extensive scale concepts is thét the spatial transformation has
4(1”4 z/"a dilatation of 1 in the fcrmer case;~and of k*P in the latter.
1 The reason for this latter c?oice is that :;;;\Tcr volume, for
D = 3) expands in exactly tﬁg same ratio as y and A expand on

]
¥

corresponding sets. Thus ﬁhe average density of all measures

with respect to the "quanﬁity of Space" is the same for q and
q' for corresponding seté; This presumably is the meaning of
a "proportional expansici of all factors, including land“¢

i
i

Vi»)
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If 37is the normal shoe factq;fguand g' is a k-fold
expansion of g“in the extensive §§nse, then the workers in‘g'
would be Brobdingnagians (if_54§‘1) or Lilliputians (if k < 1);
all machinery and plant wouldg;xpand or shrink in the same
proportion. Stocks of resogﬁges and rates of output and inflow
would expand by the factor ﬁ} but per unit area (or volume)

would remain the same as béfore.

We merely mention Lﬁv?&SS%ﬂg another class of "scale"

conceptss. those involv1mg time=dilatation. In all cases

discussed se=far the onky transformation to which Time was
subjected was a simple iranslation. t > t + c. But there' could
also be a scale factorg t >kt ¢+ o, where k is a positive real
number other than 1. %he effect of this is to change the
speed at which procesﬁes occur, the rate at which "particles"
fulfill their historieé. There are numerous possibilities,
depending on whether,§§aﬂe is also subjectgd to a dilatation,
by the factors multiglying # and A, and by the relations among
these four magnitudes. \

~— An example of a time-dilatation is the relation. between a
film run at normal speed and the same in slow motion. (One
could even have k <§0, which corresponds to running the f£ilm
backwards). " é

Another concepé rather different from any of the foregoing

is that of scale ingthe duplicative sense. Here the expansion
factorki must be a éositive integer. Again letaglbe the
activity given by u%onAg’and A on E XM§, and q' the activity

given by u' on H' aﬁd A' on R x G', Then

I Sk
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B
e
I

QF¥ Dcé!nnzuv q' is a k-fold expansion of q in the duplicative sense iff

there is a measurable partition of H' into k pieces -\say,. ﬂwﬁy
'2) ; ,gll-~.,Hk§& and of G' into k pieces &mﬁay,xGl....,ka-sucgﬁ
(L that the activity qi » defined by u' restricted to H i qyﬁfk'

1'/”

] 1,...,k,Athe same time-translatlon ¢ serving for all i= 1,...,k.

| —

«waf/wfﬁgg—gmm” This definition captures the notion of the same processes

Y AT
running 51délby—side“ - in row housing, banks of machines, or

the plants of a perfectly competitive industry. The stipulation
0, 4 r on ¢ requires simultaneous acting ogt’by the k-fold duplicates;
4 this could be relaxed, to allow for staggered timing, or even
for duplication by a k-fold repétition in Time. ;
This completes our shor£ survey of some meanings of “scale?@
2s mentioned, we shall retuxn’to_it later with a discussion of
"returns to scale" :ﬂar¢=—ﬁr- -

Some Evegzﬂay,hctivities

”Tﬂ“thismfinalmsubsactioa we«sha%i examine how various
broadly defined,nﬂone-digrt“ activity categories &-such as
mining, g:ansportationband services : fit into the present
framework. Since these categories weie not designed to be so
fitggdﬁaand sinee their definitions involve many gg_ggg
eleﬁents, we can hope at best for a broad-brush chargcterization,

_Qith many errors in detail.
One can classify activities from many points of viewj fer

.gﬁhmﬁle, by the number of persons participating. Thus one may
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distinguish natural activities (no participants), private
activities (one participant), and shared activities (more than
one), Of the latter one may distinguish various authp%ity
structures, cooperative vs. conflictive aspects, who performs

what services for whom. ete. ;f'

o
A;“

=~ At the moment, however, we are mainly iﬂterested in the
physical structure of activities. We,shaki take activities in
the histories sfhseﬁ\and pose the problem as follows: What
characterizes the defining set of historie%, H, of, say, an
activity classified as "construction”?

!
Consider transportation, fgr example. An ideal transporta=

tion activity is one in whic%fgll histories h ¢ H have constant
transmutationngths, at legéi over the interval [El' 32] to
which one is referring. féhat is, a typical "particle” may
change its location iniépaee but not its resource-form r éiB'
This is of course apﬁépproximationz travelers get fatigued,
cargo spoils, vehiéles suffer wear and tear, ete.

The foregqihg approximate description applies not ‘only to
the activitigs\customarily called "transportation" but to
several othg;s as well: utilitiesﬁ\such as water, gas,
electricity, and sewage disposal; communicationsgzsuch as
telephopé and broadcasting. The postalisgstem cohsists mainly
of transportation activities. w%hemgfe&%~§;&k“e£ %verYday
act;%ities, in fact, will have a transportation subfactivity
iﬁ;them.

<
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For some transportation activities it is useful to >
idealize even further and take H so that all its membgié have
the same itinerary over the relevant timewinterval.$ This makes
it simply#located, and the activity may be repgﬁsented by a
resource~bundle (that-is, a measure over a gﬁbset of R)
traveling over the "track" determined by #he common itinerary.
This approximation is good for transpo$€ation that goes 'in
channels (roads, pipes, wires,&etefhgiut poor for broadcasting.

A special case of transportatién is storage, the simplest

L

of all activities. An ideal stqrage activity is one in which

all histories are constants, g% least over the relevant time-
interval, @batmﬁs the pagtlcles" change neither their
resource-forms, r € R, nog their locations, s ¢ S. This of
course approximates proqésses in the real world wh&eh change
slowly\b What is toéﬁe considered "slow" depends on one's
focus of attention 3ﬁd scale of observation. To the historical
geologist the ﬁargﬁfhas undergone great changes, but on the
human scale it h#i a certain massive sameness, except for
changes in the;Weather and "minor" fluctuations such as earthﬂ
quakes and floods. Again, an economist interested in short-—
term busin7$s fluctuations can treat the stock of capital goods
and pOpul#Eion as constants, but this is not true for one

studying economic development.

e Note that when one compares ideal transportation or

storage with the bundle of processes labeled "transportation"
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or "storage" in the real world, one must not only approximaggf"
but also abstract from certain aspects. The fuel consumeéﬁ;n-
refrigerating a warehouse does not itseleE?tisfy the condi—
tions for ideal storage even approximately. In sim@ly*located
transportation one focuses on the bundle being mbved (including
the vehicle, if any)k\and abstracts from the flxed plant of the
transportation system' the train, but notfﬁhe rails, the
electric current but not the wires. gf

Trade, retail and wholesale, is largely a matter of
transportation and storage. J‘

Motion in Space means eﬁweeayég-motion relative to the
#arth, since we have conventionally taken the,Earth to be fixed
in Spnce There is another cIass of activities, however, in

which the essential feature resides)not in motion relative to

the Barth, but in the motlon of the "particles" relative to

each other. 1In particplar, a fission activity is one in which
the itineraries divqj%e from each other over time, and a

¢ WV
fiéssdon activity is one in which they converge toward each

other over time,f

“{These chéracterizations are rather vague. One could
distinguish,further according to whether the divergence of
itinerarigﬁ did or did not depend on the resource~states of

the hisp&ries, giving us segregating activities or simple

scatta%ing activities,u:espectively. Alsq)one could go into
the various ways of measuring dispersion and association of

spatial distributions;ﬁz/§8ut this is unnecessary for the
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7

,&‘
present discussion, which is impressionistic in any case.)”

Going to manufacturing, it appears that‘hxvery roughly,

f‘*zz.,,_,

and with many exceptions)+ one can classify manufacturing

processes into fission activities, in which things are taken
eapart,;or separated into component substances, and:fusion
activities, in which they are put together, orxr éssembled into
larger units. First-stage processing of ra§ materials is
generally of the fission type; érude oilfis refined, ores are
benefiééted, crops are winnowed, logs;ard carcasses are
chopped up. - (The reason-is that nggére presents-us with
things whose ingredients are mixgd;up in noéfuseful ways}gand
which are unwieldy in size), r£l§£ stages tend to be of the
fusion type: ¢§rs are assembied, cotton is spun, woven and
sewn into clothing,” drugs ;re blended, - 3*6%43/
Construction is a kﬁnd of fusion process that—is

distinguished by the nd;ure of its product. This is not so ﬁ%"
much a guestion of sﬁ%e &(Qupertankers and jumbo jets are
larger than most bﬁlldingg % but rather that the product is
attached to the #arth- it is "real" rather than "movable"
property. Theré are,-to-be—-sure, cases where it is not clear
whether a givé; item is “real“ br movable” (e.g. fixtures,
"mobile" homes), but by~ané-%arge buildings, dams, bridges,
roads, raiiway tracks, airports, docks, pipelines all belong
to the ?brmer category, while vehicles, machines, and consumer

goods{ﬁélong to the latter. In summary, construction is a

fus%é; to the #arth.

7
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Mining is the reverse of construction. It consists of
detaching pieces from the #arth. This will include not only
the extraction of minerals in the conventional sense,sbut also
the undoing of previous construction in demolition wo;k. }¥Also
Ztunneling would be considered a form of mining onwthismappsaaeh
just as land filling would be considered a form of construction)’

In summary, mining is a fission from the Earth.

What about agriculture, forestry, hunting, and fishing?

These are generally classified as e}ﬁractive, and indeed they
have a strong mining component, ;s defined above. (A certain
style of agriculture is knowq#pejoratively as "soil mining").
But these increasingly teng to be run as self-sustaining
processes by re+seeding,frqi§tocking, and fertilization, so
that the "constructicqﬁ aspect is becoming as important as the
/

"mining" aspect. ﬁ

Oﬁdkxq) This brings 9% to gservices. At first glance, this seems

J/////;Z be such a he?%rogeneous category %ﬁembraciog repairs,
business ;and ?érsonal,services, professional sexrvices, enter-
tainment ag?ﬁeducation) eﬁeq4~ that no succinct property could
begin to ?pproximate it. Aad, indeed, this will ée our

=
vl

contéhtién as far as the physical structure of these processes
is cogéerned ‘
fﬁdam Smith divided workers iQ productive and unproductive,
agd it is clear from his examples of the 1atter'i{§ervants,
;igwyers, mnsicians)“eﬂg.»%-that he had in mind more or less the
va"f’presv.cen*g,%i::\y distinction between those engaged in the production

49/

of goods vs. services..” Although service workers have long
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since been admitted as contributors to the national producq;\/
the tradition lingers that they produce an "intangiblé“
This is clearly wrong in detail: Laundering is a éerv1ce and
there is nothing intangible about dirty laundrg“
about- the transformation from dirty to clean 1aundry. What
makes laundering a service is that the laundry does not own the
item it is cleaning. We claim,»tnmfact, that %Eii character=,
istic, rather than any *intangibility“, is what distinguishes
the bulk of the activities known gs services.
If true, thﬁs means that services are such not because of
'any physical property of the activity\but because of the owner—
ship relations among the interested parties. Hence the same
activity may be either a service or not, depending on the
organization of the industry. Suppose laundries operated as
used car dealers do, b uxing dirty shirts, cleaning them, and
re%selling them on uhe second~hand market. This may well be
considered goods gtoduction. Conversely, suppose,-8ay, copper
refineries operaﬁid as follows. Miners ship their ore to the
refineries withbut relin?ﬁishing ownership; the refined copper
is then returﬁed to the owners, who pay a fee for the service.
This is comg&etely analogous to the organization of laundries.
Would notjiopper refining then be considered a service industry?
We séi%itquickly run through the major service categdriesf
to indichte how well this characterization applies. There is
no problem with repair services in general -, e g. ,watches,

shoes, cars, radios. In all cases the owner A relin;uishes

'pzs$ession of the item to repairman B, who fixes and returns
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the item to A,

q

What about rentalsfﬁ-of houses, hotel rooms, or cars, say?

h Y
§
o

Let us look at the servicing relation a little more c;osely.
Person A owns some items, a, B owns some items, ) a and 8 are
brought together, with the result that o is beneﬁited, in
return for which A pays a fee to B, For repairs, 8 typically
consists of the repairman himself and his tools, for laundering
it consists of cleaning equipment, etc. ﬁbw the fee can bhe
described as a rental payment for the ﬁervices of B8; rentals
and services are two ways of 1ooking at the same transaction.
When gardener B trims A's rosehush, ene.may say either that A
rents B's labor servicesﬁ\or that A relin;uishes possession of
his rosebush to B, who returns ft to A in improved condition.
‘In the case of house rental, B is the house itself. What is a?
;TA himself and his possessiﬂns, which are provided with shelter
services. jf

Since a person ayﬁ;ys owns his own body (in a noqzalave
society) any benefitigto A's body (including his mind) made by
another person, B, automatically fall into the category of
service activity, according to our ownership criterion. This
includes the sngices of physicians, dentists, barbers, sex
partners, andjgultimately, morticians. It includes the services
of clergymeﬁ, of entertainers, and of all who provide informaZ
tion: iaachers, lawyers, physicians again, consultants,

employmgnt agencies, private detectives, credit bureaus,
/1
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telephone answering services, and astrologers. }Perhapsﬁthié
group explains the connection of services with**intangigies'zm
one cannot see directly the changes in a person'sﬁ;ﬁ}ormation
state or welfare level). 5 .

Most government activities would be segvf;es as here
defined,%because they provide benefits tqfﬁgrsons and goods not

owned by government.

- 'A'\’ﬁv'\(
|

This brief survey appears to COVer thewgsea:nhnlk-af
activities customarily classifieq;as "services!'sy, Of the
remainder, a number seem simplgﬁio be misclassified. (We are
of course now turning the tagi;s, and using our ownership
criterion to determine whatﬁ“shouid be" considered a service
activity}“ From our poiﬁt of view, photographers, duplicating
~ services,} and sign paénters are goods producers., It is true
that their produgﬁs)a;e closely tailored to individual clients,
but the same is tgﬂe of much househﬁllding, job shop work,
printing, and other activities classified as goods production.
Similarly, a %ﬁwyer writing up a will or a contract is engaged
in goods prqﬁaction. The most important misclassified industry
is advertising, whose product %{again tailored to individual
clientsxwvis advertising copy®, consisting of jingles, skits,
blurbp ¢tc.

Services will be discussed further in connection with

rental markets in chapter 6.
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M
2,8, Multi+layer Measures

For a general measure space Eé,z,u)ﬁanothing specific
needs to be assumed about the nature of tﬁe points of A. In
our applications, A has variously been a product space bullt
up from R, S, and T, on a space of gunctions (histories) whose
domain and ranges are built up from these, or subaets of the
foregoing, etc. We now briefly discuss some caseéﬁin which the

points of universe set A are themselves measures over some other

measurable space.

Let us spell this out. Given a fixed measurable space,.,
(B,Z), let M be the set of all measu:es over it, \m could also
be the set of all signed measures pr all pseudomeasures; the
discussion would be unaffected)." Now consider a measure space
(M,E'.u).Awhich ﬂ itself plays ‘the role of universe set. We

shall refer to this as a-%we-layer measure. Next, supposé B

itself is a set of measures over still another space, so that

each member of | is itself a-@we—layer measure; then (M I',u)

WA

will be referred to as a thfee ~layer measure. This clearly

extends to any finggeug_a Bl aas

We consider géme ways in which such multgilayer structures
arise in applicaiions. Let us first bring in the factor of
uncertainty. ;ﬁé have noted that,lin principleﬂ the measure
space of higébries, (2,Z,u), provides a complete description of
the worldﬁf;r social science purposes. But of-course one never
knows egéétly what the measure u is. It is desirable, then, to

try tofrepresent states of relative ignorance or degrees of
/

J
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belief concerning the true measure, U. 3

We sha¥l adopt a“*Bayesian point of view, acccr@ing to
which "state of belief" is representable asqbrobability measure
over the universe set of "possible world&".s;/ Syecifically, a
state of belief is given by (H,Z',w), where M is the set of all
measures over the measurable space of histoﬁies, (,2), L' is a
sigma -field on M, and T is a probabilityim;asure with domain I'.
For any E € L', w(E) is the probabilit%f(a "degree of belief")
that the true mass distributionl ., gwer the space of histories,
belongs to the set of measures E. fhis is a two~layer measure.

How is I' determined? The héuristic principle we have
used before states that all segﬁaﬁéieh are "conceptually
observable” should be consid%ted measurable. Here the equi%
valent principle would seemgto be: l}hy set of measures ahéah
is "sufficiently simple"}go that a mind could, conceptually,
hold a degree of belieﬁg%oncerning it should be considered
measurable. This is g&ther vague, and is best explained by
examples. If F is %f;easurable set of histories, and c a
number, the event:xﬁthe total mass concentrated on the histories

in F exceeds c“ wéuld appear to be one to which a degree of

belief could be attaﬁhed. This means that the set of measures

{ulu®) > e} B

‘éﬁfv ? | \)

is to be cansidered measurable (thax~is, belongs to L') for all

F € I, all real C. In particular, suppose F is the set of

5)}

J

4
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histories originating in subset Gof Rx 8 x _T; then the ,fj
the probability, Ty attached to the set (&84 gives the degree
of belief that total dﬂﬂths or production in G exceeds the

value c. :
This iast example provides an illustratioﬁ of how the
probability w can be induced onto simpler sﬁoces. Let F retain

its meaning of the set of histories origxnating in fixed set G,

and consider the function with domain:ﬂ‘w‘jjh assigns u(F) to
measure Y. This induces a probabiliiy measure on the real line,
which is exactly the state of belief concerning production in
set G. This induction process is completely analogous to the
many examples in section %&5 of the induction of oa the space

of histories (Q, E) onto 31mpler spaces,

Vi;;éiWW3 The case of perfect eertainty, with a known measure u

over (R,I), may be identlfled with the special case of the

probability measure (M, '.m) in which = is sxmpliiconqentrated

with all mass at thgv"poxnt" u & M

For a seoond example, oonsxder the structure of, the
Resources set R. Taking people&types as points of R, a complete
speciflcatlon of a person r € R will include his mental state,
in partloulaé his state of knowledge. 5e%~us-assume for the
moment that r describes a person in a state of complete
oertalnty. His state of knowledge will then include a descrip-

tion Gf the world, which is represented as a measure over the

spaoa of histories, Q.

\\,
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o ' -
- This lepds again to something resembling a-two-layer
measure, for some of the points of R have an internal structure
involving measures, while the overall descriptive measure is on

a universe set built up in part from R,

In—-fact, once one. admltq\lnto R structures wh&eh involve

~.
ool

measures over universe sets 1nvolving R,-ene appear; to be led
to “1nf1n1te-1ayered” structuress The raqson is that a person's
state of knowledge will itself be (at ;#ust)-tﬁo—layered, since
it involves knowledge of other stategfuf knowledge; and one
cannot stop at any finite number gfﬁlayers.

Whether one can build a uggful (or even consistent) theory
from such an infinite regresgf;emains to be seen., n@herewisugne
consideration -whieh simpligius things, however. The measuru
space ($,Z,u) gives a comélete description of the world. But
any person, even-one iuga state of perfect certainty, will have

a limited capacity tq’assimilate information. This limitation

<

may be represented;formally by replacing I by a small sub—si;ma-
field 2' ¢ I, yieluing an aggregation of the original measure
and losing detaii. Knowgedge of other people's states of
knowledge (and of one' s own past and future states) would be in
terms of an even smaller sagma-field ¥’ <L', hence even more
aggregatlvg'and sketchy, etc.

Fina;iy, mental states of uncertainty can be represented,,
as above;ﬁby a probability measure over a universe set gﬂof
physicél ﬁeasures. We again get an infinite regress,;in the
form:'ﬁé‘s degree of belief concerning,g‘s degree of béiiefc

/82
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In this book we shall not have occasion to use multi?
layer measures in any of the interpretations just discussed.
sha4;§ however, use them in anather way@\ as a rapresenta~
tion of technology. Here M wiil be the set of "basic feasible
activities" ) and feasiblg actlvitles in general will be
measures over . Fg;-detailed discussion see chapter—4,;.

™

ectlon%S

=
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___EOGTNOTES )

¢ 1€ertain new mathematical results will be given later. Most

oﬁutae mathematical material in this chapter is Btan&ard, axcegt
possibly for terminology.

’2The following books are recommended for readers wishing to
go beyond the necessarily sketchy outline of measure theory
presented in this chapter. They are roughly in decreasing order

of difficulty:\

>y

>, ﬁunférd and J. T, Schwartz, Linear Operators, vbl. xf >

Chapeer iiig(wileyulnterscieneaf)ﬁew York, 1958); _

Lot

= or Saks, Theory of the Integgal (Stechert~ﬁa£ner, New York,
1937); N

< H. Hahn and A. Rosenthal, Set Functions (University of

New Mexico Press, Albaquerque, 19{?153

<P, R Halmns, Measura thaegz (Van Nostrand, Princeton, 1950);

WSSESSSSSIE

>8, K. Berhexian, &@aaura and Intagratian (Chel&ea, Hew York,
1979). .

S*M. E. ﬁunraa, Measure and Integration . (Addison~ﬁasley,

Reading, Mass,., an e&itien, 1979),

= A. E, Taylor, General Theory c af Functions and Integration

(Blaisdell, m@w Yozxk, 1965). tsecond half of boak).
-ﬁa»addi:inn, books on the theory of functions of a real

variable will generally have pertinent material. But the books

above h§Ve been deliberately chosen for their abstract approach

c"ﬂ ‘
/



224

to the subject, which is the—appreaeh suitable for the applica-

tions we wish to make. P |

mI&~aheuiﬂ~be*nQEeé—t£§%’terminology has not baen fuliy
standaxdized, so that these books differ among them3elvestlfnd
with thémpaetent book.

B P

.

%Qaygan—ﬁactvggny denae subset of thefpg&ls could be used.

&
&
v
2

et
2

T The numbers 4“« in the extemdad real number svstem should

not be confused either with 'inﬁeterminate forms® in calculus,
which are just abbreviaticns for certain limit operations, or

with ﬂﬁfinite cardinal numbers in set theory.

4

51t also often znwolvea a distortion, to squeeze the facts

inte the categories bf the formal systemjé €.g. the assumption
of perfect vacu&’ ideal gases,"” pure substanc@? and, in social
v5“ science, of pexﬁbct competition*ﬁxlightninq calculatiagﬁk "jdeal

type§§ ratiogality, economic man, political man, 1xhidina1 Mman ,

,”QﬁcQﬁﬁon borderlines may be thought of as "no-man's land"

which p@longs to none of the abutting countries.

7

f “f
I *7These correspond roughly to Norman Campbell's %undamental

w\a:,m Tudes!
uﬂagﬂﬁiﬁaﬁi“» cf. N. R. Campball roundations of Sclence (Dover,
_Naw York, 1857), shapbex'x.
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Ve (814 could be more inclusive than the Borel field. But the

s_f (\i
attempt to extend Lebesgue measure to the class of all subsets of
the real line runs into countegfintuitive paradoxasﬁgat least in
the realm of "standard" measure theory, the kind usad in this

book and everywhere else until vary recently, But ef, A, R.

‘Bernstain and F, Wattenberg:ﬁiﬁcnstanaard Mquﬁre Thaorv“, 171 l85

of Applications of Model Theory to Algabrg;?&nalysxa and

Probability, W. A. J. Luxemburg, ed. (&gﬂt, Rinehart and Winston,

New York, 196%).J Vg

\ }_'.-5"'5}

MQW.SIR fact, the great contrihﬁ%ion of Lebesgue consists in

sansing and systematically dewgloping the consequences of

countable adﬁltlvity, as opposed to the earlier finit&lykaa&itive

®*Joxrdan conteng

' 7
S ~ -

De F"ﬂe—”-{ l\qs ‘“jhel hity ‘"'\d' Shg‘jecﬁw Pro‘u.'n’(,fgg
sloul ) be osJ.’ (a,L‘;Tel:f:qo(,(,'ﬁn, Bub e meadures we are J\'s(u«,i

0
represm'l' plyqlkqls""fvvm)h'\“"uleg, nol Jejrecs ol beliet Kj:‘d’f"‘““

thﬁo%ﬁ)’ ﬂhl l\u, 51’7‘&1’!4?{5 o‘o ho" ‘:W)I? T ‘fLm\ B. O(Q F“‘dr

IO, Q6

PNLGL\”’ ,v\o‘hcﬁu\ and S"‘kﬂ&g (tht‘] New York ")77—)¢

%Z?iéhagui&iysghis reduces to the countable case as follows,
If the ﬁat g ’I on which f is positive is uncountable, then the
summat&en of £ equals «; if I' is countable, then the summation
of f is the same as that of f restricted to x' But this

ra&uction does not detract from the intuitive appeal of a single

ﬁéfinitiﬂn covering all cases.
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~ (a7 -
&x }1How do we know that the territories occupied by ecuntrieé

S~

are in fact Borel sets (thaﬁm&s, members of the Borel fielé&? An
element of convention enters here. Without attempting &~r1goreus
discussion, it may be said that any real-world regieﬁfbrascneinq
itself as an obaexvational unit is ampirically 1nd;§£inguishahl:
from some Borel set. Thus taking it to bhe a Barai zot is a
mathematical convenlance &%&e& does no vielencgfto the faﬂtw.

i . jﬁ

wfw£%§Xt iz clear from this 113&,—by—tha~wag* that the term
"resource* is misleading. Other passibla tarms, such a=

aubstanca@ fssancq"gg quidaityg {. orx quality!", seam even worse,

wa should keep in miné then, t&at *resaurae” 13 a general

neutral tarm embracing yeopla*typ&a as well as gawdéitypas, and

"jillth* as well as wealth\%

(1 /
@Q)iﬁspatial *agnziguratiqgsi! ag we shall see, can be

represented by measures,

l‘ﬁa “confusion shauld arise betwoen Z as used here to
iﬁ@iaata anmm&tian; uﬁé ﬁol&&uae,ﬁ ‘o zapxasant a sigmagaﬁeld.

;.

pid 15&otm that ﬁE and E X,..%X T are not the cartesiasn
o n ——

products of the £am¢ly (xi%ie: M&Mennfuaian zhiould reoult from

this ambigueus;matation. CaeRt iy
4 N&,) ted,

&
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,¢>16There is obviously a strong element of convention in this

statement. One can hardly identify a unique moment at which a

person pops into or out of axistence}\ (e.g.aoaa might start with
conception rather than birth; naﬁ'hao problems with resuscitatioq)
-amd suspended animation, etc.) The inclusion of the endpoints t,,

tz in the intexval is also obviously a pure convention.

B=a

wfé}vThis distinction hinges on the scale o:;é;servation. All of
the "continuous” resources mentioned reveglﬁdf"granular“ structure
under the microscope. Conversely, from ggiarge-scale point of
view it may be useful to think of paoplﬁi say, as being
continuously distributed, as when ong speaks of "population density"
or "migration flaw“ :

@j}*sror people, the ”number’of entities" approach is almost
universal. No political aystem is organized on the principle,

'ona pound, one vbte”l

19

‘V This point will be elabcrated after we have defined the

concept of "integral.

s
2@/‘h é é&here—&s -an element of conventionﬂinvolvud in defining ES

4&5;3:&3510,,19 E to include the entire volume enclosed by the
building,/or just the shell? We suppose this has been decided.
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’\a;igglxn particular, the conpept of "congruent measures"s see
ﬂﬁ:_"""“’"‘;___’m;‘. /\g G ¥y 2 y
22

\u‘ We have deliberately refrained from introdncing the
metrical or topological concepts that woulé be needed for this,
These notions play a decidedly seconda%:;y role in this book, and
we have therefore concentrated on building up the theory of

measure R ;_g_ » which does not dgp&n_d on them.

\ﬁi (\\2 3Thex&ﬁ”m"emwmum continuity at the

«mmem—af’btfm A history is said to be continuous iff_

y.{v 2 2T R A S ol ,w v T

it is continuous at am instants of time except for these—two,

And ﬂ'cl
)
and continuous fram the (fu;ure, past) at (birth, death),

respectively.
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$§3403n one go further, and decompose the rural population

into a “two-dimensional® part (e.g. the farm population),, and
“oﬁh-dimensional" part (e.g.)pOPulation living along roads,

rails, or rivers), and perhaps a residual? The answer ;s yes,

with the aid of the Lebesgue decomposition theorem, qhich we

shall not cover in this book. For this "dimensional decomposif

SR ¢ (
tion" see M, Hahn and . Rosenthal, Set Functions, 106-189.

lywkzsLater~on we will allow both and_g;éo take on negative

‘values. Unless otherwise noted, all £ugé¥ions from now on will

have their range in the extended rea%;ﬁumbers. (This, of
course, does not mean they must tagéwon infinite values, only

that thay‘maz do so.)

@kzswhere are a large numbex of seemingly different

definitions of the integrg} in the literature. Most of—these
are either equivalent tq§?4) or minor variants of=ie,

i

q;f?7hftar W. H, Yqung, 1905. The general integral (4) is

essentially due toﬁa. Fréchet, 1915,

/&zarcr readnrs troubled by this cavalier addition of hetero
geneous unitaf7;o£ten said to be "invalid" — it should be
mentioned tuéﬁ it is clearer to think of the measurement unit
as being pi&t of the definition of the concept, the measurement

number itself being “"pure®”, Thus, “the length of this bar in
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meters : 3.?'4 rather than “the length of this bar: 3.7 meters".

~cf, R. Carnap, Introduction to Symbolic Logic nndfits Applica;;

tions, W. H, Meyer and J. Wilkinson, trans. ggﬁ;ar, New York,
1958), p. 169. 1In any case, the preseant Eriatmentgshaws how to

work with heterogeneous units with satgﬁi and convenience.
p

¢§f9wa shadl discuss higher di@ghsional Lebesgue measure
&
below. ’?g
S’f
-
=30 a

By the unigueness tﬁhorem, any function whieh-is

;
identical to ﬁlff except for a set of y_-measure zero is also

~ 4
~an Radon~Nikodym dorivﬂtive. In this case, as in many others,
the derivative éllﬁgfis more "natural® than the other functions

ne*equivalent to ik.

)ﬁ[fslnensitigé correspond roughly to Campbell's "derived

maqnitudes?}yfsee'ﬂ?—aa Campbell, Foundations of Science,

Chgphe*3§,find footnote 7 above.
i _,“-'

32I,n rate~-of-return calculations the density is unknown,

but it; derivation is not comparable to our procedure above-
Inci@%ntally, (18) illustrates the alternative notation for the
inta%ral given in (2): When several letters are flonting

ar¢uné, it clarifies which measure and integrand one is e

rgferring to.

-
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é«u3 ¥#=R. Halmos, Measure Theory, page 22. The proof of the

following theorem may be found in Halmos, Chgpter E%z, pf in
4

o

J. von Neumann, Functional Operators, vol. i 2

pasas, Sce Sedimg 3.3 endd 3.4
-

) §
Mc«sures and 1.%1'23'4[; AnnaQs o( Hq‘fkv.méﬁc.s Studies .#‘l. Prmcd'uh

Univereie fress, Prince bh)“ J-» 1450

¢A§4In the literature, conditional mea&uxed;ariae mainly in

probability theory, e.g. /Ain T L ﬂoob, siochastic Processes

(Wiley, New York, 1953), Appani&x Negt-that *conditional
probability" is often used in a quiga different sense than the

one employed here.

(S

On distribution functions see s von Neumann,

Functional Operators, Iﬂ‘xaasurea and Integrals,, {tAnnals-of

B R i L0 e R SR

yunte AV’ o " e ;
- } 160—172; H. Cramér, Mathematical Methods of

Statistics (Pringaton Uniggsaisy—rreas. Princeton, N.J., 1946)

, 5};—{; ¢
77-82. Defingﬁions vary from one author to another.

36we shall see later that the method for solving these

problemﬂ is closely related to work of Ramsey, ﬁgzsacker and
othegs on the evaluation of infinite development programs. In

faﬁé, it incorporates these "overtaking criteria” as special

*
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y‘37 +(E) nust include exports from E to itself, not merely

to A\E, for otherwise u would not be an additive sethfunction;
similarly for u™ (E). These sketchy statements will be _
elaborated when we eeme—to discuss transportation and transh1p~

ment; chapter 7.

%ngﬁwhan generalizing even further, to pseu@bmeasures' v
s ™~

does not have to do this. See chapter 3.

/5’90ne of the advantages of pseudomeasures is that the

proviso concerning- -@xpressions . ef the form © - o may be dropped.
When (47) is suitably generallzed, the (indefinite) 1ntegral of

any measurable real-valued function with respect to any pseuda$

measure is well-defined. See chapter 3.

; W oy ¢
# WA LY =~ P
¢1§0This is the first occasion om=whieh nonrmeasure=

theoretic -~ (specifically, métric}mfconcepts are bging used.
{ \ : "\

i%ﬁ%lene typically poétulates certain further relations

befween d and I. However, this is not necessary for the

-pmassnt discussxcn.

“"fﬁ%ﬂhe@@wésigne fine point -that-at—least deserves footnote

VA
p N

mention. Thefdistributions representing the left- and right-
3

hand gloves cf a pair are measure~congruent, but cannot be

transﬁgrmed into one another by a rigid motion: one must be
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turned -inside-ouﬁﬁ. We could therefore insist that sgmeness
of type requires not only measuggﬁcongruence, but preservation
of “parity" ox “orientatio@%@ Since this condition does not
seem important for social science problems, we pass over it
without further discussion.

A, :
zf;ﬁaThe "same"” melody in two different keys, or the

vwolvm
replacement of pine by spruce in a house, are examples ef shifts
among resource types analogous to interregional shifts. But

these apply only within small "homcgenébus“ subsets of R.

gf&%AWe have adzeady mentioned some problems concerning which

subsets are to be considered measurable in the set of histories.
Here we merely assume implicitly that all sets mentioned are in

fact measurable.

f a\

45Also called a Weberian activity, after Alfred Weber.

L,:e« Ka
See,\ - 4 .

Y/iiﬁsnow to define these measures in the case of more

complicated manifolds is itself a rather difficult problem into

which we Eﬁ;ii not delve. See L. Cesari, Surface Areaﬁ(Annals

of Mathematlcs Studies, #35, CPrinceton Univessmty;Press,

Princeton, N.J., 1956)% or T. Radd, Length and Area‘(@merican

Mathematical Society Collo;uium Publ&aatieas, é?l. 30,\

Providence, R.I., 1948).
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(
\/<57B. 8. Neft, Statistical Mnalysés for Areal Diatrihutians

m*~{ﬂnnag{39h 8&;?.& 52‘ antana& Saianac Rnsauxeh 1nst§tuﬁa,
Philadelphia, 1966).

o)

uiéénrxsnian and fusion activities correspond roughly to
Beverly Duncan's "processing” and 'ﬁubricagihg’ industries, and
aven more roughly to Alfred Weber's “matpiia1~ariontad* and
"market-oriented” industries. See. 0.;5. Duncan, W, R, Scott,
8. Lieberson, B. Duncan jand H. H, win&hexaugh, Metropolis and

Region (Jahnﬁaapkinn Press, Baltiuorb, lBS#) 57 -58 tn&ZShaptcx
7., and E. M, Hoover, The aocatign of Scnnonia Activity (McGraw-

Hill, New York, 1948),h31v38£;raspectivaly, |

7\
£5
&
-
A
»

PPy TR T T Tt e s S ,
ﬁi) Xﬁealth of uations, Book iﬂ; ehﬁgunr I&i ¢ 2 3
. i

¢fggﬁxn the West, nﬁi in the Communist world.

;trslsna H. E. gﬁhurg. Jr., and H. E. Smokler, a&ii&g&t

Studies in Subjeétive Probability (Wiley, New York, 1964),
especially thgf§tsayu by B. de Finetti and B. 0., Koopman,

#
&

¢Q§2£van an omniscient Deity would have need for probability
conoeptwg\to represent the states of mind of the less~than<¥’

omniscicnt creatures inhabiting the world.




