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2} THE PHOBLEM OF DESCRIPTION 
7 7 

= : b 7 e 

gj L CQnsider the following dataf 

//Y\ g Adpg ey t-at Boston, Gl t d New Bedford L ' aft—a ston oucester and New Bedfor 
"}/((%9/ > . T2 47 
¢7’ —io4B=1950 Fooo st RE ’ 

'%',:*I ; ‘e’ 7 / (,’ s 

- “(millions—-of pounds) Map AP 4 
/)?, KZV” ,V e N S it e, u?/:?;_w e L;rql./.*_,,»fl_ 5 

' _ 1y~ Boston C [Gloucestexr *)New Bedford . 
3 A 

e by 1948 1949 1950 1948 1949 1950 1948 1949 1950 

30 Y s de ] J] A 
i Cod X34Q7 28 6 \24 4 Yo 7.0} '-_\’600 »"6-3 4 1 ?‘"5.1 

ig/fi"fi%jéfiadaock 108.3 90,1 107.4 11,2 8.8 10,0 11.4 9.5 11.9 
AN Vst 3. 5 0.7 Aol 19,9 6.8 5.7 1.7 X0.3 0.3 
|" # _ Flounder 9.2 YB.1 10,0 2.7 7,6 7.4  41.0 33.9 29.4 

: ;f:“\ “ii  Source: U.S. Bureau of the Cenéus, Statistical Abstract of | /44 
355J! the United States: 1956 (Washingtoni 1956), p. 720, 

v N )\*&_w.w 
£ 

? /”*' A listing of the$‘ingredients" of th&s table might run as 

follows: — ! 

;fi@a "universe of discourse” consisting of certain regions 

(ports), at certain t Eeriods (1§484£950), at which certain 

resources (types of f£ish) appear, aud{@x) 

—a measure of the quantitiea involvad for each possible 

combination of place, time, and resauxca. 

It turns out that‘th&#‘data can; in fact, be represented by 

a measure in the technical mathematié%l sense of the term, . 

Cor
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Furthermore, this is true not only for the present examplakxyut 

for hha‘gueatnhulk of statistical data in general population, 

births, migration, marriages, production, transportation, income, 

wealth, “"#ffifif§1;> i 

A Bven this rather sweeping statement undarstatas the 

possibilities of describing the world 1n ‘terms of measures. Fer 

it-turns-out—that thoou kinds of data @k&eh cannot be represented 

directly as meaaureafih(such things as prices, population 

densities, per*capita incomasj-paxe dexived from undarlying - 

measures in ways wh&eh themselves are wellnknown perts of the 

theory. ; 

This chapter will be—devoted=to éarryfiagvout this dpscriptiva 

program. It will expound the coneapt;, terminology and basic 

theorems of measure theory as used in this boak Y find it will 

build a unified apparatus for dascribing the world in terms of 

these concepts. The unity arises fram the fact that the 
i 

k\‘univarses of diseouxae“ over which the various measures are 

defined are always built up from the @hzne basic sets of Space, 

Time, and Resources, just as in the tish example above (but not 

always in so simple a fashion). i 

— Qf course, the fact that this apéaratus can be constructed 

does not mean it is useful to do so. %xhe rest of this book may 

be considered an argument for the propésition that it is useful.
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QP\ ‘ 2.1.R Measure Theory, I 

This section is a purely formal expositiont }éo real-world 

interpretations are offered. We shall in general follow the 

practice of omitting proofs of theorems when these are available 
; 7 

o & in standard treatises o 

=> The c:onéap;:‘éf , ;fiéas"fira“ rests on three othez:’\{::eace?ess 

) “sigma—fig;&l;' ifi {ii) "the extended real nmbexs;' } and 

trii) "count:afila additivity". We discuss these in fiurn. 

Sigma-Fields 

  

We begin by Tecalling some notions from el}eénam‘:ary set 

theory. Write x € A to indicate that x belougs?: to, or is a 

member, or element, or point, of the set Ac; 1}: ¢ B (or B a a) 

inéiaates that A is a subset of B (thae—is, avary element of 

. fs an element ofmfl). A = B signifies that A:»c: D and Bg Ajr(ao 

Jng‘l Yy Qnfig ets are considered equal iff they hava the same members/% 

ol @m use "1f££f" to abbreviate "if and only :Lf" throughout this work). . 

, 3 ju 20 ,{xl, Xy, ...} is the set whose alament:s are Xy, X, ...@\{x} 

£ 'is the set whxm the single member X, ¢,( the Norwegian 

Di| # lettar}fi‘*“g:'}atands for the empty set, ma>sgt which has no members. 

Let P be a certain property, and let 1:316 symbol 

{x|x has the property g} 

stand for the set of all objects having the éproparty P, Given 

two sets, A and B, their intersection, written A n B, is defined 
‘; ] 3 S —— 

4
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,i":: e 

as the set of elements they have in common;é-%hat-is, 
! 

L . 
AnB={x|xe A and x efi§}c 

“The union of A and B, written A U B. is the set of elements 

which-are in at least one of the two sets - tha%~£s, 

AUB={x|xeRrorxe B (or both) }. 

‘The complement of B with respect to A, written A\B (2 slash B) 

is the set of elements whieh-are in A but not in B: 

A\B = {%|x ¢ A and x ¢ B} 
'{W ; 

_{A line drawn through any relation signifies that the correapond- 

ing proposition is not true: thus Afi{ B, A # B, as well as x d B)e 

?‘"f*j‘l; ) Now consider a set, G, whose elements are themselves sets. 
f ) ; ,)i ‘ 

}g”kfififQ For euphony, ¢ will be called a class, or a collection, of sets, 

PO ’ rather than a set of sets. (We aha@i follow the convention of 

| using small letters for points, cafiital letters for sets of 

points, and script letters tor elasses of aets)m 

il NG, the intersection of G  is defined as the set of points 

common to all the members of C' 

NG = {x|x ¢ & fo:;}: all G ¢ 6} 

It-is—clear-that if G has as membexs just the two sets A and B, 

A (\ B / this reduces to A n B. Similarly, cne defines the union of g, 

written UG, as {x|x ¢ G for at least one G € 8,
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Gne-has—the basic distinction between sets with a finite and 

with an infinite number of membergf(finite and infinite sets, for 

short,)) Another distinction of'ééeat importance is that between 

countable and uncountable setsafh set is countably infinite iff 

its members can hg ticked cffgin an infinite sequence: X,, X,, 

Hgr evs g (Invatgéévwaras, fiie set can be placed in 1 % 1 

correspondence with the positive integers). Examples of count= 

ably infinite sets aret the set of positive integera, the set of 

all integexs, the set cf national numbars, the set of lattice 

points in the plane (%hagw&s, the set of all points (m,n) where 

a,;; are both integers). On the other hand, the set of ;ggf- 

numbers iz not countah1§ infinite. 

= A set is countable iff it is either finite| or countably 

infinite. The follawiag result is used repeatedly -in—this-book, 

////,7fi “%generally without exp@icit mention. 

(2$ !Thacrem: Let G be a countable collection of sets, each of which 

(j§> is itself conntabl&, then UG is countable. 

g We are now ready to define "sigma-field" (sometimes called 
= 

"sigma-algebra"). Suppase cna—is given A, a set, and R, a 

/)‘45;;%1 collection of subsegs of A. 

! 
/’ L) et 

cyii}éééi&i&éfiflfi z 15 a fligma*fialdA(With universe set A) iff y“; 

“ (1)¥0g € xanaae I, -and 

/iig) “\“, Qmufi?;:) ifEe I finfl F¢ I, then E\F ¢ I; and 

Qfiu ififim (iidi)] if G is a gountable collection of members of I, then 

u5 and NG are both memfiqga of I.
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W 
[’T:&{ene expresses (ii) by saying that I is closed under 

differences, and (iii) by saying that I is closed under countable 

. unions and intersections. ). 

__/ 
@ 

X >} ; 
szj“zfiefinitions If > is a sigma-field with universe set A, the pair 

’Egiia (A L) is called a measurable agace; the members of I are 

called measurable sets. 

K 

ok  The definition of sigma-fiela given above is redundant, in 

€> | the sense that some of the‘con&itions follow from the othexs, 

,//////’To verify that a given c@llecticn of sets is a fi&gma~field, it 

is then useful to have a stripped~down criterion., Fixst, if 

the universe set A is glven, then A\B is simply called the 

complement of B, f \\fluu 
f"“"%‘. ; S 

(3%Z fi%ear&m: Let I be a?collectian of subsets of AB I ie a sigma- 

' field (with univezae set A) iff ge¢ I, and Z is closed undexrxf<¢%2WJW/ 

4@25;) complementation and countable unions (fiha%—&s, E e Zimplieé 

that A\E ¢ I, aqd uG € I for any countable collection 6 of sets 

belonging to z;fi 

:22;252;’%?‘* Thus we neeu to verify only half of conditions (1) and (ili)rl 

and a weakened farm of (ii). 
X 

e . We now giVQ some examples of ségaa-fialds. 

g 

   
%w% The collactlon of the two sets A, # by themselves constitute 

J'nQ: a rather trivial*ségma field. 
NS / 30 

QX / éfifi% The eollection of all subsets of A (including A and ¢#) is a 
i e 

aigua -field, \ )



@ 
e 

4 (gefxnitzontz 6 is a covering (of A) 1€f A,a uG: ia 2 gueking 

4 
| 

—p 
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2 et (i) Por this example we first give scme definition% which are 

gquite important in their own right. Let G be a collection of 

subsets of A, 

iff no two members of G have a point in common (tha%—&a. if Gy 

and G, belong to G, then & nngg = @) G is a partition iff 

it is both a packing and a covering. 

[~ These definitions may also be expressed as follows: G is 

| a covering iff every pqiht of A belongs to at least one member of 

6; € is a packing iff every point of A belongs to at most one 

| member of G; G is a /partition iff every point of A belongs to 

exactly one member bf G. 

Now let G be a qiven partition of A and let I consist of 

all sets of the fiorm uF where F ranges over all possible subs, 

classes of G ESince Ug = ¢, the ampty set belongs to Efi Bne 

may verify that L is then a Q&gma -field, | 

An impaxgant special case ¢risas when 6 is a finite 

- partition. ;é 6 hagznofiiempty member sets, then the ségfia-field 
g o 

T has 28 menber sets. It may be shown that all finite stema~ 

fialds are éf this form&J 

1%55 In tha three examples ahove,-eat could give a simple 

[ property characterizing the measurable sets ehhnt-is the members 

of B). Usually, however, this is not possible. Instead, tufii 

tyfiically uharactariza’-sigmautields as being generated from a 

class ofjsets given in advance. We fiow turn to this important 

concept.
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Let S be a non;afi;ty collection of .sai;m-fiems, all 

relative to the sam¢ ‘universe set A. One may verify that n§\is 

then itself a sigma-fiald relative to A. (Notice that § is a 

“third-order" co&structz ;ih is a set whaSe members are sata, 

the members of %hese in turn being aehs; nS is then a "second~ 

oxdex" oonstg?bt, a class of sets -—whieh in-fact turns out to 

o Dbea a.*-qna--:[(ald) ' 

»rflatinition: Let G be a ccllecticmf of subsets of A; the Q_ifli 

2 field generated by G is flS, whsre S is the collection of all 

C:::::> a&gua—fields (relative to RA) aantaining G as a subclass: 

/ f‘:. 

S = (r]z 3.@ a sigma-field and G = I} 

/",,e*f”f”m‘As an exaapla, let 6 be’fi countable partition; then the 

ganerated s*gma—field is pzaeiaely £ as constructed above nnder 2stapgl 

fiTT#&&). "{To prove this, one; shows first that I is indeed a a&gma 

field, and second that every menber of I must belong to every 

~¢igma~tield containing G; this second statement follows at once 

from the fact thatws&gmnwfields are closed under countable 

unions) . ‘ 

One may say for sharg that the aégmaofiiela ganetated by a - 

collection G is the snalinst' fl*éma field containing G. The 

discussion above explicates thé concept,, and shows that, indeed, 
%, 

there is such a smallest aégna~£iald. 
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with the aid of this concept we méy now define what is 

historically the granddaddy of all nma—fialds. the Borel field 

on the real line. Here the univers% set is the real line, and 

the Borel field is simply the s-figwnrfiald generated by the class 

of finite open intervals ——-that—t!ae;@\ all sets of the form {x]a < 

x < b}, whem a and b ranqe cvgr the real numbers., 

This a-igmn ~-£ield is quita important, and it is useful to 

note that it may be qeneratgad by a variety of different collecs, 

tions., Besides the tin:lt?f open intervals, it is generated by the 

class of sats of the fcrm {x|x < b}, b ranging over the real : 

numbers ; kalao by the ckaas of sets {xlx? al, a ranging over f)l{xlx fi} 

the 15-&15@ furthamre, it is generated by any of these classes L ¥ / 

when a or b xaggea merely over the rational numbers instead 

of the realP/ numhn@m.\a/ Finally, closed sets could be used in any 

of these cases ins;f:ead of open sets (just substitute the whEk 

inequality%_g‘mfo;é the strict inequality "<*%), 

There is nqfigéirect way of characterizing the real Borel 

field, and so one must be sagisfied to define it in terms of 

"gemrationf; ; Wmfi&efiedmm, this situation is the rule, 

not the excep’éien. 

The Extended Real Numbers 

We now turn to the -gsecond concept needed in the definition 

of measure: the extemied real number system. The ordinary real 

number system is augmaatad by two "points e} S.nflnityfd and the 

relation of order and gfkho operations of arithmetic are then 

extended to these i.daa%l points, 

5
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@%j?;atinition: The extended real number system consists of the real 
ToTCOTT 

numbers togather with two new points, writtenm‘+w“ and"‘-w“x 

a>b, a f??t a * b, etc., retain thei; usual meanings when a 
i — é 

and b are both real numbers; when qfie or both of these is 

4+, the order relation is extended gfi follows: 

T e > 87 & > ww) 4% > ~m, for ;fiy real number a.) 

The operations of arithmetic are axtanded as follows@ 

ada;éion. j 

22 + (¥®) = (¢=) + a = +=; a + (*fl) = (=w) + e for any 

{real number a.sza' o 

D)+ (4e) = (de); (-=) + (-*} -, 
‘-"‘/" 

~ (The axpressions (+m) + (-w)k and (-m) + (+=) are not defined, 

and are to be considered maaningless.) 
) § 

. }agatian: 

= (40) = ey (=) = 4o, : 
o 5 

T»‘Jubtraatian. 

= 
SThe rule: a - b = a + (-b) defini%g subtraction in terms of 

addition and nibaticn. 

vfijgnltiglication. 

= 1€ "is an extended real numbar »o, then L 

'\.* o(+u}u(+n) 'aa-fiw;a‘ (u»)a(m) -gu.aa./ 

>xe 2 is an exten&e& real number <0, then 

“.',
'*4 (4%) = (4o) ¢+ 2= —ap 8. (=w) = (=) +a = e, @K 

“flk-‘a = a’+ 0 = 0 for any extended real number a. 

    

(fifi§~Ag£“éfie
'£‘i‘ o 

e 

% — % — ‘\:. . 

-+ 

3 -
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Y“‘* All of these extensions are ”naturaihijexcept perhaps the 

rule that zero times any extended real nuflber, including +e, 

yields zero (which is useful in integrdkion th;;ry). The fact 

that addition (hence subtraction as wafil) is not always defined 

reveals a basic disparity between reaiz«ang extended rea%y% 

arithmetic. (Division by +« has alsé not been defined, but this 

is of no importance,\since no occasion arises in this book where 

one would want such an operation).g 

The number “+~” will usually &e abb:eviated simply tofi“k‘ééfla 

The Borel field of the extended rqalFianbers (or the extended 

real 1ine, in geometric tarminology) may be dafined as the ttgfia 

field generated by the class of #eta o£ the form {x|x > a}, where 

& ranges over the real numbers‘?\TTheSQ sets are now subsets of 

the extended realphunbeaa, so that the number +e belongs to all. 
7\ 

N It may be varified that this*aigaa-field consists precisely 

of all sets -which- hava any of the tollowinq four forms: 

B, BU {=}, By (~=}, By (=} y {-=}, 
e 

‘where E ranges over the Borel field of the real numbers. 

"T’f) Countable Additivity 
b , 

First we recall the definition oék‘function‘; A function 

_f£ with domain A and values in B, wr;tégn f{jg*g, is a set of fiA‘é B 

ordered pairs (g,?), where a € A and g%ekf, each point of A being ™ 

the first component of exactly one suci} pair. For each a € A,



A 
# 

L 

the point of B thus assogiated with it is called the value of £ 

at a, and is written f(a). The set 

| {!glba £(a) for at least one a € A} 

  

Q) is called the yange of f. It meed not include all of B. 

V 
Given a measurable 

space, (A,I), consider a function 
\ 

u : I -+ nontnegative extanded realfi/ m '#hae—vi-a, W assigns to 

each measurable set a value wh—s:eh is either a non-megative real 

i number, or +=, 

gék{§ffinition= W is finitely additive iff, for every pair of 

O neasurable seta,{ B, 1, whaseh are dz.ajoint. (fim&»—&s, EnF =g, 

@ we have _ / 
> u(Buy F) = u(E) + u(F. 

fl/;\.—gw» 

T < yfi/ 
Theoram: Let u. X » non-rnegatiwre extended real numbers be 

e 

@ finitely additive. If F @ P, where E, F are measurable sets, I E§’F~ 

taen p(E) < u(F). 

e ; 

@-L?roof: 8ince E, F are measurable, so is F\E, Rlso E, F\E are 

@ disjoint, and EU (F\E) = P, fience,—by—fls\ u(B) + u(FA\E) = 

— “‘F" mu’\fl) >0, S.t: follows that u(s:) < H(F)-Ej-\'\%{f” J\_ll 

o [~ The property expressed by this theorem is called monotonicity, \ _ 

and implies that u takes on its maximum vaiue for the universe s 

set A, ) 

= A If u is finitely additive, and E, F, g are three measurable 

sets no pair of which have a point in aamfixon (‘t:ha't:"is the class 

conaiutgmof these three sets is a packing) + then



   

   
M(EU FU G) = u(E) + u(g‘"h G) = u(E) + u(F) + u(e)/ 

is clear by induction %hat & similar rule extends to any 

;_5 finite packing. However, ‘we want to go further, and define such 

additivity rule for gll countable packings of measurable sets, 

just for all tinig; packings,   not 

  

Let M, take values in the non¢nezft1ve extendea real 
e &N a:' 

numbers, its domain being s&gma-field Z. M i; countably 
v 

additive lff,;fcr any countable packing of measurable sets, G, 

we have 7 , _ (ZVlli) 

v 

G (Here GL’~§2' 63, ees i any.gnumeration of the members of 

in a seguence, and the right-hand side of (1) is to be under- 

stood as the ordinary sum of an infinite series.) ™ 
R e 

= The possibility that u may take on the value » causes no 

problems. If u(Gn) = = for some n, -then the right side of (1), 

hence the left side, equals «; if the partial sums on the right 

increase beyond any finite bounq,-fihan both sides again must 

equal e, 

5 [\ ) Measures 
N = 

- We now put all these concqpts together, 
S— 

(:§9L3¥,4Da£1nition: A measure, U, is a function 

,,j;’- [fi—ifi) whose domain is a sigma—tield( Z, 

P
 

s
t
 

&
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; fi%%l)which takes values in the nofizgegatiVe extended real . i 

¢ nuniers, 

   
   

    

  

which is countably additive, 

(iv) and for which u(g) = 0. 

_f%“(These—is exaétlg’one function whiek satisfies eenditiens. 

: Apto - 

i) . (ii) and (1i1) but not cenditien (iv), mamely, the function 

aggigning the value » to all sets. Thus (lv) serves only to 

  

  

$4r_%"fiéfinition: The triple (A,Z,u), where é_is the universe set, I 

(i::> Ty a&§ma~fielfi (relative to A), and uyé.measura with domain I, 

is called a measure space (whereas tfia first two alone, without 

M, constitute a measurable sgaca.ma&#wewha»eflmeneée&éé). 

N ety t 
*’Tha following result establlshes ‘a "continuity" property of     

   
ts for measures., 

b 

,,:=i;;ijff§forem: Let (a, V) be a measure space. and let Gl' Gz' ..3,ba 
o8 

a sequence of measurable sets wh%eh~is increasing; that-is, 2 

Gy & G, G3 S eesl tgifirlimit u(G ) as n > ® is ufiJG), (Q 

41::) being the cocllection of all the G’s). 

~If instead the sequence is decre@sing (91 =2 ?2 2 ses), and 

MG&) < » for some 5, then lim u(G) w7 U(f\é)[’ | 
- 

~(Ta prove the first part, partition uG into sets G \G -1 and       
> 3“,, 

apply countable additivity; to prbva the second part, take 

complements with respect t°“§1 and agply the first partf. 

1 5 ;‘\.
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&?fi/ We fiintsh this section by giving some examples of measures. 

C%PL {; 4&% Let (A,I) be any measurable space;’ the function assigning 

w’ the value zero to every member of I isza measure (the identically 
7" ek numl 

Zzero measure, which we will write simply as “¢"); so is the / S M 

function assigning the value = to eéary nofi§gmgtz member of I = 
LN (the identicalgz infinite measure, written "e¥), 

{E4) Let the sidna-field I be mm;e. As-hes been mentioned, T 

f%;;> is then generated by a partitiqn G, and we may assume { ¢ G, 

Assign nonfinegative numbers arbitratily to the members of G; any 

member of £ has a unique reptasentaticn UF, wvhere ? s G; assign 

to this set the value equal ‘to the sum of the numbers assigned to 

members of F The result is a measure, 

,iiit#‘fiet (A,z) again b& any measurable space. Dafinety by:\ 

u(E) = number of points in E,\it E is finita&’E € 2-' 
o WE) = =, if E 18 infinim,;“é € I. 

Qo hu iz a measura, tha-aéfifiggiéien-maasure. 

G#v) Again let (A,X} be arbitrary. Choose a fixed point a, e A, ond 

define u bytg j 

*nu(m =1 i.f a,€ Eand E€ I, 

u(E) =0 it a\‘d E and E € Tl 
— 

u is a special kind oé measure, an atomic measure (we -shall 

discuss this more fnlfy later). Note that we need not assume 

that the singleton set {a } is itself measurable. 

4#% Our last nxampl& is the most famous of all measures. Let 

A be the real linetqug let I be the Borel field on it. It may 

be shown that there 1s§exact1y one measure u having the property 

that =% | .
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/u{x‘§<:§3<b} aE-E. 

umssssratt®” 

for all pairs of real numbers such that a <<b; hfiifiiis, u assigns 

to any finite open interval its 1engt?ck is known as {one= 

dimensional) Lebesgue measuye., , 
    

Representation of the Real World bz*Meaauress Preliminaries 

Having at least defined the cpneept of measure, we now go on- 
-V n 

to real-world interpretations. ( e»u&!i%~£ollaw the practice 

  

: x of alternating :ormal development of 

measure thaory with interpretationwp\ | 

?irstfl\aoms general philochhicalgaommants. We can start 

with some portion of the real werlda\aéd represent it in the 

language of some formal system, Ort\w? can start with some formal 

system and interpret (or "apply") the statements in it to refer 

to some part of the world., The first éxoceaa clearly involvéya 

severe abstraction (only a small fraction of fggta about the 

world can bé ;ranslated into the foxmai system)\é/hfih-ape&nt—is 

*thn&-tna second process also involves &n abstrantiong it is not 

always possible to find a "fact" corresponding to every valid 

statement in the formal theory. One must then be satisfied with 

a partial interpretation of the formal sttem. 

As an example, consider the repreaegtation of time by the , 

real numbers. It is easy to interpret ségtemants like:s fpl > Eth 

or "ty - t, = t; - 54%; Bu£7what facts c&;respond to the state- 

ments "t is ikrationa;', or "every Cauchy ;equence i;n} has a 

limit"? As far as facts are concerned, one could do just as well
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representing time by the rational numbers; hqfiever, the real 

numbers are more canvanient. 15 

In exactly the same way, while maasuwe theory is a remarkably 

flexible and natural instrument for dasqribing the world, -éfié*eane 

not expect every statement in it to canxaspond to a fact., The 

formal apparatus of the theory is desi@nad for mathematical power 

and elegance, and as a result ana-might say the theory outruns 

what can be observed or measured in;the real world. 

What kinds of real-world faetggare repreaent%ble by measures? 

As a first- example, think of the géuntriea of the world as being 

identified with their territogiesgr Consider the set of all 

locations on the surface of the‘g;rth.{ (We idealize by thinking 

of each location as an extensiogieas point). The United States 

is a certain subset of these pugnts, Switzerland is another subZ 

set, etc. Furthermore, no twag?f these subsets have a point in 

eommonfié/ Thus the collection éf all countries is a packing, If 

we add to this collection the set consisting of the rest of the 

world (it will include the high seas, Antartica, etc.), we have 

a partition of the surface of the fiarth. This partition generates 

a fi&gna-field, n;;iigAiall setg of the form JF, where F rangas ) ,,?wf' 

over all subcollections of thigmpartition. ‘ : 

Now choose any fixed date, and to the set uF asaign tha 
R | . 
fi”wfii;mber whach is the total population of the territory UF at this 

date. The function thus ‘defined on the nflgua~field is a measureg, 

For, obviously, the total population of the union of two disjoint 

regions is the sum of the populations of the respecti&n regions,
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so that the function is finitely additive., Furthermore, since we 

have a finite s*g;amfiela, finite additivity is equivalent to 

countable additivitv in this case. This proves we have a measure., 

It-is—elear—that any territorial magnitudes Wik oh havé She 

finite additivity property can be represented as m&asuxes in 

exactly the same way as population. This includes territorial 

area, wealth, coal reserves, miles of highways, and (for a fixed 

fimahinterval) steel production, steel eonsumption, births, 

deaths, marriages, divorces, murders, Phnaa grantaa. and 

innumerable ethers.q/ Neote-that measurement uaits can be quite 

varied L-numbexn of objects, mass, dollar value, acres, eteo. 

Statistical tables presenting data of thia sort will not 

typically write out the entire measure. Ifi the surface of the 

Parth is partitioned into, say, 130 nations plus rest of worlfl, a 

complete table woutd*havu +to assign a valua to each of the 2131 

menbers of the s*gnmwfialé. This is abv&easlywimpoasible in 

practicetgand also unnecessary, since iféfia are given the values 

for the 131 partition elements, the valué for any other measurable 

set is given by the addition of the valfi%s of the approprifiha 

subclass of partition elements. Thus i@jpractice/tables will 

just give values for the generating paréfition, plus perhaps a 

few other "marginal subtotalfl\) v g 

~ Any table of statistical dafia( if it can be represented by a 

measure at aifi} can be represented in the foregoing simple form, 

with the s&gna-field generated by a tinite partition.
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For a second example, suppose one wanted tckrepreaant the 

concept "quantity of fimaf% We represent time itself as usual by 

the real numbers, each number representing ag *inatanfl§f‘ We want 

to assign numbers to various sets of tifié%iaitnnta to measure the 

quantity of time embodied in that set. quan interval {513 <t < 

b} (where a, b are real numbers with a < b) is assigned the value 

b - a. Also, it seems reasonable tha€?3Quantity of tima‘f;hauld 

be at least finitely additive. This suggests that Lebesgue 

measure, on the Borel field of the rfi#l line, is an appropriate 

mathematical representation of thia_ifituitiva concept, 

This simple example is quite ifi#tructiva in illustrating how 

the requirements of intuitianfikand aansidaxationa of mathematical 

power, combine to suggest the appxepriate representation. First, 

what is the appropriate class afgsubsets of tna real line for 

which the assignment of a numbet raprasenting \quantity of time® 

is to be considered maanianul& Intuition demands that it 

include all subsats for which, conceptually, an observation could 

be mada (say bp observing thé angle through which a eloéiihand 

turns) —-hanca certainly all finite intervals shauld be included. 

Mathematical elegance demanfla that it be a aégna—field. To 

satisfy both &f these demaads, it must include at least the 

: i 
entire Borel fiam V e 

- 

— This requirement leaas again to thexkoutrunningé of the 

facts by the theory, argwhat obsexrvation could confirm the 

statement: "The gquantity of time embodied in the set of all 

rational timeinstants is zezef?



59 

Consider next the various additivity conditions. As 

suggested above, finite additivity has strong intuitive appeal. 

Jfut measure theory comes inta its own with the stronger require+ 

ment of countable ad&itivitva/:fiawzgt may perhaps be contended 

that if a real-world magnitude is already finitely additive, it 

is intuitively plaugible%3~or even demanded by 1ntuitionfik;that 

it be in fact countably ;dditive. We know of no philasoéhical 

NY discussion of th;s iasna?ggginea it seems to be of some 

importance, we offer some reflections es=it in an appendix to 

this section, / 

( \l; fippendifi on Additivity 

2 

Let nfhe a function defined on a‘a%%havfield with range in 

the naézéégativa extended reals, representing some real-world 

data. fié suppose that u is finitely additive. There is then 

_some pgfiusibility for the view that it should be countably 

additiée. But why stop at countable additivity? Doe#n@t T 

1ntuition daman@~that a real-world-representing u be unaountablx 

aadigiva? 3 h 

C% Y Z\\ ' Here we have run ahead of ourselves, since we have yet to 

give a dafin;tion of "uncountable additivit 'L) First,we need 

another aangept. 

%&“1 Definition§ Given a set of extended real numbers, E, the 
Yhe 

suprem ?f E is fi&_amallest extended real number whieh—is at 

least as ;arge as every member of E. 

i % 

 



o 

!f?‘ 
r“_’ror example, the supremum of the real numbers is ®; the 

supremum of the negative numbers is 0, One of tha advantages of 

the extended real’numbers is that every subset of them has a 

supremum, | 

Now let I be an arbitrary nontempty set é»finite or infinite, 

countable or uncountable, Let t be a function with domain I, and 

range in the nan+negative extended real*éuuhuan Take any finite 

subset of E,i'“‘y {11, 12, soe @ ifi} a]épd flf@h the ‘?f) = J‘;}} 

FE) + Llh) + eu + £, g1 

~“fhe summation of £ is naé]defined as the supremum of the set of 

these sums formed by ranging over all possible finite subsets of 

It is easy to verify thatfk§£_§ is finite, the summation of 

f is simply its summation over I itself; if I is countable, 

sufimation of f is simply the limit of ‘the series formed when the 

element’ oz 1 are arranged in any aaquwnce. The generalization,x 

then, arises when I is uncauntableftfi/' A 

me:immhw“,‘ With the aid of these concepts we may now formulate the I =7 () 

#i,ffiéfinitienz uis uncountablz additiva iff, for any packing of 

— measurable setag\G, such that UG is ‘measurable, the summation of 
D) 
P 

B on G equals u&JG). 

2 } _gjfiere ¢ plays the role of the 1ndex set I above, and u(G) 

with G ¢ G corresponds to f(l) with i € I; G need not be 

countable) ™ K
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Uncountable implies countable additivity.;ffiavarting to our 

argument above, it is hard to see why intuitiéh should swallow 

aauntable a&ditivity but stxain at unaauntab&e additiv%fz:fl;> 
  

% gpe- %ra&b&awiawthat uncountable aflditivity appears to be too 

strong a condition for many purposes. ch example, Lebesgue 

measure dofls not satisfy it, To see thié; note that if the 

function £ on tha index set x is 1dantieally zero, then its 

sunmation equals zero. 8Since any set %fi the union of a packing 

of singleton sets, it follows thatflifiéu is uncountably additive 

and p{x} = 0 for all singleton sets {x), ¢ must be identically 

z2ero. But lLebesgue measure assigns ?alue zero to each singleton 

set,lgna is not identically zer04\h§m¢e it is not uncountably 

additive. ! 

Possibly the difficulty can bd;resalva& by going beyond the 

(standard) extended real-number sy$tem. In any case, we -sheil in 
“\-...., 5"\‘\ 

  

assume dhat our representations 

are countably, but not naeessaril@vuncountably, additivaéfi-tgat 

+8, Wwe assune that they are maasuées in the ordinary sense of 

the term. This allows us to applé the great resources of measure 

theory to real-world problems. :é this respect we -are merely 

followimg in the footsteps of theigreat prababiliita and 

atatisticlians. ; 

2.3. Space, Time, and Resources 

We can,—ané—sikall, give many fiare exanples of the 

representation of facts by measures, But we want to do more than
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thiss We want a unified édy of looking at the world so that all 

of- these examples fall_afit naturally as gpeciallzatiens,land se- 

that-we do not need an ad hoa argument fox each new case. 

= The claim is that this unified view can be built up from 

three basic sets: "Resources®, the set of rasourc;Ltypasg “Space®, 

the set of 1oca§ians; and "Time", the set of instants, As—a 

  

e abbreviata these here, and throughout the hook, as 
an.va 

R, S, T, resgactively. N 
G PO 

In this section we describe these three sets, In later 

sections wa put them together, 

Time,_aa-«ewhawamaant&eaed, is wellLregreaentea by the real 

numbers’ (smaller numbers being gricr to larger numbers in the 

tempo:al sense)., The measurable subsets of T will always be 

e takenfto be the Borel field on the real line, 
e 

fi#fififlefinitionz A subset of Time is called a periocd iff it is measuxr> 

{ Z/«f/ abl”@\ . 

}“‘““ggggg is thought afifiost naturally as a shree-dimensional 

/" continuum. Sometimes ~4indeed, it is more useful to identify 

Space with the surface of the €arth, since almost all human 

activity takes glace'in a thin film at the surface (even in the 

‘mgspace aéég). In tflis connection one often makes two further 

idealizations, Fi%st, th@‘fiarth is taken to be a perfect sphere, 

Second, the sphefieal surface itself is flattened into a planar 

region, or even an infinite plangf\ thus three dimensions 

collapse to twb.



63 

When dealing with Spaee andgfiilnzjointly,fgfiéfneedi a con= 

vention about what locations at;%wo different times are to be 

considered identical. Wb:#hai&5alway3 assume that the fiarth is 

at rest, This™ geaeentric“ éOflVention would not be made by a) 

é%éfii&i&kk’but for social sci@nce purposes it is by far the most 

convenient. Thus ‘Portugal‘“?an be identified with the same 

; subset of Spage at differentgtimes, whereas it would he wafideriag 

       
_about under any other ccnvention. 

Let us turn to the gruglwm of defining an approgriate-ag;mu’“ 

field on 8. By "appxopriate“ we refer to the following somewhat 

vague fiesi&exfita. Pirst, any subset of Spaee on which, 

conceptually;, an ebsarvatian could be made should be included. 

In particular, the various simple gecometric figures i&pubes and 

spheres in 3-space, squares and elrcles in the plane, atc. - 

should be included, 9a—%he~a%heéf£&néi one should not go much 

beyona the aégga—fifild generated by theségkbeaausa there (arise 

Loth mathematical and conceptual difficulties in defining 

nmeasures on these very rich classas. On the real 1ina§%the Borel 

field fits these specifications pfiae%y wall, m%afiem&s(g natural 

generalization to higher dimensional sets wiich serves much the 

~ same purpose, 
ro— e 

%W‘ On the plane, the (2-dimensional) Borel field is the 

P aié%a—fielfi generated by the class of open rectangles; - bt 

- itk 
by the sets of the form {(x,y)la <x<h, e<yc< &}, a, b, ¢, d, 

g being real numbers, 

- 
N
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=X S 
~ Just as on the real 11nefifithis sigma-field is generated by 

many other simple classes}kvfiawflasaup&e, by the open disca, the 

sats of the form. 

»,‘/’ 

=y e+ e ? < e¥) — Y 

iudii_p, b, ¢ being real numbers; also by the closed rectangles or 

difies,_obtained by substitutinéx“é? gg; “f*;% All ordinary 

geometric plane figures (thought of as including their boundaries) 

belong to this aég;a-zield. 

Similarly, in 3-space, the 3-dimensional Borel field is that 
’;\ 

{x), x5, 230 |2, <% <b,, 1=1, 2,3}, & 
6’% 

and this sigma~field is also generated by the open discs 

2 2 2 2 
Lxye 3p0 %30 [ (%)-3))7 + (%5-35)" + (xg-ay)° < b}, 

Finally, given a subset E of 3-space, such as the (idealized) 

surface of the ;brth, the relative Borel field of E is the class 

of sets of the form \ 
W ) o™ 

> {Bn F|F ¢ 3~dimensional Borel fielfli:> 

* Por example, if we take a plane or a line embedded in 3-space, 
b - 

their relative Borel fields according to this definition may be 

shown to coincide exactly with the 2- and l-dimensional Borel 

fialds& reagpectively.
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These constructions give reasonably good solutions to the 

problem of the apprapriate a&gna-fiald on 8, In some cases 

another choice may be better. In particular, it is often suf- 

ficient to work with a small subclass of the complete Boral field 

3 (as in our example of population distribution by eountxy)xx;/f 

In much of this book it-turns-out_that the particular 

structure of Space (dimensionality, shape, etec.) is irrelevant. 

In this case it suffices to think of 8 as just some arbitrary 

measurable space. This gain in generality is important, because 

we often want to deal with Space of a highlyx‘non~fiuclidaan‘/ 

character, its structure determined by the irregularities of 

transportation gcst and land quality. 
Fasr SRR Bt 
Fefmtha~rumntn&ar“of this book, we use the term "region® in 

2 the following technical sense. 
e 

Qggiwnéfinition: A subset of Space is called a region iff it is 

" measurable, 

— P - 
We now turn to Rasourcas@§§h This has a much more compli- 

cated structure than Space or Time. Fartunately a great many 

results do not depend on a detailed knowla&ge of this structure. 

Also, there—are certain coneaptual pxoblams tiad up with R, We 

shail accordingly preaantA *naive"” description of R in—the rest 

of-this-section, reserving the discussion of difzicult}es for an 

appendix, 

C%J77 An object is identified by specifying where it is, when it 

J///\is, and what kind of thing it is, Space is the set of possible
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answers to the first guestion, Time to the seqo&d, and we mean 

Resources to be the set of possible answers t§ the third, 

The elements of thonaeéflaffigneeuenna are types of things 

rather tfian specific éntities. Thus "water" is a resource (or 

rather, a set of resources, since it can be differentiated by 

fl%mperatdra, pressure, purity, etc.)s but any specific drop of 

water must be identified further by its position 1nn§paee and 

Times 

What types of things,-them, are included in R? All possible 

types that are relevant (for the problem in hand, and with as much 

fineness of distinction as is uséfulA;gywthewprfib%emw&nmhand. 

This will include natural resource typénz soils, minerals, water, 

air, vegetation, animals. It will include manufactured 

commodities, crops, machinery, and structures. It will include 

sewage, garbage, trash, and junk. It will include all types of 

people, distinguished by sex, age, race, skills, beliefs, 

attitudes, tastes, personality, and any other relevant traitf It 

nay evun include such intangibles as light, sound, electricity\and 

gravity‘éékf 

Two apparent difficulties may be cleared up at once. The 

fixst refers toE:asgpreégtypes~wh%ahma:e{pa§i¢xis§ent Should 

"unicorn” be included in_R? Actually, 1t‘éo;;N;; harm to include 

non#existenta; as we shall see, existence is described by a 

measure placed on %x}gat by R itself. Second, can uniqueness or 
Vs A a 

individuality be represented by a model wh&en deals only in 

types? The answer is yes, fith&éeé the distinctions made in R
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are sufficiently fine., If one gives a very detailed description 

of a certain peeaonwtyéég there will be at most one person at one 

time fitting that description é.say George Washington at flbon, 

July 4, 1776, 

Cne sometimes distinguishes hetween diffetent resourceitypes 

and different varietias,\or qnalities, of the _same resource typejwfi 

aag. minax variations of brand-name goods. From our present 

Paint of view, different varieties are also simply different 

typas@a'hh do not take account of the fact that a codfish is 

somehow more similar to a mackerel than it is to a cabbage. 

%giéfla turn to the problem of f£inding an "appxopriate'?eig;a:‘ 

field for R, Following our previous approach, we should include 

all subsets on which, conceptually, a measurement could be taken. 
o 

wfl "fish" ‘”water” "glove", "car“ determine sets (the 

Zahach are men, fish, etc.) wh%ch should be 

maasurable. tene could systematically go through the dictionary, 

Thus "man' 

set of rasourca types 

and most nouns and adjectives would determine measurable subsets 

of R in the same way. The—tzouble—is—that most English words are 

more or leas'vaqua, and borderline cases arise: "1Is this 

creature to be considered a fish or not?‘)flBOnce the claas of 

conceptually observable subsets of R is determined, the a&gmmfif 

field generated by them would be the reaommandeansiéunnfikeiéz 

Unlike the case of _Spaece and Time, where the Borel fields 
3 

are the natural choices, the proper choice of n&gaanfield for 

Rsnouaean.ia still:nfi—ia—the—airv as -the-paragraph-above 

indlaatas. Fortunatsly,.an-weflhevaumaatioaedq nothing i b
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o 
/fi///;anerally not do, for example, to think of an entire river wvalley 
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‘book hinges on a detailed specification, and it is sufficient to 

suppose that R comes supplied with some ség;a-fiald, making it a 

measurable space. 

Appendix on Resources 

We discuss certain additional problems concerning the set of 

Resources. 

lfif Fiist-is the problem of self-reference. Among the attributes 

of people will be their mental statis m»their beliefs, perceptions, 

thoughts.-ctfiu But to describe these ‘ene must refer back to R 

itvseif daus fond 4mid to S and T and measures over these sets,—ese.). 

Further complications arise if these mental states refer to still 

other mental agfikea, and we can even get an infinite regress of 

the kind sometimes discussed in connection with afigtegy and 

games: "He thinks that I think that he thinks...fb We shals 

take’ this point (up again in the more general context of multi+ 

layered theor’e%ék %SQJK’H\ %‘ sbelow) , 

Second is the problem of inclusiveness. When-gfifi”takan 

account of our limited infc:matien, and the fact that there are 

"more things...than are dreamed of in our philoaophjxijanything 

emaller than the set of ™all possible® resourca-typa: may he 

descriptively inadequate. But the concept of an all=-inclusive 

R is not very clear, and may even‘gntail a logical cantraditian. 

__~ Third is the prohlem o§§*camplex‘yiésoureaa. It will
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as a single resource-~type. Instead, 3§§‘thinkq of it as a 

spatial cenfiguratiqy of resources: water, soil, txeea{gféads, 

houses, people, eee.~” But the same reasoning applies to each 

of these smaller units, An automobile of a cextain*épecific type 

is just a spatial configuration of steel, rubber, glasa,f§&intffi 

ete./h and we could continue down to fi;}l‘: molecular-atomic level. 

From the practical point of view, wherefiéne stopy, $n this 

analysis depends on the size of the unit eaa*ia~iatefesee&~&n 

The physiologist may take a person to be a configuration of 

tissues, the biaahepiat may view him as a configuration of 

molecules., The ficggggscientist rarely has occasion to split 

people up spatially in this way. 

—Now, for‘fli usaézgémfififiede%«arswuuttinq the set R, to call 

something a resauxea~type;;£¥§a-fs actually haterogenaous spatial 

configuration, involves distortionp amd the distortion is greater 

the larger the object isamumhaflae§§§fifia~that we use the concept 

of resource-location pair, (r,s), referring to a resourcektypa L 

located at a point s g-Whtfih is somewhat ill-defined if the 

“‘rascuraewtype' iz by its nature spread over 2 region of greater 

or lesser extent, 

Por the scale on which social sciencé?fimnaela typically 

operate, the distortion involved in treating people as resource 

types is neqligibia for the most part. fi?? sgggfi%g probably true 

for most ordinary commodities/\ although,-as—mentioned-above, we 

( 
would draw the line at resources as bjg as entire river valleys.
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This discussion raises the question@\_%f we steadfastly 

refuse to admit spatial configurations as f;sourcgitypas, what 

becomes of R? 3§é4§§"&riven to resolve one confiqurationvifiéo 

its components, and these into further components, until pre- 

sumably, o#e arriveg at a small number oix“elemantary.particleéwflfl 

out of which everything else is built ap.v‘flaw fram the practical 

point of view this procedure is absurds ‘éae hardly expecty atomie 

physics to be a prerequisite for social scignce. Nonetheless, 

“there-is the chance“that a mathematically,éénvenient theory can 

be built up by following this route, and we offer a few 

speculations as to what it would look.iike. 

There is a general tendency for the number of kinds of things 

to become less as %fié descendy the ipatial hierarchy. (A great 

many different types of houses can he constructed by arranging 

one type of brick in different wavs)., Suppose, to make the theory 

as simple as possible, that everything ultimately reduces to just 

one kind of thing: "matter". The objects of everyday life would 

then be identified with certain distributions of matter over 

Space (or, possibly, Spage and ?&flfi)g thatuis, with measures 

assigneé}to each reqion the gquantity of matter in ity all of- 

these regions £;rming a s&gma~field relative to the universe set, 

which is the region whieh the object in guestion actually 

occupies, 

%hexemaae—two great virtues to suah a thfigfj/ First, it 

avoids the distortions ;4£;; arise on traating people and 

commo&ity»types as members of R. Second, it eliminates R itself
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(by reducing it to a single pcint)gxand thus aimg;ifias bfiing# 

and avoids all the other difzicultiés connectgdf§1th R whiech we 

have been discussing. E?”f 

In the remainder of this book we q@é;i for—the-most-part 

ignore the issues raised in this appgfiéix, and !ni%i;iy& interpret 

R as outlined in the main body offtfiis section., This is done 

partly for pedagogic reasons*fij@@scriptivalxrthe theory runs 

closer to intuition)+ but mainly because we have not yet arrived 

at satisfactory answers to the issues raised. 

R \\ ; 

<;Ei ) 2.4, Measure Theory II 
i J g 

We return to pure mathematics in this sectiofipflto define 

some concepts needed for further developments. 

{‘Kk, ) Restricted Measures 

Let (A, +¥) be a measure space. Just as with any other 

functionfkwa may aonsifler the restriction of u to a snhfiyomain 

of its domain 85 Ehat—&a, we take a subclass L' ¢ E. and defina 

a funttion u' with domain I' by the rule (2.4.1) 

u'(B) = u(E), Jall E€ L' Ao 

/¥€2¥ The only special condition we insist on is that I' itself be a 
10 — 

5¢§#awfield (not necessarily relative ta the original universe 
/ «0ne 3475 

sat'fia. enawseates that I' is a s :géggg—fiel of I, 

It is then immediate that u' is a maasure)-iex-tha fact’ that 

e 

it takes values in the nofifnegativa extended real numbetsg%and
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—thet=it is countably afiditive,?‘ :ollowy at once from its 

definition, (1). - 

Spwo special cases deserve mention. 

A . Definition: wu' is an aggregation of u iff A¢ ', 

o | That is, A still remains the universe set, although I' is a 

"thinniniéut" of the original -&gnu‘-fleld. As an example, let A 

be the surface of a sphere and I the Borel field on A. Let é be 

a finite partition of A into Borel sets, and let I' be the fl%%fla-’? 

field generated by G. “(The distribution of population by 

countries fits this mde;j} (fiee __gectioxf :2"), It is clear why the 

: ¥ } term "aggregation" is used for tl;is relationg !Ihila U gives, “ 

‘%2{5((\:“7 say, the complete distribution of population, u' just gim% the 

7y distribution for entire countries. 
- 

L AR B R TS 

Winitim: Given measure space (_%,Z,u)fi and B ¢ Ej\ ' is the 

h\,.;.\ restriction of u to B 1£ff u' is the restriction of u whose domain 

I' is the class of all measurable subsets of B. 

- 

P T ( One- easily verifies that this L' is, indeed, afiéga—flald, 

whose universe set, however, 13__8, not A, 

As an example, again take the case of population distribuZ 

tion over the surface of the ,éarth. One may be interested only 

in the distribution within some particular region B, in which 

case one studies the restriction of u to B. In general, the 

notion of restriction to B enables one to isolate particular 

objects, activities, or situations within the overall description. ~
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Each different measurable subset B yields a different restriction. 
Le 

Sometimes one is given, not the entire measure p, but pfgces 

o 
atches, each defined on the measurable subsets of spme set B, 

If these patches cover the entire universe set A, the question 

arises: Can these patches be put together to vield a single 

measure on the entire measurable space? The following theorem 

gives the answer. 

Mw ("patching theorem™), Given a measurable space (A,I), and, 

for each n = 1, 2, ..., a measure space (or "patch”) (B , I , ¥ ), 

» 
A (M 

\ 'K\ W SatiSinng j’ Coan ‘,"'(‘ L. O g/ 9 

Yooy,  H—=8Y 237 
) if (i) B € I for all n, and B, the collection of all the B ’a, 

Ak, T - 
4 is a covering of A G?hatmis, uB = A); 

wi; (14) Z, = {E|[Ec B and E ¢ I}; for all n; 4| 44 i 
[ ¥4 do 
S Y %f(i;l) the 1 Vs nre compatible, in the sense that, if E ¢ (251 ni 

pe “2)' than F%(E) -"u (E) 4 all Dye Ny and E#j?fj 

/fi:a then there is exactly one measure p on (A,I), such that u, is the 
— 

    
fifififlafifl testrifition of u to Bn, for all n. 

  

; Proof: First we prove that there is at most one such y. Let 

jr_ Bl = By, B,' = B\B,, anda in general B ' = B \(Bfu...uB -1)° 

flgy Now suppose p aatisfies the conclusion of the theorem. For any 

: Geg I, 2 Cadimay - % 
e sl N oW L 18 Al 

i A ¢ { f ¥ : n u(G) = 29,1 wien B ') = EZn,lg uy (G N By » 

(The first equality in (2) arises from the facts that the sets 

S 

{cnB '|n=1, 2, ...} are a packing whose union is G, and skt 

'\ 

AY (="
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¥ is countably additive; the second equality arises from the 

facts that G n B' ¢ t and that ¥n is the restriction of u to 

X)ci\ 

8ince u is explicitly determined by tha 3s in formula (2), 

. it is uniqua. f 

fg%ffluflfiflfimflgé remaina to show that the yu defineé by (2) does actually 

satisfy the theorem. First we show thatiflfor each n, u is the 

restriction of u to E.» 1@?7 G € E + Foxr all k >n, G n Bk' - B 

For all k <n, uk(G n B ‘) - | My (G n B '). by conditions (ii)&flma 

(1ii). Hence, by (2‘ 

hd " 

uic) = }I‘};r Wyl N By')/w u,_,(g n By = ugtg) i 

proving that My is the restriction of u to B . 

Next, u(¢) = {, since u () = 0 for all n. It remains to 

show only that u given by (2) is countably additive. Let G = 

{G !m =1, 2, ...} be a measurable packing. Then 
\)q IS 2\ 

| oo 

n((ue‘; n E""_} uUG) =] 
| n=1 

“B(G’g} n Bg'fl 

2 . ' 

  

)8 . 

w6 nE9} =] w6 e 
' a 2 ] mell W 

e 

  

(Here the first and last eqfialities come from (Z), the second 

from the countable additivity of each L and the reversal of
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summation order in the third equality from the fact that all 

ifi{‘a' r summands are nonfneqativa.) This proves that u is countably 

additive. L'/ i ) o2t 

M#’,aflfififlfi/ The most important case of the patching theorem is where the 
= : 

\- '1 ,L S 

class B is a partition of A. In-this-case we say that measure 

space (g,zgy) is the direct sum of the measure spaces (gn,xn,u Y. 

and write 3 
//V’;:”m“\“ 

*§l‘3( lf fg ” 

i 15%. - 

s szlfizzcvoc ffl‘é 

% o= ul; 

N 

uz P sen ':':i 

or, for short, u = e u , @tc. 

o s “In- fact,—4e-ie- easy k£»8@94that1_given any countable 

collection of measure spacasfiwith &isjoint universe setag Fhare _ 

is a unique way of combining them into a direct sum (see 4§;é£&rqwk 

4 -page for full def&nitioé} The direct sum should not be 

confused with the (ordinary) sum of measures, which is defined 
&S 

only for identical sigma-fields; see below) 7 

/ EAWX Product Spaces 
R ' 

Consider any function with domain I and range in Y. If one 

is mainly interested in the range space, such a function may be 

written as
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and is referred to as a family of elements of ¥, indexed by set 1. 
\.%‘&: 

2 . ; 

"This is more general than the notlion of "subset of elements of 

¥" since it allows a‘.’oxj’regetitions 4 the same __gwelemant may he 
< 

assigned to more than one I-element]™ ~ V{% distinguish families 

from subsets by using parenthea\oé%%éé'/mad of braces {}. The 

elements of Y themselves may be of any nature )'%r;fi}izmbex's . 

functions, or sets, for-examples | ) 

Consider the case where Y is a cqi'lectian of sets ,,-l l;t;v&s 

rewrite it as € to conform to our cuétemary notation. We then 

have a family of sets indexed by It s 
i,
,g
. > (gy), €I, 

-, 

— where cach G € G. 

  

Wafinifiiam The cartesian product of the family (), i€ I, is 

the set 3 
o 

4 \ . 

:l /’ 

\«N! o 

t 
>{(gy)s i€ I]|g; € 6 for all f e I} 

R 

of elements of ué/’? indexeé by __:f.; specifically, a family having 

the property that the lelement assigned to index i, 9in always G 

belongs to the set, Gy e ‘assigned to index i in the o;iginal 

€ family of sets (:fai), i € 1. The cartesian product will be 

denoted by z«i‘is/‘}t?i , or even by ‘ng;i if no confusion is possible. 

/ If all ef th‘efi;?i;s are i&enticai (= G, say), the cartesian 

| 
0 " product is written o,
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If the index set I is finite ,the cartesian product assumes 

a fairly simple zoxm. «Eorueaanple let I contain just two 

elamantsi&-aay I= (1 2} ~ and let ;ya family be ‘51'32’ fehat 

(;a; set A is assigned to i = 1, and B to i = 2). The cartesian 

product of this family may be identified with the class of 

ordered gairs 

“ {(a,p)|ae A, b e B}, 

¥ Here A and B may overlap, or even be identical. The cartesian 

product‘in this pasa is written A x B. 

W similarly, if the family of sets is “‘1" i=1, ey m 

éty//,i;;on the cartesian pra&uut may be identitied with the set of 

ordered n-tuples {al, ...e., a ), where;ai e 51 for-all i = 1, 

seey Iy and these choices are mada in all possibla ways, This 

may be written A, X A, X,..X A . Again, some or all of the ai’s 

may be identical. If all Ai = a, this may be written hm 

~As an example, let each of the ai‘s bazgéegieal line. Then 

Ay x...x A, is simply n-space, tgzyaet of all nwtuples of real 
ek 

i 

numbers. 

£ e 
ftet—us now introduce measure-theoretic concepts. Suppose 

L B, 

we have a family of measurable spaces; {(ai,zi)), ie I. That 

1&&, for each index 1 there is given a o&qma~fialfi Ki with 

universe set A There is a standard method for defining a 

' sig;a~£ie1d on“the cartesian profiuet“§ai. First)we introduce a 

preliminary concept.
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@If_ Definition: 
o s g s T 

iff‘khe:e is a family of sets (Ei), ie1 hueh that Ei i Ai for /EIE;A 

Subset E of the cartesian pradu¢t nfii is a rect angle 

=y Y 2/ w4z, an:i{E - Is;. \ 
: A 

4},«**"”7’” As an example, let A be the real line, and let El, E, be two 

@ finite intervals of real numbers. Then El x is litarallz a IEZ 

/, J rectangle in the planeg*tha plane being, of course, the cartesian A 
4\ 

product A x A, This is the origin of;the abstract concept 

e ractanglé "(E.} 

qg'\ fiefingticn Given the family {(Ai'zi’]' i€ I, the product gggggfl‘ 

Mij i field is the sigma ~field on the cufitesian product HAi generated 

| by the class of all rectangles E = ggi having the following 

“ properties. | i 

éjfil 5(x)MEi € xi for all i, -and 

(&l)’E = Ai for all ;, except for at most one index i _. 

   ‘M;T_ ;géj““;m\xn-eeaééa&afi (ii),xthe yhtase "at most one” could be 

replaced by "at mmst a finite number of" or "at most a countable 

number af“i{ %hat—%a, one can ahow that all three of these 

classes of rectangles ganerate;the same ség;a-field. It follows 

that, 1f the index set I is céuntable, eordition Q&é),is trivial,k 

and may be dropped from the aéfinition.fi‘aectangles satisfying 

conditien (x) are called measurable. 

The product s&gma ~field is denoted hy Ker i*x‘ nzi, and the 

, resultingjg;o&uct measurable space is then (HAi, nzi). If the 
¢ 1 ’U 

(Ai,zi) are identical _for all I (= (2,5), say) this may be| 

J
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written (A;,EE),\or perhaps (A,Z};QM When I is finite, so that 

'the‘?amily may be written [(Ai,xi)], i= 1y eesy nibthe product 
& 

sigma~field is written I, x z XesoX L , and the resultinq 1 
= 157 o5 prnduet space is then (A XooaX Ah' KI XyqoX Z ).. 

(e 

,éaamgxafix Jet I be the Borel field on the real line., Then 

one may verify that I x I is simply the Borel fleld on the plane! ¥ 

and in fact this provides an alternative definition for that 
- 

s&é@a-fiel&. Similarly, Z x £ x I is the Borel fleld in 3~-space, 

and we may define the Borel field in n-space (or even in 

arbitrary cartesian products of the real line with itself) in an 

analogous way. 

Suppose one is given a measure space of the form (A x B, 

L' x ", u). tThat is, the product weasurable space is built up 

from the two compeonents (3,L') and (B,i") in the manner just 

described, and a measure y is given whose domain is the product 
& ’%é&mau sigma-field I' x Iv, 

c§¥;§é§£ifii2£2fit u', the left marginal measure of u, has domain I', 

:fS} and is given by 

Tt > u'(E) = u(f- X B),- 

> all E ¢ I', 

  

L i,f & 

T It is easily verified that u' is indeed a measure. One may 

think of u' as being constructed in two steps. First, ome 

considers those members of z* x L" of the form E x B, where 

E¢ I'. These form a subwaégma field, and u restricted to this
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aué}domain is an aggregation, as defineaiégé;;:y Second, since 

the "right side" of all ef the rectangles E x B is the same, we 

may regard u as a function of its "left side" only; this vields 

e 

i:'In the same way, the right marginal measure, u", with domain 

I", is given by | | 

“u(F) = ula x F), 
// 

~ all F e I", 

As examples, take any cruss»classifieationéi-éa§’;0pulation 

classified by location and hair calorfi\or shipménts by origin and 

destination., If u is the total distribution by numbers or mass, 

then the left marginal u' will give the distribution of popula- 

tion by location alonerlpr of shipments by origin only. The 

right marginal will give population by hair color, or shipments 

by destination. , 

&?Statistical tables frequently give dafia for product spaces, 

and it is customary to give the maxginal meaaures in addition to 

the original measure. (More accurately,hto give the aata for the 

generating partitions of the component measurable spaces. These 

are just the "marginal subtotals?}fi 

~The "marginal" terminolégy apfieara in particular in 

: probability theory. 

DO 
Qfii*" Dafin1tion~ A probability ia & measura-whieh assigns the value 1 

  

to the universe set.



81 
. 2\ J& B 2 

t> j If u in (A x B, L' x I", w) is a probability, ea: verif!oe 

inmediately that ' and u" are also probabilities — the left and 

right marginal probabilities, respectively. 

Suppose one has an arbitrary product measurable space, - 

(Hielhi' 16121)' Let {1', I"} be a; partition kf the index set 

into two nonfi@mptiipieces. One may verify that the product space 

is the same as 

[(II}e}lf\é_) X m}-él”‘};’g)' (K§€¥.z§) x (g;ifigfizi)]'“ 

That is, we arrive at the same result by first taking the 

products over I' and I", respectively, and then the product of SR 

these pxoduc:ts.> 

e 

Thus an arbitrary product space can be expressed as the 

product of two spaces in many wavs. For any such factoring one 

can define lefty and right marginals exactly as above. 

Measurable Functions 

Let (A,E') andSE}Z") be two measurable spaces, and!; a 

function with domain A and values in s.u 

~Q;Noee~thn&, unlike measures,/which assiqn values%}oisubsets fi}i: 

of A, f assigns valuss té:kndivifiual points of A. It is 

customary to refer to the former type as set functions, and the 

latter as point functionsfa“
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gwséfinitionz £ is a neasurable funetién (with respect to L', L") 
e L e . 
y iff,jffiog_ all B¢ I {alf(a) ¢ _‘cjfi?% LS / §E§ € 

wflgéf“*fit The set {glffl) € f} is eallgd the inverse image of E, =o 

that the definitio# may be parapfiknsad: f is measurable iff the 

inverse image of every E"»measug&ble set is a I'-measurable set, 

- If there is no ambiguity, éhe reference to L', I" mav be 

omitted, and one simply writes{wfifg is measurable (or not}“;%: 

- We give some examplesi ‘ 

@ % ”n-{l} Let i' = all subsets cfgk. Then any function is measurable., 

" GiiJ Let I*" connist of the two sets @, B. Then again any 

function is measuxablémfainca the inverse image of B is A, and of 

g is gy ; 

&4&&9 Let f be a constant . tha%—is, there is a b € B auch that 

@ £(a) = b, for all a € A). ‘Then £ is measurable. (Proof: 1If 

b, € E, the inverse imaqe;bf E is My iffipo'g E, the inverse image 

is )l ; 
fxv% et A = B, and " ; 8‘ Then the identity function, 

o 

\h\giVen by £(a) - ay’is mpasurable. (Procf: The inverse image 

of any set is itaelfi). f 

1v§ Let (A,E') and (n,x') both be the real line with Borel 

field. It may be shown that any continucus function is measurable. 

‘tvfl Let (a,I') = (B x C, " x L'%), Let f(b,c) = b, Then £ is 

neasurable. (Proof: Let E € &"; the inverse image of.g is the 

set E x C, which alwaya belongs to " x T'v,) ¢    
i“““‘@hrs last axample has an important generalization. £ is an 

example of a projection operator.
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qfif . Definition: The projection f£rom the cart.es::.an prodact: Hie If"i to 

the i -th componant space A.t is the function wh%ch assignm to 
Q { 

the po;.xat (_g;ti) » 161 fttha value % * 
- S~ = 3 

      

  

[ That is, it picks out the i +-th "coordinate® of any element 

(i" of the cartesian product. This function is written Moo These 
) 

projections are always measurable, the proof of this fact being 

2 minor elaboration of that giVan under exampl;\ 

The following %haorem gi‘ms a very useful ecriterion for the - 

- measurability of a fiunction. 

| Theorem: Given measurable spwes (A,2), (B, E‘) and £1 t A > B, Let 

If/ {: be a collection of sets whflifch qeneratafk L'. Then £ is 

€({ €Z| measurable iff {a|£(a) e G} fi L, for all G ¢ 6. 

  

   
    The "only if" stajéament is trivial. Conversely, let F be 

the class of all subset;;at of B whose inverse images ars I-< 

§ A measurable, By assump;i’;ion, G < F, If E g F, then B\E ¢ F; this 

D follows from the fact 5£hat, since (a!f(a) € E} belongs to I, so 

‘ doas its complewment A\{aif(a) € E} = {alf(a) € B\El. Similarly, 

’%‘ if ! s F and H is countable, then uH € Fp to see this, note that 

GH} ¢r {alf(a) ¢ H} € é I for _all H ¢ H; hence, the union of these sets over 

H e H belongs to I; but this union is {a|£(a) ¢ UH}, the inverse 

image of .Jfl. -A-l-ne-—fi-e——F:- ; 

— It follows that F is a Wa ~field. Since it contains G 

which generates L', we must have F 2 I'. Hence f is measurable, . 
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Let us apply this theorem to the case where B is the real 

or extended real numbersfi and E'gghe corresponding Borel field. 

: ;2‘ is generated by the cl;as of sets (§1§ >‘E} where b ranges 

.over the real numbers, and the same is true 1£™>% 1g replaced 

by any of the three aignsb?<“i %3?} “<*, Hence to verify that 

some tunctionfigwiaimeasurable, it suffices to check that 

{alf(a) > b} € I for all real b, or to do this with any of the 

z%gther three signs in place of“‘>‘ finwfacfiv_*tmsnfisieefla%e 

(check this for b ratj.m;fifi\u | 

This proof above gives a paradigm far proving general 

statements about all the members of a s&gmu-fieldz Prove the 

property for a generating alasa? and prove that the class 

possessing this property is ela;ed under complements and countable 

unions. Another useful theorem proved in exactly this way is 

: the following. ; g, ; 

{%#h Theoxem: (‘measutabla saetion theorem‘) -Let (A x B, I' x I") be a 

ifi N 

aanfiwaww 

pzoduct space. For all E e (z' x x'), and for all b ¢ B, 

{aj(a,b) € E} ¢ Z'. % 

Pract: Let F be the class az subsets E of A x B having the property 

that F is closed under eamplemantatian and countable unions. 

Next, consider the maaaqrable rectangle E' x E", If b ¢ E", then 

{a|(a,p) € (B' x E")} = E'; and if b ¢ E", then this set = ¢, 

Hence all such rectangles belong td ;. But these generate L' x. 

=g 
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Suppose we are given a functicm £ : A x B+ C, Por a point 

a, € A we define !’(a ) ’cu be the function with domain B and 

range in C whose value at b¢g B 1s 1 (a » b). This is the right 

L,eK a -section of £. Similarly, fax b ? Bv the left b -section of f 
\ o ,/f 

    

written t(-, b ), is the functiqn with domain A whose value at 

a € A is _g {a, _}:30). Here the saéts A and B may themselves be 

cartesian produ—c:ts. 

{ S 3 . N\ P “+‘~ 
%’é Theorem: Given (A x B, L' x t'3 and (C,I), suppose shat _g:v (‘1AX8-32{ 

,I)  AxB= C is measurable. 'mmn all its left and right sections | owu o, l,.’,} 
S 

are measurable. g 

4 pir_c__fg_gs Consider any left section f(s, _pgl. For any E ¢ I, the 

set {(g,p)l£(§,§) € E} belongs to L' x I", since f is measurable. 

: fi,wff*"“‘*%t ixenca {alf(a,b ) ¢ Elg L', hy the measurable section theorem 

j %; above. But this set 1is t:he inverse image of E under 1!(-,!9 ), 

hence the latter is measurable. The proof for right swtions is 

similar, m L..,e % 
F 

  

Suppose one is given a measurable space (A,I) and a function 

f:/;é *+ B, We mhall use f and I to define a certain &gna-—field 

. on B 

) Defim,tian: The class, L', of all subsets E ¢ B having the 
’ & 

property that {aif(a) € E} € I is called the sigma-field induced 

by £ on B, 
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[ X% i;iaaé\:iiy verified that z'f is a'figa-fiald,\and that £ 

is measurable with respect to I, z' In fact, L' may be 

characterized as the largest r-fima ~field on B such that £ remains 

measurable with respact to z, Z' 

"h:.s approach also works in reverse. ASuppose this time \that 
e 

(B, E') is the measurable spaea, and again f: A+B is given. 
. ( ths . 

@' De&initianz The class o I, of ,fa.ll subsets of A of the form 
# 

2 {a]f(a) ¢ E}, where E ranges over L', is called the sigma-field 

f’fb} inversely induced by £ on A 

]%" Again, one verifies routinely that 3 is a s«éz;;n-vfield,‘; and 

taat 5 is measurable with ::aspacg to Z,2'. Ian faet:} I may b; 

characterized as the aix&lleat fi%&»ficlfl on A such that f 

remains measurable with respect to I,I°'. , 

&«5 Induction ap:;li{,és_ to measures as well as to a*é;a-fielda@ 

@F— 1 Dafiniticm Given masure space (A, x.u) ’ measurable space (B, x') 

and measurable :L‘um:tion z; A + B, the meawxa} 'y 'induced by £ 

('J:D\} on L' is given by 
Q..,‘%. 3) 

[ w'(E) = u{a|f(a) ¢ E} / ) 

‘, all ‘E € L', 

/ One eau:gy verifies that u' is, in fact, a measura. As an 

example,. take the pxoduat space (A x B, I x I, u)gfi‘ the 

component spagca (B,2'), }nd let £ zdh x B + B be the g:njection.
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 given by 5(9.?) = b. Then, for any E ¢ 2'. we have, by (3), 
. . Qe e ___v___,.a-/‘/ : 

st e 

But this is preaisely the definition of the right marginal maasuréj 

80 that this concept could have haan defined as the measure 

induced on (B,2') by the prcjec&ion of A x B on B, fi?af course, 

the 1eft marginal measure is that induced on (A,I) by the 

prejection of A x B on A5 n 

> These inducticns can ba gbmbinedz Starting with a measure 

space (A,I,u) and a funetionfi?{:g + B, one may fi;st induce the 

s%ééa*tield L' on B, and the@éthe measure u' on (B,I'). 

Measurability of functiéns is preserved under a gr%%t 

variety of operations. We conclu&e by listing a few results of 

this type. The operations themselvea are guite uaafull apart 

y from any question of measuxability. 
‘& 

'Y ' | N 
gg /Definition: Given sets A, By C and functions f: A + B and g1::B + 

  

< fha composition of £ fifid g, written gef, is the function with 

“domain A and range in C given by (gef) (a) = g(f(a)). 

ggy: ~ Theorem: Given measurable spaces gg,z), (s,x'), qg,z"); if fii)A + 

z*Di B , 
_—=4{T0 provefl merely note that the inverse image under gef is the 

P B and g{:B + C are meas?rable, then. so is gef, 

inverse image undar‘i Pf the inverse image underAg). 

We have ufififiafiyzéefinad the supremum of a set of extended 

real numbers.gs aameg;$ as the smallest number not les% than any 

X € E. Now suppose @é have a collection of functions F, all 

extended real-valued with common domain_g.
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v 
b Cg/ '}?efiinitiom The supremum of F, wr%fiten sup F, is the function with 

wl) / domain A whose value at a ¢ A is sup{f(a)|f ¢ FiY.L 
   - i } 

'@;ifiatinitiam Similarly, the infig\ of i». set of e.;rtondad real 

: numbers E, written :I.nf E, .ts ”the largast: number not greater than 

"’D any x € E. The nfig un of gellectian F is the function whose value 

at a ¢ A is 1::1{{(5)!; € i}. 

| Theorem: Let (A,Z) be a méasurable space, and F a countable 

o~ collection of extended rea}.-valued functions with cowmmon domain m— 
v 

@“‘” A, If each fe F is masuxable, then sup F and inf F are 

measurable. 

W Given two funqi:ions ?'?_ ‘:A_ + reals, the sum, difference find_ 

product may be dezined in the usual pointwise manner; e.g. 55 

(g_' 4 g) (3) -- g(_g)::;-l- ?Sg). 1£ f and g are measurable, so are their 

sum, difference j;’and product. & 

similarly,;{qiven a sequence of functions _.;_‘En ::_& + reals, 

n= 3y 2, ...,:‘f‘theix: pointwise limit (if it axigtg) is the 

function £ wlwse value at a € A is 1im wwly(d). If all f  are 

measurable, a;,hea £ is masurable. 

5 ) Given f;: A +Band E s A, the restriction of £ to E, 
e 
[~ written f‘Ey is the function with domain E which coincides with 

f there. fivan (A,Z) and (B,I'), if £ is measurable and E ¢ I, 
§ 

Mthen £le gs measurable, 

%"'!Thearem g&iven a me..asurabla space (A,I), a family of measurable 

. spaces AI(Bi,zi){I “}O and a corresponding family of functions
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(fl)lelf where f s A + B”} all i; lafi g;WA + IIBi be given by 

g(a) = (fi(a)),lel. Then g is measurable iff all ef the functions 

fl, i € I, are measurable. 

/ 
Representation of the Real World by Measures: General Theory 

We now have the tools to guild a unified framework from the 

three basic sets, Resources, §pace)and Time. 

Histories 

Suppose we had a compléfie description of a person at some 

instant of his life. Thisf%ill include his state =(height, weight, 

blood pressure, skills, at%itudes, thaughtg,-e%e« From our 

previeous discussion of thé set of Resources, this state may be 

identified with a point in R. It will also include his location, 

which is a point in 8. We may identify this complete description, 

then, with a pair of pqints, one in R}\\fi”one inmS —s— and thus with a 

Qoint in the cartesian product R x‘§; ‘ 

This is £§¥ a single instant in Téme. To give a complete 

lifetime picture of afperson, we must repeat this procedure for eqdl, 

such instant of his ¥kfe. Suppose a person is born at time t 

and dies at time'fz,;so that he is alive in the interval 

{gltl £ttt }:%9/§A complete description would the&erepresented 

by a function, whose domain is {tlt £L 5 t2} and whose range is 

in R X S. Equivalently, it is represented by a pair of functions, 

both with domain {gl}z <8< ;2}, one with values in R and giving 

the person's state?at each moment of his life, the other with 

values in S and giéing his location at each momens/.



20 

Next consider a machine. It is "borfi" in some factory, is 

transported to another, lives out a prodfictive life there, moves 

into s%mizretiremant, and finally "dies?von the scrap heap. All 

of this can again be described by a fufiction whose domain is an 

interval of T, and whose range is in‘g X 8. 

An apple is "born" on the brancfi.of a tree, is harvested, 

moves through the channels of tradefto a household, and ends its 

existence in somebody's stomach. Ascertain rock was formed about 

when the fihrth was created,;and wiil persist until the}fiarth is 
= 

destroyed. And so it goes. 

  

_ One can think of 

the world as a concatenation of piocesses of this type, each 

representable as a function whose domain is an interval of Time, 

and whose range is in R x 8. | 

There -are gartain problem#fié;nnected with this point of view. 

First, by the léw of the conseévation of mass, "births" and 

"deaths" are of=ceourse transférmations from one form of matter to 

another. In principle this q%n be handled by our apparatus: The 

apple disappears, but the pefson who has eaten it becqmes slightly 

different in state: less hqhgry, better nourished, Ggighfé;;. 

Second, there are ambiéfiities in the description. Suppose a 

handle and a blade are combined to make a knife. One possible 

description of this event %é that the handle and blade both cease 

to exist at this instant, énd the knife begins to exist. Another 

possibility is to have thé‘blade and handle maintain their separate 

existences, merely being éombined from then on in a certain spatial
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configuration. In this second approach,v"knife“ is not a 

resource~type at allflbut the name for certain spatia} Fonfigura— 

tions of other resources. - (The difficulty here is e el 

that discussed eaxrlier in the appendix on Resources of §ectionflé. 

If the program suggested thera;could be carried out, it would avoid 

this problem as well). The sblution lies in making conventions as 

to what is to be considered_é resource, as opposed to a spatial 

configuration of zgher resoérces. 

5f>/’/ A third problem concenhs resources that are "continuously"” 

spread over space. The precise meaning of this term will be taken 

up later, but for the presént we may take it to refer to such 

resources as air, water, fa;oil, wheat, cement, and steel, as opposed 

to people, animals, carsSand machines which are more naturally 

thought of as "discretefjparticles:%}f All the examples we-have- 

given are of the “discréte" type, and the question arises,sgan 

ene describe the contififious resources in the same terms? The 

answer is yes. fn—fue&,;gne of the great advantages of the 

measure-theoretic appé@aéh is that it can handle discrete, 

continuous)and mixed fiistributions with qual facility. We shall 

takéithis pointiup}léter when the approach has been more fully 

expounded. ; 

We now return éo the main line of argument: -Fo—repeat, the 

world is being viewéd as a collection of processes, each of which 

can be represented as a function whose domain is an interval é% 

Time, and whose raége is in R x S,
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We need not exclude the pcssifiility that a given process has 

no birth, so that its existence sgretches indefinitely into the 

past; or that it has no death, 55 that its existence stretches 
-t ,*/i ;\ i 

indefinitely into the future; onAnelther birth nor death. The 
%follow:.ng definition formalizes these considerations. 

l\,mj_\/qu,\e_) &j\,\ KXS va\& 
_,«». 

%&L% Definition: A hlstogz is a function whose domain is a closed = 

  

intervalbi tnat~is a subset ef (the real line) of one of the 

following four types: either {tlt Ltst }\X\where t; < t, are 

  

real numbers); or et < t2}, er {t|t > t;}; or T itselffi~eeed 

    

    
th _<{The history of a person —-ehee*is, a history which takes/ 

on only person~types as valuee in R~ may be referred to as a 

biography. ). ;. : 

fifl#y Definition. For a given history ‘h, the function whiech takes on the 

ffif?: value s (es) when h taKe on the value (r,s) will be called the 

itineragz of that hisgnry. 

K§¥ Definition. The funct;%nuwh%eh takeefon the value rA(eR) when h 

‘ takes on the value (§,s) will be called the transmutatiofilpath of 

4 that history. 

e 

,aaflfiyflflm?:;*‘whus the itinékary traces out the locations occupied by a 

history in the course of its existence; the transmutation-path 

traces out the stetes in the Resources set through which the 

history passes.
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"\ For example, if we take the biography of a person, his 

itinerary will trace out all his movements, trips, visits, migreg 

tions;and commuting patterns over his lifetime. His transmutation-, 

path will trace out his progress from inéency to childhood to 

adulthood to old age, with the accompanxing moods, experiences, 

activities, speech, etc. - i 

We sheil denote the itinerary of nistoryug me?s' and its 

¢ , ~ " 
transmulationipath by;pr. Thus_g}r takes values in R, and hs takes 

values in S. i 

Wow let Q2 be the set of all possible historieskr theewis, the 

set of all functions from closed_?—ieiervals to R x 8 (not merely 

those histories realized by an actuai "particle”). We now show 

how the world may be described as a‘keasure space (2,I,u) with 

universe set Q. : 

The measure u has the followihé intuitive interpretation. 

For a set of histories E ¢ I, u(E) is the total "mass" flowing 

through the locations and forms at the times indicated by the 

various histories of E. This vagee characterization will be 

elucidated in the next few pages. 

Along with the measure spacei(fl,z,u) we shall consider certain 

families of functions, all with domain a subset of 2, and with 

values in various product spaces built up fromnfi,,g, andig. Each 

such function corresponds to the'asking of a question, the answer 

to which appears as a measure ofi-the space in which its values lie. 
T 

1 

— 

" Formally, let £ be one suéh functioeJ £ takes values in a 

set A whieh is typically of the form 3? x §9 x-?g for some non+
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negative integers a, b, Sy though it may be more complex. We 

assume that R, S, and T come supplied with appropriate ségmo fields, 

Zr, BS, Zt, respectively, and these deterMLne a product sigma ~field 

on A. Then for any measurable subset G gfig, we assume that the set 

of histories 

> {n|£(h) € G} . 

~ belongs to Z‘i-th;eses, we assume-%hat:f is measurable. f then 

induces the measure u onto the measurable space A, and this induced 

measure is, intuitively, the answer to the guestion embodied in the 

function_f. We now illustrate, begxnnlng with speciflcs, then 
., 

generalizing. 

-rfi> Cross~Sectional Measures 

Consider the question,**Whatfis the total guantity of water 

in Lake Erie at Joon, January 26, 1970 (in tons)?™ The answer is 

given by the u-value of a certai@fset of historiesz E. Specifi- 

cally, E is the set of histories;fihose transmutatiofilpaths at the 

moment‘Noon, January 26, 1970 115 in the subset of Rnwhioheis 

labeled "water"”, and whose 1tinerar1es at that instant are located 
,“ SQ; 3 

in the region "Lake Erie." " E can be written symbolically as 

B { ‘ i 

(), 1Yy, ) Questions of the general form;m“What is the total quantity of 
WY A N\ 5 

/ N "‘ 
L ‘gg:”;xesnursg§egfhfzpes F in region G at time }’" (@f which the above 

~ N e 
\ & is an examplej*-ma be called cross-sectional questions, It should 

(2:5.1) 
> 

h (Noon, January 26, 1970) € (water x Lake Erie) 1) 
  

be clear that any cross-sectional question (with F ¢ Z G € Zs’ 
uur
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t € T) has aslenswer the up~value of a certain set of histories, 

- oy (0 
namely ] : 

(h|n(t) € Fxe}, 423 

N
 e
 

(\
J 

\/
 

~bet—us consider the logic of the situation. The various drops 

or molecule;’of water in Lake Erie at the moment in question had a 

variety of past histories: some fell di?ectly as rain, some flowed 

in from Lake Huron, some entered as sewage, some as industrial 

effluent. And they will have a variety of future histories: some 

evaporating, some flowing out to sea,;eome entering samples taken 

by pollution researchers, -ebte. AllAeé these combinations, and 

more, will be in the set of historiee (1). But cross-sectional 

questions are not aimed at elicitin§ this detail; instead they 

lump together all such histories}“fifom whatever source derived"” and 

"to whatever destiny aimedfiz*and ofiis is just what sets of the form 

(2) do. i 

Before giving further examp$es, kefieee examine the assumptions 

behind this whole approach. At first glance, what—is—involved 

seems to be a conservation of mass assumption@ the same total 

"quantity of magier“ is earried alteng through time along the paths 

traced out by the histories, merely changing its form and location. 

“”Ttfikeeie redistributing itself over R x s). And, indeed, this 

literal interpretation of mees" is perfectly adequate for many 

kinds of histories. } 

Trouble arises when ofie;considerg biographies of personsa 

~It—is—elear—that mass in the literal sfinse changes as one advances



{ - 

U 

- 

96 

from infancy to adulthood to oorpe%eot dotage. But é&élses a 

certain freedom in choosing measureeent units. In the case of 

resources that come in "natural u@lts‘y¥féuch as people, cars, or 

oattle)i-it is common to measure;in terms of “number of entities" 

rather than in terms of ‘numberfof pounds.“%g/ 
gtk Pt 

Which measurement units #e choose? We enunciate the principle: 

choose measurement units in seoh a way that the resulting "mass" is 

conserved as one traces out the path of histories through time. 

Thus,xfor most social science purposes the "number of persons"” 

measurement approach is the correct onefiflbecause it gives each 

person the constant “mass? of 1 over his lifetime. 

. ¥;;zi////////;rom now on we @&nfififi'drop the quotationIQErks around “mass?‘ 

it being understood thafi the appropriate units are being used for 

the various histories 7a#hethe=;they—be*pounds, numbers, acres, 

yards, board-feetfleee;¥ Two points should be noted. First, there 

is no theoretical objection whatever to adding together measure= 

ments using different units for the different components of the 

sum., :AM 80 long as the various units are known, the measure u carries 

the information w1§hout loss. Furthermore, if we switch from one 

system of measure@;nt units to a completely different system, a 

simple formula qubles éee;to translate the o0ld measure u into a 

new measure ' ié_terms of the new units.*?fo, 

-~ Second, it ?s not clear glérlorl that one can define measureZ 

ment units in séch a way that the desired goal of mass conservation 

is attainable, even approximately. For further discussion, see the 
LA 

Appendix he%ow&
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To generalize, consider the function f (t being a fixed real 

A 
number) whieh assigns to history h the value h(t), which is a 

point in R x §, Here the domain of f consists of theog histories 
= 

which=are in existence at instant t. f is assumed to be 

measurable (with respect to I restrioted to the domain of ft) and 

with respect to I, % L, the-eigma ~field of R x S)@r ft induces 

/ 

the measure u onto the space (R x 8, I x T ). 

What value is assigned to the measurable rectangle F x G 

(c R x 8§)? The value wheeh u assigns to the inverse image == 
T i __.m-——/// 

AL S g, m e P x o, 
But this is the same as the set (2). The measure induced by.f:'t 

is the cross-sectional measure giving the distribution of mass 

over R x S at time t. This measure:provides the answer to any 

question-onemwéohao~te~aek concerning the world at time t ‘# fivthat /495 

'is, to all possible cross-sectional questions. All this informa- 

tion is contained in the original measure u over the space of 

possible histories (Q,X),«and is extracted from that measure by 

means of the mapping ft' Let ui be the cross—sectional measure 

for time t, so that 

. (E) = pi{h|h(t) € E}, 

- for all E ¢ Z Yie 
s 

In general, one will not be interested in the entire realm 

R x 8. A regional geographer, who wants to know everything about 

Austria at time t, for example, will restrict Up to R x Austria. \\\
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~@nmthemethe§;tand, someone who wants to know everything about 

steelmaking at t ¢ wherever it exists, will restrict y@/ to F x §, 

where ' F is the set of resource~types having to do with steel? 

making (ore, coke, slag, blast furnaces, steelworkeré, ete. -In- 

_generalfione makes both restrictions, narrowing attention to a subd 

tset of resources in some region. | 

This is perhaps the time to bring up the question of practice. 

Even after restricting ocne's attention, the resulting measure is 

a very complicated business. In practice, doesnitwonewnave to 

simplify drastically-in-order  to say anything at all?'; 

- There are three answers to this question. First, ohe does 

indeed simplify in practice. The most common method is to 

aggregate into seme simpler sub—segma field, usually one generated 

by a finite partition. The rssult, of course, is still a measure. 

The second answer is thatiit is possible to simplify without 

aggregating. Practice demands that a description be specifiable 

by a small number of numerical parameters. Aggregation does this. 

But it can also be acccmplisned by having a stock of standard 

measures available, indexed By a small number of parameters. If 

the stock is well chosen and versatile, oné can find an element 

&hieh is a good approximation (or "£it") to the actual measure. 

Examples are the Pearson family of distributions in statistics,fi\ 

and the approximation of functions by polynomials or trigonometric 

sums. Indeed, the general oractice of approximating things by 

other things in a smaller, simpler family is a universal principle
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of scientific work; igrge’literatureg existyon how to find the 

best approximation, or test fork“goodness of £it®, 

The third answer refers to the division of labor between 

practical and theoretical work. Consider numerical calculation. 

In practice one needg only the rational numbers (or even less - 

say -these rationals of the form N . 10 aa 
s 

for theoretical work this would be a crippling-restrictiong, The 

» N an integer). But 

real numbers are needed even for evolving and justifyingfpractical 

procedures of numerical calculation itself. - 

“In the same way, even if the only measures ever to be used 

in a practical way are the aggregations into finite sigma ~fields 

(a premise we do not grant), one would still want to use measurefh 

theory to gain theoreticalrinsight. 

We now return to croes—sectional measures. It has heen 

mentioned that "complex“_resources may be thought of as gpatial 

configurations of simpler resources. We are now in a position to 

pin down the concept of;“configurationfiga Consider a certain 

building at time t, for example, which is a configuration of bhricks, 

wood , plastir,?glass,»etc. Let E be the region occupied by this 

building;32~'The conffigurationflL%%en is this building is then 

simply the cross-sectional measure W, restricted to B x E. This 

restriction tells us now much of everg kind of material is present 

in each part of E, which is just the information we need to 

describe the building completely. ~And in general, any "spread=-out" 

entity at a time t may be identified with the cross-sectional
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measure U, restricted to R x E, E being the region occupied by 

the entit;‘in question. 

This [takes caré; more or less) of a specific entity at a 

specific time. It is also of interest to define the concept of a 

;ZR_ of configuration, not tied down to—ee; specific fregion or 

time~instant. We shall delay giving such a definition until 

certain further mathematical concepts nave been introduceéffi%)i 

Different configurations with the sameflgemarginal may be‘“ 

referred to as isomers, to borrow a term from chemistry. 

-So—far we have been dealing with facts involving one point in 

Time., We nou go on to facts involting/tyg’points in Time, which 

introduces transformations, transportationjand storage.u 

For example, how many people.alive at timehtiiteve died by 

a 
time ty, > £,2 The gnswer is i 

= (Ls,§> 

) 
u{h|h_(t;) ¢ person, and“tzlis not in the domain °fw#}~ (3) 

  

h   

The set of histories in (3) is:exactly that called for in the 

question., (It is assumed here that for histories of this type the 

measurement units are "numbers of entities;‘;:;,;\}eem&rscusse&“abovefi: 

If instead, t, precedes;tl, then (3) gives the number of 

people whe-wexre born between t, and t 19 Gnd Wflfl%.sflllrahve Ei f1 

How many people migrated from region Fl at time % to region 

_F, at timeutZ}(tz > ty)? Tne answer is i ) 
v 

  

uwdhlh(t,) € (person x F.), and h(t,) € (person x F,)¢t. ‘F#T
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Actuaily., “ene should qualify this statement. (4) gives the number 

of people whe-wexe in regionf1 at”tl and in regionul?‘2 at tz. 

Hence, firetjoé—eli it says nothing about their itineraries within 

the interval; these may involve all sorts of spatial maneuvers. 

Secondig, it gives the number of people physically present in these 

regions rather than being resident in them, change in residence 

being the usual definition of migration. Residential location 

could be represented, but it is a more complicated concept than 

physical location, involving mental states and legal documents. 

As a special case of (4) we could havey;‘l =h?2 = F, Then 

(4) would count the number of people who stayed in region F 

throughout the intexval, but would also count those who wandered 

out of the region after time tqrbut returned by time t,. 

How much cotton yarn at time t, has been converted into 
i 

shirts at t, ((t, > t,)? The answer is ( e 59 

u{t‘hrgtl) € cotton yarn, and h (tz) € shirts} £5) 

'ii*i (5) gives the mass of the set of histories whose transmutaS 

tion&path was in the resource-set "cotton yarn" at instant £, and 

in the resource-set "shirts" at instant t,. Again some qualificaZ 

tions are in order. As above, there is no restriction on what these 

histories do in the interim peried. Mozre serigus is the fact that, 

depending on how histories are defined, (5) may give a "wrong” 

answexr., Recall the discussion of knfifies, blades and handles $ 

:%7 )%here it is pointed out that when a given history is "born"
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or "dies"™ is partly a matter of convention. If things are defined 

50 that cotton yarn ends its existancé when converted into shirts, 

then (El gives the answer zero. The;difficulty hearkfns back to 

the problem of defining theeaeeeeoqés setlfiwin a satiefactory 

manner. 

gfiL////;nstead of considering queetions piecemeal, lot us s2t up a 

Vf 3 measure’éhien answers all such qneetions systematically. We have 

atready considered the case of a single moment t and the 

rasulting cross-sectional measure on universe set R x §. Now ve 

consider two moments, and get a measure over (R x S) Sucn 
e 

neasures are called two—timing, (or pexrhaps double-croes~sec¢ional). 

Given two moments, tl and t¢ (with~t1 <t ), define the 

function £/ by 
“Eqety : 

(o i) 

£ i w 

The domain of ft' t@ is thé subset of histories which-are in .0t ? 

existence at both times ¢t fiand t.. It is assumed that f is 
— 1." ““2 tl 'tz 

measurable. Hence from u it induces a measure u% & on the / | , A ; 72 i l_)t:, 
range space (R x 8§ x R x §). 

The intuitive meaning Ofiutv,tfi is as follows. Let E and F 
3 L l 

be measurable subsets ofifi X §, Then U t t (E x F) is the total 
f RISAT 

mass of all histories having a value in £ at moment t;, and in F 

at moment_tz.
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Again, we may let the sets E and F themselves be rectangles 

in R x S: Let G Gy 62 e Zr and H 1r Hy € Zs; Then | 

“Elt?étxgl x Hj) x (G x H )] 

is the mass embodied in the historiesvehieneare in resource set G, 

and region H, at time’tl, andzmoieitekresource set gz and region 

H, at time t,. » :' 5 

This measure gives no information concerning histories which 

are "born" or "die" hetween_t1 and t,. To answer such questions 

systematically;gnéfiean proceed as,followsax (fietails concerning 

measurability are omitted). We add an artificial point zo-@ 

signifying non+existencep4'to the set R x 8. ‘fifiirfié is ggain 

defined as in (6), but its domain is now all of Q; if history h 

is not in existence at time ti3then h(t ) is to be understood as 

Zye This extended function induces a measure “t & onto the 

~ i 1922 

space [(R x 8) U {zo}] . For-exsmple, 
ey i 

S [(person x 8) x {z, }] 
7tyets 

would be the same as (3)\4-the total number of persons alive at 

time tl who have died by t2. 

Having gone from one to two timelpoints, it is simple to go 
\ nutm.rc 

to three, to a finite, or even to a ccuntablg numberLofmtine 

-points. For example, choose a measurable set E, < [(Rx8) U {zo}] 
=
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H ; ¢ 
7"99 ‘ 2 / : o / for each integer EK(#I + 1, # 2,..). The measure of flo <o 

e " = : o T 

) {h|n(t) ¢ Eot=0,+1, +2, ...} 

= gives}the mass of all histories passing through each of the sets 

E, at the respective integer times. One could even do this for 

all the rational instants t, since these are countable - as good 

a monitoring system as one could hope for. 

'f,‘} Production and Consumption 

A broad category of questione7concerns births or production 

over time, such as)“How much cornfwas grown in Iowa in 1948?"'or) 

““How many people were born in New York in 19342"~ 
J 

' To give a general method for draw1ng sgch descriptions out of 
3 ke TR g e P8 

the measure space of histories (Q” Iou), we first restrict Q to the 

ownig b subset f_ consisting of all histories wnich*have a date of birth = 

sul &W"“”‘/ th-at-mis do not exist 1ndefinitely ffir back into the past. Then 

define the functionrfivfl_.e R x § x T byi" (i) 

: (=7 
£(h) = (h(ty), t))s ~h 

where t; is the moment of birth of the history h. That is, £ 

assigns a pair, the second tomponent of which is the moment of 

birth (= the earliest timegat which h takes a value in R x 8), and 

the first is the value?whighng‘takes at that time. 

In terms of £, the aéount of corn grown in Iowa in 1948 is the 

measure of the set of his?ories
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{h|£(h) € corn x Iowa x 1948}, 8) 

since (8) is precisely the set of historiesjwhechnare "born" in 

the time interval 1948, whose transmutationépath starts in the 

resource~set “ccrn",_and whose itinerary starts in the region 

"Iowall, | : 

Assuming f to be measurable, it induces the measure t 

  

Ch. ¢ 0 
o : o, J | (restricted to @) onto (r x 5 x T, _;BE x £, % I,). Eet-us call 

£, *" " this induced measure Al‘ On rectangles hl can be given a simple 
Aembha | intuitive interpretations Let(E EZ; F g 25' Ge Et. then E€Z r 

J 
‘h (E x F x G) = total mass of all histories starting at some instant 

Qgtjjf; fevg in region F in resource-set E. Thus Al gives the distribution 

of "births" or "production" over Resources; Spaee and Time. 

By an argument exactly parallel to the one just given we can 

describe the distribution of "deaths"” or “consumptionf.l Omitting 

details, we restrict 2 to these histories having an end in Time , 

then take a function g having as:value the pair consiséfjof the 
: at 

date of death, and the point in R x § occupied by the history ef 

that moment. Assuming g measurable, it induces a measure,ihz.t f XL\ 

= , : )anJ ) 2 q onto (g x 8 x l, Er x Zs x Et). The interpretation of kz on $H§z; 

rectangles isr’ 

— h (E x F x G) = total mass of all histories ending at some 
penod > 

instant in in region F in rescurce~set E. 
- 

Finally, we consider the joint pattern of production and 

consumption. First, restrict © to the set of histories having 

both a beginning and[an end; call this flo. Now define the 

function
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given by k(h) = (£(h), g(h)b 

<?;;e;e f is defined by (7), and g is the similar function defined 

above. That is, E(n) is a quadruple gising the point in R xS 

at which h starts, the time it starts, the point in R x S at which 

it ends4 and the time it ends. { ( 24 

On (5 x 8 x T)2 we take the sixtnple product field (zr x Zs X xga 2 . x 'S Pess 
t) Since f and g are measurable, so is k. Let v be the @ 

measure it inEuces on (fR X 8 x T) . (E X Z x I )?l)gn rectangles 
' 

the inte%%retation of v is as follows@ 
258 “Let E\, E, € 5.5 Fy, Fy € I5 Gy, Gy € Iyl then v(E, x F) x 1 

§1 x E2 x Fz x G, ) = total mass of all historieststarting at some 

instant inA f in region F, in resource—set El' and fnding at some 

instant in,\é2 in region F, in rescurce~set Ey. ( 

If wejfinink of (R x 8§ x T) . as the product of (R X 8 x T) by 

itself, then;)l and kz are precisely the left and right marginal 

measures of v, respe L‘I'\'vekl 43 

By this time the main lines of development of our descriptive 

program should be clear. ;Extensive magnitudes“ in general may be 

represented as measures, and a large variety of these may be derived 

from one underlying measure u;cn the space of histories. We could, 

ir=faet, extend this section)indefinitely, systematically deriving 

more and more complex varieties of data from the underlying measure 

space (2,I,u)3 but-this would begin to- strain the reader's patience. 

—
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;L(Ae an exercise, the reader is invited to puzzle out how the 

fishing example that begins this chapter may be derived from 

(R,Z,u). This is more complex than otr previous cases; because, 

e.9., codfish are not produced in tfie port of Boston) but arrive 

there from elsewhere. The solutionpi as a restriction of a 

measure over R X § x T?i involvesécounting each history the number 

of times it enterfi;a given subset of R x S y2 

‘ flne final comment on the scope of this program. Our examples 

have been drawn excluSively from statistical data i-thatmie- the 

kind of data that appeafi’in tabular numerical form in census 

reports, etc. These data have a certain precision whieh makes 

them easy to discuss. However, since our model deals with the 

redistribution of matter in the most general sense of the temrm, 

both in location and in form (= resourcelstate), in principle it 

should be able to handle "literary“ data as well-#4history, 

travel, biography, belles lettreak ete. ":he swept her up in a 

passionate embrace" ggglgxte translated into the language of 

measures; the only conceptual difficulty lies in the vagueness of 

the description. 

Appendix on Histories 

One disconcerting feature of our model is the extreme 

generality of the concept of “history@@ Between birth and death 

~any function with values inig x 5, however erratic, is an 

admissible history.
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_> This in itself is not disqualifging. Iffixin the real world,\ 

frogs do not turn into princes,kand’br. Jekyll does not become 

Mr. Hyde, this is indicated by aseigning the measure zero to the 

appropriate set of histories. But difficulties remain. 

Trouble arises from the dlvereity of measurement units. The 

more a given history wanders ouer the set of Resources, the harder 

\ij?/'it becomes to assign units in %uch a way that "mass® is preserved 

C}S.. over time. This |suggests thegfollowing kind of modification - (or 

rather, restriction - on the;set of histories Q. The set of 

Resources is given a partition, é into measurable subsets ;" such 

{é(e Pl that the elements of any set E (.:. R are similar‘"vto @ach other in 

< some sense. In particular, they are similar in the sense that the 

same kinds of measurement units are applicable to all the elements 

of any given set of the partition. ‘KThus ené would not put into 
7T 

the same set resource types witdeh come in ™natural units® and o 

resource types virken lend themselves to measurement by weightfi. 

This=ds all 

  

-line of- appreaeh. : 

Having set up the partition, R, of R into fairly “homogeneous 

subsets, we now admit only these histories whose transmutation 

paths stay entire13:Within»some one set E € R. This restriction 

on the set of histéries’alleviates the measurement unit problem. 

Bach E € R may now be tagged with its "natural" unitl{whether~rt 
& 

(pounds, numbey of entities, acresmfietc} In setting up a 

. 
field on the restricted A, one may begin by taking the set of all
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.~ v 
histories with R-values in set E to be measurablefi for each E ¢ R, 

— S— “ — 

(In contrast to R, Space requires no such "breaking ug”. Because 

of its homogeneous nature, the wandering of itineraries over S 

creates no measurement unit problems.) 

The restriction just discussed is a kind af “boundeéness“ 

constraint, limiting the "distance" over which any transmutation<’ 

path is allowed to wander in R. A different kind of restriction 

also suggests itself ;-one prohibiting "discontinuous jumpsgzx 

(The quotation marks are used in this paragraph because so~far we 

have not defined any structure on Ror 8 wnich would give meaning 

to them.) ; 

Without going into aamy details at;present, suppose the congept 

of continuity for histories has been detined, and in such a way 

that the maximq%ngturébnon facit saltum, is validf%gL(This=fiact /@5} 

again does not oy itself disqualify an original schemes It just 

means that measurable sets of discontinuous histories get assigned 

the value zero, However jin this case there maybe some advantage 

to restricting our original Q to tne simpler subset of continuous 

histories. p 

Finally we mantion the measdrability problem on the space of 

histories. As—we—haue—descasoee, this*;roblem of identifying which 

sets gf histories correspond to observations that might be made, at 

least conceptually. The criterion of "conceptual observability" 

is itself vague; but even if it wvere pinned down one would still 

have to classify systematically the possible kinds of data, and 

find the subsets of Q corresponding to each.
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' 2.6 Measure Theory, III 

flwe“returnwnoWMtomthe~expositionwofwmeasnre—theerye This 

section differs in style fromgzil'and 2.4 in two respects, First, 

the ratio of theorems to definitions is higherz>{we shall be 

more concerned with stating the results of thestheory, and less 

with merely outlining the concepts of—<the—-theory. Second,we 

shall-give illustrations not only from pure mathematicsfi but 

also from the applied concepts we have been building wup kg, 8, 7T, 

histories, etc.) No confusion should result from this mixture. 

As oefore, we ah#kl omit proofs unless they are very short or 

instructive, or not readily available, 

Finite and Sigma-Finite Measures 

3 

A first d%stinction is between finite and infinite measures, 

the latter being those that take”on the value « at least once. 

Since a measure attains its maximum value on the universe set 

A, a measure u is finite iff u(fi) is finite&_and:infigite iff 

u(a) = o, 

af$°nefinition§: Consider any function f whose range is in the 

} 
o)
 

,_fi% 

extended real numbers. f 1s finite above iff it never takes on 

the value +», finite below iff it never takes on the value -», 

finite or real-valued iff it is finite both above and below, 
% 

On the other hand, £ is bounded above?(bounded below) iff there 

is a real number L such that £(x) < L (f(x) > Lfl for all x in 

the domain of f£. f is bounded iff it is bounded both above and 

belgglyfiEquivalently, f is bounded iff there is a real number L
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such that -L </f(x) < L for all x in the domain of f, which can 

also be expressed by writing Lf{r)l E.L,?all X, vertical bars 

indicating the absolute value of a numoer (lgl = a if'a > 0; 

|a] = -a if a < < 0)e 

-~ Note that £ bounded above, below, or both implies £ finite 

above, below, or both, respectively, but thar the converse is 

not necessarily true., For example, the identity function 

£(x) = x on the real line is finite butfnct bounded. 

However, for measures, the properties "finite", "finite 
,-,.\ 

above", "bounded", and "bounded aoore“ are all equivalent. To 

see this, first note that measures are automatically bounded 

below, since they are non}negative; second, if u is finite, the 

real number u(A) provides andupper bound: u(§) < u(a) for all 

measurable E. rrom~new—on; the terms "bounded measure" and 

"finite measure" will be used interchangeably. 

A related very important concept is sigmanfiniteness. 

WL‘ - '} 

fli 

\ Definition: Let (A.Z,u) be a measure space. M isasagsa-finite 
    

  

n
 

,;pé 
iff there is a countable partition, G of A into measurable 

—— 

  

     T (e L& xxampless 

_fliifls””{gfrr} Any finite measure is sigma ~finite. (Proof: 1let the 

<:> partition Q have as its only member the universe set A itself).! 

a.6&5) Consider Lebesgue measure on the real line. This is 

certainly not finite, since it assigns the value « to the entire 

line. But it is segma-finite. (Proof: take the countable
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measurable partition consisting of the sets {rln ff% <n+ 1}, 

where n runs through the integers 0, +1, +2, .t?i;u is finite 

on each piece & in fact u{x|n < x <n + 1} --75?(1 “’f;’a’ll n). 

ifii} Any measure whieh assigns the value o to some singleton 

set {x} is not.sigma-finite.(Proof: for any partition G, if 
v 

X € G € G, then the restriction of u to G remains infinite.) 
o, 

{iv) As a less trivial example of a non—sagma-finite measure, 

let A be the real line, & any~segma-field on A, and u the 
c.oum"’me 

enumeration measure (u(E) = number of points in E). (Proof: 

Jdet G be any countable packing of measurable sets such that 

u(G) is finite for all G s G; then each G is finite, so uG is a 

. countable set; since A is uncountable, G cannot be a partition).j 

The importance ot.sigma-finite measures stems from two 

facts: gfihey have many useful properties not shared by measures 

in general, and most measures sheeh come up, even in theoretical 

investigations, a;e‘sigma—finite. 

Atomic and Non~Atomic Measures 

We havezgircady mentioned infermally the distinction 

between resources which-are typically distributed "discretely" 

over Space;and those whieh—are distributed "continuouslp;Aiand 

we now wa#tete define these concepts rigorously and abstractly. 

Actually rt~turns~eut tnat.gbere—ace two entirely different 

concepts explicating the notion of "continuous distribution®”, 

one ofi them involving a single measure, the other a certain 

relation between two measures. We /give the first snevnowi
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   i 

,M\{FF Definition. A measure u is nonsatomic iff, for any measurable 

filk set E for which u(E) > 0, there is a pair of measurable sets F, 

- Gsuch that FNn G=¢, FU G = E, u(g) > 0,and u(G) > 0. 
%fimflgwflfiflhrj i 

i 

can be split into two pieces, ooch of positive measure. ~ 

Briefly, u is non-atomic ifffany set of positive measure 

  

,Examples' 
s )W,W § ' 

{&) . It may be shown that Lebesgue measure on the real line is e
 

57 
4t 
& non+atomic. 7 

i
t
 
er
m—
——
— 

frrf Let u({x}) > 0 for some measurable singleton set {x}; then 

N : } cannot be noneatomit (since {x} cannot be split). 

\wf» - (The converse of this statement is not trues There are 

/ measures for whicn u({x}) = 0& all x, yet which are not non+ 

atomic)),) 35' ? /ffi@, Z 

il 

W :;-’ 

“anflggf—mnefinition- Gifien a measure space (fi,z,u), aset E€ I is called 

i iff u(E) >0, and, however E is split into two 

  

an atom forg 

  

fisj\ measurable ‘sets F, G (F neGs=4¢g, FyU G = E), either u(F) = 0 2/ = 

or u(G) = O”NYThus a measure is nont+atomic iff I contains no 

atoms.)pg 

&f‘fy’ [ At the other extreme we have the / 1 

‘5%" 

M is an atomic 
N 

: measure iff A itself is an atom, o 
I /}7 Y 

“ That is, u(A) >0, and, for any E e I, either u(E) = O or f 

U(A\E) = 0. If uy is finite, then u is atomic iff its range 

eawfi Definition: Let (A,I,u) be a measure space. |
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consists of exactlz two values, 0 and u(A). (This follows at 
A 

onfle from the'eguation u(A) = u(E) + u(A\E) and the definition)v 

L?efinition- ¥ is sifiplyhconcentrated iff there is a point‘g e A 

having the propertys: 
Afi > (r‘ ! ) 

WE) = 0 4f a, ¢ E,\u(B) = u(d) > 0 if a € Ey ) 
-, 

  

for all measurable_g. 

  

A simply concentrated measure is atomicé,although not all 

atomic measures are simply concentrated,ythe latter is the most 

important kind found in practice. Choosing an arbitrary point 

a,, an arbitrary positive number for;u(a), and u according to 

(1) gives a simple recipe for constructing atomic measures (the 

point_g need not be unique, in general). 
A s 

BRI — -~ 

/%L‘ Definition. u is a g&gfig-atomic measure iff there is a countable 

' f;:) measurpbl% partition, G of A, such that G is an atom for all 
»..{ 

Ge G, Otherwise expressed, u is sigma-atomic iff the universe ;segge-——-e = ’ 

set A ‘can be split into a countable number of measurable pieces, 

! such that u restricted to each piece is an atomic measure. 

Q$s;Theorem: ("atomic decomp031tion theorem") Given measure space 

(A,Z,u), with ufisigma finite, Then there is a set E ¢ I such () 

\lggi) u restricted to E is non+atomic,-and 

¢ (ii) u restricted to A\E is sigma-atomic. e 5 : 

’1{ \_:i H Senllbr Sl ?“sr‘j’v/,v.fw g e Theovena 3 T M ({:‘t’) = Q 

and ik e \, ) =0 | \@ is \\a.\w;);:“{ ; " ,m.féu ¢, Fm[ EL\&,V'm(,YQ, 'T'L< ¢ g};,;egmé 

1A .‘ivxj h/\/c) suel. c/\tfi;}‘mzaaf\sf?ssz M‘x‘7 Le FQIY'C A bl el 08 
i s 

e s o\ '/‘Q: a iy B L~ i’\(}’i » ¢ belwec 1 La ch Pe Yf‘ O(' QT-’J‘W‘ £
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This is the first of several basic decomposition theoremsfi\ 

whose aim is to represent measures as built up in one way or 

another from simpler measures. 

:gfiggi’ We illustrate with a real-world example., Consider the 

~ rural-urban distribution of population over the surface of the 

Farth, It is a useful approximation to think of the urban 

population as being concentrated in cities, each located at a 

single point og the Farth's surface k\say 3t@?1'm?2""fg“'While 

the rural population is "smeared" over the surface. If I for 

this example is the Borel field§~'so tnat all singleton sets 

(ai} € 2 jfthen an atomic decompositign is elearly given by 

A\fi = {al, ays «ss} « That is, on, this "urban set" population 

distribution is sagma—atomic (eaoh gingleton set {a } being an 

7Y atom), and on the ccmplementaryf"rural set" it is non+atomic.3/// 

Having decomposed u atomically, one is then in a position 

to take advantage of the special properties of each part. For 

non+atomic measures the fgilowing property is very useful, 

H§P4Theorem' Given (A,Z,u), with u a nont+atomic measure, Zet u(E) be 

finite. Then, for any real number X such that 0 < X % u(E), 

+there-is a set Fe Z such that u(F) = X. 

7’; /"&., A g :’ 

?if u is finite and non+atomic, +this-means—that it takes on 

    

every single real value in the interval from 0 to u(a). 

' Suppose next:that # is infinite but sigma -finite. It follows 

easily from the definition that, for any real number X, u 

/ se 
§akes on a_real value greater than x. Combining this oboprvation
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: : (e 6. with the theorem just stated, we conclude: , An infinite, sigma~ 

finite, non:atomic measure takes on all positive real ngmfiers 

as values. 

/””“\) ; S, I i e \:?3; ntegration # 

We start with a measurable space (A, Z).i The integral will 

be a certain function whieh assigns an extended real number to 

every pair consisting of i) a measure u on (A,I) and (li) a 

measurable function £ with domain A, and with values in the 

25 nonfnegative extended real numbers Our notation for the 

integral is 

Al i'} o3 
w2l T 2 o s i 

& e~ - 

[ £ du ) or ! £(x) u(dx) .. —{2) 
A N £ Aw " N e 

l We start with a;certain special kind of function f, 

Qi Definition: Function £ (with domain A) is simple iff it is 

'ijjyl measurable, realevalued, nonzpegative, and takes on only a 
Mgt 

finite number;of values, 

  

As an;example, the constant function £(x) = ¢ (where 

© > a 1:93 is simple. Another example, which merits a definiZ 

tion ofifits own, is the following. 

,‘% ¢ 

Cfl' Definition: The indicator function of set E (notation 2 ) is 

@ givenbyI(a)elifaeE;I(a)aouagE. X 

afl’fifg 

  

The indicator function of any measurable set E is simple,
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Now let f be simple, and let {x,, «ees X } be its range. 

Since EAis measurable, each set {alf(a) = xi}%is measuféble, and 

the collection of these, for i = 1..3n, constitutes a finite 

-~y 

QJ ; partition of A. We now define f fmgu to equal = f; R i 

s ‘_;,'- i v [Qf’!a) j 

  

xjufalf(a) = x;} +...+ gnu{‘alf(?};fa 53} 

“\”é’sx 3 “ - (In evaluating (%), recall the rgles of arithmetic in the 
(1t X X extended real number system. In pqfiticular, A+ o=wif £>0, / 

and 0 ¢« = = 0), fifi* S 

Examples ; (1) For the conétant function f(x) = c, (3) 
2%l 

consists of justtgne term,;namn%y c 5 u(A)* (ii) Por indicator 

functions, _ gf 
e £ oade 

N ™, 
e 50 s ~ 
- ja ,IE;fiu = 1 C/“(-E—) = p(E). 

We now define phe integral in general in terms of its value 

for simple functigns. We use the notation £ > for two 

functions on A fic indicate that £(a) > g(a) for all a ¢ A. 

Also, 'sup abhreviates "supremum”, 

qflfi?}nefinitionz Given measure space (a, Zou)n and non+negaff/§ 
e measurable~function f on A “Fhen : (2.6.4) e ", ‘«i f / C\ - g+ = A 

Qzfif ay /% 1 , e / f fmdu = su g du gc<f, g simple . {4)
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LA £ 

X’That is, we consider the set of all simple functions bounded 

above by £; for each of these we form its integral, and the 

integral of £ is defined as the supremum of the resulting set of 
extended real numbers.?%” 5 

Note that (4) is not circular, since the integral of simple 

function has already been defined by (3)‘\“?2;¥i; aiso 

cansistent in the sense that, if £ itself is a simple function, 

then (4) gives the same answer as 3} . 

A useful extension of this definition is tqqintegration over 
a measufigble subset, E, of A. é;;: is denoted }E f&dfi?D;Ld is 

simply the ordinarfi integral (g) when f and u are both 

restricted to E. (For E = @, we set it equal to zero.) This 

may also be written as an integral over A, In fact, 
r!‘l \\/C‘ |§ 3 -l 

) ] £ dy = I I £ du}h BN 
oA i -8 AT 

for all E ¢ L. (The function being integrated ;%hthe right is 

\ 

the product of f and the indicator function of E, so that it 

coincides with £ for points of E, and is identically zero off F‘)v 

-Let—us gompare this with the tfidinary Riemann integral. 

Let f be real*valued continuous . .and nonrnegative on the closed 

interval {x|a < x Q b} (a, b real numbers). Then 
=i 

%b T\ D S 
/b 5 

O f(x)dx = N ' 
fa E (x)}\ : [{x|§<xgg} _ [ ¢ 4/“ RS felaexey 

\ T/C‘
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'Here the left=hand expression is the Riemann integral in its 

usual notation, p on the right is Lebesgue measure, and;(S) 

shows how to translate the Riemann integral into tha form (295 

1;:;(5) is valid for any function £ having a Riemann integral. or some "patholosical " funclions 
@EflfiEifiaf)fl555_3g§a§'i’§li§fifiy richer aigma field a—the 

"Lebesgue completion" of the Borel fiel§;~ flar (5) to be valid 

for any such f This concept is unimporggnt for our purposes 

and we pass over it.) ; 2 

The integral (2)%(4) constitutgéfa triple generalization 

of the Riemann integral. First, tfie class of functions f 

possessing an integral is broadened. Second, the integral is 

defined not only for Lebesgue measure,mbut for measures in 

general. Third, the integral is defined for any abstract 

measurable space, not qut the real line. _ 

~— In view of this engrmous genérality the following theorem 

is surprlsing, because it shows that the general integral can be 

expressed in terms of the Riemann integral f\in fact, as the 

Riemann integral of a monotone ncnfxncreasinq function. 

G | Theorem: Let (A Z.u) be a measure space, and f a measurable nonf 

7 ) negative function on A. Then 
{ ".-u 7_,'/: g ; ‘ = ("‘ e ‘{{ Sl = 50 o }:g B\ 2“_ A\ \M L2 

] £ dy = ] ulalf(a) > tldt = f u{al£(a) > t}dt.. ) A=A S ~ TR I RO ~¢rof o) 0 
/}l@w 0 

ww%(Here thevmiddle and right expressions are improper Riemann 

integrals defined by the usual limiting processes. Since the 

integrands are monotoniq)there is no problem of existence,
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E«““i§¢» 
though +» is a possible value. j(fi) is proved by comparing the 
Riemann sums approximate%y the middle and right integrals with 
the integrals of simple functions approximating the left 

expression. The middle or right-hand form in (5) will be 

referred to as the ¥oung integral. //, 355 

To illustr%te (6), take the constant function f(x) =c 

(c > 0). Fa[f(a) > t} = A if ¢ < ¢, and:; b if t > c; hence 

the middle integran4 equals u(A) u; t@ t = ¢, and equals 0 

beyond that point; the right-hand 1ntegrand is identical exgspt 

at the single point t = C; hence both of -these integrals Fézai 

-u(A) » Which we have already vgr:.f:.ed to be the value of 
\é %7’7 

)f Adu. 
2 jv 

We shall list some standard properties of the 1ntegral 

f and g are assumed to besmeasurable nonynegatlve extended real 

valued functions on A, 

-
 

¥ ?%g 0> 
éf f£f.du > 0. 
FYAT D 

il & - 

  

.,;_:‘ 

If£>0 (that~isn f(a) > 0 for all a), and u(a) > 0, then 
20 

/ . 

f ot & 
4 T el e 261 

If £ and u aré both bounded, then\f Adu is finite. Uty 

'4? ;‘lff ¢ is a pQSltive number, then 2 o 4;\ --":} S aga, 

ffi o> 20 5 m',« }") VO 
(;l 1.1 & ) 

c ] f dy = f af, dio £30) A~ W NS S 
i 

4 - i
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We have defined f £ du, where E Ls a measurable set. Now, ) 

for fixegz and # (where these are dofined as above), conflider 
the function vfxwithw_omain z, whieh is~given by 

IS ‘fi 

,,#ng'fnefinitionz v is known as the indefinite integral of f with 
fé; respect to y. We -shall u#é the notation [f 4du for the inZ 

definite integral. 

fifiof_Theorems Jf, du is a mefigure. If £ and u are both bounded, then 
;giw J£f,du is bounded. If £ is finitegland u is ségma-finite, then 

~:§} /£ du is aaéaa finita. 
M 

& 

The first statement may be proved by aid of the monotone 

  

g | 
:ffi?)convergence thaorem, which we come to later., We shadi prove 

the last two fitatement Is £ and u are both bounded, the 

boundedness of J£,du is immediate from (9). Let £ be finite and 

u s&%%a-flnlte, and let {G ik m=1, 2, «ssy be a measurable 

partition of A such that u(Gm) is finite for all m, Loi/) 
o 

»Emn = {o\a € Gm and n < f(a) <n + %}, 

~ where m = 1, 2, ..., and n = 0, 1, 2, ... . The class of sets
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E is a countable measurable partition of A, an#*ffland U are 
’-'Ighn o =T :(ff"y‘ - LL)*‘L) 

both bounded on each piece. t du is 

C ’,;,":    
One application of indefinite integrals is to the problem’ <. 

of change in measurement units, whi&h we left hanging, amasqgr*z:¥ 

Let (A Z,4) be a measure space representing some real-world 

data. Measurement units need hot be homogeneouss they may be 

"acres" in one portion of‘éf pounds“ in another, "numbers of 

entities” in a third.'etq§%9 New suppose the measurement units 

are changed in some arbftrary manner. The same data will now 

be represented by a new measure, Vv, in terms of the new 

measurement units.fi For example, if everything were previously 

measured in kilogrems, and we convert to grams, obviously u 4% 

gets blown up by a factor of 1000: 
(d\" ‘.; A '}} 

fo S 
v(E) = 1000 u(g).}\‘,an E ¢ I. (12) 

But what ;é the general relation between u and v? 

Thejchange in measurement units can be represented by a 

functién f on As f(a) = number of new units equivalent to one 

old nnit at point a. f is obviously reefivalued and positive. 

The only other restriction we impose is that it be measur&ble. 

The relation between u, v)and_f is then ( 

v = f£ du. é:/[fj«,
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As an example, take the conversion above of kilograms into 

grams. In this case f(a) = 1000 for all a € A. Checking the 

formula for the integral of a constant, we see that (13) does,. 

indeed, reduce to (12) in this case. | : : 

Let y be a measure, and £, g two nonenegativefimfieeurable 

functions on (5,2). Since the indefinite integréi fg,du is a 

measure, one can integrate £ with respect tofiigf 

§+ | Theorem: Let (A,IZ,u), £, and g be as stated. Then 

P e i 3 (;‘»l ‘*.:,- {4 

D I £ GU g ,slu) - I fg du.. 14) 

That is, the indefinite integral of f with respect to the 

measure Lkg>dp is the sanefias the indefinite integral of fg 

with respect to u. g 

As an illustration take the measurement-unit transformation 

discussed above.j;énppose one changes measurement units accord- 

ing to function{éfiwand then changes them again according to 

funotionrr. ;The compositef>resu1t is the left=hand expression 

in (14), ena thgs theorem states that this yields the same 

transformetion as a single change in units represented by 

ha) = £ gla). 

N
 

[ N /' In particular, if we simply invert the previous change, 

then £ = 1/g, and, by (14), 

1 

L-g-" Q(L‘g[gu) = I'\lx“gu = U 

S 

as it should.
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s Densities 

Lfi: 

,,w“"- = We pull together two threads in this section. In—the” 
§irstjp%aee, we have mentioned that the intuitive ooncept of 

“continuous distribution” has two quite distinct explications. 

One -of<=these is the concept of "noQFEtomic' measure, which we 

have discussed. The second, “ahsolnte'continuityfi, will be 

taken up here. 5 

Second, we mentioned at the very beginning of this chapter 
that certain kinds of dnta —-éuch as prices or population 

denSitie% =yWhich oould not themselves be represented as 

measures, couloxbe derived from measures in a certain way. The 

same circle of ideas serves to accomplish this, 
- lm{. - . o 

{%F’TfigfififliEiéE‘ Let u, v be two measures on the same measurable 

P . space (A,X + Vv is absolutely continuous with respect to u iff, i) 
— whenever u(E{]= 0, then V(E) = 0. The notation for this state 

of affairs is{ v << y, ,j 

Q It follows at once tgat absolute continuity is transitive; . 
if A, 4, Vv are three meeeures on (A,Z) such that v << yu and 

H << A, then v << ), 1A130, of course, u << . 

R :5 ; 
ym}f} Theorem: Let v be thefindefinite integral L\f:du. Then v << y, 
&m ; , 

| ffim{?roof: Suppose u(E) = 0 for E € I, so that u restricted to E is 
p) identically zero.. If g is a simple function, it follows from 

{(3) that
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15 432 

IE grx-du = 0. 

figzwi Then, from (4), this must be true for any non+negative 
Q;Q@f; measurable function g, in particular for f Hence v (E) = O.J*ffi@    

i, 
-1 g ! The basic result concerning absolute continuity is that/ 

under slight restriction, the converse of this statement is 

true@ 

— \ 

; fl?fifi Theorem: (Radon—Nikodym theorem). Let U, v be two measures over 
(a, Z)&&such that is«iegma~finitet>and v << He Then there 

  

,fw}); exigts a non+negative meaeurable function f such that -y 
; 

(3645 
v =ffdu 2 (15) 

({kis known as the denéity, or Radon-Nikodym derivative, of v 

with respect to u, and is sometimes written dv/du )3 

To make a statement concerning the extent to which the 

density f is uniquely determined by v and u, we need the 
following corncepts. 

%H»“Definition: ‘Let (A,Z,u) be a measure space; a property P is said 

  

  

  

fipj to hold u-almost everywhere efi* for u-almost all points, iff 
| “fi “there—is a set E ¢ Zflsuch that u(E) = 0, and P is true for all /\ = 
fifi 5 7 points of A\E } Another way of expressing the same thing is in 

  

oery 

Eerms of null sets. A set F is p-null iff there is a set E¢g I
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such that F c E and u(E) = 0. Then P holds p-almost every< 
where iff the set {312 is not true for a}l is p-null, In all 
of this, if p is understood it may be omitted; thus one says 

simply "almost everywhere", etc. P ‘;v"«ll o, 

§$?ffi}Definition: Two functions £, g are ufeguivaient (or u-almost 
aiégk identical) iff the set {a|f(a) # g(a)} ie’a u-null set. 

e ‘~fltheorem= Let f, g be two nonfnegative measurable functions, and Mo 
1fi:¥”~> u i siqma~finite measure, on (a, Z). Then for the indefinite 
I integrals we have - ! D) sores 3 

‘_ 

[ £, qfi kj g, du \ 

1ff £ and g are u-equivalent. 

  

This answers the uniqueness question concerning the Radon= 

Nikodym derivative. In that theorem only u is required to be 

eiégn-finite. If v is also-eégma~finite we can state the 

stronger conolusion that there is a finite density f satisfying 

(¥5% . 

-Leg;gs give some possible real-world examples, and in-fact 

let—us compare all this with the intuitive concept of “densityifi 

Take 3-dimensional space with the Borel field. Just as the 

ordinary concept of length extends to Lebesgue measure on the 

real line, the ordinary concept of volume extends to a measure 

known as 3-dimensional Lebesgue measure in 3~space§%9’ For 
ve 

simplicity, Yet—us- continue to refer to this extension as



      

  

127 

“volume"?:and denote it by u. Let v be the mass distribution 
of some resourceltype over.Space. The average densitz of this 
resource in a region E of positive volume is given by fi{E)/u(E). 
(Average density is not defined if u(E) = 00.« Averege density 
is thus a set function, whose domain is a certain subolass of 

the Borel field f£. This is rather unwieldy,nand one would like 
to go from average density to density at e;point.\}WA rough 

analogy is the process of going from average slopes to the more 

useful derivativeefj »\N 

The Radon-Nikodym theorem pinfifcown these vague notions. 

We assume that z is absolutely centinuous with respect to volume, 

M. (%hatmis, for any region E, if E has no volume, E has no : 

resource content). Since u is eigma-finite, it follows that 

~there exists a point~function~*‘satisfying (15), and this is 

exactly the property oneguould want a poinéidensity to have. 

Now the foregoiangnalysis did not depend in any way on 

the particular natureg of the two measures involved. This 

raises the possibiiity of thinking of a grgfit many other types 

of data as beinggficensities" derived in this way from two 

easures, We give several examples: 

T/, Let u be population distribution over the surface of the 
-6« 

»u,Earth, by Place of residence (measurement unit: number of WA 

e,
 

people), Let V be the distribution of total income, again 
2’ 

attributed by residence. ftwis_cleer that v << u, since no 

income accrues to unpopulated regions. The "density"‘gv[gu 

in this case is simply Qeracapita incomeg ., 
/ 

S 
.....



1 

% 
\A/ 

1 
? 

1 

§ 

’1“‘1The units in which p(r s) is measureg‘will be: 

C‘
%)
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“14)2, Let u be the distribution of economic commodities over 
;\ 

Spcue, measured in mass units,\perhaps quite heterogenecus. 

Let vV be the same distribution measured in value or wealth 

terms (unit: dollars). 

this case may be interpreted as 

detailn\ ?he universe set is a subset of R 

Again v << yu, The "dengity“ dv/du in 

In eemewhat more prices. 

'-é‘ 

    S, and the density 
o s" auer 

p(r s8) is then the price of resource-tygé r at location 8. 

dollars per 

acre, or gram, or litre, ete., corresponding to whatever units 

u was measured in at point (r,s) y;\ 

{£i£5 Consider the concept ofgthe "quality" of resources: 

)fibld has higher quality than iraes, etc. One explication of 

this somewhat elusive concept is to define quality as the ratio 
,} 

of value to weight. Thue.if we 

resources by weight and/v their 

comes out as the denefty.gv/gu. 

( / 

crv+*kThis and thegnext example 

construed as dengities. We are 

t9 < t The universe set A is 

R x S. 

—d 

respectively. Formally, P 
==y 

wfiererare price systems, p 

let u be the distribution of 

distribution by value, "quality" 

show that index numbers may be 

times 
given two tnrme t.. tl, with 

some appropriate subset of R or 

= plAat times t ¥ t 
Po "o Eg 

and p, are measurable positive 

functions ‘on the universe set. ={Prices may be given directly, 

or may themselvee be derived as 

thereiare two quantity measures, u 

respgctive times. These may represent stocks, ex 

W o 
densities, as under @fie% fq”Also 

9, ul(}referred to the 

production,



\ 
| 

o
 

e 
e 

s 

T
R
 

g
 

w
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§$K=er consumption, e® exports, ete. We suppose that each of these 

e 

measures is absolutely continuous with respect to the other; 

thee~ie, u@(E) = 0 iff ul(E) = 0, for all measurable sets E < A. 

?*'mhe Laspeyres price index for measurable set Eg A is now 

defined as 
23 ) g1 

\o¥ { 

M ¥ . 
y". ]/3 ‘ 1’! “V "'.' ’m) 

- N 

o 

“(The Paasche price index substitutes Uy for uq in (16)3 As E 

varies, the numerator and denominator of (l¢) define indefinite 

integrals, and the price index comes out as an average density 

of these. The point-density, or Radon-Nikodym derivative of 

J Py du with respect to I pgfdqu is simply f£(a) = pl(a)/pe(a), 

since, by {14y, v ‘ 

o ) S P 
&) The Laspeyreanuantity index for measurable E is defined 

as 

Py, 4u \ el i) 

/IE R ). 

IE p@ r\,quO 
’7)/£/l 

  

; : o 
(The Paasche quantity index substitutesg1 for povin (17);) 

Again tnis is the average density derived from two indefinite 

integrals. The point density of f«pojgul with respect to
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f,\pgngug is simply.dul/dua, since for £ = dulldug we obtain, 

bY (14) ? 

d =[ ,d[fifd --I £,d =]f_‘.1([ .d ].., L?@“*"l ""'PQ\ML“” rufij RofndHg 3 Mpg,,,ug; g 
\ \ 

1 i B 
rfhese examples should illustrate the variety of data etiea 

can be brought under the rubric "densitymr} In—fact, examina- 

tion of statistical comgflfiations~would show that, of the data 

nhicn cannot be represented directly as measures, the great 

bulk can be represented as densities with respect to some pair 

of measuresf%;/ 

In our examples abeve we have presented the pair of 

measures first and derived the density from them. -It-should-be 

noted,:gowever,-that-in some cases the density is more readily 

observable than one of the measures (in which case the measure 

{%i/)/ may be constructed as an indefinite integral). 

\i>;> (;"cheider,;:fl*ioa-:~':ft-_rataiaap;l.a.r the standard exercise in capital 

theory of converting from current to discounted dollars. Let 

U be a measure with universe set Time, having the interpreta- 

tiont u(E) = value in current dollars of that portion of an 

income=stream arriving in time;period_g. {The use of measure 

language enables one to cover the cases of lump-sum accruals, 

continuous accruals, and mixtures of the two all in a single 

notatioq)g Assuming for simplicity a constant discount ratef 

i, and discounting to moment t_, the income stream expressed in 
b 

discounted dollars is simply the indefinite integral { 7 A /“ ¢
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- (8.6.19) [[ettete) e, ey 

Here the demsity f(t) = ef;(t'yfij is more or less directly 
observable, and the discounted income stream is'constructed 
from it.3§f g 

Again,&consider prices. One can observelilist pricee@;j 

if these exist, Or‘?one can take the,ratio of money passing 
in one direction to goods passing in the opposite direction. 
The first gives a direct observation of a density (perhaps a 

misleading ene if there are trade discounts, etc.) The second 
derives price as an averagegdensity of two measures., 

Before dropping thiefitopic, tet—us consider the concept of 

“uniformitm“. One speefie, especially in spatial economics, of 

"uniform® population;distribution, "uniform® resourcee, 

"uniform" planes,fleéee A moment's reflection indicates that 

what these terms are expressing 4$s the proportionality of the 

measure in question to some other implicit measure, usually 

surface area.“ Thus if u is a real measure and v is population 

distribution, then the as¢ertion is that there is a number ¢ 

such that v(E) = cu(E) for all measurable sets E((O <¢ < ™, 
This in turn may be abbreviated v = Cu. 

?g:;befinition: Let u and v be two measures over the space (é,l); 
3N ) V_is uniform with respect to u iff there is a positive real i 3 

s number ¢ such that v = cy, : 
(""} 

\ 
\
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\ This is an equivalence relation among measuresfi\and implies 
that each is absolutely continuous with respect to the other. 

An equivalent way of stating the relation is that the density 
av/du is equal to a positive real constant (u-almost everyf 

where) . 
> “ 

f'éne recognizeg, of course, that any such relation between 

disparate measures is at best an approximation. In general, 

it should not be taken literally at the microscopic level: A 

literally uniform distribution of land and water would just 

vield mud everywhere. 
ey 

{i ffi,f Induced Integrals 

Let (A,Z,u), (B,I',u") be/t@o measure spaces. Let f{: 

A + B be measurable,:and-sucnfthatgjfor all Ee 2, 

/ {egtdfij 
u (E) = u{alf(a) € E}., 9 

ri(rkiemeeysaeeat u' is induced by £ from y. {t Finally, let g be 
a measurable, non-g-negative/ extended real-valued function on B. 

(*\noiuoe e "‘IS_;, fi‘\GOY‘Q\Ms}* 

Under the conditions stated, 

    

A ; (y Ly Lo on e G20 D) g g ot e e ' I g, du' = [ (gef)du., €29) 
T *'&Illl? 

0 gvpfi'Proof: A quick proof may be obtained by using the Young integral 
ey t¥6), In fact, from (19), 

w'iblgb) > £} = ufal(gef) (a) > t) ./;af 
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| so that a ’?\ d 

b\ | 4 [ 7 g f \y\é‘ [ paw - Jegwelgm e s [ ulal @i > e | [reler } = 
r/"‘"‘ 2LeYo 

/ s ) ae 

D) | el ‘(gofléu.g 1 ] /A 3 

fl“”fi‘fifist;“<flere gef is, of-course, the composition of f ang 9. If 

g can take on negative values, then neither integral in (20) 

has vet been defined. However, to anticipate,~itwturns:eut 

that the theorem is still true in this éase, in the sense that, - 

if either integral in (20) is well—defined, then so is the other, 

QO and they are equal. F 
Ggflh —~>  The elementary rules concerning‘“substitution of variables" 

in integration may be derived}fiéom (20). 

There is a more generalfiéay of looking at relation (20). o/“f 

If we consider the indefinite integrals« f(gof)du, and [ g du', 

then the latter is'the measure induced on (B,2*) by f from the 

former on (A,I). 

Convergence Théoreme 

The following theorems are among the most useful in 

measure theory, and will be used repeatedly,ie«thie—bcck, It 

is convenient to state them for integrands whieh are unrestricted 

in sign, even though we have so far only defined integration for 

‘nonrnegatiVe integrands. (For the more general definition, see ey 

the section on signed measures below).
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We distinguish formally between the sequence of extended 

real numbersflr(gl, LY ...)9§§which is a family of numbers 

indexed by the integers 1, 2, TN and the set {xl, Koo ...} 

which is the range of this family. We have already defined the 

concepts of the supremum and infimun of a set of numbers. The 

sup and inf of the eequence&xl, 52} ..{)are defined simply as 

the sup and inf, respectively,{et the set {51' oy swosts TWo 

slightly more complicated operations on sequences are needed 

here: 1lim sup and lim inf glimit superior and inferior). 

Let (xl, Eoe ees) be a sequence of extended real numbers. 

Let Y, = Sup {x i xn+1, ...} for=ail n =1, 2, ... . rnatmis, 

,yn is the supremum of the numbers left in the sequence after 

deleting the first n-l in order.    
. )Definition: Lim sup,ef the sequence (51,_§2, veos) is defined as 

P the infimum of the;set {y1e Yor oo 1o 

n 

  

Let g == inf {x ¢ xn+1, ...})feene*% nowd, 2, sss s 

Then sup {zl, g niad 5B known as the lim inf of the seqguence 

UL ? 

qg. }Definition: Seguence (xl, Xy ++s) converges to x iff the lim 

  

g ~ (T f?‘tew e 

) and lim inf of the sequence both equal Ryv | Xg is the limit {i%?? sup an n seq q /i“ -“3?— 

of the sequence and Ohe write§t X, * X, \
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; 

| Examples) _ 

04—*‘“&‘-139/.Let (gl, Xy +ss) be a sequence of real,numbers. This 

N \\ Sonvexrges to the real number_g2 in the senee of this definition 
( L-) % & 
| g 4 _Aff it converges to X, in the ordinary sense of the term 

\ : k3 
: "convergern 

A 

— 

><.fre% The sequence (1, 0, 1, 0, l,-...) has a 1lim sup of 1 and 

a lim inf of 0. (Proof: Vi i 1 and L 0 for all n@ 
. 

- 
3 

@&ii; Let (xl, Xo0 ees) be a~fion§decreasing sequence, and 

let x = sup {xl, LY skl then (xy, X5, ...) converges to x_. 

(Proof- 'yn = X, for all n, hence inf” {yl, You ...} * Xt B 

B, =X for all n, hence sup“{zl, Zgs ceol = x 9) Ercm_this— 

“wo AN\ exampi:e-s% note, €eGey that the sequence (1, 2 Bivan) 

-converges to +«, 

    

i ‘Now let (fl, ;2;;...) be a sequence of extended real- 

valued functions, with a common domain A. 

ese) is the function with domain A 
qfif?befinition: Lim ingf(fl"fz' » 

Lim whose valuevat_afé A equals lim inf (fl(g), £a(a), «ee) 

sup (f,, £,, .mi) is defined analogously. If these two values 

;#;sz) are the same for all a ¢ A, the common function f thus deter, 

= : mined is called the limit of the sequence (fl, fz, ess), and 

enerwriteew f + f. 

!fl—fl“‘)“"T, One special case in which the limit exists is when the 

sequence is non+decreasing; thecmie, f (a) < fn+1(a)9£c!=u%l 

/ X 
f )
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P = 57///f’£ =1, 2, «v., and all 2 € A. This follows from exampleifiikfi%k 
abovey which also shows that for the limiting function f, f(a) 
is the supremum of {f (a)}, n=1, 2, ..., for all g € A. 

   

Czpewiiheorems w(gnonotone:gonvergence theoreml« Let (A,Z iu’ be a measure 
space; let (f ), n=1, 2, ...)be a non1decreasing sequence of 
measurable functions on A, with limit f ;f 

{XWQ‘X e 

  

(3C21) )/ 
¢ <21)- s 

% then 
! o 

(3 0.2 | S 422) 
? 
e fiV 

| Here we may note that the supremum of a sequence of 
measurable functions is megsurable. Also, condition (21) 

together with non}decreagingness, guarantees that all the 

integrals appearing 1n5122) are weliidefined. It frequently 

happens that all the f ’s are nonsnegative, in which case (21) 

is automatically fuifilled. 

. Another version of the monotone convergence theorem uses 

infinite series rather than sequencesy, 

o : 
fifiw«‘Theorem: Let (Ajzpu) be a measure space; let (fn), R LRy wnisip 
R be a sequence'of nonjnegative measurable functions. Then 

(A7 7 i ' Lv 5 f L&/ { \/b\ | _ \')‘"C« ! Ao d %) 

/A A A 
| 

2 ‘M A ) 
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[ Here on the right we have an ordinary infinite series,’ 

whose sum is defined as usual as the limit of the partial sums. 

On the left the integrand is expressed as an infinite series of 

functions. This is to be understood pointwise: /fihe value at 

point a € A is f (a) +“f.(a) + ... . Convergence is assured on 

both Sides of (23) by nonrnegativity.; 

/7C gunad 
SN (93) follows at once from the application of the monotone 

convergence theorem to the partial sums £+ eeet £, n =1, 

2' ® o0 e 

‘1' 

>< A closely related result involves an infinite series of 

of the series - 

measures. Let Hyr Hor oo all be measures on (A ). The sum 
e , 

e utl"* uz Hlee e 

5 ; < 
is defined as the set function pu whose value at B § I is 

#y (B) + uy(B) +... f: One easily verifies that u is a measure. 

We then have The 7/~ 

gfifi—iTheorem: Let £ be a noninegative measurable function on g@,Z), 

and let ul + ué;+... be a series of measures with sum py. Then 

e/:;:' 0 /(”"“) ‘." - \ i/ [ D/ Lo 1 7\ 
\ e I sf,\du = %I dul I 

AT ‘
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~$§w{?roof: Apply monotone convergence to the Young integral: 

  

| wX ‘\q’q \’7/’!/ {4&* \A\ 

! au = I p{alf(a) > tldt = U Hytuote. ) {al£(a) > tldt 
2o , | o ‘ . 

, \ : 

\‘?ie"} \f;d\ \\0\; fbfil& \ O\ é J;;fl#" 

“‘f “1“"“&’ B =\J £ duy +eea@ A1 
| v 

at A : f‘;f' 

  

é 2 ol 

suk+ 
These Jast two theorems are used in the %e&&eweng section | 

on product measures. 

C?&wfl Theorem: x(Fatou's‘lemma); Let (é,z,u) nefa measure space; let 

  

(fn)',p =1, 2, ..., be a sequence of”neasurable functions on A, 

P such that fn > g for all n, g being another measurable function 
7 1) ¢ : s, Fd 

p / on A, If / 
L £ ,\/\ .b/> \ /lO 7% 2 

] g.du > jee, -+24) 

then C6 
"L'> “” A? 4 

" k‘ ‘x ¢ ({'i E‘i.‘ 288 (Gt 

{ (lim inf f )au < lim infs £ dy. 25) 
\ IN &A\E“” £ 

\ ;’ o 

In (25), the;fiiim inf* on the left defines a function, 

/ 7 = Ao 
j/;yf?r which is to be integrated; the "lim inf" on the right,—on—the 
) / ' 

(§h§ cthermhand, applies to the ordinary sequence of extended real 
SN | S\e 1<y o 

<:numbers whoseln+th term is f 'f du. ‘We-note that the 1im ing . nf( 

of any sepuence of measurable functions is measurable. Also 

a8 
: condition (24) guarantees that all integrals appearing in (??) 

“ are well?defined. If all‘fn‘s are noninegative, as is common, 

...we may take g = 0, and (24) is automatically fulfilled.



leoes 
\ y 5 
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An example will clarify the meaning of Fatou's lemma. 

Choose two eets'El, §2 € L. Let fn be the indicator function 

of Fi if n is odd, and of E2 if/n {; even. Lim infrfn then 

equals iE\%EQ; the sequence on the right of (25) isi u(El),t 
I 

u(E ) » u(El)...., and, finally, (25) states that u(ElnE )f/ 

minimum of (u(El), u(E 1) 
,'& 

fiifig Theorem: %?dominated convergence theoremi , Let (A f,u) be a 

— 

measure space; let (f )y n=1, 2,,., be a seg%ence of measur= 

able functions on A, with limit £; let lfnj < g for all n, g 

being another measurable function on A such that 

A Ly O 7 e 
\cé} {! 3 b 5‘5;" Lefe, 2.6 ) 

‘I % 4 du € o e :{fn'? 
% 

¢ A £ 

; ,: 
Then o :i/‘»«; ‘,{\‘ 6\ ,-g? (&g K;;g f‘ /, s 

kfl 1?‘ \ & L I 

! \ I [ 3 du -+ ! e du. +27) 

The condition |f | % g;;which states that the absolute 

value of £ is dominated ny g, may also be writtenp fjg(a) < 

f (a) < g(a) for all a e A, and all n =1, 2,... . As above, 

the condition G%é) guafantees that all integrals appearing in 

(27) are well-define& !But even if all the integrals in (22), 

(25), or (27) are uell—defined, one still cannot drop the 

conditions (21),;{24), or (26), respectively, with impunity; 

this may be shonn by countefiZéxamplesl.'



  

140 

Extension of Set Functions 

  

O 
~Ag-we- haVE‘eiready'noted,A eegma ~field is uaually specified 

by mentioning a class of sets which generates it;i.e.g.jthe 

gfl Borel field on the line is generated by the class of intervals. 

44%ww Similarly, a measure is often specified by stating its values 

¥ just on some of the sets of its domain. Fermenampief, Lebesgue 
” 

> 

q> measure is the one which assigns to each interval its ordinary 

    

length. As-a 

r 
thefirstinstance not—omati—of I X I’ but only omthe—eclass— 

—of-measurable rectangtes, p 

Let (A,I) be a measurable space, let R be a subclass of z, 

and let u:::é}+ extended reals be a set function defined on 

this subclass. The question arisess Does there exist a measure 

v{:? + extended reals which coincides with p on the latter's 

domain: Vv(E) = u(E) for all E ¢ R? In other words, can u be 

extended to a measure on I? Furthernore. are there several 

such extensions or at most one?f 

We now specify certain conditions on u and R which enable 

- us to answer such questions. 
3 
o TS, 

  

appecs = i 
fés-?nefinition: Set function M2 R + nonrnegative extended reals is 

B countably additive iff, for any countable packing By, EZ' O 
} § 

L of R-sets whose union E is also an R—set, we have 

| _i\___— u (_E._) = u(g}l) + }J(—E—z) WBsiein
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0 oS 
v A X 4 

" 'This is a slight generalization of the concept of countable 
;r'" 

additivity on a eegma-field- ?he condition that E ¢ R must be 
L .:,/‘i Cout A s 

stated explicitly, since R is not necessarily closed under 

. countable unions. 
e 

    
D) (i) :¢ ¢ R; 3 

b v ol ot ’ix/f W 

— (ii) if E, F € R, then E N F e R, and 

'Q{f!%i* (ii1)> if E, F e R, and E ¢ F, then there is a finite sequence 

33z Gi \G le R i =1, ...An.\ 

  

t 
| For example, the collecgion of all intervals on the real 

line (together with ¢)fis a semi#ring. The collection of 

;fl measurable rectangles in a product space (and @) is a semi}ring. 

#g, Theorem' Let (A,I) be a measurable space, 1et R be a semi«ring 

‘s which generates I, and let non—negative ue Vfi + extended reals 
7 ~ N 

ML4, be countably additive, with u(g) = 0. Then there enéete a 

measure v with domain I which extends u. 

If, in addition, there-is a countable collection G 2 R 
"/ NS 

k 
wivieh covers A, such that u(G) < wA all G € G then there is 

exactly one such extension. 

w;%grtzzf““ 
@wmgwww” ) The premise that R is a semi<ring can be weakened con- 

{‘A siderably without invalidating these conclusions.
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Definition. Collection R is a weak seminsigmanring iff (i) @ e R' B 

.aaé-(ii) for all/»E, F € R, g&g can be partitioned into a 
> ,@{} 4 

couatable number of R~sets. flR is a semi—géggg-ring iff it is a 

R weak semi—eigma—ring, and, for all E, F ¢ R, E N F can also be 

Az
 

»&Egz/j partitioned into a countable number of R-sets. 
et 

= & c 

»»”’”"#‘&w ‘ Any eemifring is a semi-sagma—ring. For let E, F € R; 

then ENF G R, so the collection consisting of E N F alone is 

i countable partition of En F 'into R-sete, furthermore, the 

/ ‘ collection {Gi\G ’ GZ\G reesr G \G _1},,where qg =EnF, 

v.b 
v € 

Gn = E, Gi 1 S Gi' i= l,..., n, is a finite, hence countable, 

partition of E\F into R-sets.eb 
=X i 

—> This shows that the following theorem is a generalization 

of the preceding one. 

v 

Theorem. Let (A,I) be a measurable space, let R be a semi: 

    

géggg-rin which generates I, and let non+negative s R o= 

extended reals be countably additive with u(@) = 0. Then there 

  

:1Z>¢f exists a measure v with domain Z—&Xieh extends He 
\// 

ufli»f”"‘lnstead, let R be a weak semi- signa—ring wkich qenerates 

s L, let vl, Vg be two measures on Z-theh coincide on R-sets, and 
/ W,M 

let there be a countable collection 6 @ nswhieh covers A, such 
% 

that v, (G) = v,(G) < wA all G € G. Then v, = v, throughout Z. 

    
e 

. \ The proof of this theorem is very long, and would take us 

$ too far afield to set down here.
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Abcoat and Product Measures 

Let (é,z,u) and (B,I',v) be two measure spaces. We have 

already defined the concept of the product; (A x B, I x I'), 

of the two measurgglg spaceehfi(é,z) and (B,I'). We now define 

the notion of a measure,‘l,_on the product space;which is in a 

sense the "product" of the measures u and v, 
    

i?fifi{?efinition: Measure A on (A x B, Z x1I') is a generalized 

product of u and v iff 

AME x F) = u(B) = v(F) - —ag) 

for all E¢ L and Fe I'. 

b g W e 
e 

" T“‘* Intuitively, (28) says that the A-measure of any "rectangle" 

_g x F is the ordinary product of the measures of its “sides?. 

(In evaluating the right-hand side, remember that 0e» = qfig As 

an example, let u and v both be Lebesgue measure (= length) on 

the real line, and let A be Gtée-dimensional) Lebesgue measure 

(= area) on the plane. Then (28) is satisfied: The area of a 

rectangle is the product of its sides. 

Does a generalized product exist for any pair of measures? 

Yes it does. IThis may be proved via the monotone convergence 

theorem coupled with the extension theory just discussed. ) 

Is it unique? No, not always ,#ut if w and v are both eegma 

finite, then uniqueness is guaranteed.% (Thus twe-dimensional 

Lebesgue measure is the only possible product of Lebesgue 

measure with itself),J™
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We are interested in*thiafieectienfonly in-thoeeaproduct 
A/ 

measures whteh can be expressed as integrals. Choose 

Ge (Z x I )fia and consider the following expression: 

1ol szoi 
| 
| 
1 
! 

| 

(2.C-29) 
A(G) = I iv{bl (a,b) € G}k(da) “(29) 

A 
; \ 

For a given point a_ € A, the set {bl(a b) € G} is the right- 

a, ~-section of G. We know this is a measurable subset of B, 

hence it has a v-value. We associate this value with pointmao. 

We now have a well-defined function with domain A, taking values 

in the non+negative extended real numbcrs this function is 

precisely the integrand in (292). Tne integral with respect to 

U may now be taken, provided the iniegrand just defined is 

measurable with respect to (&,2).f‘8uppose this to be the case 

for each Gé¢ (Z x 2‘). Then (’9}'defines a set function A. 

o l is easily~shcwnmto—te a measure (use monotone conZ 

vergence in its additive form). Furthermore, letting G = § x F, 

btai — ¢ we obta n‘; 1 

- 5 Lol j W 
'*l(fi x B) = I " V(F) du = u(E) - V(F)' 3 E: - N ) 

{ i 

so that A is a generalized product of u and v. 

. Thus the expression flfl) vields a generalized product, 

provided the sticky issuefof measurability is resolved. If v 

is finite, it is known taat the integrand in (29) is measurable 

for all Ge (I x I'). ;fio generalize this result, we now 

introduce a new class‘of measures, the abcont measures.
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G4 Theorem: Let (A,I,u) be a measure space. If u has any of the 

following four properties, then it has all of them: 

sl' ; 3% 
JL»t%j there is a series of finite measures vn, B L, 2 vesg BN 

P} (A,I) such that 
TJ{} & (3:.6.30) 

Ho= vy + Vv, +eoe £ “30) 

(&) 
TZ? there is a measure space (B 2',v), v stgma-finite, and a 

measurable function f- B + A, such that y is the measure Oy £ B+ A, 

'i %& ‘;neuced by f from v; 

Y U A &fi there is a finite measure v on (5,2) with respect to which 

u is absolutely continuous (u << v); 

%%? there is a finite measure v on (A,IZ), and a measurable 

function, f{;A + nontnegative extended real, numbers, such that . 

  

- ——— ) 
///,/aff’wiroof. t%é implies ()3 Let N = {1, 2, «+.}, let X" be the class 

‘ of all subsets of N, let 
/ 

g 
T (B,L') = (_?} X EI I xz"), 

- 

N 

- letrfilg + A be the projectionfir f(a,n) = a, and define v as 

/gZQXV followsg for any set of the form E x {n},?where_g € I, o 
7 ™ § — — el A «“' 

S i : -.‘ 2" B 

n = 1, 2, cosy let/V(E x {n}) = Y (E). Any set G¢ I' is a | 
q 

countable disjoint union of sets of this form, so measure v 

is fully deterbined on 2'. v is signa finite, since v(A x {n}) 

- N (A) <®, n=1, 2, ..., and the sets A x {n} partition B. VL Fr oy | X
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| 
B
 

2 

146 

Also, for any E ¢ I, : 

W % 
vib[£(b) € E} =|v(E x §) = V(E x {1} + v(B x {2]) +... 

=1y (E) +V,(E) +... = u(®). 

Thus U is indeed the measure induced by f from v, 

tlt 
ti) impliee TZY If Ho= Oéthis is trivial; hence we may assume 

u # fl, 80 that v # 0. Let {Bl, By, «s«} be a countable measurable 53 : 3 
4 partition of B such that 0 < v(sn) < w*}all n, and define the set 

function X on (A,I) as followssy For E € I, A(E) is the summation 
of / ‘;;@.3& 

e : & f P 34"' 

e vE_an n {b|£(b) ¢ E}]/fv(a ) (31) 

  

b fo 

; s over n = 1, 2, ... . Each of these terms defined a measure on 

(A,I), hence )\ itself is such a measure. Furthermore, A(A) = 

2 M 1, so ) is finite. It remains to show that 

l’u << A. Suppose A(E) = 0; then each of the terms (31) wvanishes 

so that _ 
W ] : 

Al 
ey 

. < 

vEBn n {b|£(b) ¢ §}] ' 

@kl n=1, 2, ... . BAdding over n, we obtain v{b[f(b) € E} = 0; 

:Zsi
 

" 

o 

since u is induced by £ from v, it follows that u(E) = 0; hence 

LB <<, 

~\ { “(". W) 2R 

sz7%3 implies (#); Apply the Radon-Nikodym theorem,
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s ,\ !é;”( implies (4); For each n =1, 2, ... definekfn:vg + reals 

  

{ ‘{‘Q,,’j ’ & 8 

by 
}’,‘:’\ \'LO ; 

£ (a) =0 if £(a) < n/=- 1§ : 

D £.02) = £@a) - (n -1 [)/if 0 - 1< £ <nf 

;‘” £,(a) = 1 if £(a) > n. 

G | e 
| Each fn is nonfnegative and measurable. Define Ve by 
1 N z = - 

\ 
E Yo o ffigasgv. 

\ Since v and £ are bounded, each v, is bounded. Finally, 
i — ; - 

ol [t = [iy » g et 

ii X"f) B'[ B4 9Y +‘I g '\‘.i.v % e BN B Yol vnauy. 
i ’ { 

establishing (30). éThe third equality follows from monotone 

convergence.) 

e _ 

We now have a closed circle of implications, hence these 

‘ four properties are logically equivalent. ||| 

\j§m~;MDefinition= Measure u;is abcont iff it satisfies any (hence all) 

/i\ . 
§ rasnt” . ; of the foregoing properties. 
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“Abcont“ is an acronym for "absolutely continuous" and is 
suggested by property (K§ But keep in mind that absolute conf 

tinuity is a relation between two measures,‘while abcontness is 

a property of a single measure. | 

Any eigme finite measure is abcont. This icmclear from 

property (k? for if y is segma-finite we may fiake (B,2',v) = 

(é,z,u) and let f be the identity mapping. Also, in property 

(fi?,wif we impose the additional condition that £ be finite, 
TR we have a characterization of segma~finite measures, This also 

yields a decomposition for abcont measuresg),hhen restricted to 
the set {a|f(a) < w}, is(aegma-finite, and when restricted 
to the set {alg(a) = o}, u takes on just two possible values, 

0 and =, 

e 0t F 9 T 
(7 CAEA 7 < 3 ,exist abcont measures mtieh are not sigma~finite. 

“In fact, to produce such a measqreaeimpiy take any finite 

  

measure v # 0, and set u(E) = o whenever&x(E) > 0, and u(E) = ( 

whenever v (E) = 0., u is eaeily_seanstembe a measure; that it 
is abcont follows from the obServation that 

uav;‘+\)+\)+'...- 

104 , ‘e 
(property (‘%fl, o that M << v (property (‘é") ), or that 

= &(m)dv (property IZQ). 

Abcont measures are of much less importance to us than the 

narrower class of-eégma-finite measures. There are two reasons 

for introducing them, First, even if one is interested only in 
"’w“ 

sigma ~finite measures, abcont non= segma-finite measures may
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appear as the result of perfectly straightforward operations, 

€.g. fiminduction as in property (Rfl f For example, one or both 

marginals of a sigma-finite measure vV on a product space AxB 

may have this property. (hxercise- Verify that the marginals 

of twe-dimensional Lebesgue measure on the plane are abcont 

nonfsigua-finitefi% 

Second, in many cases abcontness is a more natural assumpf 

tion than segma-finiteness, in that it yields results that-are 

-both- stronger and more transparentfi\withqproofsmthatware 

clearer. This is especially the case in thewpresent section on 

product measures, and happens from time to time throughout the 

book. 

characterizalions 
Each of the four preperties of abcont measures yields a 

/.'r-.!,'i: S, 
"closure" theorem. We gather these results-u 

M/rn-mm% 5‘; ‘3 ?5 

  

elgiheorem.< (Kj‘fhe sum of a series of abcont measures on (A Z) is 

3 abcont;f | 

(fi% let (B L',v) and (A L,u) be measure spaces, and let 

measurable fz/B + A induce i from v; if v is abcont, uis abcont: 

{27 if u << v, and v is abcont, then y is abcont; 

fé% let measure v on (A,Z) be abcont, and let fz A + extended 

reals be nonjnegative measurable; then u = [ f,dv is abcont. 

< Proot: ?2) Let v be abcont, m = 1, 2, ..., so that , 
I 

Agfi 
: 

i'}-\ . 
». vm = Ag‘l + x{nz + L 

¢ 
e el 

S 

Yip.c
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for some finite measures )\ mn’ m,n = 1, 2,5... 3 The sum of 
the v ‘sZEs then the sum of the double series l fThe l‘ 

— 

being countable and nonénegative, they may be rearranged in a 
4 single series, Hence sumation Voo is abcontfi by property €§) 

ot 

‘z
j 

] 
Rt
 

Ti) Since V is abcont, there exests a measure space (C,I",1), 

  

A signa finite, and a measurable function gs c + B inducing v 

from A. But then (fog) c > A 1nduces u from A, so that u is 

4 abcont by property T?@ | 
f ve 

0 i‘illt j 14 / 

Z,wf (8) Since v is abcont, there is a finite measure A for which 
. iy . Vv << A. But then u << ), so u is abcont by property (3). A / 

{LV? 
» 

fi?t 4) since v is abcont, there is a finite measure A and a noni; 

negative measurable g.JA + extended reals such that v = C g di. 

S e [- ] (£g)ar, 

so u is abcont by property %T _LH)( my - 

But then 

   

    

—— 

@et:us now return to{the problem of constructing product 

measures. Consider again;the integral expression (29), and 

suppose now that v is abcont. The first property of abcont 

measures %‘that they ané the sums of series of finite measures % 

is the key to the discéssion from here on. Thus we may write 

VEY R, + ..., whére each v is finite. Now, from what was 

said above, the funcéion on A given by - 
— S 

i 
i
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> fe) . Valbl(a,b) € 6} 

is measurable for each n = 1, 2, ,..; hence the sum of all of 

them is a measurable function. That is, the abcontness 

assumption on v guarantees that the integrand in (29) is 

measurable, so that the integral expression (29) vields a well< 

defined product measure. Note that no restriction on u need be 

imposed., 

o Next, suppose that u and v are both abcont. In this case 

it is possible to reverse their roles, which yields)the 

    

   

  

expression ( 
e (10 | 

~ = 1’ 
(:2“'«:'?; = A(G) = f (ulal (a,b) € G} v(ab)., 32) o /g S 3 Lo 

‘ ia”f'g s i . 

A We now have two product measures,’l and A. -It-turns-out, 

however, that these are identical, To show this, we start N | 5 
from the observation made above that two finite (in fact, sigma- 

finite) measures have a unigue product measure. Let v be 

e 
i 

decomposed as above, and, similarly, write § 

R u o= u1+u2+ooo) 

- where all measures u are finite. Substituting M and Y for 

u and V, respectively, in (29) and (32), we obtain two measures S, 

whieh may be written A ,and Anm‘ We must have 
mvyr 

o 

it Amn = Amni/j‘«»
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since both of-these are products of the finite measures u, and 
oy 

Voo Taking the double summation over m,n ari, 2, ...,;and 
e 

applying two versions of monotone convergeqoe, we arrive 

finally at 

> A= ). 

i 

K ‘”Q:Definition: Let (A,Z,u) and (B,I',v) be two measure spaces, at 

least one of which is abecont. (u x v) is the product measure 
¥ 4 - \ . R ) A 

.W;:y obtained from (29) (if,% is abcont) or from (32) (if %’i 

abcont) . ' 

at \ If both are abcont then of gourse either integral formula 

may be used, yielding the same fesult. From here on we gfial; 

refer to u x v simply as the géggggg of u and v. (¥t-should 

§o#oeteqaxhowever, thatJtheaefméy exist generalized products of 

B and v{other than>u X v, 'Ifioeed, one such case occurs with u 

abcont and v bounded, but wé shall not-pause-to examine this 

countegfbxamplef?"” | 

If y and v are both finite, then 4 % v is finite (since 

u(é)-vj(g) < w), If u and v are both s&%%a-finite, then u %X v 

is sfi%&a finite» (countably partition A and B so that u and v 

are finite on each respectlve pti%e; # %X v is then finite on 

each Am x B ). Finally, if 4 and v are both abcont, then u x v 

is abcont (to see this, note that each A = above is finite). 

“(However, in this case thgflgigometimes exist other generalized 

products of u and v which are not abcont).
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Since u X v is a measure, we may integiate with respect 

to it., The following result is important,; 

C$¥i~g?heorem= Let (é,z.u) and (B,I',v) be measure spaces, with v 

abcont; let g::A x B + extended reals be measurable and noni, 

{;l;/f negative. Then 

e ® o b H e e 
tp i . sl 2% ) 

;[ raxw = uaa|f \\x@) £(a,b) 9 
| Ax A} T E v B o 

; i \ 3; 

WM'W et i 

\” The right-hand side of (33) iq to be interpreted as 

3 follows. For fixed a o € A f(a ,~) has domain B. Integrating 

with respect to v, we obtain a number, whieh depends on the 

point a_ ., The resulting function with domain_gfiis measurable, . 

and maiwbe integrated with resnect to u. Thus (33) expresses 

a single integral with respeot to product measure in terms of 

an iterated integral with respect to the component measures. 

Results of this kind go under the name of Fubini's theorem (or 

Fubini-Tonelli's theorefil;5 

Two observations arogworth making, First, let Ge¢ Z x L', 

and let f 2 IG, the indibator function of set G. Then one 

easily verifies that (%5) reduces to (29), the defining equaZ 

tion for product measuée. ' Second, suppose |y and v are both 

abcont. Then thow;glés of 1 and v may be reversed. Combining 

this version of Fubifii‘s theorem with the one above, we see that 

the same result is obtained independent of the order in which 

an iterated integration is carried out (provided the integrand 

is nonfrnegative).
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The proof of Fubini's theorem may be outlined. For f an 

indicator function the result is immediate,’fis noted above., A 

simple function is a weighted sum of indicaiors, and the result 

then follows for £ simple. Finally, notihg that any noq% 

negative measurable function is the poifitwise limit of a nofiil 

decreasing sequence of simple functiono, we apply monotone 

convergence to the result just obtaihed, yielding the general 

theorem. 3‘ 

We want-t0 generalize these;iesults in two directions: 

Ffirst, to the product of more gflan two spaces; second, from 

ordinary to conditional measuf;s. The second direction is of 

greater importance for us, and we start with it., 
2 

ir—[?efinition:, Let (a,2) and (B,1') be measurable spaces; a 

  

p—— 

"i}; conditignal measure is a function vgJA x %' » extended reals 1/ i : 

5\ T..such- ‘that 3¢ 
o N " fl’} r 

P 

v _K,L\) for each a, E A, the right section v(a °) is a measure on 
s 

y i (B Z');»and 

[
 

e
 “Z
eg
 

Sy (ii) for each E ¢ ' the left section v(-,E) is a mefisurable 

function on (A,2 )\3é/ 

\f : 

S 
the universe set A of one space and the sigma-£field L' of the 

    Note the peculiar domain of v: the gartesian product of 

f i Mot 
other space. Thus v assigns numbers to pairs (a,E) coAsisting 

of a point and a set. 
dmd_ 

Suppose we have a conditional measure v as abovekasegether 

with an ordinary measure u on (Q,E). Let G¢ £ x L' (this is
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e 
Lo 

the product eegma~field, not the cartesian product), and 

consider the expression ;‘ jet? 

A(G) “'J | 
EA 

= 
This is the same as (29) except fogfthe extra "a" in the 

(% f 

  

éc {b[ (a,b) € GDAME'&)': 434) 

argument of v, This causes no comélications. As before, for 

givenkg,pthe expression v(e, {bl(e,b) € G}) defines a function 

with domain A, which is to be infiegrated with respect to . 

If the integrand is measurable gbr each Ge€ I x I', then ) is 

a well-defined set function; iqffact, A is a measure, as one 

verifies by applying monotonenéonvergence. 

A known sufficient condiéion for the integrand in (34) to 

be measurable is that v be gifinite conditional measure. To 

A generalize, we-h§#e4Ee~extehd the abcontness concept. 

— ~ izggfiwj Definition: Conditional measure vVi'A x I' -+ extended reals is 

abcont iff there exists a serieegof finite conditional measures 
”:[}2 Voe D=1, 2, ..., such that ; 

g 
;‘ 

St 7 oy 
\/ > 

Vv = \’1;:" \)2 e 

Here (35) is to be understQOd as usual in the pointwise sense: 

. 

For the pair (a,E) e(g x @@, the values vn(g,g) constitute a 

numerical series whose sfih is v(a,E) (both sides may equal +=), 

We now proceed as ébove. For given G¢ I x I', the 

expression ~.__ 

(3G 3q) 

/Z’—> 

/ »v( 4 o138 /
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> Vpla, {b](ab) € eh) 

defines a measurable function on A for each n; hence the sum 
of all these functions lwwhioh is the integrand in (34) 
meaeurable. Thus A(G) is a well-defined measure. g : 

— We refer to this as the product of u and vfi\and denote it 
as above by u x v. Here U may be any meaeure on (A,Z), while v 

is an abcont conditional measure with domain Ax 3I', 

This generalizes the preceding constructionfikif we identify 

the ordinary measure v on (B,Z') with the conditional measure vV fi;f 

given by (. 6.36) 

v (i,G) =N (g) L7 o €36) 

In other words, a conditional measg&e whiehmis independent of 

its first argument may be thought;of as an ordinary measure 

with domain I', in which case the’formula (34) reduces to (29). 
‘Note, however tfia*«by taking v oonditional we have lost the 

s;mmetry between u and Vg No reversal of é%les is possible,-. 

even if u is abcont. fié%e}alsoaehat with the identification 
(36), conditional abcontnese reduces to ordinary abcontness, 

Fubini's theorem remaine'velid if v is taken to be abcont 

conditionali ‘Simply insert the extra argument "a" in (33), 

We now generalize to more than two Spaces. Let measurable 

spaces (A v Zl), P (A ,X ) be given. We are also given 

functions Hyr ooy u : ui has domain (A X..,x A 1) X Zi, and 
- 1 

is a conditional measure. That 'is, for a given point 
§ ‘-s
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m
%
 
o 

;3 0 
(gl ,...,_ei_l) in the product space Al Xeook Ai l' the right 

section ui(al, ceey By l,') is a measure on (A ,Ei), and, for 

a givenfset E € Z;, the left section u(s,*, ..., *E) is a 
measurable function 0;7(A i;...x Aype 21 XeeoX Ly g)e (uy is 
just an ordinary measure withfldomain zl?@ Finally, let a non+ 

negative measurable function f A1 X..ix A, + extended reals 

be given, and consider the expressiog 

Wy s\ 0 
i uz(al,daz) 

g v o i o/ I & 

1 / 1 & E [A u (all s s 'a. l'da )     

  

These iterated integrals are to be evaluated from right to 

1eft. -@hat~isq first fix al,...; n-1* and integrate the rightgg 

seotion of f with respect to the night section of ¥, over A * 

This yields a function with do,mainmg\1 KusoX An lnj%mext, fix 

2y ...,ra - and integrate this function w1th respect to 

n-1 over An 1 to obtain a/ function with domain Ay Xea.x LWL 

Continue, finishing with an integration over A, with respect 

to uy. ; 

For this process tfiibe weli-defined we must obtain a 

measurable integrand atneach stage. What conditions guarantee 

this? We start with the case where f is an indicator functiong 

Let G € (I} X.oux 2 ) gfihis is the product sigma~field, not the 

cartesian product)% and letuf = IG' 
/ 

/ 
{ { 

\//a
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?i . Theorem: If Har H3s ceey W, are all abcont conditional measures, 

fffmx then the iterated integrel is well-defined for‘gvnfiis, for any 
RS 

?g?j G e (Zl XoooX En). The resulting set function A(g)misrm&e 

faet, a measure on (Bg Xeoux Ay Iy Xeeux I ). 
— 

   - Qg Definition. A(G) is called the groduct measure of Mys seey u . 

= d written Mo XaooX u . 

’,a»a_u—*“”‘ Neote that no restriction need be placed on uy. Note also 

that the conditioning structure permits no f@ie reversalsy ‘fihe 

successive integrations must be perfoxmed in the specified 
/ 3 

g,,,,,m,,u, order. A special case arises when the u's are actually 

independent of their point*arguments, if so, each ui may be 

thought of as an ordinary meaeure ‘on (A Zi). If we let G be 

c 

the measurable rectanglefi:m“1 X...x E by we‘easiiy obtain in this 

gase / 

e (g %eoox u.n) (E, x-g;‘-x Ea)= Uy (Eq) cuy (By) ooy (E ) o 

\\? generalizing the product meisure relation to n components. 

" For example, n-dimensional Lebesgue measure is the product of 

n d§e~dimen51ona1 Lebesgue measures. 
/ 

{ 
£ 

We next generalizef?ubini's theorems, 
\ 

. Theorem: Let Ugr ecey u;,,and f be as above. Then (27) is well- 
| nem—— ;;*,J\ RS ) 

  

/ey defined, and equalsAf



159 

.}‘ J - £f.d4d (u XoooX U ) ) L e B 
» élxo ) xAn 

o
 

  

'Wy” This and the preceding theorem are best proved simultanZ 

eously by induction on n, the number of components. The case 

n = 2 has already been disoussed, and these results may be used 

to go from n to n + 1. We omit details., 

Finally, we makemsemewremarks about t&efproperties of 

product measures., If Uy is abcont (as well as Hyy coey u 

being conditionally abcont), -then ¥y X...x u, is abcont. This 

may be proved by induction on n. If ”1' “2' ceey W, are all 

bounded, then My XeooX My is boundeq, (Note that boundedness 

is a stronger condition than finiteness for conditional measures; 

for ordinary measures the tWo'con?épts of course coincidq%g 

What about the intermediate casezéf‘sigsa-finiteness? For this 
& 

& 

we need one more concept. f 

  

i e 

ifi ' Definition: Given (A,I) and(B 2'3, let vs_ A x E! + extended ffixfii 

P reals be a conditional measure; v is uniformly s&gma-finite iff PHM‘ 

5;255 there is a countable collection G ¢ B sgoh that, for all (a,b) € 4 

A x B, there is a set Eg G s_pch that b é E and v(a,_E) < o, /}a€ E“‘\ 

This property is a littie stronger than mere sigma- 

  

‘finiteness of each right seétion v(a,*). It implies conditional 

abcontness. As an example, let v be independent of its point- 

argument; then v is uniformly sigma-finite iff it is siqma 

finite when thought of as;an ordinary measure. 
| 

{ 
\
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r?&gggga.
 

Let u,; be segma ~finite, and 1et Hor seey u be uniformly [ ™ & 
'g@) sigma-finite; then My XeooX y is sigme-finite. 

  

&;4w Proof. First take the case n = 2: M, is uniformly siéfia-finite, 
s0 there—are I o—sets Fl’ Fz, ses Such thet, for any (al,az), 

there is an Fi for which a, € F. and uz(al,Fi) < o, Also there 
is a covering El' Egp oo Of Al such that ul(Ej) < w, all j, by 
Hy s&gma-finite. Define 

=
 

%
 
i
 

% 
( 

¥ 

o 

,§ijk &= {@ll§1 € Ej and uz(gl,si) <=k} X Fi'\ 

for all i,j,k = L2588, sow @ These sets Giik form a countable 

measurable covering of Al x Az Measurability follows from the 

fact that uz(-,Fi) is measurable; also, any (a;,a,) e(E x Fi) 
with uz(al,Fi) <“® for some i j, and- so (al,a ) € G, ik for some i 
kol, 2, ssig proving the coyering property. Finally, 

(By X uy) (9“,.;’;) 230 y (By) < =, 

since the integrand has k for an upper bound, and is zero 

outside Ej. This proves My X My is-sigma ~finite. 

For the general case, proceed by induction on n: Assume 

true for n - l, so that . “1 TP Mp-1 is segms~finite. From 

Fubini's theorem we obtain 

ul XoooX un = ;'(ul XoooX un"l) X uno
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But this expresses the n~fold product as a Z-fold product, of 
which the left compbnent is sigma—finite,,by induction 

hypothesis, and the right oomponent, u . is uniformly-seeme 
finite. Hence ml XoooX M, is ssgma-finite, completing the 

induction. W juy 

S
 
s
 

e
,
 

Distribution 1“un¢:t.’t.c:ms;:3:5 

., 

Our entire discussion of measure theory has been framed se Vf;/ 
’”:n..p, e cd 

will be the one exception, in that the concepts apply only to 

  

as to apply to measurable spaces in general. 

finite products of the real lineém-thatwis _to n-space, the set 

of all n-tuples of real numbers, with the corresponding.gi“ 

dimensional Borel field. This measurable space will be 

denoted (§5,Z§) in thegéresent discussion. 
~MW&fifi%u~.i 

gfiLJQDefinitionz Let 4 be a measure on (59,29), and let_g be a real< 

valued function with domain A", £ is a distribution function S 
for u (in the narrow sense) iff, for every n-tuple of real 

  

‘“ékf numbersfix(gl, ...,_Pn),hwe have 

£y, eeer b)) = ul(x,, ooep x)|x, < b, 2 L all 0., Li5,, * 2y Xy v Zn Li‘ _?:_') R 32) S 

; ::“*‘-‘—--*WT = ‘\\:\‘ 
6:!;“*& i = 1’ s 0 0y n} '(-'s:a')’ o 

ray ({W“ the For n = 1, the indicated set on the right is a—halfaway 

{xl-w <x <bj}l. Forn= 2, it is a "southwest" quadrant of 

  

the plane. 
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”g@fig“nefinition: Let u be a measure on {gg,zg)band;f a real-valued 

D) 

W‘ 53 

function onnag. f is a distribution function for u (in the 

wide sense) iff, for every n pairs of real numbers (ai'bi)' 

i = 1' LI n' With ai <M.bi' the Value 
‘/1 é”)(j} 

u{(xl, ceer X )la <% < bi’ i=1, ../, n} ,639) 

is equal to the following sum of 22 terms: 

- 
'i '—f(bl'...'bn) i f(&l, »bZ"..'-pn) -f(}?l' 52’a;b3’...',bn) b -oo(-'z" 

= 

(o ktz‘e 
—4 _g (Ell azi bz A L '—bn) "'o ® oé:o:tq;“vx"" ('l’nf (31' ®0e I_gn) - \“Q'j | 

| 

“(In (40) we run over terms of the form f(yl,...,y ):yhere 
. 

i 

yi = ai or b., and all 22 possible selection patterns are usedgp 

»if an even number of ai’s appear, the term enters with a m+« 
sign; if an odd number, with a "—* sign) 

For n s%l, the set appearing in (39) is an interval, 

including its left but not its right endpoint., For n = 2 the 
set is an ordinary rectangle, including two of its four Sides 

and one of its four corners.; It is convenient to refer to sets 

in general of the form (39) 'as bounded intervals. Every 

bounded interval in n—spaceyzhas zmwoorners, and f is a 

distribution function for;u iff the measure of any interval is 
equal to the sums and differencee of the values of f on these 

corners according to thé sign rule stated above. 

Let—us—give some examplefit
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89 uw =0 and £ = 0 identically; then f is a distribution 

function for u in both senses. 

2;¢4) w = 0, and f_is constant # 0; then_f is ‘a distribution 

function in the wide but not the narrow sense. (Proof: Ghere 

are an equal number of We¥ and "-% terms in {(40) , so the sum is 

zero.) 

2. titd) u(E) = 1 if (0,...,0) € E, and = 0 otherwise; the 

i;j&;; function f for which f(bl,...,b ) =1 if all bi)s are positive, 

and = 0 otherwise, is a distribution function in both senses. 

htiw) Let M belg-dimensional Lebesgue measure; this has no 

distribution function in the narrow sense, but the function 

£(byseeesby) =5b1b2...bQiis one in the wide sense. (Proof: 

Lebesgue measure in (39) is the product (b,-a;) (by~a,)...(b -a ); 

when multiplied out we geu 2B terms which are exactly the terms 

of égég with the proper signs.) 

f””“""—”dvgwe*h\ We want answers to the following questions. Given yu, 

when does it have a distribution function in either sense, and 

are these unique? Given f, when is it the distribution 

function, in either sense, of some measure, and is this measure 

unique? : | 

A partial answer can be given immediately. It-is-obwious. 

from (38) that a measure has at most one distribution function 
= 
o 

in the narrow sense, and that it does have such a function iff 

it is finite on every set of the type appearing in (38). 

The corresponding result for wide-sense distribution 

functions is a little more difficultg



G S £ 
s &7 

Q¥$LW§MTheorems Measure u has a dietribution function in the wide sense 

iff it is finite on every bounded interval. If f is a wide= 

‘,r 5 sense distribution funotion for u, then q is another one iff 
) J / 

g - f is of the formxgl tooot h  where hi- Am + reals does not 

depend on its ifth obordinate. 

. " (That is, a change in the i{th coordinate produces no 

change in‘hi(xl,...,xn), whatever the values of the other n - 1 

coordinates). = 

Thus if £ is a wide-sense distribution function for u, one 

can add any real-valued function of'n -1 variables to“_if1 and 

still retain that property. For n’c 1, a constant may be 

added. For n = 2, g(x;, X;) = £(x;, x,) fib (xl) + b,(x,) is a 

wide-sense distribution function for u if £ is,= whemreason.is 

+hat- any such additions cancel out in the differencing process 

(40). v 

If u is finite on everv bounded interval, one can write 
./F/fc‘ 

an explicit formula for f, neme&y 

v =~ 

fi(bl""'Pn) = + u{(gl,.r},xn)lo <% <b;orb, <x; <0, . 

AT 

] r——ity i= l;-oo’:n}o 

  

(3.6:40 
(Here the condition 0 ¢ x; < by is to be imposed if b, is 

positive, the condition bi < x; < 0 if by is negative;'the Hyw 

is to be taken if the number of negative bi3s is even, the w_w 

sign if that number is odd; finally, f(bl,...,b ) = 0 if any of 

3 5o
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the b.’s equalg zero). As an examplef}for Lebesgue measure 

(41) comes out to f(bl,...,b ) =b bz"~b , a distribution 

[;Pnction already referred to. The general wide~-sense distriZ 

:§ bution functio§31s then obtained by adding arbitrary functions 

h +...th to (41) , as in the theorem above. 

Thewvarious conditions impoéed on u have the following 

relations. If u is finite on eéery set of the form (38), then 

p is finite on every bounded interval -and this in turn 

implies that u is sigma finite. However, as one may show by 

examples, neither of these two implications can be reversed 

\, f 
Next we come to the relation;between wide~ and narrows ° 

2 ~senseg) / 

M4Lm‘ heorem: £ is a distribution function for u in the narrow eense 

iff it i a distribution function for u in the wide sense and, 
)‘. 

for any 1 = l,000,n,| and for any A = 1 fixed real numneif 91,3 
"m %q £, M\‘\) 

(L= Loees mi 1 F5,), the limit o8] £4bys +000 by) 88 /i_ — 

é
:
\
 

eXists, and equals zero. 
S 

  

Much deeper and morefimportant are the converse results, 

giving conditions on £ that make it a distribution function. 

We need the following concept. 

Mfimmwflm 25 i 

q;#{Pefinition: f:vég + reals is continuous from below iff for any 

n—tuple of real numbersfl (xl, eeey X ), and any real ¢ > 0, 

i 

;[} | —there-is a real § > 0, such that If(yl,...,yn)-f(xl,...,x )| < e 

\..;e"" for any (yl,...,yn) satisfying”xi 3_¥ >(§ - 9 for—all i = 

l,...,n.
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«—| Theorem: Let f be a real-valued function with domain A, 1f s . - 

”fifi ) iw (i) £ is continuous from below, -and- j 
— ~(ii) for every n pairs of real numbers (ai,b ), i= l§ fi?' 

. with ai < p » the expression (40) is non;negative then there 

is exactly one measure u such that f is a distribution function 

for u in the wide sense. 

/“““By combining the last two theorems we get a sufficient 

condition for f to be a distribution funiction in the narrow 

sense5~ e;meiy’ii) and (ii) of the preceding theorem, together 

with (111) f(b ,...,b ) + 0 as bi 4-#*} ‘ for any i = l,..04n, 

the other b, g being held fixed. -(Aetue-.’d-y—,.(eonditions (i), 

(ii) and (&ii) are\also necessary for f to be a distribution 

function in the narrow sense) . 

(M?i> Signed Measures 
—r’ 

In section 5 we discussed the measure Vl on the measurable 

space (R x 8 x T, T, % B w3 ), representing "production" or 

"birthgt/\and also the measure &2 on the same space, represente 

ing "consumption" or “deaths%/\ One wonders if there is any way 

of representing "net production?,jor "natural increase?j the 

difference between these two measures., 

Such "netting out" procedures are very common in practice. 

Thus one subtracts imports from exports to get net exports, 

in-migration from out=migration to get net migration, debts 

from credits to get net creditor position, e&e.
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Formally, one has two measures, say WU and v, over the 

same measurable space (A Z){{and‘one~wants to attach a meaning 

to the subtraction operation uflv. (In the examples mentioned &~ 

exports, migration, and debts =~ the universe set may be taken 

to be Spece;:s? or perhaps, if one has full “"origin-destination" 
/ 

dataé S x 8). 

n\\ The obvious way to define u;- v is as the seéifunction, 

. ” 7 with domain I, whose value at E € I is equal to u(E) - v(E). 

There are two difficulties witfi this procedure. First, u - v 

will in general take on negative values, and is therefore no 

longer a measure., Second, if ¥4 and v are both infinite 

measures, the meaningless erpression » - o ig indicated as the 

value of u - v for certain;;ets (e.g. for the universe set A 

-itself) ; thus things are m%t even well-defined in this case. 

We shall avoid the second difficulty, for the time being, 

by assuming that at lgggg one of the two measures, H, Vv, is 

finite: o=V is definsd above is then a well—defined set 

functi;n on (A,I). Thezimportant point is that this set 

function has gl%.ei the defining characteristics of a measure, 

with the singl:\exception that it can take on negative values. 

N rhis suggests the following definition. 

“Definition: The set function ¥ is a signed measure iff 

fzg_fii) its domain is a eigma-field and 

(ii) its range lies in the extended real numbers , -and 

+(iii) it is countably additive, amnd 

Y (iv)  u(g) = 0. 
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—ii) 48 the only property that needs explaining. Let 

G be a countable packing of measurable sets, and let Gl' Gz, 

G3s «.o be an enumeration of the members of G- then we must 

have j éfim) 

/ ] t3fld¢ 

ue) = u(G,) + u(gz)}'+ ven n {42). 

in the sense that the limit of the right—hand series exists, 

and equals u(uG). Furthermore, this eguality is required to 

hold no matter how the terms of the right-hand series are red 

arranged, For measures, where all terms are nonznegative, this 

imposes no additional restriction, since the sum of an infinite 

series of non-negative terms is invériant under rearrangement 

of terms. But it is an additionaljrestriction when terms of 

opposite sign occur in (42). The_iotal requirement may be cast 

in the following convenient .v‘.o:':m.»fizyfj 

Consider just the positive terms among the u(G ); let the 

sum of these terms alone be P (as }est*mentioned, P does not 

depend on the order of arrangement of these terms; if there are 

no positive terms, set P = 0).J:Similarly, consider just the 

negative terms among the uggn), and let their sum be N (if 

there are no negative terms;NSet N = 0). Then it is required 

that, first, at least one ofir, N be finitexhseéond, that P + N 

- u(uG). | 5;:« | & : 

e ijfegconsider some examples of aigned measures.tjl 
. 

(%) Any measure is a signed measure; this follows at once from 

the definitions. gAnd offcourse any non-negative signed 

/ { 
7L \
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measure is a measure.)( 

tii) Let I be a finite sigia-field, generated by partition é, 
‘jg / where ¢‘¢ G: assign extended real numbers arbitrarily to the 

| members of é, with the restriction that at most one of the two 
O numbers {+w,-®} is uged; foMIevery F 2 G, assign to the set yYF 
kji”; the sum of the numbers assigned 'to the elements of F; finally 

g assign 0 to the empty set 2. fThe result is a signed measure:~u, 
; in fact, all signed measuresfdefined on finite sig%a~fields 

. are of this form. 
‘W e sy 

It is trivial that,iir a measure is finite above (that-is, 

if—it does not take on thefvalue +®) , then it is bounded above. 

The same property holds for signed measures in general (the 

proof in this case requiring some effort)., infiingg,ye havey 

  

*fiL Theorem- If a signed measure is finite above (finite below) , ’\ 

;0‘ 

then it is bounded above (bounded below). 
M { 

(" Thus finiteness;and boundedness are synonymous properties 

for signed measures; From this theorem we obtain the follow~ 

ing important property@ 

s RN v ¢ 

_ %% Theorem: A signedfmeasure is either bounded above or bounded ( &) i 
N below (or both){ 

  

LAt 

qi Proof. Let u be ‘a signed measure. We show that it cannot take 

- on both values +® and -», For suppose U(E) = ©, u(F) = - for 
\ somefmeasurable sets E, F; since u(E n F) + u(F\E) = u(F), 

nust have u(E N F) # «»; then, since u(E n F) + u(E\F) = u(E),
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it follows that u(E\F) = «=; E\F and F are disjoint, but 

u(E\F) + u(r) is undefined, contradicting countable additivity. 

Thus a signed measure is finite above, or below, or both; 

by the theorem above, it is then bounded anove, or below, or 

both. L} L/ 

    

  

f%i iéefinition: Let 4, v be two signed measures over the same 

é?:&.° measurable space (A,I), such that u(A), v(A) are not infinite 

"J%iEE of opposite sign. The sum, u + v, is the set function with 

; domain I whose value at E is given by u(E) + v(E). 

yflj (The restriction on u(a), p(é} aesures that the meaningless 

expression «® - » does not arise;l 

q¥gw§pefinition= Let U be a signed measure over (A,Z), and let ¢ be 

S a real numbex. The scalar product,rcu, is the set function 
ik ] 

X with domain Z whose value at E is given by ceu(E). 

In particular, (-l)u /is written simply as -u. 

fij@m Theorem- The sum, u o+ v,;and the scalar product, cu, are signed 
N 
O 

“? ; measures (where u, v, and ¢ are restricted as indicated in 
o 

their respective definitions). 

MewW““AF"/—_'—;his theorem contains the statfiment made above concerning 

the difference of two measures; for 4 - v is the same as 

u + (-v),jand is therefore a signed measure, Again, if yw and v 

are measures, then:u + v is always well-defined,“and is a 

signed measure”lafin fact, a measure, since u + v is obviously 

non—negativé



i 
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fi£;et\ be the set of all finite signed measures over 
N 

space (A,I). M is closed under addition and scalar multipliS 
WA 

cation. That is, if ue M and v ¢ M and ¢ is real, then 
A, ) 

p+veM and cu € M. We make the important observation 
NV A 

that M with these two operations isia vector space. Let us 
WN\an 

define this abstractly. 

Mj# Definition: Let M be a set, "+" a function with domain M x M 

w*” \ 

# 

W 
AAA A 

and range in M, and "" a function with domain¥ (real numbers 

x M), and range in M. (These are called addition and scalar 
VN Yapne TR 

multiglication, respectively; we use the notation ™u + V" 

and "cu" instead of the clumsy "t (u,v)* and "o (c,n)"? ) 

—respeetivelys) Then M with these two operations is(a‘lector 

_ space iff the following eight conditions are fulfilled- 

T hYiu 

}(l) (A + u) +v=2XA+ (u+ v), for all A, u, v € M, 

(ii) HE+EvV=y+ u/'for all u, e M 

(iii) there is an element of m,}denoted "0", such that 

e+ 0= u, for all u € M, g 
* dan 

(iv) [for all u ¢ Mm(there is an element v € [ such that 

u+ve=0, / e 

(v) Db(u + V) = bu + by, for all real b, all u, v € M 

(vi) (b + c)u = bu + cu, for all real b, ¢, all u € gk 

(vii) b(en) = (bc)u, for all real b, ¢, all u € M 
BN 

‘*g(vii}) ley = u, for all U € M 

= ; -~ ,Lethr
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The element 0 in (iii) turns out-to-be unique, and is 

known as the zero or neutral element of;m: The v in (ix) is 

also uniquely determined by u, and in-fact-it is equal to 

(~1)u = -n. | 
—APe—is—elear—that:this definition has nothing in particular 

to do with measures, although we have kept the measure notation. 

The most familiar example of a vector space is the set of all 

n-tuples of real numbers under the operationsm“+“ and "+" given 

by | 
. i 137 

(§1....,§§) + (Yyreeery,) = (%, + YyreesrXy +»_y2>) p—and 

SlXpreeeiXy) [= (eRyreeesex ) os 

We now state formallys 

A eSS 

"gifi ) Theorem: Let (A,I) be a measurable space, and M the set of all 

{}' finite signed measures on it. Then M, with the operations 

M + v and cu defined above, is a vector space. 

- Proof: We have already stated that\m&is closed under these two 

operations. The zero element 0, iS’simply the identically zero 

“:¥) - measure; the element v in (iv) is Sl (l)j(Vlli) are then 

immediate consequences of thevdefinitions. 441Ai“ e 

ST 
ELet-us now turn to the difficulties raised by infinite 

measures, signed or unsigned. Throughout this discussion we 

have had-to-make qualifications to avoid the meaningless 

expression « - ©, Any attempt tojmake a vector space out of a 

.“i 

#
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larger set of signed measures than | seems to feily because 
AUV 

there is no signed measure v satisfying 

H+ve=20 

if p takes on infinite values, so that condition (iv) of the 

definition of vector space breaks down. . 

This is unfortunate,‘because many situations of theog' 

retical interest appear to call for a concept chieh is, in 

effect, the difference of two infinite measures. Take net 

production, which is the signed measure over (R x § x T, 

Zr X Zs X Et) obtained from the difference,production W mfnus 

consumption, as discussed above. There is no a priori reason 

why the two measures, production and consumption,/should not 

both be infinite. Indeed, in problems'with an unlimited time— 

horizon,Jor an "endless plane', the presumption is that both 

will be infinite. 
Again,&suppose one is\evaluating economic development 

policies byvcomparing costs and benefits against some benchZ 

mark. Benefits and costs can be represented as measures on 

the Time axis. What if both are infinite, a not implausible 

situation if the horizon is unlimited? One. would still like to 

evaluate benefits minus costs,Jand if possible to compare two 

such evaluationsf%g/ ‘J 

We have developed the cqncept of\pseudozmeasurewto overg 

come these difficulties. This concept, being outside the 

corpus of present-day measure theory, deserves full-scale
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treatment in a chapter of its own, so we shall-not define it 

here. But we do wish to indicate how it jibes with the mqre 

familiar concepts presently under discussion., -Briefly, ;; 
{,,v)k‘ 

npseudomeasures are generalizations of s&gma-finite signed 

measures, just as the latter are generalizations of~sig;a 

finite measures. With their aid‘sigma -finite signed measures 

can be added freely, even when infinite of opposite sign. 

When one extends M to all segma ~finite signed measures, it 

ceases to be a vector space; but extending itfistill further to 

all pseudomeasures restores this property. ‘?urthermoreyone can 

order/pseudomeasures in ways that are elegafit and intuitively 

appealing with respect to the pxoblems megtioned above. % 

- The-present discussion of signed meésures may be viewed 

as a halfway point, to be suitably geneéalized when we come to 

pseudomeasures in chapter 3. f 

We have seen that,pfor any pairfof measures |, v, not both 

infinite, the difference u - v is aisigned measure, A basic 

result is that the converse is also true: vfiny signed measure 

can be expressed as the difference of twofmeasures. 

ifiEwgfirheorem~ (Jordan decomposition theorem»%lLet B be a signed 

measure on space (A E), and consider the following two set-. 

functions, both with domain I. 

>al / o : / (2:6.4%) 
%y W(E) = suplu(m) |Fc B/ Fe 5}, 143) 

‘ (2.6:94) 
W (E) = sup{-u(F)|F ¢ E, Fe I}, +444)



{ 

175 

1] VA 
'{! 7 L',é‘ 

e f 

“ Then 

<u+ and u- are measures, not both infinite, 
)/ (In (43) and (44), "sup® abbreviates supremum, which is taken 

M
o
 

and H = u+ - u—. 

over the set of all values assumed by u — respeotively, =} i 
; 

/\ on measurable subsets of E) § = r
.
m
w
"
‘
"
"
 

= 

fi#} Definitiongz in (43) is known as the upper variation of usp 

¥ in (44) as the lower varia ion of u.gfirhe sum u + u is 
[ known as the total variation of ufl)an%?is denoted |u|. The 

pair (u*,u7) is the Jordan deco_position of u. 

e | For example, let p be a measure; then u s,& and u~ = 0, 
(Proof: by monotonicity, u(E) > u(F) if F g E; hence 

U (E) = u(E) ince U is non+negative, the supgremum of -u is 
attained on the empty set g@; hence p (E) = 0). Similarly, if 
U is nonwpositive (that—is ¥ is the negative of a measure) , 
then u =0, and 4~ = -y, 

Suppose one startg with a pair of measures, (ul,uz)(not 
both infinite), forms their difference =y - Uy and then 
takes the Jordan decomposition (u /¥ ). What is the relation 
between these two pairs? ?he answer is given byi/. 

B 

{r{&meorem: Let u,, U, be twofimeasures over (A,I), not both 
infinite, and let M 
~ 
{;A’ such that 

g ® uzju H. Then there is a finite neasure 

._
r 

A
8
 

(3.¢6.4¢) My, = uh b i e My = u” + Ve, —45)
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Mfigfirigzggg: If.?'.? € I, and F ¢ E, then u (F) j_ul(g) Su(E). It 
follows from ((fl‘%? that u+(1_3_) < Uy (E) ;Qall E ¢ I, similarly, 
~K (F) 5132‘5) < uy(E), so u°(§) i,uz(fi)fiiall;p € I, from (44), ,aiéfi If My is finite, so is pu~; in this case set U, = o= v; 

= Vv is a finite measure, and the relation ul‘F My = T 
yields (45). 

1z My is finite, so is u+; set ¥y -'u+ = v, and we again 
get (45). W’i’fl 

e | Thus for given signed measure ¥, the Jordan decomposition 
is the smallest pair of measures whose difference is u. Any 
other pair of measures having this property is obtained by 

adding the same finite measure v to both halves of (u+.u°). 
The Jordan decomposition also has the following deeper 

  

propertyn 

an Definition: Measures W, V over space (A,Z) are mutually 
) singular iff there is a partition of A into two measurable < 2, ; 

sets, P, N (that—is, PU N =2, PN N = #) such that u(N) = 0 
; and v(g) = 0, 

4 M‘ TR . 

2 N ; 8 (L2 Theorem: (Hahnpdecomposition theorem); The upper and lower \ : @ ] ffi:fi variations, u+ and u , of any signed measure U are mutually 

singular. 

j': This may be stated in the following slightly different 

forms,
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| Theorem: (Hahn decomposition theorem, second version) For any 
=0 : 

;f signed measure u on space (A,z),‘A can be split into two 

measurable sets,fg, N such that,hfor all E € 2, 

_Efi&i) if Eg P, then u(E) > 0; end o a : 

%-(ii) if E g N, then u(E) < 0. sy 

e We shall prove that these two versions imply each other. 

Assume the first, and let P, N be a measurable partition of A, 

such that u (N) = 0 and u (P) = 0, If measurable E < P, then 

A u(E) = u (E) -y (E) = u () > 0. If E ¢ N, then u(g) = 

s 

H (E) -~ u (B) = =y (E) < 0‘7 This proves version two. 

Conversely, assume the second version;?&u(E) <0 for 

every measurable subset of N; hence u (N) = 0, by (43). 

Similarly, -u(E) < 0 for E c P, E¢ I; hence u (P) = (0, Thus 

wt,u” are mutually singular. 334- ompl s e prosk 2 A 

e — 

Definition: Given signed.measure ¥ on (s,z). Any ordered 

measurable partition (P,N) of A satisfying (46) will be called 

a Hahn decomposition for u, P is the positive half, E'the 

negative half, of this decomposition. 

&—— Equivalently, this could have been defined as a measurable 

partition satisfying u™ (P) = 0, u+(§) = 0, 

Thus,while the Jordan decomposition is a pair of measures, 

the Hahn decomposition is a pair of sets. The Jordan decompoZ 

sition is unique; the Hahn decomposition is "almost" unique, 

in the sense that, if (P',N') is another Hahn decomposition, 

then |u|(P n N') = 0 and |u|[(P' n N) = O, |u] being the total
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variation of u. Given P, u (E) = u(E n P)R since, within E, 

¥ takes on its supremum at E N P; similarly, u (E) = =u(E n N) 

Among all pairs of measures wh?se difference is u, the 

Jordan decomposition is the onlg,pgir whieh—is mutually 

singular. : 3 

As an example, let u fie:a measure. Then.? = A, E = ¢ 

is a Hahn decomposztionvfor He (Proof: immediate from (46)5% 

The Hahn and Jordan decompositions of real-world signed 

measures have simple intuitive interpretations. Suppose, for 

example, that the universe set is Spacegxs;.and let signed 

measure u be net exports of some commodity: u{E) = exports 

£rom E minus i;ports to E, for every region E. The Hahn 

decomposition theorem shows that S can be split into two 

regions, P andmm,asuch that every subregion ofw?kn) is a net 

exporter (importer)) u+ and u~ are then the export and import 

/’ 
}. 

measures exclusive of transhipment.%}/’ / 

> Most of the theorems we-have discussed have generaliza- 

tions from measures to signed measures. Because of the Hahn 

and Jorxrdan decomposition theorems, it is unneoessary for the 

most part to state these separately: ene simply performs the 

appropriate decomposition, applies the theorem in question to 

each piece separately, and then puts the pieces together to 

get the generalization to signed measures. There are just two 

cautions to be observed. (l) ¢heorems involving inequalities 

do not always generalizefrthus the‘simpfz statement V £,du >0 

need not hold if £ or u can assume3negative values (see below
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for definition)yfi (ii) One sometimes needs additional 

assumptions to guarantee that the meaningless expression 

® - o does not arise.ag/ 

There are a few concepts whose generalization to signed 

measures deserves explicit mention. We have already mentioned 

sigma-finiteness,lwhose definition carries over without changes 

s 
.«w-"""“w e ) ARA " P Yfiefinition. Let u be a signed measure on (A,Z). fu is sigma- 

o finite iff there fs a countable partition, G, of A into 

e measurable sets,p%uch that u(G) is finite for all c ¢ G. 

J,,r,a”’flgw—' We now comekto integration. Given measurable space (A,2), 
X $s 

the integralsf~7g du has been defined in the case where p is a 

measure and £ a pon:negative measurable function. We shall 

now remove bothfi@f these sign restrictions. 

   ,flj “f*’ Definition: Let fi be an extended real-valued function on T - Ot 
domain A., f and f -are—functions on domain A given by 

f+(a) = ma%(f(a),O). £ (a) = max(=£(a) ,0) . 

("max" abbreviades'“maximum“;‘that;is, f+ coincides with £ 

where the 1atteriis positive, and equals zero elsewhere; f' 

coincides with -f where f is negative, and equals zero elses 

where)y. f is known as the positive part of ff f as the 

negative part of ;. 
—— ":
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| Note that both £t and £ are non+negative functions. 
+ Also that £f¥ - £~ = £, while £ + £ = |£]|, the absolute value 

of Z- 

—4’%:‘ ;‘ 

giwifinefinition: Let u be a signed measure and f a measurable function 
on the measurable space (2,2) . The integral of £ with respect 
to u is given by: 

65 20 =5 ZE A > 2o 29 < a Sk (3.6. 4 
! f! dy =(IA Sf __du+) + ] f- dl.lu) °- ] f+,pd}1 - [ f-. du/, (47) A A~ S A A 

provided the right-hand expression is not of the form « - ©, 
e 

(If it is of this form, then/fAlfpgu is considered to be 
meaningless%fl 

  

~=(In each of the four integrals on the right of (47), the 
integrands, f+ and £, are nonrnegative, and u* and u” —which 
are-of-course (the upper and lower variations of ujl are 
measures. Thus these integrals have already been defined, and 
(47) gives the integral for signed measures and "gsigned 

functions" in terms of these already defined 1ntegrals) i// 

é;f}é73 iswcon51stent in the following senseg If £ is non- 
negative, and M is a measure, then the definition in (47) 

coincides with the original. This follows from the fact that, 
in this case, f* = £, g w0t e, . 0; thus three of e 

the four integrals are Zexo, and the last Qgives " 
W ’Y? o zfr} e 

Ye | fau 
A A —
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,exactly the same formula-as when ¢ > 0 and u is a measure. 
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~ where the right-hand expression has th ;original defiEitionf 

aB. m 
Two “halfiyay” cases arise. ;f ¥ is a measure, (47) 

reduces toz ‘ 

£ an - ff" au; 
A — 

and, if f is non-negative, (§7) reduces torl” 

i 20 ;;)if 20k 

S [ £ auti- [ £ au”. 
A Foo9aTN 

{ 

As an example, let f(a) =c for some fixed real number c. 
3% ; 

Then (47) yields{ 
\ /7 
"> 
A\ 

B 

LN 

q 
‘2)(.’«; ¢ 

du = ml(A) v 

S
 

. 

A 

“
m
e
e
e
,
i
 

(Proof: consider separately the two cases, ¢ > 0, ¢ < 0) 
— 

We conclude thig discussion with a few integration formulas. 

On measurable space iA Z), u and v are signed measures, f and 

g measurable extended real-valued functionSfi\c is a real number, 

Ifyf and u are%both bounded, then 

:‘;LRC\ 22 A {\4{ Y 8) 

£, du (49) 
A 

is well~defined, and is finite. 
g



  

\d ‘/ "{; 2° q'wl w2 38 ("‘ L. “tq 

Hineld f fau = [ of aus t49) 
. ‘A 

| LoV P 2l Gy : 4 e § \D 

c[ fdusj £,d(cu)s 1569 
A A 

R R A S (8.6.€1) 
J £ du + I g, du =,J (f;;f’”+ g)du . ~51)- 
A A & : 

S g i Yo "f"f L'e ; e 

J £.du + I £ dv = Jr £ d(u + v). 452) 
A~ B R O ac 

( é?g,., Leswc L ; 

¥ \jg (49) threegh (52) are to be read as followss If both 

sides are well-defined, then they are equal. (48), (49), and 

(51) thus generalize (9), (10;, and (ll), respectively. In 

(SO)Q‘cu is the scalar piwdugt. in (52), u + v is the sum of 

two signed measures. 

i g @x} 2.7. Activities i 

The measure space of histories, (@, Z,u),u-which in 

principle gives a complete description of the world,- is rather 

unwieldy as a whole, and one wants to focus attention on one or 

another aspect of special . interest. We have alxeady discussed 

how certain data may be extractedfi%-cross-sectional and double 

cross-sectional measures,gproduction and consumption},andwthe 

like. Here we continue this discussion, concentrating not so
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much on material whieh typically appearsain statistical 

tabulations, but on less sharply defined categories: *gsituations," 

"events!, "processes", "activitiesg". 

Thus out of the flux one distinguishes a house, a crowd 

of people, a town, a seacoastg or, a drivergtraveling along the 

highway, a sugar refinery in Operation, a,farmer plowing his 

field, an army on the march. The first four items mentioned 

are "cross-sectional configurations"; that-is, they describe a 

part of the world at an instant of time. The last four refer 

to something going on over an interval;of time, 

One can distinguish situations in an indefinitely large 

variety of ways. Out of these possibilities a much smalle%-fl; 

but still enormousie-number are actdally distinguished and 

named in the words of some language; Why some possibilities 

are selected and others;not is itself an interesting question, 

to be answered on the one hand berelations of similarity, 
5 

contiguity, contrast, closure and other characteristics of 
) 

"good gestalt”, and on the other. by causal relationss Situations 
I o = 

tend to be selected so that their parts are mutually interg 

dependent, and relatively independent of the rest of the world. 

-We—shall-have- somothing~eeesa¥~abcut causation in chapter 

4, In-the present cfiapter, however, we are concerned only 

with problems of description. ?het we want ,~then,-is a frameq 

work adequate for describing a,%ariety of situations or 

processes, whether they make "dausal sense" or not. If one 

takes the stork population of Sfieden and the human birth rate
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of that country as constituents of a single activity, this 

activity can be perfectly well defined (although not very 

useful perhaps). 
& 

Cross-sectional configurations«have already been dis- 
0 1 ~ - 

cussed brieflyeipui::rj’ It was mentioned that a house, for 

example, could be represented as a measure over universe set 

R xF, R the set of resource-tgpes, and F the region occupied 

by the houses This measure gives the spatial distribution of 

the resources constituting the house. —There was one point|left 

hanging,-however, in this discussion. A measure over R x F 

represents only a particuler house -n:;:§§'the house occupying 

the particular region F (fit the moment for which the cross= 

section was defined). We have no way as yet for representing 

a house—_gp“ or config&ration*type in general, as opposed to 

any particular specimen ‘of that type. The following construc:, 

tion £ills this gap. 5 

<;£5 Metric Spaces ané Congruent Measures 

M'M‘m;;;“;fimefinition. A metric SIace consists of a set, A, and a real- 

P 8 valued functiogg:ézgégz;gé'satisfying 

z Zwéwg_g_.) a(x,x) = 0/ for all x ¢ A; and 

(ii) d(x,y) >0 if.x # y, for all x, ¥ € A' and 

fi%'@{ii) d(x,y) = d(y,x), for all X, ¥ € A, and- 

(iv) d(x,y) + d(y,z) > d(x,z), for all x, y, z € A,
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(Condition (iii) is called EXEEEEEZ! condition (iv) the 

triangle inequality. The metric space itself is written as the 

pair (A,d). d is called the metric, or the distance function. 

If d is understood A itself may be referred to as a metric 

40 
space) 

Our first example is the most familiar casen 

Lfifi;_inefinition. Let A be n-Space. The Euclidean metric gives the 

  

distance between x = (xl,.,.,x ) and 5. (yl,...,y ) as 

ft / b 2%) 

q‘xl Y) . [(xg_ 3 Yl) *eoot (?‘n = Yn) ]i’;2 ° ““(—l-)- 

  

G Conditions ?fi;' (ifig, and (iii) an 4 are verified 

immediately. 4(lv), wnidh is a little harder to verify, states 

exactly that, in the trrangle with vertices x, y, and z, the 
o # ¥ == -~ —_— ,&» 

length of the side'fromér to z does not exceed the sum of the 

lengths of the other twb sides. 

?%"lkggzifiisigfi= Let A again be n-space. The city-block metric 

(also known variously as the rectangular, metropolitan, 

manhattan, or midwestern metric) gives the distance between 

/“E X = (xl,..-pxn) and Y “ (X]_'"'?}'n) e ,_,f/ Lo n bt 

i 

ew,wwr'"’fs Conditions (i) iflgiyegh (iv) on the d defined by (2) are | 

immediate consequences of the properties of absolute values. 

> When n=1we have the real line, and in this case (1) and 
- 

(2) both reduce to the same function, nawmelsys, VVL)'\\i\\R\N 
N\ 
e
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S A y) = !xz- g 
ii But for n > 1 the two metrics are distinet, The most 

important case for our later mork will be nh = 2, the resulting 
( 

metric spaces being called the Euclidean plane and the ¢ ity 

block plane, reSpectively.jgm,_mwlmiiwwicu.u — < & 

As a third example, let A be the surface of a sphere of 

radius r and center e = (cl, Sy G5 ). The great-circle metric 

Ly 

gives the distance between‘f, yea asfisi}langle (x"e"y), the 

angle being measured ingradians. Sl 
ene f£inal example, Let A be any non@empty set, and define 

da bys d(x, y) = 1 if x # y; d(x, X) = 0. Since this satisfies 

(1) tereugh (zv) b % is a bona figg.distance function, known as 

the discrete metric.n 1 

Let (A,d) he a metric space, and B a subset of A B can 

be considered a metric space in its own right by taking 

a(x, y), for X, Y e B, to be the distance from x to y in 

metric space B. This amounts to defining the metric on B to 

be the restriction of 4 to the subrdomain (B x B) < (A x A). 

We shelil- always consider any subset of a metric space to be 

itself a metric space in this way. 

  

  
  

«m 
}}u ; A 

’Definition. Let (a d), (B, d') be two metric spaces.A~f A “* B 

’ep..fs a congruence, or an isometry, from A to B, iff ;f 

e (1) f is onto {thatmis for all b ¢ B, there—is an ae A for X . e 

which £(a) = b); and 
o \ @\ ( (13 Y QM (ii) d(x, y) = a' (5(5), £(y)) / for all x, y € 2. “£3) 

R /A//T ese two w\é\'nas are eRemplec of normed w\ej-\cs 
P e P TR 

‘Q**FF—fs ’\ 15 & VQJor Space and there exisls « (“,‘LT‘DN || “ 

on A (u.l\ui a lg_o_v_m) Stfrlsfi,m L\\K“ >0 For ol X #0 \\x+y||<|lxll +||‘I|l 
fext = lpl-Axl for p real | and sucl\ that d(x,9) =llx-yll, ql\ Xy €A 

    

  

      

(xe) 
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f (r! T 

L /“A (3) states that f is distance-preserVing. A and B may be 

overlapping,\or even identical, and,. in the-latter case, 4' 

may or may not be the same as d. 

  

,#Lie~Definition. Metric spaces (A,d) and (B, d') are congruent, or 
o 

}jfi- isometric, iff there exists an isometry £:_A -+ B. 

M"
M 

| - If (a, d) is congruent to (B, d“%, which in turn is con- 

gruent to (C, d“), then (A d) is cengruent to (c,4"). This 

follows from the fact that, if/fs A + B and gg,B + C are 

isometries, then the composiaiofi gkf: § + C is afilisometry. 

Thus the relation of congruence between metric spaces is 

transitive. Furthermore, if flA,d) is congruent to (B,d'), then 

(8,d') is congruent to (A, a)§ For} if f~ A + B is an isometry, 

then it has an inverse funcéion g3 B + A (thatmis, g(f(a)) = a& 

all ae€a, and f(g(b)) = bfi all b e B)\land g is also an 

isometry. Thus ccngruence*is a symmetric relation. Finally, 

(a,d) is obviously congruent to itself, the identity map 

f(a) = a being an isometgy, thus congruence is reflexive. 1In 

short, congruence is an gguivalence relation between metric 

spaces. 

Next, let (A,I) and (B,Z') be two measurable spaces. 

Definition. f: A+ B is neasurability—preserving (from A to_?) i¢€ 

| % - 
i:i§:> j/ (1)“; has an inverse function g: B + A, #nd 
(. { e 

§ gfiiy both £ and g arefmeasurable. 

f’ 

&
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(Measurability of f means of course that {alf(a) € E} 
belongs to I whenever Ee¢e z'; measurability of g reverses 
these roles, so that {blg(b) € F} belongs to ! whenever F ¢ I, 
Condition (i) holds iff f is l*l and onto) >~ 

2\ 

E:Definition. £: JA + B is measurekpreserving i£f 
ij .x (i) f is measurability-preseruing,‘and 

Let (A,Z,u) and (B,Z° ,u') be two measure spaces. 

‘*Q&é’ u'(E) = p{a]f(a) € E},}fbr all Eg¢ L', 

    

¢—— (Condition (ii) is efmeéurse4§ust“the statement that u' 
is the measure induced by f?firom W. This is all completely 

  

symmetric, because uis alsp the measure induced from u' by the 
¢ inverse mapping g. )7 

  

These concepts may nd; be combined. Suppose A is provided 

with a metric, d, and With a s."a.rgma-field,5 L and measure, u; 
ki thus A is both a metric space and a measure space, and we Y 

write this as a quadruple (A d Z,u).4;f 
M ‘; 

Qflfie ,Definitionz Let (A, d, E,u)?and (B,d',Z',u") be two metric-measure 
FoaN spaces. These are measu;eicongruent iff there-exists an 
= isometry f. A B (for the pair (a,d) and (B, d')) which is also 

measurehpreserving (forjthe pair (n,z,u) and (b,t',u )). 

— (NofiéE:hat?there must be a single function which 

simultaneously preserves distance and measureflfl If the metrics 

are understood, one say% that u and u' are congruent measures,)
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To illustrate these concepts)letéus take the Euclidean 

plane,‘with,the two-dimensional Borel field and Lebesgue 

measure. Let E, F be two measurable sets whi-elh—are congruent 

in the sense of plane geometryj they.have the same "size" and 

"shape", That is, there is a function f- E =+ F, whose range is 
VUi 

'zfll of F, and for which d(x,y) = d(f(x), f(y)),\ all x, y € E, 

where(d is Euclidean distance. Letting EE' I, be the Borel 
F 

field restricted to subsets of E, F, respectively, one can 

show that f is measurability-pneserving. In fact, f is‘measurei 

preserving with respect to Lebésgue measure restricted to 

(E, Z ) and (F, ZF), respectiveiy. Hence E andkf are measuref 

congruent.e : g 

-wMeasureecongruence is an equivalence relation among metric= 

measure spaces, just as congruence B‘T se is an equivalence 

relation among metric spaces. 

  

P Configuration Types | 

J%Eins now apply thege concepts. 'Ke,guppose that Space, 

.§i§has a metric d and a sggma-field I (e.gijg_is 3-space, 4 

the Euclidean metric, I ébe Borel field). Let gsandgg‘be two 

regions. nsiaiidfissodraéouev these may be thought of as metric 

spaces,fland also as measdrable spaces,\in their own right. 

Let u, v be two disdributions of mass over universe sets 

E, F, respectively. (We'are suppressing discussion of the 
, Y . 

Resource set.$ for the moment; p and v may be thought of as the 

8 )= ‘1\ . 

marginals of measures over R x E and R x ?,\respectivelflig It s
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intuitively appealing to explicate the vague relation, "u and 
are slafemunt, 

v, the same type of configuration" by the precise relztien 

"u and v are measureecongruent{fl The latter requires that E 
1 7 

and F have the same size and shapeg’and that the distributions 

over E and F have the same “pattenh? +7so that v is in a sense 
W 2 S ' 

" just a rigid displacement of u;gfi/ 
5’" 

We now bring-Reocarces, Rfikinto the discussion. Let u, 

Vv be mass distributions over spaces (g x E, E X ZE) and 

(RxF, I %1 ), respectively; Here E and F are regions, as r 

above; Z and Z are the restrictions of the sigma -field z of 

S to measurable subsets of E, F, respectiVely, and E is the 
’);»% 

eegma ~field of R; regions B and F are provided with the metric 

of Spase, but R is not assumed to have any metric, 
X 

E?@ | Definition: We say that u amfi v represent the same configuration- 
” \\ 

]) } o type iff § 

s 

e /? (1) there is an isometry f. E + F whieh is also measurability- 

preserving [with respect to (E, Ip ) and (F, Z )]‘ and 

\x (ii) for all G e I, x I, 
(27.4) 

v(G) = u{(r,s)!(r.f(s)) € Gy +4) 
————— : 

ége\xg [ Note that f is a mapping between regionsfi%and is not 
wid! 2 ' 

involved directly with R at all. However, f determines a 

certain mapping from R x fi onto R xMF, aé%éi;fi\the one carrying 

the point (r,s) to Qr, £(8)): Location shifts, but resource=; 

type is held fixed.; (4) then asserts that v is the measure ’ 

induced by this mapping from M.
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}Indeed, it isuaésy—to see:that the mapping (r,s) - 

(r, £(s)) is measure-preserving. First of:a%i; it is measur<, 

able, since the two functions (r,s) + r aankr,s) + f(s) are 

both measurable. Second, since_g has an fiivofse function\g, 

the mapping (r,s) -+ (r, g(s)) from R Xflggonto_p x E, is the 

inverse of (r,s) + (r, £(s)); and it iéfimeasurable since g is); 

If u and v represent two houses, say, then condition S\? 

requires that they have the same size and shape, while condi- 

tion (ii) requires that the same mg&erials (wood, glass, brickg 

ete.) be arranged in the same relg&ive positions in both 

houses. Thus this definition apgéars to capture quite well 

the intuitive notion of "two inotances of the same kind of 

thing”“ § 

Resources and Space are n@t treated symmetrically in this 

definition., The reason lies &n the "heterogeneous" nature of 

R as opposed to the “homogenepus nature of S. There is no 

analog in R to the congruence relation among regions of Spafle S5 

at least not in general.%}f f 

If u and v represent tée same configuratiofiFtype, then 

- their rightfmarginals, u' a@d v', on spaces (E,ZE) and (F,ZF), 

respectively, are congruentémeasures. This follows from (4) 

upon taking G = R x F', where F' € I,: 

V' (F') = V(R x F') = u{(r,s)|£(s) ¢ F'} = u'{s|£(s) € F'}. * = el £ » : 5
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We have defined the condition under which twokgpecific 

configurations are to be considered of the same gyoe. But we 

have not yet defined the notion of configuratiofiitype abstractly o 

- divoxced from any particular specimen of that type. For example, 

we can say that this house in Lisbon is of the same type as 

that one in Hong Kong, but cannot yet speak of this house*type 

not in any particular place. Recall thak we conceive of -Space,. 

S in real terms, its regions being acgual geographical places, 

so that our definition above is “tied? to the real world. 

This difficulty is easily overgbme. We suppose R and its 

si;ma field 2 to be given, A configpratioflxtype is then 

defined as a quadruple, consisting of a set, Ep a metrici d, on 

Ep a sigma field, EE' on onand fi measure, W, on (R x E, 

zr x Ip). This configuration*tape is exemplified on region F 

at moment t iff there is a meafiurability-preserving isometryb_ 

f. E + F, such that the mass~éistributlon, v, over R x F at 

time t, satisfies (4) with ua 

In other woxds, the definltlon of "exemplification" is 

formally identical to that: of "same configuration~typq“, and 

merely differs in lnterpre%atlong In the latter, E and F are 

both regions, and we get a relation between two particulars; 

in Fhe former, E is an ahstract set endowed with a metric and 

sigma-field, and we get a relation between a universal and a 

particular. Furthermor&, one can run this definition in 

reverse, and identify t@e abstract configuration-type of any 
f)§\ 

£ 

i
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particular: merely strip the region it occupies of all 

properties except its metric and sigme field. N 

“There is no need to abstract from R as we did from S,. 
,%\‘ 

because R is already the set of t _zggg'of resources. 

*L%/ene comment on the relation between tthe concepts and 

ordinary language. 3It—is glear*that "houseiaj"forestflfi "erowd 

of peoplef and the like refen)not fio a single configuration-- 

type, but instead roughly delimitfe set of such types. The 

more detailed the description, tn; smaller the set of conZ 

figurations satisfying it; but e%en an encyclopedic description 

does not narrow the range down ;o one.. (Furthermorejfi-and 

logically distinct from the ambiguity just mentionedjfi-there is 

a penumbra of vagueness abontfgrdinary language, so chat there 

are "borderline cases" and “téilight zones" where oéiris séé”f’ 

Sure whether a given configu;;tion?type satisfies a given 

description er-net.)” : 

Suppose %ge-haéia description of the world at some moment,- 

;gflrin the form of a list of ;onfigurationltypes exemplified in 

vanious regions, E E) . Ez; ...5. Some of these regions may 

overlap: I1f Fg (Ei n Ej) where F is another region, this 

means that the mass dlstributed over F participates simul<, 

taneously in two configurations} -Fer—examp%e, the ceiling of 

one apartment may be the floer of another. 1If the descriptions 

are accurate, the two measures Uy and “j will then be identical 

over ?. We know from the fatching theorem fine» —Y that this 

is a sufficient condition 'for the wvarious ui?s to determine a
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unigue measure i on the universe set u{E oo, 8. wishs Mp 

being the restriction of u to E . @hus the complete cross= 

fectional measure may be patched;ftogether. 

F M n particular, if E; s Ey né have the relation of par 

and whole (e neighborhood in a eity, a family in a nation,-ete.); 

“%hee»is the relation of whole to part is represented formally 

by the measure ek over R X E and its restriction to R x Ei' 

which is U;. One freqnently ‘deals with a whole hierarchy of 

parts and nholes filltems into packages into cartons into carf 

loads into tralnloadsx-e$£. 
[ 

%‘ 

Activities 

Qur discussion tnus far has been confined to cross= 

sectional measures. ,fie now turn to "dynamic configurationsC 
- 

~So—to—speak, “Activity will be used as a generic term for 

such processes. Thege seem to be several related but distinct 

5 

concepts here. i 
.t \3 ¢ £ 

W\ 

-het-us start with the measure space of histories (Q,Z,u). 

Just as a configuration is a restriction of a cross-sectional 

measure, one may think of an activity as a restriction of u 

itself: ?haemes, %ne takes a measurable subset of histories, 

He I, and refers %o ¥ restricted to H as an activity{%}/ For 

example, H may be fihe set of all histories whose itineraries 
” 

A 

lie in region}Fkfiaéd whose transmutation-paths lie in resource- 

set E at moment t&é&ore generally, which lie in E; x F; at 

moment pi;(i = 1,.f.,n§i Or{{H can be the set of histories
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lying in E x F (g I.x L, ) at least once. during timeiinterval 

G Or,, wheehelierin E X F throughout time-interval G. 

A different approach startsjno; with (fl,z,u)jbut with the 

production and consumption measuresh‘xl and Age derived from it., 

Recall that the universe set hegewis R xS x T, with the inters 

pretation: Al(g X F xflg) = mass of all histories "produced" or 

"born" dun%ng period gk\and sfierting in resource~set E and 

region g,‘fié is the same, @ith Yconsumed"” or "dying" in place 

of "produced" or “bornm' An activity in this sense is a 

restriction of Al or 12 (or both, or net production Al - A ) to 

a subset of R x 8 x T of the form R x E, E a measurable subset 

of S x T. 

It is very common gnd useful to combine these approaches. 

Consider, for example, ihe description of the operation of a 

certain shoe factory,,say from time tl to t,. The appropriate 

set of histories H comsists of alltheeh act as "factors of 

production" for some time during the interval [tl, t ] -the 

factory building, the land on which it sits, the tools, the 

machinery, the workefis and management personnel = even the air 

and the gravitational field at the site. For production and 

consumption, take the restricted set R x F x [tl, t ], F being 

the region occupied %y the factory and grounds.'kxlunill 

include the productién of shoes, but also the production of 

| will include the 
2 

consumption of rubbefi, leather, nails, glue, water, electricity, 

smoke, noise, odor, leather scraps, etc. A 
3 
=
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fuel, etc. The activity in question may now be defined as the 

triple of measureszvp, 10 Ao w, restricted to Hfi\and Ay Ay 

to § X F X [Fl' 52], or ailthe pair (u,;il - Az), Al = Ay 

being a signed measure or, more genersily, a pseudomeesure. 

This is by no means the only pcssible representation of 

this process. For one thing, it omits inventories of materials; [/ 

raw, in-process, and finished. Tfiese may be incorporated, if 

desired, by expanding the set of histories H to include tnem. 

(The distinction between materials and factors is in any case 

not a sharp one. Materials change form in ev‘ position in R) 

relatively fast, factors reietively slowly). Oa—thenctheEEhenfll 

it is sometimes convenientlgo treat the commemting work#orce as 

if it were consumed upon e?riving each morningfixand proouced df 

new upon 1eaving.' In thié representation,labor would be 

recorded in the Al' Az aécounts, each worker being counted 

once for each separate éommuting trip he makes. 

Let us try to claséify various activities. A first 

distinction is between actiV1ties wheeh "stay put" and those 

whieh change location over time. Letting H be the set of 

histories over which s given activitys‘g,;is defined, the §£§g§; 

tion of q at time t ié the region 

o 5 § CE10) 

F. = {x|h (t) = x for some h ¢ H}. —5) 

(Recall that h is tfie itinerary of history h. The fictitioxs 

point z indicating that a given history is not in existence Ol 

at instant t, is excluded from this set) If:_Ft is constant 
-
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over the interval [tl) 52], the activity is seid to be 

sedentary in that interval. fij 

:Sf%\,x‘agfi can also define the location of an;ectivity in terms 

of the production-consumption measures . kc;and ) Their 

universe set is P X E, and the spatial cfoss‘section of E at 

time t; {sl(s t) € E} is the location éf the activity at t. 

If an activity is defined having both!;(stock) and X (flow) 

components, it is generally convenieqi to make this set 

coincide with F of «8). 5 
t 

Is the shoe factory activity discussed above sedentary in 

the interval [ vty 12 Not according to the original definition¢; 

because the workkorce commutes in and out of the plant site. 

But if one transfersg labor(‘and aay other factors intering or 

leaving the plant%ite during the interval in question) to the 

production-consumption account, gs suggested above, then it 

becomes sedentary. This shows téat whether a certain process 

is to be considered sedentary eégaat is at least partly a 

matter of convention, ; 

A simglz*located activit§%§/;s one whose location at any 

instant is a single point oégga{ee (or the empty set). If this 

single point is the same over tfi% interval [t,, Ezl)then.it is 

also a sedentary activity. The %oncept of simple location for 

an activity is of course an ideaiization, but a very useful 

one, as chapter 8 will demonstrats. 
-~



Let h be a functicn whose domain is the real numbers 

/fif\i with values in a set B, and let c be a real number; the c- ’ 4 

Nt displacement of h is the function fi%’ reals + B given by ; / L°: 
c 

:‘ 

- T 

(&) ’ hfi_él{x) = h(iE - Q) /> 
K‘ ' s S 

g - 
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Among sedentary activities we distinguish those whieh are 
stationaryekor steadz—state. Firstfietmus look at activities 

   

defined in terms of production end consumption; over universe 

set R X F x T, F being a region.i 
  

T is, as usual; represented 

by the real numbers. A, over the measurable SpaceZ£R x FxT, 

2 % ZE X EF X Zt) is staticnagx ifif, for all E ¢ Z 

for all real numbers c, 
» 3y - - 

g E (i?dfi 
A(E) = A{(r's't§l (:,»s't + c) € g}‘/ 

7% \% 
1 

lere A can stand for produ#tion or consumption; or, their 
:i? uzutew«m% \w difference, net production % 

2 4V 

Y 

    

%fi 

  

(6) states that, say, production,k 

is invariant under displecement in time, and this captures the 

intuitive notion of a steady rate of production“ 

The concept of steédyhstate for activities defined in 

terms of histories is a bit more complicatedp 

H#&~ Definition. 

(2:7.1) 
47) 

. ,all real X. ?interpreiing the domain as Time, (7) states that 
& 

    

earlier, if c is negqtive). If h is a history, then ne is also 

% a historv,for all reél c. 

{ Now let H be the set of histories over which an activity q, 
% with restricted measure u, is defined. / q is stationary iff 

1’
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H 

_;-tfifiii) H is closed under displacementc@ (flhet;is, if h ¢ H, 

then the c-displacement of h also belongs to H for all real 

c); and | 
3@“(&3) if E ¢ H is measurable, and c is real, then - 

] 
5 

g _ — : SFTON 

| = u(E) = uth|n® ¢ EI.   
that the cross-sectional distribution of mass for the histories 

H at time ¢t is independent of t, that the éouble&“%-cross-“f 

sectional distribution at times"?t1 andut2 depends only on the 

difference_t2 - tl, and, in generai, that the entire process 

"looks the same" if shifted arbitrarily through time. Y 

Finally, if an activity is given by a pair i;:wi;‘- Az) 

or triple (u, Ao A2l>it is t§ be considered stationary iff 

all its components are statichary according to the respective 

definitions above!wthe-gEEg7éumber“E”§attsfying—aii—simui2%* 

-tanequsdys 

Stationarity is a severe requirement. Under it there can 

be no batch production, only a continuous flow; no shifts, 

only a continuous arrival and departure of workers; no daily, 

wegkly, or seasonal cycles. It is the ultimate in uneventfulld 

ness. 

  

2. )  Activity Types 

Just as with configuratiens, one distinguishes particular 

activities, located in specific portions of Space-Time, and
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activityitzgg_. We shadl follow the samefnrocedure as above; 

Qfifiéiy, first to determine when two specific activities are 
considered to be of the same type, and, second to define 

activity-type abstractly. “4 : 

Let £ be a measurability~pres§rving isometry of Space 

onto itself., We shall consider two activities to be of the 

same type iff there is such an f whieh together with a time 

displacement, transforms one ef these activities into the 

other, {fl 

‘Pirst consider two activities defined in terms of produc- 

tion or consumption: say . i on the universe set R x G, and )' 

on the universe set R x G' (where G and G' are measurable 

subsets of S x T).g A end A' are then said to he of the same 

activity~tyge iff there is an f. s ;?s as above, and a real 

number ¢ fuch that Lf 

| | 

{;‘ 7 ) ¢ = {(s, t‘xl(f(s>,t+c)eg.}m (i 

and such that 

LY )ft(r's't"‘rv £(s), £ + c) € E},,_ oy 

for all measurable Egc R X G' 
< ‘{/fff atx 

> (8) states that the two Srace-Time "regions", G and G' 3 - 
have the same sise and ”shape“; while (9) states that the 

relative petterns of production (or consumption,-ete.) within 

these “regions“ ts the same. -Note-that these activities need 

not be sedentary.‘ 

i 

§ 
i %
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Next take two activities defined in terms of histories: 

say ¥ on universe set H, and u' on g' (H and E' being measurable 

subsets of Q). With f;fis + S as above, ¢ a real number, and h 

a history, the ¢, f-transformation of h is the history hc'f 

given by the follow1ng rules: 

(For the transmutation=-path: 
f P | 

fla"‘b S ‘r fey = h, (t s;'cw), all t ¢ T. 

4 |For the itinerary: 

f C,f "; M,%uw)=m%w—gn,fl1;es 
‘F& S g . 8 

4 hiIf h(t ~ ¢) = zo, it is understood that hc f(t) = z .fix 

§ That is, the transmutationkpath of hc' is Simply the c= 

displacement of the transmutation-path of‘h5 this is 

c,f 0 unaffected by f£. The itinerary of h~'= is the f-transformal 

tion of the c-displccement of the itinerary of h. (If £f is 

the identity, this simply reduces to the ‘c-displacement of h@d/ Mo it 
flffu and u are then said to be of the same activity=-type iff 

there is a measurability-preserving isometry f:/s + 8, and a 
e 

real number © such that 

- 
(R‘WI' !{'fi};“; 

H= (n|n®f ¢ H'} 410) 

and such that 

’ £ f} x‘“fii B'(E) = u{h|n®* ¢ E}, S50 

for all measura&le BRe
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Finally, if two activities q and q' are both triples,~ 

(u,kl,l ) and (u' ,kl,l )L respectively, or, pairs (u,2) and 

(u',A"), they are said to be of the same activ1ty&type iff 

each of the components aze of the samefactivity type according 

to the above respective definitions,gfiith the same £ and ¢ 

B satisfying all simultaneously. ¥ | 
= = 

The similarity between these fiefinitions and that of 
£ 

f 

stationarity is patent. In Fact, an activity is stationary 

iff it is of the same type as afiy time displacement of itself, 

Spaee being held fixed, ' 

  

We now define the concepgvof activitv;type in the abstrach9 
g 

/ 0 fir t for activities of the firoduction—consumption type. We 

quce of Res SOUrces, (;,Er). Let    

  

.7/, —are given the meas 

f2§ (T ,Z ) be the real line aqe its Borel field. Anmactivity- 

type is then defined as a fluintuple, consisting of a set€:S'fi 

a metric, d', on S';\a sigma field, E', on S's a subset G' of 

S' x T' which is measurabie, g' € Z' X Zé; and a measurei At r 
£ 

on universe set R x G', | 

" “°(Here the notation é' T' is meant to suggest "abstract” 

Space and Time; there 1s 'no need to a?stract from R since this 

is already a set of resource-typegiilk' then gives the produc- 

tion or consumption pattern over the abstract space R x G'; 

if we are dealing with égt production, then A' is a signed 

measurefi or,more generally a pseudomeasure.) 
A 7 * p
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\ 

This activityxtype is exemplified on the set R x G 

(where G is now a subset of "real" Space—Timefug x:g) iff there 

is a measurability-preserving isometry’f{:s - §' and a real 

numberhc such that (8) and (9) are satisfied. 

The construction of activity-types in the sense of 

histories is similar. Withyg', T as above, an abstract history 

is a function with domain T' andirange in (R x S') U {zo} 

satisfying the requirements for being a history in the ;rdinary 

sense. An activity-type is then a measure u' whose universe 

set is a measurable set of abstract histories;_g'. This is 

exemplified on the set of "real" histories,g iff there is an 

E{:S + 8' and a numberhc, as above,fsuch that (16) and (11l) are 

satisfied. 

Finally, we may have an activitvltype having both a 

"histories" component and a production and/or consumption 

component, both structures being superimposed on abstract 

Space-Time,fi§f x T', This complex activitj-type is then 

exemglified‘on "real" sets H and R x G iff there is an £ and c 

as above-#%iéfiksatisfy (8), (9); (10), and (11) simultaneously. 

Scale of Activities 

The gquestion of whether there are "constant returns to 

scale" remains a vex§3§cne in the economics literature. This 

is properly a question of technology, not description, and we 

therefore do not discuss it here. We do suggest, however, that 

much of the disagreement arises from the fact that "scale" is
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an ambiguous concept. In this section we -shall spell out 

several of its possible meanings. ; 

Given two activities, a and q » when is q a k-=fold 

expansion of q, where k is a positive real number? All of the 

following answers have this in common. When k = 1, they 

reduce to the concept defined above of qa and q being the same 

activity (or activity*type). Thus we are really seeking to : 

generalize to the case where : q and q are somehow "similar"® 

but unequal in “sizefib f 

Specifically, letag/b§;the complex activity consisting of 

the measure y over the meéiurable subset of histories H H, and A 

over R x G (G being a meesurable subset of 5 x. T) ;diwrepresents 

the production-consumptien components,%and may be a signed 

measure, a pair of measures, etc. (the following discussion is 

valid for all of these @ossibilities). Similarly, q' consists 

- of the measure yu' over; H', and A' over R x G' (A' being of the 

AieMmemxi ~same character as A; G; S 8 x T, and measurable) . 

{44 %DennXT\oh q' is a k=-fold expansion of q in the intensive sense iff 
K“‘»« 

there is a measurability-preserVing isometry f. S » S, and a 

e 

k\\' \ S x’i"‘,’&w i 
V7P /4 ( )' (8) and (10) ars valid -and- 

N N s S 
(i) (9) is replaced by 

(fg% % ; : (QVMEA% < | A (E) ‘,’5 A{(g.s.t)l(;:, f(s), t + ¢) ¢ E}, -2 

for all measurable E c R x G'” and
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fl‘(iii) (ll) is replaced by 

u' (i"".:) = k . u{h'hc.f e E}, 3% 

for all measurable E ¢ H', 

|7~ That is, the "locations" of the two activitie§ in Space- 

Time have the same "size" and "shapeg also the réiative 

distribution of mass over these locations is' the sames but the 

absolute levels on corresponding sets are §Vt§Mes greater for 

  

qf. If these represent two shoe factories, ffi would findxg 
i 

times as much machinery, inventories, workegs, etc., crowded 
% 

into the same area, turning out shoes and eonsuming materials 

at k times the rate in one of these factories as compared to 

the other. 

  

    
This is a rather unusual conceptioé%of "scalel',/ and we 

iy % 5 
i list it first only because it is the s;;plest of the possi(? 

bilities. 1Indeed, one is tempted to s@y@\ "This is not a 

scale expansion at all: all factors, including land, must be 

multiplied in proportion, while the {§ntensive concept leaves 

the quantity of land unchanged!" Wegsha&i now try to pin down 

the alternative notion of scale whie& underlies this expos< 

tulation. 

A
R
 

The first difficulty revolves ébout the concept "quantity 

of 1and“7 "Land" is an ambiguous term, sometimes referring 

to a certain class of resources whieh includes dirt, mineralsj 

and trees, and sometimeskis a synonym for Space. Now, in the 

intensive scale concept, land in the first sense has been 

g
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multiplied by k: the soil is_E times more densely packed, 

etc. The protest above must therefore refer to the second 

meaning of the term “landfil! But what then is the "quantity of 

epace“, and how does one multiply it by k? 

The simplest approach is to identify "quantity of Space“ 

with volume in the case of 3—space, and with area in twe~ 

dimensional cases,ksuch as the plane or the surface of a sphere;gé// 

We shall assume that S is endowed with such a quantity measure,. 

¢, and refer to it generscally as'"arear 
e 

A Next we need to generalize the concept of isometrye LB 
,»~;&:W 

1 s 
“~ Definition: Let (A,d) and (B,d') be two metric spaces. g' A+ B 

5 4 i3 a similarity iff 4 

f lgfi? J£ (i) £ is onto; and 

“(ii)| there is a positive real number, m, such that 

400, £y)) = med(x,y)) for all x, y € A, 
‘N@m%&f* aited : \amwg m ls the dilatation of f. 

e Thus f has the effect of’stretching all distances by the 

  

factor_fl. (If m < 1, this is of course a shrinkage. £ ia an 

isometry iff m=1,) If fis a similarity with dilatation n, 

then- it has an inverse, gfi/fi'?gf' which is a similarity with 

dilatation l/m. Roughly spea?ing, a similarity preserves 

"shape" but not "size., ; 

Let A be 3-space, and dflthe Euclidean metric onwA; let‘f 

be a similarity from (A,d) to itself, with dilstation‘n. Then 

it may be shown thatuf is measnrability preservinggxand that



    

“““at?stest & 
Dibiviliema' is a k-=fold expansion of g in the extensive sense iff h——h\ 

R S o 

"8 Al atasdon of 1 in the former case;and_of k1R i the latter. K 
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. ") 
M(E) = m u{Valf(a) € E}m&‘. 

for all Borel sets'g < A, where u is volume (thst;isjitg;ee; 

dimensional Lebesgue measure). Thus £ expands volune by the 

cube of the dilatation. Similarly, if (A,d) is the Euclidean 

plane then (14), with m2 substituted for m3, and M beingsuws- 

dimensional Lebesgue measure, is valid. We ?fla&i confine 

attention to these two cases. uf 

Again let q be the activity given byféeasure U on the set 

of histories H and XA on R x G; similarly, ' is given by u' on 
ot 

H' and A' on R X G' We then define: 

there is a real number e/ ‘and a simiiarity fz S + 8 with 

dilatation kl/w<such that (8), (10); (12) , and (13) are valid. 

(Here D is the dimensionality of Sgece. D = 2 for the plane, 

and 3 for 3-space).) 

  

| Thus the single difference‘tetween the intensive and 

extensive scale concepts is thét the spatial transformation has 

1o 

The reason for this latter choice is that :;;a\lor volume, for 

D = 3) expands in exactly the same ratio as p and A expand on 

corresponding sets. Thus the average density of all measures 

with respect to the quantity of Space" is the same for q and 

q' for corresponding seté, This presumably is the meaning of 

a "proportional expansioh of all factors, including land“fi 

£ 

¥
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If is the normal shoe factory, and q' is a k-fold 

expansion of g‘in the extensive sense, then the workers inflg' 

would be Brobdingnagians (if_g}?il) or Lilliputians (if k < 1); 

all machinery and plant wouldfiexpand or shrink in the same 

proportion. Stocks of resoufces and rates of output and inflow 

would expand by the factor k, but per unit area (or volume) 

would remain the same as before. 

We merely mention anfiasS%flg another class of "scale" 

concepts4. those involv1eg time-dilatation. In all cases 

discussed se=far the onky transformation to which Time was 

subjected was a simple iranslation. t > t + ¢c. But there' could 

also be a scale factor§' t >kt + o0, where k is a positive real 

number other than 1. %he effect of this is to change the 

speed at which processes occur, the rate at which "particles" 

fulfill their historieé. There are numerous possibilities, 

depending on whether‘gsaee is also subjectfid to a dilatation, 

by the factors multislying u and A, and by the relations among 

these four magnitudes. 

— An example of e time-dilatation is the relation. between a 

film run at normal sbeed and the same in slow motion. {One 

could even have k <§0, which corresponds to running the film 

backwards) . é 

Another concepé rather different from any of the foregoing 

is that of scale in?the duplicative sense. Here the expansion 

factor k must be a éositive integer. Again let q be the 

activity given by u on H and A on R x G, and q the activity 

given by u' on H' and A' on R x G'., Then =
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e 
.4"";-&-1-“' e - 

CPt Dcé!mniuv ' is a k-fold expansion of q in the duplicative sense iff 
L 

  

there is a measurable partition of H' into k piecesylisay, 
o 

& 
ef" 

| 1,...,Hk“‘z«i'and of G' into k pieces‘eflsay, GyreeesGyy -suchw 

& that the activity qi » defined by u' restricted to H; and At 

restricted to R x Gi' is the same activity as q for ;ll l = 

1,...,k, the same time~translation ¢ serving for all i=1,0..,ke 

#fl”,a*égr—gw““ This definition captures the notion of the same processes 

running srd;lby—side“g qin row housing, banks of machines, or 

the plants of a perfectly competitive industry. The stipulation 

0, k. on ¢ requires simultaneous acting out”hy the k-fold duplicates; 

W this could be relaxed, to allow for staggered timing, or even 

for duplication by a k-fold repetition in Time. : 

KW This completes our short survey of some meanings of “scale%@ 

~As mentioned, we shall return te ‘it later with a discussion of 
de 4 T)6    ( 4 

"returns to scale" 

  

  

o Some Everyday,hctivities 

"In”this"finalusubsoction we«shati examinefihow various 

broadly defined,nflone-digrt“ activity categories L such as 

mining, transportationband services ; fit into the present 

framework. Since these categories were not designed to be so 

fitted.)and sinee their definitions involve many ad hos 

elements, we can hope at best for a broad-brush characterization, 

,with many errors in detail. 

One can classify activities from many points of viewj fer 

Aexamfile, by the number of persons participating. Thus one may
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distinguish natural activities (no participants), private 

activities (one participant), and shared activities (more.than 

one), Of the latter one may distinguish various authority 

structures, cooperative vs. conflictive aspects, who performs 

what services for whom,»etct :f 
7 

A? 

=~ At the moment, however, we are mainly interested in the 

physical structure of activities. We,shakl take activities in 

the histories sgnsefi\and pose the problem as follows: What 

characterizes the defining set of histories, H,uof, say, an 

activity classified as "construction”? 

Consider transportation, fer example. An ideal transporta=~ 
  

tion activity is one in which all histories h ¢ H have constant 

transmutatioanaths, at least over the interval [tl, tzl to 

which one is referring. f%hat is, a typical "particle” may 

change its location in Spuee but not its resource-form re R, 

This is of course an’ approximation: travelers get fatigued, 

cargo spoils, vehiéles suffer wear and tear, etec. 

The foregoing approximate description applies not ‘only to 

the activities\customarily called "transportation" but to 

several others as well: utilitiess\such as water, gas, 

electricity, and sewage disposal; communications,\suoh as 

telephone and broadcasting. The postal system consists mainly 

of transportation activities. rhewgreat~hulk~ef uveryday 

activities, in fact, will have a transportation subfactivity 

in;them. 
R
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For some transportation activities it is useful to » 

idealize even further and take H so that all its members have 

the same itinerary over the relevant time*interval.f This makes 

it simplyilocated, and the activity may be repgésented by a 

resource~bundle (that-is, a measure over a sfibset of R) 

traveling over the "track" determined by the common itinerary. 

This approximation is good for transportation that goes 'in 

channels (roads, pipes, wires,weteelghut poor for broadcasting. 

A special case of transportatfén is storage, the simplest 

of all activities. An ideal stqr;ge activity is one in which 

all histories are constants, at least over the relevant time- 

interval. mhatmis the particles" change neither their 

resource-forms, r € R, nor their locations, s ¢ S. This of 

course approximates proqésses in the real world whieh change 

slowly\b What is to;fie considered "slow" depends on one's 

focus of attention and scale of observation. To the historical 

geologist the fiartfi has undergone great changes, but on the 

human scale it hss a certain massive sameness, except for 

changes in the;Weather and "minor" fluctuations such as earthfl 

quakes and floods. Again, an economist interested in short<— 

term busin7SS fluctuations can treat the stock of capital goods 

and pOpulation as constants, but this is not true for one 

studying economic development. 

i Note that when one compares ideal transportation or 

storage with the bundle of processes labeled "transportation"
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or "storage" in the real world, one must not only approximatefi' 

but also abstract from certain aspects. The fuel consumeéjin- 

refrigerating a warehouse does not itselfTEatisfy the condi— 

tions for ideal storage even approximatelyj- In simtlyklocated 

transportation one focuses on the bundle being mbved (including 

the vehicle, if any), and abstracts from the fixed plant of the 
N\ 

transportation system: the train, but not,the rails, the 

electric current but not the wires. gg 

Trade, retail and wholesale, is largely a matter of 

transportation and storage. “’ 

Motion in Space means ef—eeerse-motion relative to the 

#arth, since we have conventionally taken the,Earth to be fixed 

in Spnce There is another class of activities, however, in 

which the essential feature resides)not in motion relative to 

the Barth, but in the motion of the "particles" relative to 

each other. In particular, a fission activity is one in which 

the itineraries diverge from each other over time, and a 

éi;ofi;n-activity i§50ne in which they converge toward each 

other over time.f; 

“{These characterizations are rather vague. One could 

distinguishofurther according to whether the divergence of 

itineraries did or did not depend on the resource~states of 

the histéries, giving us segregating activities or simple 

scatteéing activities,;respectively. Alsojone could go into 

the various ways of measuring dispersion and association of 

spatial distributions.QZ/?But this is unnecessary for the
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7= 
present discussion, which is impressionistic in any case.ffi 

Going to manufacturing, it appears that ¢~ very roughly, 

and with many exceptions)+ one can classify manufacturing 

processes into fission activities, in which things are taken 

eapart,wor separated into component substances, and:fusion 

activities, in which they are put together, or assembled into 

larger units. First-stage processing of raw materials is 

generally of the fission type; érude oil:is refined, ores are 

benefiéated, crops are winnowed, logs;and carcasses are 

chopped up. - (The reason- is that nature presents-us with 

things whose ingredients are mixed;up in nonfuseful wastLand 

which are unwieldy in size), Lélgfl stages tend to be of the 

fusion type: ¢ars are assemhled, cotton is spun, woven and 

sewn into clothing,” drugs are blended, - etcs48/ 

Construction is a krnd of fusion process +that—is : 

distinguished by the ndture of its product. This is not so fi%? 

much a guestion of s}ze *(supertankers and jumbo jets are 

larger than most bfiildingg % but rather that the product is 

attached to the #arth. it is "real" rather than "movable" 

property. Thené are,-to-be—-sure, cases where it is not clear 

whether a givé; item is 'real“ or movable“ (e.g. fixtures, 

"mobile" homes), but by«and-large buildings, dams, bridges, 

roads, railway tracks, airports, docks,hpipelines all belong 

to the ggrmer category, while vehicles, machines, and consumer 

goodsjfielong to the latter. In summary, construction is a 

fusign to the #arth. 

/
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Mining is the reverse of construction. It consists of 

detaching pieces from the #arth. This will include not only 

the extraction of minerals in the conventional sense.ibut\also 

the undoing of previous construction in democlition work. alelso 

tunneling would be considered a form of mining onwthis«approaeh 

just as land filling would be considered a form of construction). 

In summary, mining is a fission from the Earth. 

What about agriculture, forestry,,hunting, and fishing? 

These are generally classified as e;tractive, and indeed they 

have a strong mining component,fas defined above. (A certain 

style of agriculture is knowgapejoratively as "soil mining"). 

But these increasingly ten§ to be run as self-sustaining 

processes by re+seeding,freistocking, and fertilization, so 

that the “constructionfi aspect is becoming as important as the 

/ 
"mining" aspect. g 

Oddqu) This brings ué to services. At first glance, this seems 

M/////tz be such a he?trogeneous category % embracing repairs, 

business and ?érsonal,services, professional sexvices, enter- 

tainment an?fieducation) et 5 that no succinct property could 

begin to ?pproximate it. A=d, %nuefid, this will ée our 

contéhtioh as far as the physical structure of these processes 

is concirned - 

*ndam Smith divided workers in productive and unproductive, 

and it is clear from his examples of the latter ligervants, 

1}gwyers, mnsicians)“ete.~% that he had in mind more or less the 

ffpresenééay distinction between those engaged in the production 

of goods vs. services.4g’ Although service workers have long
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since been admitted as contributors to the national productj\yf 

the tradition lingers that they produce an "intangible“ 

This is clearly wrong in detail: Laundering is a-service and 
,( 7 

." 

there is nothing intangible about dirty laundry 

about- the transformation from dirty to clean 1aundry. What 

makes laundering a service is that the laundry does not own the 

item it is cleaning. We claim,»in“fact, that this character=, 

istic, rather than any 'intangibility“, is what distinguishes 

the bulk of the activities known as services. 

If true, thds means that services are such not because of 

vany physical property of the activity\but because of the owner- 

ship relations among the interested parties. Hence the same 

activity may be either a service or not, depending on the 

organization of the industry. Suppose laundries operated as 

used car dealers do, b uying dirty shirts, cleaning them, and 

re%selling them on the second~hand market. This may well be 

considered goods groduction. Conversely, suppose,-say, copper 

refineries operafiid as follows. Miners ship their ore to the 

refineries without relinguishing ownership; the refined copper 

is then returned to the owners, who pay a fee for the service. 

This is compietely analogous to the organization of laundries. 

Would not;iopper refining then be considered a service industry? 

We séaiiaquickly run through the major service categoriesii 

to indicate how well this characterization applies. There is 

no prohlem with repair services in general - e.g.‘watches, 

shoes, cars, radios. 1In all cases the owner A relin;uishes 

-potsession of the item to repairman B, who fixes and returns 
=
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the item to A. \ 
’ =15 

What about rentals ;}'\l/\of houses, hotel rooms, or cafigs“f say? 

Let us look at the servicing relation a little more ck%sely. 

Person A owns some items, a, B owns some items, S,4t and 8 are 

brought together, with the result that o is benefited, in 

return for which A pays a fee to B, For repairs, 8 typically 

consists of the repairman himself and his tools, for laundering 

it consists of cleaning equipment, etc. flbw the fee can bhe 

described as a rental payment for the nervices of B; rentals 

and services are two ways of looking at the same transaction. 

When gardener B trims A's rosehush, ene.may say either that A 

rents B's labor services, or that A relin;uishes possession of 

his rosebush to B, who returns ft to A in improved condition. 

‘In the case of house rental,,B is the house itself. What is a? 

_:A himself and his possessions, which are provided with shelter 

services. jf 

Since a person arfi;ys owns his own body (in a nonzslave 

society) any benefits;to_éfis body (including his mind) made by 

another person,_§,;§utomatically fall into the category of 

service activityffiaccording to our ownership criterion. This 

includes the services of physicians, dentists, barbers, sex 

partners, and;fultimately, morticians. It includes the services 

of clergymefi, of entertainers, and of all who provide informaZ 

tion: ieachers, lawyers, physicians again, consultants, 

employment agencies, private detectives, credit bureaus, 
4 

7 

/
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telephone answering services, and astrologers. }Perhapspthis 

group explains the connection of services withi“intangihles'z 

one cannot see directly the changes in a person'sfiififormation 

state or welfare level). G . 

Most government activities would be services as here 

defined,xbecause they provide benefits tofpersons and goods not 

owned by government. 
- »—mflt 

‘\ 

This brief survey appears to cOVer thewgreatnbulk-ef 

activities customarily classifiedfas "services!", Of the 

remainder, a number seem simplyfito be misclassified. (We are 

of course now turning the tahiZs, and using our ownership 

criterion to determine whatfidshould be" considered a service 

activity}" From our point of view, photographers, duplicating 

~ services,} and sign painters are goods producers., It is true 

that their produ;is,are closely tailored to individual clients, 

but the same is true of much househfiilding, job shop work, 

printing, and other activities classified as goods production. 

Similarly, a lawyer writing up a will or a contract is engaged 

in goods production. The most important misclassified industry 

is advertising, whose product %{again tailored to individual 

clientsxfijis%*advertising copy®, consisting of jingles, skits, 

blurbV etc. . 

Services will be discussed further in connection with 

rental markets in chapter 6.
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M , 
2,8, Multi+layer Measures 

For a general measure space Ea,z,u)fihnothing specific 

needs to be assumed about the nature of the points of A. In 

our applications, A has variously been a product space built 

up from R, S, and T, on a space of gunctions (histories) whose 

domain and ranges are built up from these, or subsets of the 

foregoing, etc. We now briefly discuss some cases in which the 

points of universe set_é are themselves measures over some other 

measurable space. = ‘ 

Let us spell this out. Given a fixed measurable space,., 

(B,Z), let M be the set of all measures over it, (M could also 

be the set of all signed measures or all pseudomeasures; the 

discussion would be unaffected).” Now consider a measure space 

(M,E',u),awhich M itself plays Hhin role of universe set. We 

shall refer to this as a~twe-layer measure. Next, supposé B 

itself is a set of measures over still another space, so that 

each member of M is itself a-two—layer measure; then (M I',u) 
LS 

will be referred to as a three ~layer measure. This clearly 
  

extends to any finitehfl_a BB o 

We consider some ways in which such multiilayer structures 

arise in applications. Let us first bring in the factor of 

unc . ;fie have noted that, in principle, the measure 

space of histories, (2,Z,u), provides a complete description of 

the worldfifor social science purposes. But of-course one never 

knows exactly what the measure u is. It is desirable, then, to 

try tojrepresent states of relative ignorance or degrees of 
J
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belief concerning the true measure, U. 3 

We sha¥l adopt a“‘Bayesian point of view, according to 

which "state of belief" is representable asqprobability measure 

over the universe set of "possible worlds".s;' Specifically, a 

state of belief is given by (H,Z',fl), where N&is the set of all 

measures over the measurable space of historfies, (2,2), L' is a 

sigma -field on M, and T is a probabilityimeasure with domain I'. 

For any E € L', w(E) is the probabilit%¢(= "degree of belief") 

that the true mass distribution, H, gwer the space of histories, 

belongs to the set of measures E. dhis is a two~-layer measure. 

How is L' determined? The héuristic principle we have 

used before states that all sets.fihish are "conceptually 

observable" should be consid%red measurable. Here the equi% 

valent principle would seemsto be: phny set of measures Lhtch 

is "sufficiently simple" po that a mind could, conceptually, 

hold a degree of beliefg%oncerning it should be considered 

measurable. This is g&ther vague, and is best explained by 

examples. If F is af;easurable set of histories, and ¢ a 

number, the event:eithe total mass concentrated on the histories 

in F exceeds c" would appear to be one to which a degree of 

belief could be;attafihed. This means that the set of measures 

{ulu(®) > c} ’61-8-) 
o 1) 

is to be considered measurable tthat-is belongs to I') for all 

F € I, all real C. In particular, suppose F is the set of 

5}?‘,2:? 

S 

£
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histories originating in subset Gof Rx S x T; then the ;;“ 

the probability, n, attached to the set (&8) gives the degree 

of belief that total dflflths or production in G exceeds the 

value c. 
ey 

This iast example provides an illustrationiof how the 

probability = can be induced onto simpler spaces. Let F retain 

its meaning of the set of histories originating in fixed set G, 

and consider the function with domain:fljgfiiéh assigns u(F) to 

measure p. This induces a probability measure on the real line, 

which is exactly the state of belief concerning production in 

set G, This induction process is completely analogous to the 

many examples in section *&5 of the induction of oa the space 

of histories (9, Z) onto simpler spaces. 
. (=g 

fii;igiang The case of perfect certainty, with a known measure u 

over (Q,IZ), may be identified with the special case of the 

probability measure (fi, 'y7) in which 7 is Simplylconcentrated 

with all mass at thev"pOint" u & N 

For a second example, consider the structure of, the 

Resources set R. Taking people&types as points of R, a complete 

specification of a person r € R will include his mental state, 

in particular his state of knowledge. 5et~ue—assume for the 

moment that r describes a person in a state of complete 

certainty. His state of knowledge will then include a descrip- 

tion of the world, which is represented as a measure over the 

spaoe of histories, Q. 
N\
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o ' S 
-~ This lepds again to something resembling a-two-layer 

measure, for some of the points of R have an internal structure 

involving measures, while the overall descriptive measure is on 

a universe set built up in part from R, 

In-fact, once oae»admits(into R structures which involve 

measures over universe sets involving R,-ene-appeara to be led 

to infinite-layered“ structuress The reason is that a person's 

state of knowledge will itself be (at least)-tfio—layered, since 

it involves knowledge of other states’of knowledge; and one 

cannot stop at any finite number 9fjlayers. 

Whether éne can build a useful (or even consistent) theory 

from such an infinite regressfremains to be seen. -There-is one 

consideration -whieh simplifies things, however. The measure 

space (§,Z,u) gives a complete description of the world., But 

any person, even-one inga state of perfect certainty, will have 

a limited capacity tofassimilate information. This limitation 

may be represented,formally by replacing I by a small sub—sig;a- 

field ' ¢c I, yielding an aggregation of the original measure 

and losing detail. Knowgedge of other people's states of 

knowledge (and ‘of one' s own past and future states) would be in 

terms of an even smaller s;;;a—field Z7 <L', hence even more 

aggregative-and sketchy, etc. 

Finally, mental states of uncertainty can be represented, 

as above,fiby a probability measure over a universe set gfiof 

physical measures. We again get an infinite regress,)in the 

form:'flé’s degree of belief concerning_g‘s degree of beliaf. 

/B2 
RN ry 

| 
A, 
Y
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In this book we shall not have occasion to use multé,:i 

layer measures in any of the interpretations just discussed. 

We shsa-l-;l@ however, use them in angt!iér ways. as a representa'-_-: 

tion of technology. Here M w,iil be the set of "basic feasible 

activitiesi".fv,j and feasib1§~=~-‘:'§utivities in éeneral will be 

measures over M. Fq;;-”’éetailed discussion see chapter—4; 
WA M ection 3, =
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___EOOTNOTES ) 

g 1Certain new mathematical results will be given later, Most 

otrthe mathematical material in this chapter is Btanqard? axcept 

possibly for terminology. 

  

’2The following books are recommended for readers wishing to 

go beyond the necessarily sketchy outline of measure theory 

presented in this chapter. They are roughly in decreasing order 

of difficulty.\ 
o 

= fi. fiunford and J. T, SQhwartz. Linear ggerators, vol. I,% 

,uhapeer'fiig(wileyuxnterseiencef)mew York, 1958); _ /} 
A 

o 8. Saks, Theory of the Integral (stechert~fiafner, New York, 

1937); 
J 

x@\H. Hahn and A, Rosenthal, Set Functions (flnivfi#&itg:nfi 

New Mexico Press, albuquerque, 19f§1i> 

<P, R Halmos. Measura thac;z (Van Nostrand, Princeton, 1950) ;- 
st 

>8. K. Berherian, &aaaure and Intagratian (Chelaea, Hew York, 

1970). : 

M, E, fiunrca, Measure and Intagratianr(Adfiison~fiesley, 

Reading, Mass., an e&&tieng 1979), 

- A. E, Taylor, General Theory 0f Functions and Integration 

(Blaisdell, N@w York, 1965). “(second half of book) « 

-fin»addi:inn, books on the theory of functions of a real 

variable will generally have pertinent material. But the books 

above h§Ve beaen deliberately chosen for their abstract approach 

_,f; 

7
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to the subject, which is the—appreaeh suitable for the applica- 

tions we wish to make. — ¥ ' 

»i&~sheuié~be*nQEeé*t£§%‘terminology has not baen fuliy 

standaxdized, so that these books differ among thamnelves, and 

with théwpretunt book. : g 
e 

— ) & 

e 

i 

B afl@faéa—fiactvsgny denae subset of theypgnls could be used. 
& 7 

5 

- 7 
= £ 

'5¥ The nunbers 4“« in the extended real number svstem should 

not be confused either with 'infiétarminate forms® in calculus, 

which are just abbreviations for certain limit operations, or 

with flfifinite caxdinal numhers in set theory. 
4' 

  

5It also often involves a distortion, to squeaeze the facts 

inte the categories nf the formal systemjé €.g. the assumption 

of perfect vacu&' Adeal gases, “pure substancéifiand, in social 

v5“ science, of perfibct competition:bwliqhtning calculatiugfik‘hideal 

typanctb rationality, economic man, political man, libidinal man, 

.-" 

etc;, 

  

,7§6cQfincn borderlines may be thought of as "no-man's land" 

which p&longs to none of the abutting countries. 

  

qp 

) f"’These correspond roughly to Norman Campbell's %undamental 
wqah\wArs 
«mkgfliifiafii“s cf. N. R. Campbell Foundations of Sclence (Dover, 

_Naw York, 1857), shapber'x. 
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f 3 aIt could be more inclusive than the Borel field. But the 

attempt to extend Lebesgue measure to the class of all subsets of 

the real line runs into countextintuitive paradoxes ,,\[/at least in 

the realm of "standard" measure theory, the kind usaa in this 

book and everywhere else until very recently, Buf af. A. R, 
o ! ‘Bernstain and F, Wattanberg:fiifionstandard Meqpfire Thaorvm, 1711195 

'l 

of Applications of Model Theoxry to Algabr§#€Analy513 and 

Probabllity, W. A. J. Luxemburg, ed. (ugit, Rinehart and Winsten, 
New York, 1969).J" A 

47 
i 

i 
K 

& 

T gxn fact, the great contril;;fiition of Lebesgue consists in 

sansing and systematically devzéloping the consequences of 

countable add:.tlvity, as opposed to the earlier finit&lyéafiditive 

*Jordan contents\ 

Z = e e e 

De. Finélt; lms mfguel #"%m;wkr Thet suLJeJ’vc prohady iTe. 
SLNU be o»J (m,fel qd,(\ ve . But e meagure e ave o{\s(u«,m\) 

rel’r€€m+ Pl"lfltil* m«)h\‘ruhs, nol A"-.‘)mc’ ol beliet (423‘&‘0;1:‘“““ 
: and l.u, 5rm.'ruw.5 Ao nof appl7 fo L. B. de F“‘dr 

' Pro)oql,\H’ ,no(hcfiu\ and S‘l"m; (lfglv] Nev York ")77—)@ 

QqéW‘$tllis reduces to the countable case as follows. 
If the aat g I on which f is positive is uncountable, then the 

summatian of £ equals «; if I' is countable, then the summation 

of :E is the same as that of f restricted to x:' But this 

rag&uction does not detract from the intuitive appeal of a single 

definition covering all cases. 
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(a7 
& lifiow do we know that the territories occupied by countries 

are in fact Borel sets (thafiw&s, members of the Borel fielé&? An 

element of convention enters here. Without attempting &'rigerous 

discussion, it may be said that any real-world regieg;brasuneinq 

itself as an obaervational unit is ampirically 1nu§§£1nguishable 

from some Borel set. Thus taking it to be a Barg{‘aat is a 

mathematical convenlance é%é%g does na‘vielengéfito the facts, 

e 

wfi;céixt is clear from this list 

/1“‘\\ A§ ; 

that the term 

  

"resource* is misleading. Other passibla tarms, such as 

aubstanca@ fssencq")gg quiduitv, {, Qr qualityg", seem even worse, 

Oww should keap in miné then, t&at ”reseur¢e” iz a general 

neutral tarm embracing geopla*typ&a>aa well as gawfléltypes, and 

"{i1lth" as well as wealth(% 

  
  

(14 / @Q)ifispatlal *canziguratiqgst! a3 we shall see, can be 

raprasented by measures. gf 

  

l‘wu“hmnruaian sh&u&d arise batwnun E as mxg& hefi@fito 

iqfiiaata aumm&tian, amd finla£use;fi to ragraaunt a sigma;Sfield. 

;. 

C}5ficta that RE and Z X, . X Xn are not the cartesian 

products of the fiamily (Xi%iex M&Mennfuaion should reaunlt from 

this nmbiguousgmatation. 
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enlsrhere is obviously a strong element of convention in this 

statement. One can hardly identify a unique moment at which a 

person pops into or out of axistence}\ (e.q.aone might start with 

conception rather than birth; aaa'han problems with resuscitation) 

-amd suspended animation, etc.) The inclusion of the endpoints t,, 

tz in the intexrval is also obviously a pure ccnvention. 

~. 
  

wfé}7Thia distinction hinges on the scale afgégservation. All of 

the "continuous” resources mentioned reveulfidf"granular' structure 

under the microscope. Conversely, from ugiarge-scale point of 

view it may be useful to think of peopxéi say, as being 

continuously distributed, as when ong speaks of "population density" 

or "migration flam' ; 

  

@fislsror people, the ”numberfof entities" approach is almost 

universal. No political syatem is organized on the principle, 

"ona pound, one vote”l 

4:
? 

  

.V(ilgThis point will he elabcrated after we have defined the 

concept of "integral."” 

  a 

2q/fih e 45&nnnr&$ .an element of convention”involvad in defining E. 

4&zn_flxamsle.fis E to include the entire volume enclosed by the 

buildinq,/cr just the shell? We suppose this has been decided. 
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3,@211n particular. the conpept of "congruent measures;@~e.t 

,a-:«fi"*’:‘””:"“'_.:";‘ ( j\ CCIY ), ? ‘ ", 
& & 

(22 xu‘ We have deliberately refrained from innroducing the 

metrical or topological concepts that wnuld:be needed for this, 

These notions play a decidedly secondafiy role in this book, and 

we have therefore concentrated on bu&ifiinq up the theory of 

measure g;g}?g, which does not dgp&nd on them. 

  

( *3there—tsno-conventen f~wtgmtnm£nzreéage continuity at the - 

  

fammmnflrrflrifififimfnw*flfiathz A history is said to bhe continuous iffv 
T bt 

g@ - 0V O S. ol Lw: y 1t 

it is continuous at aLl instants of time except for these—two, 
and deatl, . 

and continuous frogxthe (fugura, past) at (birth, death), 

respectively. fif 
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«@34Can one go further, and decompose the rural population 

into a “two-dimensional® part (e.g. the farm population), and 

“ofihudimnnsional" part (e.g. population living along roads, 

rails, or rivers), and perhaps a rgsidual? The answer ;s yes, 

with the aid of the Lebesgue decomposition theorem, uhich we 

shall not cover in this book. For this "dimensional decomposif 
O { tion" see W Hahn and ¥, Rosenthal, Set Functions,, K 106=199. 

  

i{uxzsLater~on we will allow both u and_g;éb take on negative 

‘values. Unless otherwise noted, all tunéiions from now on will 

have their range in the extended real numbers. (This, of 

course, does not mean they must tagéwon infinite values, only 

that they may do so.) 

  

@(36Thera are a large nunhér of seemingly different 

definitions of the integrgfiin the literature. Most of—these 

are either equivalent tqgi4) or minor variants of=ie, 

  

\&[?7A£tar W, H. Yqung, 1905. The general integral (4) is 

essentially due tofim. Fréchet, 1915, 

  

For readnrs troubled by this cavalier addition of heterof /‘28 

geneous unitsf7;o£tan said to be "invalid" — it should be 

mentioned tuit it is clearer to think of the measurement unit 

as being gurt of the definition of the concept, the measurement 

number itself being "pure", Thus, "the length of this bar in
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metera : 3. %', rather than “the length of this bar: 3 7 materq\ 

~cf, R. Carnap, Introduction to Symbolic Logic and.Its Applica- 

tions, W. H. Meyer and J. Wilkinson, trans. (Bbvar, New York, 

1958), p. 169. 1In any case, the preseant tteatment shows how to 

work with heterogeneous units with safggy and convenience. 

  

  

¢2f9wa shadd discuss higher di@gnsional Lebesgue measure 
& 

below. 7 
fi‘f. 

= s’ jx 

30 ’ By the unigueness thsoram, any function whieh-dis 

identical to filjf excepr for a set of y_ -measure zero is also 
g 

~an Radon-Nikodym dcrivfltive. In this case, as in many others, 

the derivative éllfiyfis more "natural® than the other functions 

uswequivalent to ik. 

  

:Qvfiglbonsitisé correspond roughly to Campbell's "derived 

maqnitudes\,\ ‘See Wr=R: Campbell, Foundations of Science, 

Chlgfie*-x, &nd footnote 7 above. 

  

\ \gzxn rate~of-return calculations the density is unknown, 

but igg derivation is not comparable to our procedure above. 

Inai@éntally, (18) illustrates the alternative notation for the 

intagral given in (2): When several letters are floating 

aruund. it clarifies which measure and integrand one e 

rgferring to. 

  

-
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\/K? ¥=R. Halmos, Measure Theory, page 22. The prcof of the 

following theorem may be found in Halmos, Chgpeer i%z, pf in 
* : 

J. von Neumann, Functional Operators, yol. i, Z 
T)“\&é{ifi%.&v\& 1-"“3!’« g"‘(KV\V\aQs o( Hq‘t’ktmqfiu Studies .-""" 1- 'P""\cd"'"\ 

. ni 1460 

¢ C e Sethian ¢ 2o aalEean j\,‘c‘sas ® - Q - RN e 5. 
= = 

Press, Princelom N.J.y 

WQ34In the literature, conditional mua&uredfariae mainly in 

mmwuuymmw,mgpma.hDmmsfimuficmwmus 

(Wiley, New York, 1953), Append&x Neahfithat *conditional 

probability® is often used in a quiya different sense than the 

one employed here. 

(S On distribution £unctions see s von Neumann, 

Functional Operators, Ifluxeasurea and Integrals,, tAnnals-of 

. e ; s e “—-“’/ 
  

  

1r1r-—raser 160-;72; H. Cramér, Mathematical Methods of 

Statistics (Prinpeton Uniugfifi&sy-rreas, Princeton, N.J., 1946) , ?lr:j.v t 

77-82, Defin@#ions vary from one author to another. 

  

3SWe shall see latexr that the method for solving these 

problemfi is closely related to work of Ramsey, wfizsacker and 

others on the evaluation of infinite development programs. In 

fagfi, it incorporates these "overtaking criteria” as special 

/ 
¥ 
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37 +(E) must include exports from E to itself, not merely 

to é\E, for otherwise u would not be an additive sethfunction; 

similarly for u™ (E). These sketchy statements will be _ 

elaborated when we eeme—to discuss transportation and transh1p~ 

ment; chapter 7. 

  

wfi338When generalizing even further, to pseu@bmeasures,ifiéé 
e 8 

does not have to do this. See chapter 3. 

  

‘Bgone of the advantages of pseudomeasures is that the 

proviso concerning- -expressions. of the form © - o may be dropped. 

When (47) is suitably generallzed, tha (indefinite) 1ntegral of 

any measurable real-valued function with respect to any pseudafi 

measure is well-defined. See chapter 3. 

  

Vs 
F o, WA LY = em——n 

¢1§0This is the first occasion om—whieh nonrmeasure= 

theoreticf?Qspecifically, m%tric}m‘concepts are bging used., 
{ N\ : 1‘,\ 

  

i;fi%lOne typically pqétulates certain further relations 

befween d and Z. Howaver, this is not necessary for the 

-pnessnt discusslcn. 

  

42@&@@@%&% one fine point -that-at-least deserves footnote 
'flx’,& 

mention., The~dlstr1butxons representing the left- and right-, 
\ 

hand gloves of a pair are measure~congruent, but cannot be 

transfigrmed into one another by a rigid motion: one must be
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ke turned -inside-oufifi. We could therefore insist that sgmeness 

of type requires not only measur;—congruence, but preservation 

of “"parity" or “orientatiofi%@ Since this condition does not 

seem important for social science problems, we pass over it 

without further discussion. 

P : Zf;fisThe 'same” melody in two different keys, or the 
’ mvolvin replacement of pine by spruce in a house, are examples ef shifts 

among resource types analogous to interregional shifts. But 

these apply only within small "homcgenébus" subsets of R. 

  

gfé§4We have aimsady mentioned sdme problems concerning which 

subsets are to be considered measurable in the set of histories. 

Here we merely assume implicitiy that all sets mentioned are in 

fact measurable. , 

a f\\'\ 

4SAlso called a Weberian activity, after Alfred Weber. L0 s See’\g.4o 

  

46 
»‘};‘ 'V’ J 

complicated manifolds is itself a rather difficult problem into 

How to define these measures in the case of more 

which we‘sfiéii not delve. See L. Cesari, Surface Areafi(Annals 

of Mathematlcs Studies, #34,CPrinceton Univers:iy.?ress, 

Princeton, N.J., 1956)% oxr T. Rad§, Length and Area (Amexican 

  

Mathematical Society Colloguium Pub{5w~~vc~* 

Providence, R.I., 1948). 
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- | ( 
\/<57fi. 8. Neft, Statistical Mnalysés for Areal Bintributians 

8 ( MT~(ManQ{§ph ar?aa f:. an&ana& acianac Rnstuxeh 1532%&&%@, 

Philadelphia, 1966). 

o) 

T e, 

  

uiééafisntan and fusion activities correspond roughly to 

Beverly Duncan's "processing” and “!nbricaging” industries, and 

aven more roughly to Alfred Weber's 'matpr1a1~orionted“ and 

"market-oriented"” industries. See. O.‘b. Duncan, W. R, Scott, 

8. Liebexson, B. Duncan and H. H, winuborauqh, Metropolis and 

fi_gigg'(aahngaepkinn Press, naitimoro, 198#3 57«53 nn&EShaptnr }fins 

7, and E. M, Hoover, The Locatian of acanonia Activity (McGraw- 

Kill, New Yurk' 19‘8,' 31"38; rasp&cti'ffily’a 

49 QLaanm, T Ny {'* ) A L +lan AT Sfo % 'd 
fik Afih&lth of aations, ‘Book ¥E, Chapter r#% ? 

  

¢f;§arn the West, nfii in the Communist world. 

  

"Lfilfi&& H. E. Kfibu:g. Jr., and H. E. Smokler, edétors, 

Studies in Subjtéhive Drohubilitz (Wiley, New York, 1964), 

especially thu assnyn by B. de Finetti and B. 0., Koopman, 
,# 

  

wf?zflvefi;un omniscient Deity would have need for probability 

conoaph#g\to represent the states of mind of the less~than+’ 

amniscicnt creatures inhabiting the world. 

  

W
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