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" The Theory of Comparative Advantage for Many Countries 

and Many Industries . 

Introduction 

The theory of comparative advantage, illustrated by Ricardo 

for the case of two countries and two industries, is among the 

most splendid achievements of economic science. It was extended 

in the nineteenth century to the case of two countries and any 

number of industries, and also to the case of two, industries and 

any number of countries (see Viner, pp. 453-67, Haberler, pp.136- 

40.) But when the number of countries and industries both exceed 
  

two, little progress has been made. Thus we are in the anomalous 

position of having elaborate theories with any number (even a 

continuous infinity - see Dornbusch, et. al. (1977)) of 

industries, provided there are just two countries. . But at the 

same time we are unable to answer certain simple questions even 

for the 3-by-3 case: for example, to classify and enumerate the 

possible technologies. 

This paper will go some distance to extending the theory to 

the general m-country n-industry case. The literature on the 

subject is easily summarized. Pioneering contributions were made 

by McKenzie (1954) and Jones (1961), and since then the subject
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has remained frozen in time. Their work on the general theory is 

discussed in detail in Section I.3 below. In addition, McKenzie 

contributed to the synthesis problem (our terminology) for three 

industries. This is discussed in Section II.1 below. 

I. The Analytic Theory of Comparative Advantage 

I.1. Efficiency and Competitive Prices 

We make the usual Ricardian assumptions. There is just one 

factor of production - called "labor" - in each country which 

cannot move between countries but is freely mobile and divisible 

across industries within its own country. An industry consists 

of a single product whose output is proportional to labor input. 

Products are freely mobile across countries. Formally we have: 

oL n ' L; = 2}, Ly (1) L= 1,0y M a 
: X = 2y Xy (2) 

J = 1,06e; N 

Ly = a;X;; (3) 

all i,j, with L.. 

Here L, is thg labor pool in country i, X; is the world 

output of product j, L;; is the labor in country i engaged in 

industry j and X is the corresponding output, and a;; is the 

‘technical coefficient, the labor required for producing unit 

output of product j in country i. Aall quantities must be non- 

negative real numbers, with the a;; positive. The m-by-n tech- 

nology matrix A of the a;;’s is given to the economy. (We could 

just as easily work with the reciprocals e;; = 1/a;;, the labor 

productivity coefficients.)



What allocations arise under a competitive price system? 

What allocations are efficient? The answers to these questions 

are closely connected. Consider first the Output Efficiency 

Problem: Given technology A and positive numbers Ly, Lyyeee, Ly, 

Maximize (X, X5y ..., X)) subject to (1), (2), (3) . 

Here "maximize" is to be interpreted in the vector sense: an 

allocation is a solution if no X; can be increased without an- 

other being decreased. The set of all solutions (Xgpoee, X.) 

constitutes the output efficiency frontier, a hypersurface in the 

non-negative orthant of n-space. 

A standard convexity argument now shows that the output 

efficiency frontier is traced out by the following set of prob- 

lems: Maximize P,X, +...+ P X , subject to the same constraints 

as above (where P,,..., P, are positive numbers). That is, for 

any Py,..., P, > 0 a solution to this problem is efficient and, 

conversely, any efficient Xyr++., X, is a solution to a problem 

of this sort for some P,,..., P, > 0. 

Now, these new problems are linear programs, trivial ones 

whose solutions canbbe written out explicitly as follows: For 

country i, calculate the n ratios: Py/ay,, Py/aj,... , P/a;. Let 

W; be the maximum of these ratios. If P;/a;; < W;, set L;; (and X;)) 

equal to zero, and distribute L; among the remaining j's (the 

ones tied for the largest ratio) in any arbitrary manner. 

If the P’'s are interpreted as prices, this describes exactly 

the behavior of income-maximizing workers in a competitive 

environment. For, P;/a;; is the unit earnings to be made by a 
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worker in country i employed in industry j. Workers move to the 

industries maximizing this return, the maximum becoming their 

wage W.. 

The Input Efficiency Problem is: Given technology A and 

positive numbers Xyseeo, X, Minimize (Ly,..., L) subject to (1), 

(2) and (3). Here "minimize" is to be interpreted in the vector 

sense again: no L; can be decreased without another being in- 

creased. The set (L,,..., L,) of all solutions constitutes the 

input efficiency frontier, a hypersurface in the non-negative 

orthant of m-space. 

Again a convekity argument shows we may substitute the set 

of problems: Minimize W,L, +...+ W,I,, with the same feasible set 

(where W,,..., W, > 0). These trivial linear programs have the 

following explicit solutions: For product j, calculate Wa;;, 

Wpagjreees Wan. Let P; be the minimum of these. If W.a;; > Py, 

set X;; (and L;;) to zero, and distribute X; among the remaining 

i's (the ones tied for smallest) in any arbitrary manner. 

Interpreting the W's as wages, this mimics the behavior of buyers 

seeking the least cost producers, this lowest cost becoming the 

price P;. 

The Input Efficiency Problem is a bit artificial perhaps. 

But the point is to obtain structural information concerning 

patterns and configurations. It turns out that either efficiency 

frontier gives a complete coding of this information. If m < n, 

it will be ;asier to obtain this information from the input 

efficiency frontier, which is in the lower-dimensional space. 

 



(Further, the magnitudes of Xyr+++, X, turn out to be irrelevant 

for this structure; they need only be positive.) 

For example, the 2-country, n-industry case has an input 

efficiency frontier that is a polygonal arc, convex to the 

origin, with n edges and n+l vertices. The output efficiency 

frontier, on the other hand, is a hyperpolyhedron in n-space 

which one would rather not think about. 

I.2. Viable Patterns 

The theory of comparative advantage is concerned with the 

patterns describing which countries engage in which industries. 

Formally, a pattern is an (m,n) matrix S of zeros and ones, where 

s;; = 1 if L;; (and X;;) are positive, and Sy = 0pit L;; (and X;;) 

are zero. 

As we sweep across the output or input efficiency frontier, 

or as we vary the P’s or W's, a range of different patterns 

arise, a confiquration of patterns. The configurations them- 

selves depend on the technologies A. We are searching for 

general laws arising at all three levels - within patterns, 

across patterns in configurations, and across technologies. 

Solutions to either the Input or the Output Efficiency 

Problems satisfy the same price-wage relations: There exist 

Pypevey Py Wepono, W, > 0 such that, for all i and j, 

P; < Wa; (4) 

If s;; = 1, then P, = Way; (5) 
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The inequalities (4) are immediate. As for (5), it merely 

restates that if P; < W;a;; for some (i,j), then L;; and X;; are 

zero. 

In addition, in the (Output,Input) Efficiency Problem there 

are no all-zero (rows, columns), since the positive quantities of 

(resources, outputs) must be allocated somewhere. This suggests 

the following definitions. 

Relative to technology A, a pattern S is viable if there 

exist Py,..., Py Wyyeoo, W, > 0 satisfying (4) and (5). S is 

output efficient if it is viable with all row sums positive. s 

is input efficient if it is viable with all column sums positive. 

S is efficient if it is both input and output efficient. 

(Example: S identically zero is viable, but neither input 

nor output efficient.) 

I.3. The Generalized McKenzie-Jones Principle 

In the classical 2-by-2 technology shown, suppose ad < bec, so 

that England (Portugal) has a comparative advantage in producing 

  

  

cloth (wine) respectively. Cloth Wine 

The classical result is that a 

pattern is viable if and only England 2 B 

if it does not entail both 

England producing wine and Portugal < d       
  

Portugal cloth. 

Figure 1 
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For the m-by-n case, viability requires a similar condition 

for every 2-by-2 submatrix. But (if m, n > 2) even the 

satisfaction of all these conditions does not guarantee 

viability. The first to realize this was Lionel McKenzie 

(unpublished letter referring to McKenzie (1954), where the 

example arose as an error. The first published result was Jones 

(1961) ; see his p. 163, n. 3, for this curious bit of 

intellectual history). 

To get at the extra conditions, take any set of r distinct 

countries and any set of r distinct industries. For simplicity 

label both the countries and the industries by the numbers 1, 

«+«+y, ¥. A match , o, is a 1-1 correspondence between these two 

sets: o(i) is the label of the industry matched with country i. 

  

The score of match o is the product of the technical 

coefficients: Qy,0(1»32,0¢2)* * * r,a¢r) * 

There are r! possible matches between these two sets. 

Considér all their scores. A Jones match is one that attains a 

minimal score. (There may be ties for minimal score, in which 

case each is a Jones match). Note that these are determined 

solely by the technology matrix A, and that each square submatrix 

determines a Jones match between the countries of its rows and 

the industries of its columns. 

Now consider a pattern S. Let i(1), ..., i(r) be r distinct 

countries and j(i), ..., j(r) be r distinct industries such that 

Sicn,icty = Lo ey Sitm,icy = 1. Call the set of pairs 
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GOSN, o, (i(r),j(r))) a match in s. Suppose S has the 

  

property that every match in S is a Jones match. For r = 2 this 

is exactly the principle of comparative advantage: the 

correspondence England - wine, Portugal -+ cloth is not a Jones 

match while the opposite pairing is. Thus the former must not be 

a match in S - that is, it must not be both that England produces 

wine and Portugal cloth. Thus we get all the 2-by-2 conditions 

mentioned above. But we also get additional conditions for r = 

3,4, ... : Every square submatrix of S yields an additional 

condition that must be met. 
  

To see that these are 

N 2 < 

additional conditions consider 

S
 

N
 

the technology of Figure 2, 

of size n-by-n, where a; =2 

on the diagonal, a, ij =1 on 

< . N 

N 
- 

2z 

the superdiagonal and the       
corner as shown, and a;; =M 

Figure 2 elsewhere, where M > 2"'- 

Consider the pattern S with S;; =1, 5;; =0, all i = j 

(the unit matrix). The diagonal match in'S is not a Jones match, 

since 2" > 1. But every other match in S is a Jones match: 

For r < n an (r,r) principal submatrix scores 2" < M for its 

diagonal match, while all other matches in it score > M: Thus 

the violation appears only at the highest level r = n. 

In Jones (1961), Ronald Jones considered the special case of 

n-by-n patterns with a unique match o, i.e., Si,eiy = 1, all i,
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and = 0 otherwise. He argued that S is efficient if and only if 

o is a'Jones match (in our terminology). This latter condition 

actually implies the apparently stronger condition discussed 

above, that all matches in S are Jones matches. This in turn 

follows from the proposition: Any submatch of a Jones match is a 

Jones match. (The proof is by contradiction: Suppose, e.g., 

  

{(3,1), ..., (5,5)) is a Jones match but {(1,1), (2,2), (3,3)) is 

not. Then ajjajas; > a;,a,;a; (say). But then 2,12,,8333,,355 

> 2,,83a5,3,255, so {(1,1), ..., (5,5)) is not Jones after all). 

We now generalize these statements to any pattern S of any 

size m-by-n. 

A word about methods of proof. Jones (1961) and McKenzie 

(1954) are both intellectual tours-de-force, especially the 

latter. Because so much territory is covered in a few pages, 

some of the inferences are rather large leaps. 1In particular, 

the statement, "... if there is no circuit which can cause the 

production of a final good to increase, the output vector is 

efficient" (McKenzie, p. 171), is not at all obvious. (A circuit 

is a re-allocation as in Figure 3 below). Attempts to justify 

this inference inevitably lead to linear programming (or linear 

inequality) type arguments. This explains the appearance of 

linear programs in this section, as well as in Sections I.4. and 

I.9. This not only yields clearer proofs than in McKenzie or 

Jones (Jones implicitly makes the same inference as McKenzie), 

but (usually) more powerful results.
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H. W. Kuhn (pp. 70-75) has also applied linear programming 

methods to this problem, but only to the special case considered 

by Jones. 

Definition: Given technology A, a pattern S satisfies the 

generalized McKenzie-Jones principle, or the generalized 

principle of comparative advantage, if every match in S is a 

Jones match. 

Theorem 1. (The Fundamental Theorem of Comparative Advantage) 

Pattern S is viable if and only if S satisfies the generalized 

McKenzie-Jones principle. 

Proof. Only if. Let S be viable, and P, ..., P, Wiy eee, Wp > 

0 a price system satisfying (4) and (5). Let o be a match in S. 

We may label the set of countries involved and the set of 

industries involved both by 1, ..., r, and take o(i) = i, without 

loss of generality. Then P; = W;a;; since s;; = 1 by (5), 

i=1,..., r. Let r be any other match between these two sets. 

Then P,;, < Wia; ry bY (4), i =1, ..., r. Multiplication yields 

Wi.e..Way...a,. = P...P. = S Wie..Way ,y---2 
(1) 'Pr(r) = r,7(r)° 

(The micidle equation arises from 7 merely rearranging the 

P’s). Cancel the W’ s: 

Qe e e@r S Ag ey B0 

It follows that o is a Jones match. 

If. Assume S is not viable. 

Step 1: Let t;; = log a;;. There do not exist numbers =, ...,7,, 
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@17 ««. w, satisfying all the following conditions: 

Ty + @y £ ty;, all i,j, with equality if s;; = 1. (6) 

For, ifvsuch existed, then taking antilogs in (6) would 

yield Py, i, P, W, ..., W, > 0 satisfying (4) and (5) and s 

would be viable — namely, P; = exp T, W, = exp(-w;). 

Step 2: Consider the linear program: Minimize Z?flz?flt”v” 

subject to 

=l Vi = 0, @all i, 

T vy = 0, all j, and (7) 

Vi; 2 0 for all i,j such that s, = o. 
J 

Suppose this program had an optimal solution. Then, by 

programming theory (Murty, p. 192), the dual would also have an 

optimal, hence a feasible solution. But the feasibility 

conditions for the dual are of the form (6), hence have no 

solution. It follows that program (7) has no optimal solution. 

Step 3: There exist V;; which are feasible for (7) and also 

satisfy ;% t;;v;; < 0. For, the value 0 is attainable in (7) by 

taking all Vij = 0. Since (7) has no optimal solution, there 

must be feasible v;; making the objective function negative. 

Step 4: Arrange these Vij in an (m,n) matrix V. Since V is not 

all 0’s, there is a "+" entry, then a "-" entry in the same 
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column, then a "+" entry in 
  

the same row, etc. (since all - + 

row, column sums are 0). 

Eventually we return to a = + 

previously scanned row or 

column, yielding a cycle of &       

labeled entries as in . 
Figure 3 

Figure 3, with each row and 

column containing either no labels or a single +,- pair. Let 

vi>o be the smallest absolute value of the labeled entries, and 

let V' be the matrix having entries +v1, -v' at the +, - labels, 

and 0 elsewhere. V - V' still has all row and column sums O, has 

at least one more zero entry than V, and does not reverse any V 

signs. If V - V' is not all zeros, construct matrix V? from it 

by the same procedure, then V° from V-V’-VZ, etc. This yields a 

decomposition V= V' + V2 + ... + V.. (q < mn). 

Step 5: Now 0 > E;T; t, v, = IL 53 t;;v};, hence 

0> TE €.k (8) 

for some k =1, ..., q. By labeling countries and industries 

appropriately, we may assume that the "-" entries in VX are at 

(1,1),..., (r,r), and the "+" entries are at (1,2), (2,3), ..., 

(r-1,r) and (r,1). After dividing by v", (8) then reads 

Byt b el B>t F by koLl F b L (9) o 

Next, v'i‘i < 0 implies v;; < 0 which in turn implies s;; = 1. Hence
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{(1,1),..., (r,r)) is a match in S. On the other hand, taking 

antilogs in- (9) yields : 

Andzze +8pr > Agp. .30 2y 
so that ((1,1),..., (r,r)} is not a Jones match. Thus S does not 

satisfy McKenzie-Jones. 

  

This result is of basic theoretical importance. It is not a 

practical method for deciding viability, however, since it 

requires eximination of every square submatrix. A method that is 

practical is via the linear program (7). If it has an optimal 

solution, the dual yields a sustaining price system via the 

transformation in Step 1. 

Examples: (i) Jones' result is a special case of the 

fundamental theorem, as argued above. (ii) Suppose a;; = bic; 

for some by, ...,b, CyyeeesCS, > 0 (A is of rank 1). Then every 

pattern S is viable, and we may take P; = c¢;, W; = 1/b; as a price 

system. Correspondingly, every match is a Jones match. 

I.4. The Transportation Problem 

The row signature of pattern S of size (m,n) is the m-tuple 

(ry,...,x,), where r; is the number of "1"s in row i. The column 

signature is the n-tuple (€4s+e+,c,), where <; is the number of 

"1"s in column j. (Note that this also gives the row and column 

sums of S, respectively, since S is a 0-1 matrix). 

We establish a far-reaching connection between viable 

patterns and the linear programming transportation problem. Let 

A be a technology of size (m,n) and S a pattern with row, column
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signatures (ry,e.oyxy), (S4y...,c,), respectively (zero values 

allowed). Let g;=logay, i=1,..., m j=1,..., n. 

Theorem 2. S is viable if and only if (sy;) is optimal for the 

problem: Minimize Z;Z; t;;y;;, subject to 

B Vg = Ty, all i, 

Z; ¥;; = ¢;, all j, and (10) 

Y,; 2 0, all i,j. 

Proof. (s”) is feasible for this program. A feasible solution 

is optimal if and only if it satisfies "complementary slackness" 

with the dual variables, Wyreeoy Wpy Wypeee, T, (Murty, p. 199) — 

that is, if and only if 

m; + w; £ ty;, with equality if s;; =1 (11) 

for all 4,3 

Let P; = exp m; , W; = exp (-w;). Taking antilogs in (11) 

yields (4) and (5), so that "complementary slackness" is 

  

equivalent to S being viable. 

This gives another characterization of viability, in 

addition to the generalized McKenzie-Jones condition. (Note that 

the linear program (7) is a "feasible direction" perturbation of 

(10)). 

Next, for any pattern S define its score as the product of 

the a;;’s over all (i,j) for which s;; = 1 (This generalizes the 

concept of score for a match).
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Theorem 3. If S is viable, then it has minimal score over all 

other patterns with the same row and column signatures. 

Proof. Since S is viable, it optimizes the transportation 

problem of Theorem 2. Any S' with the same row and column 

signatures is feasible for this problem, hence 

  

T tysy; S I tys, iiSi; ijSi;. Take antilogs. 

As a special case, take m = n, and let the row and column 

signatures be all "1"s. Then we éet (half of) Jones' theorem: 

If a match is viable, it has minimal score! (Jones, p. 166 n.1, 

recognized the connection between his work and the assignment 

problem, which is this special case of the transportation 

problem.) 

The converse of Theorem 3 is false: In the 2-by-2 case 

(Figure 1) let ad < bc, and let S be the (unique) pattern with 

row and column signatures both (1,2). It is not viable. The 

point is there may not be a viable pattern with specified row and 

column signatures, even if Zir; = Zjc;. (See Theorem 14 below). 

. 

I.5. Graphs; Maximal Patterns 

It is very useful to introduce some elementary graph 

theoretic ideas at this point. (See any book on the subject, 

e.g., Berge (1976). Terminology in this field is not 

standardized). Associate with any pattern S of size (m,n) a 

graph consisting of m + n nodes CypeeesCy I;,...,I, corresponding 

to the m countries and n industries, and join C; and I; with an 

arc if and only if Siy; = 1. (The resulting graph is bipartite,
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since every arc joins a C-type with an I-type node). Two nodes M 

and N are connected if there is a sequence of nodes M = x,, 

Xyp+++, X, = N such that each adjacent pair of nodes are joined 

by an arc. The connectivity relation partitions the set of nodes 

into connected components. The graph is connected if any two 

nodes in it are connected. A cycle is a sequence of distinct 

nodes x,,..., X. (r > 2) such that each adjacent‘pair are joined 

by an arec, and also x,, ¥, are so joined. (In a bipartite graph 

the nodes are alternately C-type and I-type. The arcs in a cycle 

correspond to "1"s in the S matrix forming a design similar to 

the labeled entries in Figure 3). A graph is acyclic if it has 

no cycles. A tree is a connected acyclic graph. 

One application of these ideas is to maximal patterns. 

Pattern S is maximal if it is viable, but such that the change of 

any s;; from a "0" to a "1" would destroy viability. 

Any viable pattern extends to a maximal pattern by 

successively transforming certain "0"s into "1"s. Conversely, 

transforming "1"s to "O"s preserves viability. Hence knowing the 

maximal patterns gives in effect all viable patterns. 

Pattern S is strictly sustainable if there is a price system 

Pyyeeey Py Wypeoo, Wy > 0 such that 

Pj < wiaij when S = 0 (12) 

P = wia“. when s; =1 (13) 
J 

This property is stronger than mere viability since, unlike 

(4) and (5), it disallows s;; = 0 and P; = Way; holding 

simultaneously. We may now characterize maximal patterns.
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Theorem 4. Under technology A, pattern S is maximal if and only 

if s has a connected graph and is strictly sustainable. 

Proof. (i) "Maximal" implies "connected graph": 

Suppose the graph of viable S 

  
is not connected. Then there 

  

        

c 0 . . . 0 
is a partition of countries 6 6 

. e ° 

into sets ¢', ¢c" and of O 0 

industries into I', I", such c” : : 

that no arc joins a C' to an 6 =i 6 

I" node, or a C" to an I' 

Figure 4 
node. (See Figure 4). 

Further, either C' and I" are both non-empty, or C" and I' are 

both non-empty (i.e., at least one block of zeros in Figure 4 is 

really there). 

Suppose the former. Let P, W > 0 be a price system 

sustaining S. Consider A = Min(wia”/Pj), the minimum taken over 

all i e C' and j_e I". By (4), A 2> 1. Change the price system 

by multiplying all P; in I" and W; in C" by A (leaving P; in I' 

and W, in C' unchanged). This preserves (4) and (5), but 

transforms (4) to an equality at any i € C' and j € I" at which 

the minimum is attained. cChanging such an S;; to 1 preserves 

viability, hence the original S was not maximal. A similar 

argument works if C" and I' are both non-empty. 

(ii) "Maximal" implies "strictly sustainable": 

Suppose viable S is not strictly sustainable. Then it has a 

price system P, W but with s;; = 0 and P; = W,a;; for some i,j. 

 



18 

Let S' be the same as s, except that sh = 1 for this particular 

pair. The same price system supports S', so S' is viable. Hence 

S is not maximal. 

(iii) "Connected graph" and "strict sustainability" imply 

"maximal": 

First, if S has a connected graph, there is at most one 

price system supporting it (up to a numéraire - i.e., a 

multiplicative constant). Let P', W'; P", W" be two supporting 

price systems, and let P,/P; = c. Then, by (5), W,/W, = ¢ for all 

row nodes i connected to column node 1, then PVP; = ¢ for all 

columns j joined to these, etc. By connectivity every node is 

eventually reached, and ratios everywhere equal c (cf. McKenzie, 

pP. 169). 

Now let viable S have a connected graph but not be maximal. 

Let viable S' be the same as S, except that $;; =0, s;; =1 for 

some particular (i,j) pair. Let P, W be a price system 

supporting S', so that P; = W;a;; for this pair. The same P, W 

supports S, though (12) is violated at (i,j). But any price 

system for S is proportional to this one, hence S is not strictly 

sustainable. 

  

As corollaries, every maximal pattern S has at least m+n-1 

"1"s, and also is efficient (no all-zero rows or columns). These 

follow from connectivity. For, a connected graph with m + n 

nodes has at least m + n - 1 arcs (Berge, p. 16). Further, if 

row i is all zeros, then country i is not connected to afiy other 

node. Similarly for columns.



19 

I.6. Technologies in General Position 

Technology A is generic, or in general position, if for 

every square submatrix the Jones match is unique (i.e., there are 

no ties for lowest score). Technologies that are not generic are 

said to be exceptional. 

For example, in the classic 2-by-2 case (Figure 1) the 

technology is generic if ad = bc, exceptional if ad = bc. The 

reason for making this distinction is that many results are very 

much simplified if exceptional technologies are excluded, while, 

at the same time, those technologies really are exceptional 

"knife-edge" cases. 

A technology is identified by mn numbers, so we may think of 

the set of all possible technologies as (the positive orthant of) 

mn-dimensional space. Equip this space with Lebesgue measure. 

The following theorem states that the exceptional technologies 

are "very small" in several senses. 

Theorem 5. (i) The set of exceptional technologies has measure 
zero. 

(ii) The set of generic technologies is dense and open. 

Proof. (i) An exceptional technology satisfies a relation of 

the form 

21850008, = Ap,q...3 (14) 

where a;,..., a, are certain distinct coefficients in it. 

Choosing one of the a’s and solving for it in terms of all the 

others, we see that the set of technologies satisfying (14) is
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the graph of a continuous function in mn-space. By Fubini’s 

theorem, the measure of this set can be expressed as the integral 

of the measure of its "sections" (Faden, p.86). These measures 

are all zero since the sections are singletons. Thus the measure 

of the set satisfying (14) is zero. Finally, there are just a 

finite number of possible relations of the form (14), and the 

union of the corresponding sets has measure zero and contains the 

exceptional technologies. 

(ii) Any non-empty open set has positive measure, hence 

contains a generic technology, by Part (i): Generics are dense. 

A generic technology satisfies a system of inequalities of the 

form (14) (replace "=" by "<"); a sufficiently small jiggling of 

  

the a;;’s preserves these inequalities: Generics are open. 

Genericity can be characterized in a large number of ways by 

the properties of its viable patterns. The following theorems 

give the fundamental results. 

Theorem 6. For technology A, each of the following properties 

implies the other two: 

(i) A is in general position. 

(ii) Every viable pattern S has an acyclic graph. 

(iii) Every viable pattern S is strictly sustainable. 

Proof. (i) implies (ii): Let (€, I, G Ipp..., C, I,) be a 

cycle in the graph of pattern s. (Cyye.., C. are distinct 

countries, I,,..., I, distinct industries). Then U(CqnTy) reviey 
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(CnIr)} is a match in S, and so is {(C, L), (CoIy)fpenn, 

(C.yI.1)}. By A generic these cannot both be Jones matches. 

Thus the McKenzie-Jones pfinciple is violated, so S is not 

viable. 

(ii) implies (iii): 

Step 1: We first prove the following: if S is strictly 

sustainable, then the pattern S' that results from changing a 

single Si; = 1 to 0 remains strictly sustainable. 

S is acyclic, so the removal of arc (i,j) makes the graph of 

S' disconnected. Thus there is a partition of countries into 

sets C', C", and of industries into I', I", with no arc from C' 

to I" or from C" to I' (see Figure 4). We may also assume that i 

€ C', j € I" (e.g., by taking C', I' to be the connected : 

component containing i.) 

Let P, W be a price system strictly sustaining S. Transform 

it as follows: multiply all W’'s ahd P’s in C', I' by 1; leave 

all Ws and P’s in C", I" unchanged. Here A > 1, but chosen so 

close to 1 that all strict inequalities of the form (12) are 

preserved. As for the equalities of the form (13) they are all 

preserved too, due to the absence of arcs noted above — with the 

sole exception of the special pair (i,j). Thus the new price 

system strictly sustains S', and Step 1 is finished. 

Step 2: Viable S extends to a maximal pattern S", which is 

strictly sustainable (Theorem 4). Now start from S", and change 

"1"s back into "O"s one at a time until we get back to S. By 
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Step 1 strict sustainability is preserved at each step, -so that s 

itself is strictly sustainable. 

(iii) implies (i): Suppose A is exceptional. Then there 

are distinct Jones matches in the same square submatrix — say 

{(1,0(1)),..., (r,o(r))} and {(1,7(1)),..., (r,r(r)))} where g, T 

are distinct bijections onto the same set of industries. Define 

pattern S as follows: Siaiy = 1/ i=1,..., r, and zeros 

elsewhere. S is viable. Let P, W > 0 be a price system for S. 

Then 

P < W.a AlEe e i e (15) reiy = W8, 

by (4). We then obtain 

Bytie By 2B o(r) «eoP S W...Waq,-..a (16) 1) 7(r) = SR, MR 

= W1 b ‘wra1v(1)' ' 'ar,a(r) 

(The first equality in (16) arises from o,7 mapping to the same 

set of industries, the inequality from multiplying all the 

inequalities in (15), and the last equality from the Jones 

matches having tied scores). But P,;, = Wa,,;, i = 1,..., r, by 

(5). Multiplying these shows that (16), hence (15), is actually 

all equalities. On the other hand, s = 0 for some i, since i,7Ci) 

g, 1 are distinct. Thus S is not strictly sustainable, and (iii) 

  

is false. 

.Another set of necessary and sufficient conditions arise in 

connection with maximal patterns.
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Theorem 7. For technology A of size (m,n), each of the following 

conditions implies all the others: 

(i) A is generic. 

(ii) The graph of every maximal pattern S is a tree. 

(iii) Every maximal pattern S has exactly m + n - 1 "1"s, 

(iv) Evgry viable pattern S with exactly m + n - 1 "1"s is 

maximal. 

(v) Every viable pattern S whose graph is a tree, is 

maximal. 

Proof. (ii) implies (iii), and (iv) implies (v): A tree on m + 

n nodes has exactly m + n - 1 arcs (Berge, p. 24). 

(iii) implies (iv): Let (iv) be false, so that some S with 

m+n-1"1"s is viable, but not maximal. Change some "0"s to 

"1"s to obtain a maximal S'. This contradicts (iii). 

(v) implies (ii): Let (ii) be false, so that some maximal 

pattern S has a graph with cycles (and also connected of course). 

A proper subset of the arcs forms a tree (Berge, p. 25). The 

corresponding pattern S is not maximal, falsifying (v). 

(i) if and only if (ii): (ii) says that every maximal 

pattern is acyclic. Hence every viable pattern S is acyclic, 

since S arises from some maximal S' by changing some "1"s to 

  

"0"s. Apply Theorem 6. 

Finally, Theorems 8 and 9 below give the basic uniqueness 

results associated with generic technologies. 
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Theorem 8. For technology A of size (m, n), each of the 

following conditions implies the other two: 

(i) A is generic. 

(ii) Let Xyseee, X, 2 0 be output efficient for Lyjeee, Ly 

> 0 . Then there is exactly one system of allocations 

(Li) » (X;;) satisfying (1), (2), (3). 

(1d3): Tet T, ives, L, 2 0 be input efficient for Xireoo, X, 

> 0. Then the same conclusion holds. 

Proof. (i) implies (ii): Let (ii) be false. Then two distinct 

allocations (X;;), (X;;) satisfy (1), (2), (3). Let Xy = Xy = K 

Then 

Z; x;; = 0, all j, & ajx;; = 0, all i 

In the x matrix there is a "+" entry, then a "-" entry in the 

same column, then a "+" entry in the same row, etc. Eventually 

we get to a cycle of labeled entries as in Figure 3. Xh > 0 at 

all "+" entries, and xh > 0 at all "-" entries. 

Now consider X5 = (xh + x;)/z. This also satisfies (1), 

(2) and (3), and is positive at all the labeled entries in Figure 

3. Hence the graph of its pattern has a cycle, so (i) is false. 

  

(ii) implies (i): Let ay ap 
(i) be false, so that there i 
exists a viable pattern S oo 

whose graph contains a cycle, : : ar.q,r 
an arr say (I, C, I, Cy oun, I, 

C.) (Figure 5). We may assume 

S has no all-zero rows.       

Figure 5 
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Let (L;;) (and (X;;)) be allocations corresponding to S: L;; > 0 if 

and only if-s” = 1. Now alter (L;j;) by increasing L, and 

decreasing L;, by a small amount €, increasing L,, and decreasing 

Ly; by €ay/a;, (these changes add and subtract equal amounts from 

X;, leaving it unaltered), etc., around the cycle. (We are 

simplifying notation by writing C; as i, I; as j). An easy 

calculation shows that all Lypeeer Ly X4p0ee, X, are unaltered. 

This follows from the equality ay...8, = aj,...a., a,, these 

being the scores of tied Jones matches. Thus (ii) is false. 

(This argument is the same as McKenzie's involving "neutral 

circuits" (p. 170-71); also Jones, p. 169-70)). 

(i) implies (iii), (iii) implies (i): Proofs are virtually 

  

identical to the above. 

Note that (ii) and (iii) are themselves virtually identical. 

In fact X = (X,,..., X,) > 0 is output-efficient for L = (Ligsyoiaoy 

L)) > 0 if and only if L is input efficient for X, as is easily 

seen. 

In the following, and throughout this paper, "natural 

number" includes zero. 

Theorem 9. Let A be a technology of size (m,n). A is in general 

position if and only if, for any natural numbers (ryy..., r,) and 

(C4se+., c,), there is at most one viable pattern S having these 

as its row and column signatures. 

Proof. Only if. Let S', S" be two distinct viable patterns with 

the same row and column signatures. The matrix S'- S" has all
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row and column sums zero. We can then find a cycle of 

alternating "+" and "-" entries as in Figure 3. At the "+" 

entries, sh = 1, so these constitute a match in s'. Similarly, 

s; = 1 at the "-" entries, giving a match in s". By McKenzie- 

Jones these are both Jones matches. But they are in the same 

square submatrix, so A is exceptional. 

1If. Let, say, {(1,0(1)),..., (r,o(r))}, and {(1,7(1)),..., 

(r,7(r))) be distinct Jones matches, S, the pattern with "ivs at 

(i,0(i)), i =1,..., r, "o"s elsewhere, and S, the corresponding 

pattern for 7. These are viable and distinct, with the same row 

signatures, hence distinct column signatures. Thus A is generic. 

  

I.7. Patterns and Facets 

There are far-reaching structural connections between the 

algebraic and geometric representations of patterns. Let Luisie ooy 

L, > 0 be given, as well as P = (P{,..., PL) >0 Fp, the facet 

determined by P, is the set of all (Xy7--., X)) 2 0 maximizing PX 

subject to (1), (2) and (3). By linear programming theory 

(Murty, p. 139) Fp is a convex, closed, polyhedral set. 

P also determines uniquely a pattern S, that is output 

efficient and strictly sustained by P and the corresponding W, = 

Max;[P;/a;;1, i = 1,...,m, namely s;; = 1 if P; = W,a;;, and 0 

otherwise. 

An allocation L;; 2 0 satisfying (1) conforms to pattern S 

if L;; > 0 implies s;; =1, all i,j. Any allocation generates an 
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output n-tuple (X,,..., X,) via (2) and (3). The following 

theorem holds for any technology A. 

Theorem 10. Let X (=xj) be generated by allocation (L”). (L”) 

conforms to S, if and only if X belongs to Fp. 

Proof. Let X € F,. Then allocation (L;;) solves a linear program 

whose solution has alréady been described: 1If L;; > 0, then fi/a” 

attains the maximum over j, namely W;. Hence s;; = 1 by 

definition of S, Thus (L;;) conforms to Sp- 

Conversely, let allocation (L;;) conform to Sp, and let X' be 

generated by any other allocation (Lh). Then 

PX = %ZiL”P/a” = %ZiL”Wi= Z; Liw; = 

;5 WiLy; 2 I;T; PjL;/a;; = PX' 

(The inequality arises from (4), the second equality from Lj; >0 

implying S;; = 1 and (5) or (13); the other equalities from (1), 

  

(2) and (3). This shows that X e Fye 

As a corollary, F, is the set of all n-tuples generated by 

allocations conforming to S,. Furthermore, while X may be 

generated by more than one allocation, for any S, they either all 

conform or all disconform. 

For patterns S, S', the relation S < S' means s;; =1 

implies s;; = 1. 

Theorem 11. For any price systems P and P', S, < 5, if and only 

if Fp < Fw. 
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Proof. If. Let, say, ()17 = 1, and let (L;;) be an allocation 

conforming ‘to S, with L;; > 0. If X is generated by 

this allocation, then X € Fp, hence X ¢ FW’ hence (L”) conforms 

to SW, hence (Sp.)11 = 1. 

Oonly if. Let X € Fp and let X be generated by (L;;) - Then 

  

this allocation conforms to Sp, hence to SW' hence X ¢ Foi. 

Now, pattern S is of the form S, if and only if s is 

strictly sustainable and output-efficient. The above discussion 

demonstrates a natural 1-to-1 correspondence between the set of 

these patterns and the set of facets, namely Sp corresponds to 

Fp. For, from Theorem 11, Sp = S, if and only if B Fw, so the 

correspondence does not depend on the particular p representing a 

pattern or facet. 

For generic technology A, every viable pattern is strictly 

sustainable, so the 1-1 correspondence is between the set of all 

facets and the set of all output-efficient patterns. 

I.8. Dimensionality 

We can also determine the dimensionality of facets from 

their patterns. Let output efficient S have r; "1"s in row i. 

This gives r; - 1 degrees of freedom to the range of conforming 

allocations. Adding over rows yields k - m degrees of freedom in 

all, where k is the number of "1"s in S. This is the 

dimensionality of the polyhedron of conforming allocations. 

The mapping from allocations to output n-tuples is a linear 

transformation. 1If A is in general position this mapping is 
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injectiye, so that it preserves dimensionality. Thus the 

dimension of the S-facet is also k - m. (For any technology, the 

dimension of F, is given by McKenzie, p. 173, as n minus the 

number of connected componenté in the graph of Sp. If Sp has an 

acyclic graph, this equals k - m (McKenzie, p. 175) in agreement 

with our argument). 

For example, consider maximal patterns. These have exactly 

m+n -1 "1l"s, hence their facets have dimension n-1, evidently 

the maximum possible in n-space. Thus the maximal patterns » 

correspond exactly to the maximal facets, which we shall call 

faces. At the other extreme consider a viable S having exactly 

one "1" in each row (each country specializes in just one 

industry). cClearly there is just one conforming allocation, 

yielding a O-dimensional facet of one point. We shall call this, 

and the corresponding pattern, a vertex. 

The analysis above is in terms of output efficiency. There 

is a completely parallel analysis for input efficiency, which we 

sketch briefly. Given Xipeeey, X, >0, and W;,..., W, > 0, the 

input facet F, determined by W is the set of all L = (Lyse-e,Ly) 

minimizing WL subject to (1), (2) and (3). S, is input- 

efficient (no all-zero columns), given by s;; = 1 if and only if 

P; = W;a;;, where p; = Mini[wiaij]. Then F, is the set of all 

m-tuples generated by allocations conforming to S, Next, the 

set of strictly sustainable input-efficient patterns is in 

natural 1-1 correspondence with the set of input facets. For 

generic A, the dimension of an S-input facet is k - n, where k is 
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the number of "1"s in S. Maximal patterns again correspond to 

maximal input facets, all of dimension m-1 (input faces). 

Finally, an input vertex is a viable pattern with exactly one "1" 

in each column (each industry operates in just one country). 

I.9. Vertices 

A facet is determined by its vertices (it is their convex 

hull). 1In the same way patterns are built up from the vertices 

contained in them. The following arguments work with any 

technology A (m-by-n, as usual). 

Let S be a pattern with no all-zero rows. A vertex in S 

is a vertex S' < S. That is, in each row we keep exactly one of 

the "1"s, setting the others to zero so the row signature is all 

"1"s. If r; is the number of "1"s in row i, then the number of 

vertices in S is the product LyLee ek, 

Theorem 12. S is viable if and only if every vertex in S is 

viable. 

Proof. oOnly if. Removing "1"s preserves viability. 

: If. Suppose S is not viable. Then there is a match in S 

that is not a Jones match, by generalized comparative advantage. 

By appropriate labeling we may take this match to be (LAY i eeie 

(r,r)}. For each row i other than 1,..., r choose any j with Si; 

= 1. These m - r pairs, together with the r match pairs, yield a 

vertex S' in S. ((1,1),...,(r,r)} is also a match in S', so s! 

is not viable. 
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(This result is stated in McKenzie (1968), p. 96, based 

presumably on McKenzie (1954), p. 171). 

A caution. Let S', S" be viable vertices. Their 

"combination" S = Max(S', S") is not necessarily viable, since 

there may be more vertices in S than the original two. For 

example, England and Portugal may both specialize in wine, or 

they may both specialize in cloth. These are both viable 

vertices, but their combination is not viable in general. 

Theorem 13. Given technology A of size (m, n), and given natural 

numbers (c,,..., c,) adding up to m: 

(i) ~There exists a viable vertex with this column 

signature. 

(ii) If A is generic, there is just one such vertex. 

Proof. (i) Consider the transportation problem (10) with r; = 1, 

i=1,..., m. Since Zir; = Z;c, this program has an optimal 

solution which is, furthermore, all integer (Murty, p. 382). 

Letting (s;;) be this solution, we see that S;; =0or 1 (s is a 

pattern) and has row signature (1,..., 1) (a vertex) and column 

signature (C4s++<s ©). By Theorem 2, S is viable. 

  

(ii) Immediate from Theorem 9. 

Theorem 14. S is a viable vertex if and only if it has minimal 

score over all other vertices with the same column signature. 

Proof. The "only if" part is immediate from Theorem 3. 

Conversely, let S not be viable. Then it does not optimize the
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transportation problem (10) determined by its row and column 

signatures. But some other vertex S' does optimize this problem, 

so that Z;%; t;;s;; > I;%; t;;s;;. Taking antilogs shows that S does 

  

not attain minimal score. 

This is stated by Jones, p. 168. For the special case on 

which he concentrates attention, take m = n, with (Cypeees ) 

all "1"s (cf. the discussion following Theorem 3). 

Needless to say, this entire development with vertices has a 

parallel with input vertices, in which the roles of rows and 

columns are interchanged. Discussion is omitted. 

I.10. Pattern Accounting 

Theorem 13 on vertices is part of a very general class of 

results concerning the number of distinct patterns or facets in 

terms of their signatures or dimensions. It is remarkable that 

these results do not depend on the technology, provided only that 

it is §eneric. (How these facets fit together does depend on the 

technology, and provides a basis for classifying technologies). 

We begin with the opposite extreme from vertices, the 

maximal patterns. Recall that, for A generic of size (m,n), 

these have exactly m + n - 1 "1"s. 

Theorem 15. Let technology A be in general position. 

(1) Let ¥i,+s., r, be positive integers adding up to m + 

n - 1; then there exists exactly one viable pattern with this row 

signature. 
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(ii) Let Cysr++.,C, be positive integers adding tom + n - 1; 

there exists exactly one viable pattern with this column 

signature. 

Proof. The hardest part is to prove that there is at most one 
  

such pattern. Steps 1 through 5 address this task. 

Step 1: Let S', S" be two maximal patterns, sustained by prices 

P', W', P", W", respectively. We show 

Min, (W;/W,) = Min, (P;/P)) (17) 

Let i be a row attaining the left-hand minimum in (17), and let jv 

be a column such that s;‘. = 1 for this i. (There is such a j, by 

S' maximal). Then Wia,; 2 P, Wia;; = P; by (4), (5), respectively, 

implying Wi/W; 2 P{/P, This proves (17) with ">" in place 

of "=n, ; 

Conversely, let j be a column attaining the right-hand 

minimum in (17), and let i be a row such that s',-'j = 1 for this j. 

Then Wa;; = P, w;aIJ > P} by (5), (4), respectively, implying w'].'/w; 

< Pj/P;, implying (17) with "<" in place of "=". Thus (17) is 

proved. 

Step 2: Let C, be the set of countries i attaining the minimum 

in (17), and I, the set of industries j attaining the minimum. 

Let C, and I, be the remaining countries and industries, 

respectively. Suppose C, were empty; then the wage systems W', 

W" would be proportional to each other, implying S' = s, 

Suppose I, were empty; then P', P" would be proportional to each 

other, again implying s' = s".
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The remaining possibility is that Cor Cyv I;, I, are all non- 

empty. We shall show in this case that S' or S" has a 

disconnected graph, contradicting its maximality. Specifically 

we show there is no arc joining i in C, to j in I, and no arc 

joining C, to I, (cf. Figure 4). 

Step 3: Let i be in Gy, j in I, and suppose sh = 1. Then (W;/W;) 

< (Pj/P)) by (17), Wa;; = P; by (5), and P| < Wa,; by (4). 

Multiplication yields a contradiction, so that sh = 0 for i in 

Cr J in I,. 

A similar argument shows that s;; = 0 for i in C,, j in I,. 

Step 4: Suppose i is in Cy, J in I,. Then P;./W; = P'j'/w".' by (17). 

If this common value = a;;, then sh =1-= s%, by maximality of 

S!, S". If this value < a;;, then sh =0 = sh. In any case sh = 
S‘-j. 

Step 5: Suppose now that S', S" have the same row signature. 1If 

i is in ¢, ;his implies s% =0, all j in I,, from the results of 

Steps 3 and 4. But then S" has a disconnected graph, contra- 

diction. 

Suppose instead that S', S" have the same column signature. 

If j is in I, this implies s;; = 0, all i in C,. This, together 

with step 3, shows that S' has a disconnected graph, 

contradiction. Thus S' = S". We have shown there is at most one 
  

maximal pattern with given row or column signature. 

Step 6: For technology of size m-by-n, let M be the set of 

maximal patterns, let K, . be the set of all n-tuples (c;,..., C,)
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of positive integers adding up tom + n - 1, and let L, be the 

set of all m-tuples (ry,..., r,) with the same property. 

Let"card" be the cardinality of a set. Then 

card Kfim = card Ihm . (18) 

For, card Kfim(Lmn) equals the number of ways of putting m + n 

-1 indistinguishable balls into n(m) urns, with no urn remaining 

empty. Both these numbers equal (m + n - 2)! / [(m=1)! (n-1)!] 

(Feller, p. 37). 

Step 7: The map assigning each maximal pattern its row (column) 

signature sends . into L,n (K, ,), respectively. These two maps 

are injective by Step 5, since distinct patterns have distinct 

signatures. 

Step 8: Finally, we prove the theorem by induction on t = m + n. 

To start, t = 2 is the 1-by-1 case, for which the theorem is 

trivial. Suppose, then, that the theorem holds for all (m, n) 

such that m + n = t - 1, and consider (m, n) withm + n = t. 

Case (i): m £ n. Let Cyre+ey C, be positive integers 

adding tom + n - 1. If all C; 2 2, we would have m + n - 1 2 

2n, contradiction. Hence some c; =1, say ¢, = 1. Drop this 

column from the technology. The result is a technology of size 

(m, n - 1), still generic. (C3peeey c,) adds up tom + (n - 1) 

- 1, hence, by the induétion hypothesis, there exists a (unique) 

maximal pattern S of size (m, n - 1) with column signature 

(C3re0+, ). Let Wiy..., W, be a wage system for it. Now go 

back to the (m, n) technology and define pattern S' on it as
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follows: s° cqincides with S in columns 2 through n, while in 

column 1 s;, = 1lcn the i minimizing W;a;, and = 0 elsewhere 

(there cannot be a tie, by genericity). It is easily verified 

that this S' is a maximal pattern with column signature 

Cireeey Cpe 

Case (ii): m > n. An identical arqgument, reversing the 

role of rows and columns, shows that for any positive integers 

Yyy.++, ¥y adding tom + n - 1 there exists a maximal pattern 

with this row signature. 

Step 9: Case (i): m < n. Steps 7 and 8 together show that the 

mapping from M, . to Kon is a bijection or 1-to-1 correspondence. 

Hence card an equals the common value in (18). But then the 

injection from M, . to L, must also be a bijection, so that for 

every (ry,..., r;) as afiove there is a (unique) maximal pattern 

with that row signature. The induction is now complete in this 

case. 

Case (ii): m 2 n. Identical argument, reversing the roles 

  

of K, , and L, .. The induction is now complete. 

Incidentally, steps 1 through 5 in this proof do not assume 

A generic, so we have also proved: There is at most one maximal 

pattern with a given row or column signature, even if A is 

exceptional. 

We now come to what may be called the General Facet 

Accounting Theorem. For convenience, we work with the output- 

efficiency frontier, but a similar result holds for input
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efficiency. We use the standard abbreviation (;) for r!/ 

[s!(r-s)!] for natural numbers r, 8. 

Theorem 16. Let technology A of size (m, n) be generic, and let 

Tyse.., I, be positive integers adding to k. 

(i) The number of viable patterns with row signature 

(Fypeee, r, is 

m+n-1 
k c (19) 

(ii) The number of efficient patterns with row signature 

(Tyseee, ) is 

m= 1 

k - n (20) 

Proof. The proof is by induction on d = k - m. (Recall that d 

is the dimensionality of the facet associated with a pattern with 

k "1"s and m rows). 

Step 1: Start with d = 0. Here (Tir00ey £) = (1,.4., 1). -Eor 

any nafural numbers ¢,,..., ¢, adding up to m there exists 

exactly one viable vertex with column signature (Cireeey ©) 

(Theorem 13). Hence the number of viable patterns with row 

signature (1,..., 1) equals the number of (c4s--., c,) adding to 

m, which is (Feller, p. 36) 

m+n-1 
m 

This verifies (19) for d = 0. The number of efficient vertices 

(no all-zero columns) equals the number of positive integers 

(€4s++¢+, ¢,) adding to m, which is 
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(323) m-n 

verifying (éo) for d = 0. Thus the theorem holds for d = 0. 

Step 2: Suppose, then, that the theorem holds for dimension d 

(i.e., for any generic technology A of any size (m, n) and any k 

with k = m = d), and that we are given generic A and positive 

integers ryy..., ¥, adding to k, where k = m =d + 1. 

At least one of the r; exceeds one, say ry > 1. We now 

construct a new technology A' of size (m + 1, n) as follows. 

Rows 1 through m of A' are the same aé A. The new row — call it 

row 0 — is almost, but not quite, proportional to row 1. 

Specifically, we require that A' remain in general position, and 

that 

ag;a5e/ (3y;ag,) < A (21) 
for all j, ¢ = 1,..., n. Here A is a number > 1 but very close 

to 1, satisfying the following conditions: 

(i) For each square submatrix of size (r, r) in A (r > 1), 

let p be the ratio of the score of the second-best match to the 

score of the Jones match (p» > 1 by A generic). A is to be less 

than all such ,. 

(ii) For each viable pattern S in A with row signature 

(ry=1, r,..., ) or (ry, T,..., r,) choose a price system 

Wiseeey Wp, Pyy..., P, strictly sustaining S; then consider 

p = Min[w,aU/Pj], the minimum taken over all j = 1,..., n for 

which S;; =0 (p > 1 by (12)). i is to be less than all such ,. 

These are the conditions on row 0. To fulfill them; start 

by duplicating row 1, then "jiggle" each coefficient successively 
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to attain general position (cf. Theorem 5; details are omitted). 

Step 3: We need one preliminary result. Let S be a viable 

pattern with row signature either (ry,ee., ) or (r,-1, Topene, 

r,), and let P, W be the price system for S that was used in 

determining A above. Let j,2 be two columns such that S5 = 0, 

Sye = 1. Then P;/aj; < P,/a,. 

This follows from 

A4/ (3gjay,) < A < Wiay;/P; = (Py/ay,) (a”/Pj), 

from (21) and the construction of ). 

Step 4: For technology A' consider the m + 1 tuple (1, r,-1, 

Tyy+-., ¥,) of positive integers. This adds up to k, and k - 

(m + 1) = d. Hence, by the induction hypothesis, there exist 

exactly [ m+ n ] viable patterns S' in A' with this row 
k 

signature. Each of these has exactly one "1" in row 0, say in 

column £. 

Now classify these patterns into two groups: 

Group I patterns: satisfy s;, =1 

Group II patterns: satisfy s;z =0 

Step 5: We show there is a 1-to-1 correspondence between Group I 

and the set of all viable patterns S with row signature (=1, 

Tyye++y I,). Given such an S, define S' as follows. S' has an 

extra row 0, with a single "1" in the column ¢ maximizing P;/ay; 

over j = 1,..., n, where the P’'s are from the price system for S 

used above. In rows 1,..., m, S' is identical to S. 
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By Step 3, s, = 1. (Also, there cannot be a tie for 

maximum, by A' generic). S' is viable, since supported by the 

price system P, W (with Wy = Py/ag,). Thus S' is in Group I. 

This is indeed a 1-1 correspondence, for, given S' there is only 

one S it can have arisen from (delete row 0), and this S is 

viable. 

Step 6: We show there is a 1-to-1 correspondence between Group 

IT and the set of all viable patterns S with row signature 

(ryy«.., r)). Given such an S, define S' exactly as in Step 5, 

except that we set s, = 0. (s,, = 1 by the argument of Step 3.) 

Thus S' is in Group II. 

Given S', there is only one S it can have arisen from 

(delete row 0 and change sh =0 to a "1"). It remains only to 

show that this S is viable. If S were not viable, then some 

match in it must not be a Jones match, and this offending match 

must arise from the extra "1" at (1, £¢) (since S' is viable). 

Label countries and industries so that (2,2),..., (r,r) are the 

rema?ning components of this bad match, while the corresponding 

Jones match is ((,2),..., (r-1,r), (r,2)). Thus (see Figure 5 

with column ¢ in place of column 1) 

Q18-+ 28y > Appeeedpy Ay (22) 

We can, in fact, multiply the right side of (22) by A and still 

retain the inequality, by construction of A. On the other hand, 

{(o,¢), (2,2),.., (r,r)} is a match in viable S', hence a Jones 

match. Hence 

Qg3+ + + 3y, By > Agedppe - -2y, (28
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Multiply the inequalities (23) and (22) (with A included on the 

right side of (22)). This yields after cancellations, agay, > 

a;,85,A, Which contradicts (21). Thus S is viable after all, and 

the 1-to-1 correspondence is established. 

Step 7: We now complete the induction for Part (i) of the 

theorem. The number of viable patterns in A with row signature 

(ry,+..., r;) = the number of Group II patterns (Step 6) 

[ m+ n ] - number of Group I patterns (Step 4) 
k 

= { m+n ] = number of viable patterns in A with 
k 

signature (r,-1, TyreeesX,) (Step 5) 

= m+ n - m+n-1 = m+n-1 ] 
k k-1 k (24) 

verifying (19). Only the next-to-last equality needs explaining. 

(ry-1, ry,..., r,) adds up to k - 1, and (k - 1) - m = d, so the 

induction hypothesis can be appliea. 

Step 8: To complete the induction for Part (ii) of the theofem; 

Substitute "efficient" for viable throughout, and note that the 

mappings in Steps 5 and 6 preserve the "no all-zero column" 

condition. The entire argument goes through. The structure of 

Step 7 is preserved, and the appropriate formula reads 

[ m ] - [ m-1 = [ m-1 ] 
k-n kKk=-n-1 kK -n 

in place of (24). This verifies (20). 
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A few comments. If n > k, there are no efficient patterns 

since not all columns can be covered by "1"s. (20) gives the 

correct answer in this case, namely "zero". If k =m+ n - 1, 

(19) and (20) both give the answer "one", in agreement with 

Theorem 15. (The one maximal pattern must be efficient). This 

result, arrived at here at the end of a long, somewhat tortuous 

induction, is arrived at there by a much shorter, perhaps more 

elegant, and completely different line of argument. It is 

important to develop a variety of techniques to gain insight into 

this complex subject. 

Here are some simple corollaries. 

Theorem 17. Let generic technology A be of size (m, n). 

(i) The total number of efficient patterns having k "1"s is 

(k. = 1):l 
(k =m)! (k-n)! (m+n-%k-1)! (25) 

(ii) The total number of facets of dimension d in the 

output efficiency frontier is 

(m+n-1)! / (4 + m) 
dl (n-d-1)! (m - 1)! (26) 

Proof. The number of distinct sequences of positive integers 

(ryy+.., r;) adding up to k is ( k - 1 ]. This times (20) gives 
m-=1 

(25). This times (19) gives (26), on making the substitution k = 

  

d + m. 
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Note some special cases. If k =m + n - 1, (25) gives the 

total number of maximal patterns as (m + n - 2)!/[(m=-1)!(n=1)!] 

which we already knew as the value of (18) . The same answer 

arises from (26) whend =n - 1. Ifm=n = k, (25) equals one, 

the unique Jones match. 

II. The Synthesis Problem for Three Industries or Three Countries 

The astonishing regularities uncovered in pattern accounting 

are only half the story. The same collection of facets can be 

fitted together in many ways, and these alternatives are 

technology dependent — in fact they yield a natural approach to 

the classification of technologies. 

This synthesis problem appears to be more difficult than the 

ones tackled up to this point. At any rate, we have made 

substantial progress only for the case of three industries, or 

three countries. There are good reasons for studying the n = 3 

case. We can make full use of our geometrical intuition here, 

building on previoué work by McKenzie. And even at this level 

there are rather deep unsolved problems, which give an inkling of 

what lies in store in higher dimensions. 

IT.1. Quincunxes and McKenzie Tilings 

To McKenzie (1954), p. 174, goes the credit for constructing 

the first "McKenzie tiling" (in our terminology - see Figure 11 

below). This was a remarkable insight. The derivation (p. 173) 
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was by constructing edges connecting adjacent vertices — a method 

which is not always reliable and which in fact led to an 

historically-important error in their use (See Section I.3 

above). Further, the general principles governing all such 

tilings were barely touched upon (p. 175). 

Our aim here is to derive these general principles from the 

results of the analytic theory of Part I of this paper. We shall 

concentrate on the output efficiency frontier for the three 

industry case. The input efficiency frontier for the three 

country case is completely parallel, and will be mentioned from 

time to time. Assume until further notice that technology is in 

general position. 

The facets consist of vertices, edges and faces (dimensions 

0, 1, 2, respectively). The vertices and faces are in 1-1 

correspondence with their column signatures, so we can use the 

latter as natural codings. Thus, a vertex is named by a triple 

(¢4, €3, c3) of natural numbers adding up to m (where m is the 

number of countries), c; being the number of countries 

specializing in industry j. A face, on the other hand, has a 

signature (c;, c,, c;) of positive integers adding up tom + n -1 

=m + 2. 

Consider the vertex signatures first. There is a natural 

way of arranging them, illustrated in Figure 6 for m = 4 

countries. To facilitate discussion, refer to movements between 

adjacent vertices as being in the 1-2, 2-3 or 1-3 

directions (Figure 7). 
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(Vertices (¢, ¢, c3) and 040 

(¢y') c,', cyg') are adjacent if 2 3 A o3 

Maxlcj-c}] = 1). Movement in ' 
220 022 112 the 1-3 direction shifts one !!! 

unit between column 1 and 310 \\\V' \\V’ \\Vv o1 

column 3, etc. AA\A 

400 3017 202 103 004 Three mutually adjacent 211 

  

vertices may be grouped into Figure 6 

"triangles" in two distinct 

ways: point-down triangles, 
2 2 

grouping (a-1, b, c), (a, b- 

1, c¢) and (a, b, c-1) (shaded 

in Figure 6), and point-up 

1 3 triangles, grouping (a-1, b- 

1 — o —— 3 
1, ¢), (a-1, b, c-1), and (a, 

b-1, c-1) (unshaded in Figure Figure? 

6). Here (a, b, c) are positive integers adding up to m + 1 for 

point-down triangles, and to m + 2 for point-up triangles. The 

respectivel(a, b, c) triples may be used as code labels for these 

triangles (point-ups are labeled in Figure 6). 

Call the entire configuration a guincunx (a 4-quincunx in 

Figure 6). It is purely schematic: There is no assumption that 

"adjacent" vertices are physically close, or connected by an 

edge, or that the triangles are actual faces. 

Now consider the row signatures of faces. (Tyreeey r,) are 

positive integers adding up to m + 2. There are two types: 
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those of the form (1,1,..., 3,..., 1,1) with a single "3" in some 

row, and those of the form (1,1,..., 2,..., 2,...1,1) with two 

"2"s somewhere. The first type has 3 vertices, the second has 

2:2 = 4 vertices. 

Consider the particular face with signature (1,1,.::; 3,-%+, 

1,1), the "3" being in row i. Let (a,b,c) be its column 

signature. Row i has three "1"s, and changing any two of these 

to "0" yields a vertex. It follows that the three vertices have 

column signatures (a-1, b-1, c), (a-1, b, c-1), and (a, b-1, 

C-1). Hence every face of this type is a point-up triangle. 

Consider the face with 
  

signature (1,1,.:+; 2;.45; h 10 18 0 

2,..., 1,1), the "2"s being in 
  

rows h, i. First of all, the : 
i 0 1Y 18 

four "1"s in these rows must         
  

spread over all three : Figure 8 

columns, otherwise comparative advantage is violated. Figure 8 

is an example. The vertices are specified by retaining one "1" 

in each row. Thus they‘may be 

labeled avy, By, B6 and ab in 

Figure 8. Comparison of their 

column signatures shows they 

  

must be arrayed as in Figure 9 

on the quincunx. Figure 9 

Now consider edges. These all have row signatures of the 

form (1,1,..., 2,..., 1,1) with a single "2" in some row. Two
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vertices are connected by an edge if and only if they are 

identical in all rows but one. This criterion yields the array 

of edges in Figure 9. Thus this face is a quadrilateral. 

Labeling each edge by the row in which it has two "1"s, we find 

that opposite sides get the same label (Figure 9). (The h-edges 

are in 1-2 direction, since Syy = 1 =s,,, etc.) For the 

triangular face considered above, all three edges are labeled 

with row i. 

What about patterns other than Figure 8? Reversing rows h 

and i merely interchanges the edge labels in Figure 9. If the 

double "1"s occur in column 1 

we get a quadrilateral arrayed fo}& 

as L in Figure 10. If they 

occur in column 3 we get an R- 

type quadrilateral, while LZ S 

column 2 yields a U-type as in 

Figure 9. All three types Figure 10 

have identical structure, and can be obtained from each other by 

rotations of 120°. Triangular faces will be called type T. 

These four types exhaust the possible faces, under generic 

technology. 

Note that each of the types, L, U, R consists of an 

"amalgamation" of a point-up and neighboring point-down triangle. 

Consider the set of all quadrilateral faces and the set of all 

point-down triangles; 1let ¢ be the map sending each face to its 

point-down component. We claim o is injective. For, suppose
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first that two U-faces shared the same point-down component. 

Then the column signatures of all vertices of one would be the 

same as the other, hence the vertices themselves would be 

identical (Theorem 13), hence the faces would be identical; 

similarly for two L- or two R-faces. If two different types 

shared the same point-down component, then some pair of vertices 

both would and would not be connected by an edge, contradiction. 

Thus o is injective. 

Now consider the set of all faces and the set of all point- 

up triangles, and let 7 be the map sending each face to its 

point-up component. A similar argument shows that 7 is 

injective. 

We now do some counting. The number of quadrilateral faces 

= the number of ways of selecting two objects out of m, which is 

(m? - m)/2. The number of point-down triangles = the number of 

ways of getting positive integers (a, b, c) toadd up tom + 1, 

which is also (m® - m)/2. Hence ¢ is actually a bijection. 

Also, the total number of faces = (m2 + m)/2 (from, say, (25) or 

by noting there are m T-faces). The number of point-up triangles 

= the number of ways of getting positive integers (a, b, c) to 

add to m + 2, which is also (m® + m)/2. Hence 7 is also a 

bijection. 

It follows that every configuration making up the output 

efficiency.frontier of a generic technology may be described 

schematically as follows: Each point-down triangle is mapped to 

one of its three neighboring point-up triangles (with which it 
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amalgamates to form a quadrilateral face; L-, R-, U~-faces arise 

when the map is to the left, the right, or upward, respectively; 

see Figure 10). The mapping is to be injective, so this leaves 

exactly m point-up triangles unmated, and these become T-faces. 

Any configuration of this sort will be called a McKenzie tiling 

of the quincunx. 

The easiest way to describe a McKenzie tiling is to specify 

the type of face (L, U, R, or T) assigned to each face column 

signature (c,, c,, C3;). An 

cloth 
example is Figure 11, which is 

taken from McKenzie, p. 174 

(with correction). This 

tiling in turn was constructed 

from one of Graham's (1948) 

world trade models involving 

three industries, Linen, Cloth 

and Corn, and four countries 

  

  A, B, C, D. The vertex marked linant A T D B " eatn 

"Linen" is the one in which Figure 11 

all countries produce linen, 

etc. Note that every edge is labeled by a country, as in Figure 

9. The column signature of a face is always identical to the 

label of its point-up component as given in Figure 6. (This 

follows from the following general principle, whose proof is 

immediate. Let S of size (m, n) be any pattern with no all-zero 

row. The column signature of S is, componentwise, the maximum of
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Finally we have appended 

to each face a pair of numbers giving prices; this will be 

discussed later. 

II.2. The Large Scale Structure of McKenzie Tilings 

In a McKenzie tiling consider a T-face with its three edges 

having directions as in Figure 7. If the 1-2 edge is not on the 

quincunx border, the face on the other side of it must be either 

type L or type U. 1In this face, the edge opposite the original 

edge is again in direction 1-2. The same argument shows there 

must be a further L- or U-face on the other side of it. Thus we 

get a (uniquely determined) sequence of faces until the 1-2 

border of the quincunx is reached, each face being either type L 

or U. similarly, starting 

from the 2-3 edge of T, we get 

another sequence of faces to 

the 2-3 border, each being 

either type R or U. Finally, 

the 1-3 edge yields a third 

sequence of faces, each of 

type L or R. Figure 12 is an 

example. 

This construction 

determines a partition of the 

set of all faces into (at 

most) seven zones as in Figure 

  

  

1-     
Figure 12    
  

Figure 13
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13. Zone 111 consists of T alone. Zones 110, 011, and 101 are 

the three sequences, respectively. Zones 100, 010 and 001 are 

the three remaining connected sets of faces touching vertices 

(m00), (OmO), (0O0m) respectively. (Some of these zones are 

missing if T has an edge on the quincunx border) . 

This zonation gives complete information about the i-th row 

of the pattern of every vertex, every edge, and every face in the 

tiling (where i is the row in which the pattern of T is 111), as 

follows: The i-th row of a vertex, edge or face in Zone xyz is 

Xyz. (If a vertex or edge is on the borderline between several 

zones, the one with the smallest number of "1's gives the correct 

row i). 

To prove this, first consider the large-scale structure of 

edge labeling. The three edges of T get labeled by row i. By 

the argument used in constructing Figure 9, this labeling 

propagates along "parallel" edgeS'in the three sequences of faces 

making up Zones 110, 011 and 101 (stressed in Figure 12). 

Furthermore, no other edge is labeled by row i — for, by "reverse 

parallel propagation" every other edge works back to a different 

triangular face. See Figure 11, for example. (If the tiling 

arises from a generic technology, this can also be demonstrated 

by a counting argument: The number of edges with row signature 

(1,2,..., 2,e.., 1,1) with "2" in row i is m + 2 by (19). But if 

T has column signature (a, b, c), the number of edges in Zones 

110, 101, 011 including the T-edge is c, b, a, respectively. 

Since a + b + ¢ = m + 2, all such edges are accounted for).
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Next, start say with vertex m00, for which row iis 

obviously 100. For any other vertex v take a sequence of 

- vertices v, Visree+, V. Where v = v, Vo = m00, and each adjacent 

pair of vertices is connected by an edge in the tiling (there 

always is such a sequence). Now consider what happens to row i 

as we pass from vertex to vertex. If the connecting edge is not 

labeled by i, nothing happens. 1If it is labeled by i, the "1" 

jumps to a new column, as determined by the direction of the edge 

(Figure 7). It is then easily seen that the rule above is 

correct for vertices. Correctness for edges and faces then 

follows from the fact that row i for these eléments is the 

maximum of the rows i for their component vertices. 

This is a remarkable result. It says that a McKenzie 

tiling, labeled by rows, carries complete information about the 

patterns of all its facets (hence about all viable patterns, if 

the tiling arises from a generic technology) . 

II.3. The Physical Efficiency Frontier 

A McKenzie tiiing is of course purely schematic. The actual 

output efficiency frontier is a polygonal surface in 3-;pace, 

concave to the origin. (In the 3-by-n case, the input efficiency 

frontier also has this property but is convex to the origin). 

Can anything be said about the physical properties of this 

surface?
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Theorem 18. (i) All quadrilateral faces are parallelograms. 

(ii) Let e,, e, be two edges of a face meeting at a 

vertex; if the angle they make in the tiling is (60°, 120°), 

then the actual physical angle is (acute, obtuse), respectively. 

Proof. (i) It suffices to use Figures 8 and 9; all other cases 

are similar. Going from vertex gy to BS involves shifting the 

entire labor pool L; from industry 2 to industry 3. Hence the 

chénge in output levels is 

(0, -Li/a;,, Li/a;) (27) 

Going from vertex ay to aé does exactly the same thing. Hence 

the opposite edges are parallel and equal. 

(ii) Going from vertex By to ay shifts the labor pool 

L, from industry 2 to industry 1, leading to output change 

(Ly/ay, -L/a,,, 0). By the pattern of signs, the inner product 

of this vector and (27) is positive, hence the angle at gy is 

  

acute. The same argument applies to a T-face. 

This theorem yields an appealing comparative statics result. 

The physical output efficiency frontier depends on the absolute 

levels of L,,..., L,, though the McKenzie tiling does not. What 

happens as L; - 0 for some particular i? All the i-labeled edges 

shrink in proportion, by (27). In the limit, each of the Zones 

110, 011, 101 collapses to a jagged line, and Zone 111 collapses 

to a point; the m-country tiling has become m-1. 
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II.4. Price-Ratio Systems 

Given a generic technology A, each face is determined by a 

price system‘(fl1, T,, 3) unique up to a multiplicative constant. 

We are interestéd in the price ratios, so let P = /Ty, 

Q = my/m,, and R = T,/T3. Equivalently, we can let product 2 be 

the numéraire, let fihe price system be (P, 1, Q), and define 

R = P/Q (this second approach obscures the symmetry obtaining 

among P, Q‘and R). We are interested in the relations among the 

P’s, Q’s and R’s of adjoining faces. 

Consider Figure 14. It 2 2 
' Pa Q= 

reads as follows. Crossing a Q4+ P4 
R+ R+ 

1-2 edge in the direction of 

the arrow, and comparing P, Q, 1 3 

R for the face at the tail to 1 3 

the face at the head of the : RaPvQv 

arrow, P is equal for both Figure 14 

faces, Q rises and R falls. 

The results for crossing a 2-3 and a 1-3 edge are also given. 

Theorem 19. Figure 14 is correct for any McKenzie tiling arising 

from a generic technology A. 

Proof. We shall prove this for the 1-2 edge: the other two cases 

are similar. Let 7', 7" be price systems for the face at the 

tail, head of the arrow, respectively. The 1-2 edge, labeled by 

row i, is common to both faces, hence S;jy = 1 = s;; in the
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patterns for both faces. We then have 7,/a; = m./a,, and also 
T/ay = my/a;,. Hence P' = TR = m/T, = P", so the P’s are 

equal. 

The two price systems may now be taken as (P, 1, Q') and (P, 

1, Q") respectively. Comparing the column signatures of the two 

faces we see that c; < c; for the third components. This implies 

  

that Ql < Qll. Finally, R' = PI/QI > Pll/Q" = R", 

Thus, crossing any edge yields one equality and two 

inequality conditions. (Note that, given the equality, the two 

inequalities imply each other.) 

The large scale structure of McKenzie tilings now comes into 

play. Suppose a T-face has price ratios P, Q, R assigned. Then 

(see Figures 12 and 13), the P propagates across the 1-2 edges, 

‘'so that all faces in Zone 110 get assigned the same P. 

Similarly, all faces in Zone 011 get assigned the same Q, and all 

faces in Zone 101 get assigned the same R. Now suppose all m of 

the T-faces get assigned - say P;, Q;, R, to the T-face of row i. 

Suppose Figure 9 is a U-face in the tiling; its price-ratios P, 

Q, R'are then given by: P = P, Q=09Q;, R=P/Q,. For, this face 

is in Zone 110 of the row h structure, and in Zone 011 of the row 

i structure. Similarly, any L-face will have P = Py, 

R =R;, Q = P/R;, where its 1-2 edges are labeled by row h, and 

its 1-3 edges by row i. Finally, any R-face will have Q = Qs 

R = Ry, P = R;, where rows h, i label its 2-3 and 1-3 edges 

respectively. 
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To conclude, assigning price ratios P;,Q;,R; to all 

triangular faces forces a unique system of P’s, Q’s and R’'s on 

all faces of the tiling, via the equality relations of Theorem 

19. 1In turn, given technology a, P;, Q;, R, can be read off 

immediately from row i: P, = aj/ag,, Q; = ajg/a;,, R, = a;,/a;3, since 

the prices supporting this T-face are proportional to row i. 

Figure 11 gives (P,Q) pairs for the faces of the corrected 

McKenzie tiling of Graham's world trade model. 

II.5. Equivalent Technologies 

We now come to what is perhaps the deepest part of this 

whole subject: the classification and enumeration of alternative 

technologies, and their relation to tilings and price-ratio 

systems. 

; On the set of all technologies of size (m,n), we define 

the following relation: A is gggng;gnt to A' if the Jones 

matches of A are the same as the Jones matches of A'. That is, 

for any distinct countries ijy..., i. and distinct industries 

Jppeeer o0 i3 0000, (i.,j.)} is a Jones match in A if and 

only if it is a Jones match in A'. 

Examples. (i) Multiply any row or any column of A by a positive 

constant. The result is equivalent to A. (This amounts to a 

change of measurement units of labor or output.) 

(ii) Let ¢ be any positive number and let a;; = 

(a;;)°, all i,j. A and A' are equivalent.
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(iii) Let A and A' be equivalent. Then they are also 

equivalent to A" given by ah = auah, all e 5. 

These examples follow almost immediately from the 

inequalities defining a Jones match, which are paradigmatically 

of the form aay...a, < Q28530+ 23 (AL 

An appealing geometric summary of examples (ii) and (iii) 

can be given in terms of "logarithmic technology space". Let t; 

= log a;;, and identify technology A with the mn-dimensional 

vector (t”). Then, the equivalence classes of technologies are 

convex cones (also open, in the case of generic technologies) . 

An exceptional technology cannot be equivalent to a generic 

one since the former has tied Jones matches. 

We now return to the case of n = 3 industries. It is 

important to distinguish labeled from unlabeled McKenzie tilings. 

An unlabeled tiling is simply given by a mapping from the point- 

down to the point-up triangles subject to the restrictions 

discussed above. A labeled tiling is an unlabeled tiling with 

additional structure: the T-faces are made to correspond to the 

numbers (1,..., m); the T-face label extends to its edges, and 

thence by "parallel propagation" to all edges of the tiling. 

Evidently there are m! ways of labeling an unlabeled tiling. 

Theorem 20. If generic A, A' are equivalent, then they have the 

same labeled McKenzie tiling. 

Proof. A and A' have exactly the same set of viable patterns, by 

the fundamental theorem of comparative advantage. For, pattern S
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is viable if and only if every match in S is a Jones match, which 

comes out the same on both A, A'. 

Let (c,, c,, c;) be positive integers adding up to m + 2. 

There is a unique maximal pattern with this column signature 

under each technology, and it must then be the same pattern. 

This pattern determines the type of face, L, U, R or T. Thus 

each point-up triangle will be in the same face type under both 

A, A'. Hence they have the same (unlabeled) McKenzie tiling. 

Finally, the labels are the same, since row signature 

(1,1..., 3,..., 1,1) with a "3" in row i matches with the same 

column signature, hence gives the label i to the same T-face. 

  

Theorem 21. If generic A, A' have the same labeled McKenzie 

tiling, then they are equivalent. 

Proof. We show that a labeled McKenzie tiling determines all 

Jones matches. By an argument above, the tiling determines the 

patterns of all facets. Choose any two countries, say h and i. 

The pattern S having two "1"s in both rows h and i is given by 

the tiling. Suppose it looks like Figure 8 in rows h and i. 

Note that for each pair of industries there is a match in S — 

e.g., {(h,1), (i,3)} in Figure 8. This must be a Jones match, S 

.being viable. It is easy to see that this argument works for any 

of the six possible patterns of four "1"s in rows h and i. Hence 

all 2-level Jones matches are determined. 

Now take any three countries — say g, h, i. The same S as 

above has a single "1" in row g, and still looks like Figure 8
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say in rows h and i. If Sg = 1, then ((g,1), (h,zi, (i,3)}) is a 

match in s; if Si; = 1, then {(g,2), (h,1), (i,3)} is a match in 

Si; if sz =1, then {(g,3), (h,1), (i,2)) is a match in S. 1In 

all cases, then, we get a match, which must be Jones. Hence all 

  

3-level Jones matches are also determined. 

These twin theorems show that, in a sense, this is the 

"right" way to bundle technologies. Equivalent technologies need 

not, of course, have the same system of P, Q, R price ratios on 

their tilings. 

II.6. Weak Equivalence 

Theorems 20 and 21 are for labeled tilings. Are there 

similar results for unlabeled tilings? We would like to 

characterize a relationship between two technologies A and B — 

call it weak equivalence — such that A and B are weakly 

equivalent if and only if they give rise to the same unlabeled 

McKenzie tiling. 

Let o be a permutation on the set (1,..., m). The same 

symbol applied to a matrix A of size (m,n) gives rise to another 

matrix by "row permutation": oA is defined by 

(aa)ij = a, ; (27) 

all diail, ve, W, Jhmid ool in. 

Theorem 22. Let A, B be technologies of size (m,n). If A is 

equivalent to B, then oA is equivalent to oB. 

Proof. Let, say, {(1,1),..., (r,r)) be a Jones match in oA, so
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that 

(0a) ... (0a) < (0a)y 44. .. (0a), 0 

for all permutations 7 on {1,...,r}. By (27) this reads 

aa1,1' 2 'aar,r s aa1,r1' ' 'aar,fr 

for all r. Since A and B are equivalent, this implies 

Bliige el i B 
gr,n = ol,r 

for all r. By (27) again, this reads 

1o b or,Tr 

(0b) 44+ .. (0b) . £ (3b); ... (db) 
r,Tr 

for all 7. Thus {((1,1),..., (r,r)} is a Jones match in oB. 

  

Theorem 23. If pattern S is viable under technology A, then oS 

is viable under oa. 

Proof. Let P,,..., P, W,,..., W be a price system supporting S 

under A. Define W,,...,W, by W, = W,. Then 
1 

Wi(aa)” = W‘".a‘".'j 2 Pj 

by (4). Further, if (0s);; = 1, then Si,; = 1, so this inequality 

becomes an equality, by (5). This proves that P;,..., P, WL..., 

  

W, is a price system supporting ¢S under oA. 

As a éorollary, if A is generic, then oA is generic. For, 

all viable S have acyclic graphs, hence all oS have acyclic 

graphs; apply Theorem 6. 

Now return to the case of n = 3 industries. (In the 

=1 following, ¢’ is the permutation inverse to cg.) 

Theorem 24. If generic technology A gives rise to labeled 

McKenzie tiling M, then oA gives rise to the same (unlabeled) 
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tiling, but with the labels transformed by the rule i - ¢7'i, 

i i 

Proof. Let face F of M correspond to maximal pattern S under A. 

Then ¢S is a maximal pattern under oA, by Theorem 23, so it must 

yield a face oF of its generated tiling. 

Now S and oS generate the same type face, L, U, R or T. 

For, if S yields a T-face, it has a row with three "1"s; then so 

does oS, again yielding a T-face. If S yields a U-face, then it 

has a pattern as in Figure 8 with two "1"s in column 2 in its 

special rows; this pattern is preserved in oS, hence it too 

yields a U-face. Similarly for L- and R-faces. 

Furthermore, S and oS have the same column signature. Thus 

F and oF have the same location and shape. This proves A and oA 

yield the same unlabeled McKenzie tiling. 

As for labels, if S has three "1"s in row i (so its T-face 

gets labeled i) then oS has three "1"s in row o'i, by (27), so 

  

its T-face, located in the same place, gets labeled o''i. 

As a corollary, if o is not the identity permutation, then A 

and oA are not equivalent, since they do not yield the same 

labeled McKenzie tiling. 

Here is the picture that emerges from these results. Let E 

be an equivalence class of generic technologies, with typical 

members A, B,... . All technologies in E (and only those) give 

rise to the same labeled McKenzie tiling. Let o be a permfitation 

on {1,..., m}, not the identity. Then oE, consisting of 
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OA, 0B,..., is a distinct equivalence class giving rise to the 

same tiling with permuted labels. As o ranges over all possible 

permutations, we get a cluster of exactly m! equivalence classes. 

The union of these is the set of generic technologies giving rise 

to a single unlabeled tiling. These larger classes yield the 

weak equivalence relation sought above: A and B are weakly 

equivalent — i.e., are in the same united set — if and only if A 

is equivalent to 0B for some permutation o. 

II.7. Technology-Generated Tilings 

Consider the set E of all weak equivalence classes of 

generic technologies, and the set T of all (unlabeled) McKenzie 

tilings (both for m countries). Let f be the mapping sending 

each technology to its tiling; f has the same value for 

technologies in the same class, and different values for 

technologies in different classes, so we may think of it as an 

injective mapping from £ to T. But what is the range of f — that 

is, which tilings are actually generated by some technology? 

We begin this investigation with the following rather deep 

result, of considerable interest in its own right. 

Theorem 25. Given a McKenzie tiling, and for each face given 

positive numbers P, Q, R with P = QR and such that, across faces, 

the conditions of Figure 14 are satisfied. Then there exists a 

generic technology that yields this tiling and has the P, Q, R’'s 

as its price-ratio system.
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Proof. sStep 1: First we derive some consequences of the 

relations in Figure 14. Label the tiling, and let the T-face 

labeled by i have P;, Q;, R; as its assigned numbers. This face 

yields a zonation of the set of all faces as in Figures 12 and 13 

into (at most) seven zones. Let F be any face and let P, Q, R be 

the numbers assigned to F. 

If F is in Zone 111 then (P, Q, R) = (P;, Q;, R, 
110 P=P, 0 <9, R>R 
011 Q=9Q, P<P, R<R, 
101 R=R, P>P, Q> 0Q (28) 100 P> P, R >R, 
010 P < P, 0 <ig 
001 Q> Q Res R 

The statement for Zone 111 is immediate; for Zone 110 it 

follows from Figure 14 by "parallel propagation" across 1-2 

edges; for Zone 011 by propagation across 2-3 edges; and in Zone 

101 by propagation across 1-3 edges. The other three cases are a 

little more difficult. Suppose, for example, that F is in Zone 

100 and we want to show that R > R;. No matter which type face F 

is (L, U, R or T) at least one of the two following situations 

obtains: Fj}fi or F - i.e., F has a 1-2 or a 2-3 edge which 

can be crossed as shown, F lying at the tail of the arrow. Each 

of these crossings leads to a lower R. If this new face is still 

in Zone 100, repeat the operation. Eventually we get to a face 

in Zone 110 or 101. The R-value of this face is 2 R;, by the 

results above for these zones. Putting all of these inequalities 

together yields R > R;.
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Similarly, let F again be in Zone 100; to show that P > P, 

consider the two following sit:uatir:ms:)(7 or —4L—, a 2-3 or 1-3 

edge with F at the tail of the arrow. At least one of these 

obtains for any face type, and each crossing leads to a lower D. 

Iterate as before until a face in Zone 110 or 101 is reached. 

The P-value of this face is > P;, by the results above. Putting 

these inequalities together yields P > p,. 

The procedure for F in Zone 010 or 001 is similar. (In each 

case, from Figure 14 there are exactly two combinations of edge 

orientation, 1-2, 2-3, or 1-3, and direction of crossing>that 

change P, Q, or R in the "right" direction as dictated by (28). 

Each of L, U, R, T can utilize one of these combinations. 

Iteration leads from Zone 010 eventually to Zone 110 or 011, and 

from Zone 001 to Zone 101 or 011, supplying the last leg of the 

argument as above). This proves (28). 

Step 2: Define technology A as follows: a, =P, a;, =1, 

3;3 = Q;. Note that the middle column is all "1"s. P; and Q; are 

the numbers assigned to the T-face labeled i, which we now call 

T;. We will show that A satisfies the theorem. First we prove 

that A is in general position. 

Pick any two rows, say h, i, and suppose that F, the face 

with edges labeled h, i, is of type U as in Figure 9. (A similar 

argument works if F is of type L or R.) Then F is in Zone 110
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of T, and also in Zone 01l of T; 

(Figure 15). It then follows 

from (28) that the following 

relations obtain: 

  

P, > P =P, 

Sl 9 (a9 Figure 15 
R; >R > Ry 

where P, Q, R are the numbers assigned to face F. The fact that 

P, % Py, Q = Q; and R, = R; shows there are no tied Jones matches 

.at the 2-level. 

For the 3-level, take rows g, h, i and let F again be as 

above. (Again, similar arguments work for F of type L or R.) Let 

S be the pattern of F. S is determined by the tiling, and the 

zoning of F shows that S looks like Figure 8 in rows h and i. 

The location of the single "1" in row g of S gives rise to three 

cases. 

Case (i). sy = 1. {(g9,1), (h,2), (i,3)) is a match in S, and we 

now show that it is the unique Jones match. Its score ag13y,3;3 

= PSQi, which we must show is less than the scores of the other 

five matches: PQ,, P;Q., PQ;, P;Q, and PQ,. This is readily done 

by using (29) together with the two additional facts: P > P, R > 

R; (these follow from (28) on noting that F is in Zone 100 of 

Tg) . For example, RQ; < RQ = P = P, which yields PQ; < PQ,. 

The other inequalities are left as exercises. 

Case (ii). Sp = 1. Show {(g,2), (h,1), (i,3)}, a match in s, 
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is the unique Jones match by utilizing (29) and the additional 

facts: P < Py, Q < Q. (These follow from F now being in Zone 

010 of Tg.) 

Case (iii). Sgs = 1. Show {(g,3), (h,1), (i,2)}, a match in s, 

is the unique Jones match by using (29) and the additional facts: 

Q > Qy R <Ry, which follow from F being in Zone 001 of Tq- 

Details are omitted in cases (ii) and (iii). 

This proves A is in general position. 

Step 3: Let F be any face of the tiling, with column signature 

(¢, €, ;) (adding up to m + 2). Let S be the pattern of F. We 

will show that S is viable under A. Since S has m + 2 "1"s it is 

a maximal pattern under generic A, hence yields a face of the 

tiling generated by A. Thus this tiling coincides with the 

original. 

Let (P, Q, R) be the numbers_assigned to F. We show that 

the price system (P, 1, Q) strictly sustains S under technology 

A. Do this row by row. In row i we are to show that s;; = 1 if 

and only if the j-th term of (P/ay, l/a;;, Q/a;3) = (P/P;, 1, Q/Q;) 

is maximal, j = 1, 2, 3. Now, if F is in Zone xyz of T;, then 

the i-th row of S is xyz. Hence we need show only that the 

subset of maximal elements in (P/P;, 1, Q/Q;) matches the zoning 

code exactly. This follows readily from (28): 

In Zone 111, the triple is (1,1,1). In Zone 110 it is 

(1, 1, Q/Q;) where Q < Q;. In Zone 011 it is (p/P;, 1, 1), with 

P < P;. 1In Zone 101, R = R;, so P/P; = Q/Q;, these both being 

> 1. In Zone 100, P/P; > 1, and also > Q/Q; since R > R;. 1In 
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Zone 010, P/P; and Q/Qi'are both < 1. Finally, in Zohe 001, 

Q/Q; > 1, and also > P/P;, since R < R;. Thus S is viable under 

A, and A yields the original tiling. 

Step 4: Finally, A also yields the (P, Q, R)’s as its price- 

ratio system. For, on face T;y prices (my, T,, W3) are 

proportional to row i, (P;, 1, Q;). The price ratios are then 

(Pi/1, Q/1, P;/Q;) = (P;, Q;, R;), the original assignments on 

T-faces, and this determines all other assignments uniquely by 

  

"parallel propagation". 

This theorem can be rephrased by combining it with its much 

easier converse (Theorem 19) to read: 

Theorem 26. A McKenzie tiling is generated by some technology in 

general position if and only if there exists a system of positive 

numbers (P, Q, R) assigned to each of its faces satisfying the 

conditions of Figure 14, and P = QR. 

Here is an application. Suppose one is given an arbitrary 

McKenzie tiling, and wants to know whether it arises from some 

generic technology. The easiest way is to look for a price- 

ratio system. Taking logarithms preserves the relations of 

Figure 14 for each edge, and also yields log P = log Q + log R 

for each face. Thus we get a system of linear relations, which 

can be tested and solved by linear programming (Gale, pp. 44-49, 

121). If a solution exists, it immediately yields a generating 

technology. 

It is much easier to work with price-ratio systems than
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directly with technologies. We now apply these ideas to show 

that a largé number of tilings are generated by technologies — 

namely, all those with at most five countries. 
  

Theorem 27 below is not too interesting in itself, but very 

useful. Some preliminaries follow. The bottom tier of a 

McKenzie tiling consists of the faces having column signatures 

(¢4, 1, c3). Consider the subtiling formed by discarding all of 

these faces, and also discarding 

the bottom halves of any 

U-faces with column signatures 

(¢, 2, c3), converting their 

point-up com-ponents into T- Q 

faces (Figure 16). The result Figure 16 

is a new McKenzie tiling of 

size m-1. 

Suppose this subtiling 
  

had a price-ratio system (P, 

Q, R) on its faces. Then, we 

  

  

will show that the original (17b) 

tiling also has a price-ratio 

system, if the bottom tier has e 

one of the following five 

forms (see Figure 17). 

(17a) Just one T=-face. 

  

(17b) Just two T-faces, in 

Figure 17 
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the corners. (There is then exactly one U-face poking up into the 

next tier; it can be anywhere). 

(17c,d) Just two T-faces, one in a corner, with a U-face next 

tonit. 

(17e) Just three T-faces, two in the corners with U-faces next 

to them. 

Theorem 27. If the subtiling has a price-ratio system, and the 

bottom tier has any of these five forms, then the original 

McKenzie tiling has a price-ratio system. 

Proof. (17a) All faces in the subtiling keep their assigned 

(P, Q, R)’s. Let Ry,..., Ry (say) be the R-values assigned in 

order to the bottom tier of the subtiling. Then R, >...> Rs 

(since R must decrease going from left to right by Figure 14.) 

Suppose, say, that the T-face has its apex between the Ry and R, 

faces (Figure 17a). 

Assign P°, Q° to the T-face to satisfy the following 

conditions: P° exceeds every P-value in the subtiling, Q° 

exceeds every Q-value in the subtiling, and R; > (P°/Q°) > R,. 

(Clearly fihese conditions can be met.) The equality relations 

across edges then force the complete assignment shown in. Figure 

17a, and it is easy to check that all inequality conditions 

across edges are also satisfied. 

(17b) Let the lopped-off U-face (which is a T-face in the 

subtiling) have (P, Q) assigned to it, and let, say, Ry,..., Rg 

be the R-values assigned in order to the other faces of the
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subtiling’s bottom tier‘(Figure 17b). We then have R, > R, > 

(P/Q) > Ry > R, > R;. All faces in the subtiling keep their 

assigned price ratios, with the restored U-face inheriting the 

(P, Q) assigned to its truncation. Equality relations then force 

the assignments shown in 17b, except for P', Q' in the corners. 

For these choose P' > QR, and Q' > P/R;. It is readily checked 

that all inequality conditions across edges are now satisfied. 

(17¢c, 4, e) We will just do (17e). ((17c) and (17d) are 

similar but easier and left as exercises.) Call the two U-faces 

U', U", and their lopped-off versions T', T", carrying price- 

ratios (P', Q'), (P", Q"), respectively. Let the other faces in 

the subtiling bottom tier have assignments, say, Ry, Ry, Ry. Then 

(P'/Q') > Ry > R, > Ry > (P"/Q"). Suppose, say, that the middle 

T-face has its apex between the R - and R,-faces. Assign price- 

ratios (P°, Q°) to this face to satisfy these conditions: P°, Q° 

exceed the values of all P’'s, Q’s in the subtiling, respectively, 

and R, > (P°/Q°) > R,. 

The subtiling is to retain all its price-ratio values, but 

U' is assigned (P°, Q') (not (P', Q')) and U" is assigned (P", 

Q°) (not (P", Q")). Equality conditions across edges then force 

all other price-ratio assignments except for P"', Q"'in the 

corners (Figure 17e). For these choose P"' > P°, Q"' > Q°. It 

is readily checked that all inequality conditions across edges 

  

are now satisfied. 

Theorem 27 has been stated in terms of the bottom tier, 

along the 1-3 border. But by symmetry an identical result holds 
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for the tier along the 1-2 border (all faces with column 

signatures (c,, C,, 1)) and also for the tier along the 2-3 

border (all faces with signatures (1, Cy, C3)). This triple- 

strength theorem is the one used in the following proof. 

Theorem 28. For any McKenzie tiling of sizem =1, 2, 3, 4 or 5, 

there is some techndlogy in general position that yields it. 

Proof. 'We need show only that such a tiling has a price-ratio 

system. For m = 1 this is trivial. Now proceed by induction. It 

suffices to show how to go fromm = 4 tom = 5, since the same 

arguments, only simpler, get us fromm = 1 to 2, from 2 to 3, and 

from 3 td 4. 

Suppose, then, that every McKenzie tiling of size m = 4 has 

a price-ratio system, and consider a tiling of size m = 5. This 

has five T-faces. 

Case (i). No T-face is in a 

corner. Of the three outer 

tiers (along border 1-2, 2-3 

and 1-3 of the quincunx) at 

least one has only a single T- 

face. Hence we can apply Part ) Figure 18 

(a) of Theorem 27. 

Case (ii). Exactly one T-face is in a corner — say at signature 

511, without loss of generality. If some outer tier has just one 
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T-face, apply Part (a) of Theorem 27. If every outer tier has at 

least two T-faces, théy must be distributed as in Figure 18. 

Consider the face adjoining 511. It is either type U or type R. 

If it is type U, apply Part (c) of Theorem 27 to the bottom 

(1-3 border) tier. If it is type R, apply Part (d) of Theorem 27 

to the 1-2 border tier. 

Case (iii). Exactly two T-faces are in corners — say at 511 and 

115. If there is no other T-face 

in the bottom tier, apply Part 

(b) of Theorem 27 to it. If A : 

there is one, and if no outer A 

tier has a single T-face, they l | l 

must be distributed as in 

Figure 19 
Figure 19. 

Let F', F" be the faces adjoining 511, 115, respectively. If F' 

is type R, proceed as in case (ii). If F" is type L, apply Part 

(c) of Theorem 27 to the outer tier on the 2-3 border. If 

neither of these holds, then both F', F" are of type U. Then 

apply Part (e) of Theorem 27 to the bottom tier. 

Case (iv). All three corners are T-faces. Then some outer tier 

  

has no other T-face. Apply Part (b) of Theorem 27 to it. 

This theorem covers a lot of ground, for there are 3135 

distinct (unlabeled) McKenzie tilings of size 5 (and 120-3135 = 

376,200 labeled tilings) — hence there are this many technology 

classes with 5 countries.
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For all we know to this point, any McKenzie tiling might be 

yielded by some generic technology. But this is not so. 

Theorem 29. The McKenzie tiling in Figure 20 cannot arise from 

any generic technology. 

Proof. We show that this 

tiling has no price-ratio 

system. The T-faces are 

labeled 1,..., 7. 

‘Let (P;, Q;, R;) be the price- 

ratios for the i-th T-face. 

The equality constraints of 

  

  
Figure 14 then propagate the 

Figure 20 
ratios to force a unique 

system on the entire 

tiling. In Figure 20 we have 1ist.ed only those entries used in 

the following argument. The seven edges stressed in Figure 20 

give rise to seven inequalities: 

Py > QR, 

Q > 9 

QR = By 

P, > P, (30) 

P, > ReQ; 
R, > R, 

P, > Q,R,
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Multiplying these inequalities together and cancelling P; against 

  

Q;R; yields the contradiction 1 > 1! 

Thus a counterexample appears at the 7-country level — and 

also at every higher level, since we can let Figure 20 be the 

first seven tiers of a larger tiling. We conjecture that as m 

rises, a vanishingly small proportion of McKenzie tilings are 

actually generated by a technology. The problem of 

characterizing these tilings is still open. 

It is also not known whether a counterexample exists at the 

6-country level. (We conjecture it does not). Since there are 

81,462 unlabeled McKenzie tilings at this level (and 720-:81462 = 

58,652,640 labeled tilings), resolution either way will not be 

easy. 

There still remain some generalities holding for all sizes 

m. Start with the following preliminary result. 

Theorem 30. In a McKenzie tiling of size m, let |n], |ul, IR| be 

the number of L-, U-, R-faces present, respectively, and let 

(Ci3r Cjas Cj3) be the column signature of the i-th T-face. Then 

L] + g = |Ul + Ty, = IR| + Bic3 = (w2 + m)/2 (31) 

Proof. For the i-th T-face, the number of faces in Zone 101 is 

c;; - 1. To see this, start counting from the bottom tier (the 

first face has a column signature of the form (a, 1, b)) and note 

that upcrossing a 1-3 edge (—$—-) increases the middle signature 

component by one. The count continues up to T; with component
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Cj;+ Similarly, the number of faces in Zones 110, 011 is 

Ci3 - 1, ¢4 - 1, respectively. 

On the other hand, the Zones 110 for distinct T;’s are 

disjoint, and each U-face appears exactly once in the union of 

these zones; also,lit appears exactly once in the union of the 

Zones 011 (see Figure 15). Similarly, each L-face appears once 

in the union of Zones 110 and once in the union of Zones 101. 

Finally, each R-face appears once in the union of Zones 101 and 

once in the union of Zones 011. 

These aréuments yield three equations 

lu]l + IR| = g;(c;y = 1) 

L] + IR| Rle, = 1) (32) 

L] + U] = 3(e5 = 1) 

But 

2 Ll + |l + IR] = (n* = m)/2, (33) 

the number of quadrilateral faces. Subtracting each of the 

  

equations (32) in turn from (33) yields (31). 

For example, in Figure 20, |L| =8, |U| =7, [R| =&, 

Zjcyy = 20, I, = 21, iy = 22. 

Theorem 31. For any size m, a McKenzie tiling with any of the 

following properties has all of them (see Figure 21). 
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(i) All gquadrilateral 

faces of type U. 

(ii) All T-faces on the 

bottom tier. 

(iii) Generated by a 

technology A of the following 

form: 

Aii <A chachal Figure 21 

a3 > A, >...> ag, (34) 

a;, =1, all i. 

Proof. (i) if and only if (ii): By (31), |u| = (m* - m)/2 if 

and only if Z;c;; = m, which holds if and only if ¢ =1, all i. 

(iii) implies (ii): Any technology of the form (34) is in 

general position ({(g,1), (h,2), (i,3))} is a Jones match if and 

only if g < h < i; 2-level uniquehess is obvious.) 

Let face T; have pattern S. (a;;, 1, a;) is a price system 

for s. If h < i, then aj;/a,; > 1, so s, = 0} if h > i, then 

a;;/a;; > 1, so again s;; = 0. Thus the middle column of S has 

only one "1": c;; = 1. 

(i) and (ii) imply (iii): Since technology (34) is in 

general position, it yields some McKenzie tiling, which by the 

above satisfies (ii). But there is only one tiling satisfying 

  

(ii).
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All technologies satisfying (34) are equivalent; by the 

remarks in the proof concerning Jones matches. They say in a 

sense that industry 2 is always "between" the other two 

industries. 

Theorem 31 singles out industry 2. Needless to say, there 

is a similar result for industry 1 (all quadrilaterals L-type) 

and for industry 3 (all R-type). Correspondingly, rotate Figure 

21 by 120° and in (34) permute the columns. These three 

technology classes are basically identical if we ignore column 

labels, and may be considered the simplest possible class. There 

is an important generalization to the m-by-n case and beyond, 

under the term "simple structure" (see below). 

Now we go to the opposite extreme: 

Theorem 32. For any size m, a McKenzie tiling with any of the 

following properties has all of them (see Figure 22). 

(i) No quadrilateral 

faces of type U. 

‘ (ii) Each horizontal tier 

contains exactly one T-face. 

(iii) Generated by a 

technology A (in general 

position) of the following 
Figure 22 

form: 

Ay < 8y <..o< Ay, A3 < Ay <...< 3, A, =1, all i. (35) 

Proof. (ii) implies (i): For column signatures of T-faces, the
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set {cyyye.+y Sp)} = (1,..., M}, hence adds up to (m2 + m)/2. 

Hence, by (31), |U| = o. 

(iii) implies (i): Let F be a quadrilateral face with 

pattern S having two "1"s apiece in rows h, i, where h < i. 

Suppose s, = 1. Then s;, = 0 = s;5, else comparative advantage is 

violated. This contradiction shows s, = 0, so F cannot be type 

U. 

(i) implies (ii) and (iii): By induction on m. Without U- 

faces, the bottom tier must be of the form of Figure 17a, 

completing the induction for (ii). Further, as in the proof of 

Theorem 27, Part (a), a price-ratio system extends to an extra 

tier of this sort by choosing P°, Q° larger than all other P, Q’'s 

in the subtiling. This extended price-ratio system translates to 

a technology with an extra m-th row of the form (P°, 1, 9% . 

. Thus (35) remains satisfied, completing the induction for (iii). 

  

Note that this includes as special cases the "rotated" 

versions above where all quadrilaterals are R-faces or all are L- 

faces. Here too, rotating Figure 22 by 120° gives versions with 

no R-faces, or with no L-faces. 

One implication of Theorem 32 is that, if a tiling does not 

arise from any generic technology (as in Figure 20) it must 

contain some of all three types of faces, L, U and R. 

The following is a fairly general existence theorem applying 

to any size m. 
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Theorem 33. ILet |L|, |U|, |R| be three natural numbers adding up 

to (m? - m)/2. Then there exists a McKenzie tiling of size m 

arising from a generic technology, and having these numbers of 

L-, U-, and R-faces present, respectively. 

Proof. By induction on m. Trivial for m = 1. Assume the 

statement holds for m, and let |L|, |U|, |R| add up to 

((m+ 1)% =(m + 1))/2 = (n® + m)/2. 
Consider the three conditions: |L| + |R| < m-1, |L| + |U| < 

m-1, |R| + |U| < m=1. If all of these are true, then 

3m - 3 2 2(|L| + |U| + |R]) =m® + m 

which cannot be. Hence at least one of these conditions is 

false, so say |L| + |R| 2 m. (The argument in the other two 

cases is similar.) Then there exists an integer A satisfying 

Max[o, m —|R|] < s Min[lL[, m]. 

Consider the triple 

[ILI =dp il Rl A]- (36) 

These are natural numbers adding up to |L| + |U| + |R| - m = 

(m2 - m)/2. By induction hypothesis there'is a McKenzie tiling M 

of size m having a price-ratio system, and having (36) as its 

number of L-, U-, R-faces, respectively. 

Now tack on an extra tier having one T-face, A L-faces, and
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m - x R-faces (Figure 23). 

The result is a tiling of size 

m + 1 having exactly |L|, |uU]|, 

|IR|, L-, U-, R-faces, 

respectively. Further, by 

Theorem 27, Part (a), the 

price-ratio system extends to 
I_——I_l 

{ m-2 

Figure 23 
the new tiling, hence it 

arises from a generic 

technology. This completes 

  

the induction. 

II.8. Admissible Designations 

The placement of T-faces in tilings plays an important role 

in several of the developments above: in large-scale structure 

and number of L-, U-, R-faces. The following investigates this 

placement directly. 

In a size-m quincunx (Figure 6 for m = 4) there are 

(nfi +'m)/2 point-up triangles, and m of these are T-faces in a 

McKenzie tiling. But this subset of m cannot be chosen 

arbitrarily. For example, in 

Figure 24 it is impossible for 

all three of the point-ups to 

be T-faces, since the point- 

down in the middle has to 

amalgamate with one of them. Figure 24 
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An r-subquincunx is a part of the original quincunx that is 

itself a quincunx of size r. (Formally it is defined by its 

three corners, which have signatures (a, b-r, c-r), (a-r, b, c- 

r), and (a-r, b-r, c), for some integers a, b, ¢ 2 r adding up to 

m+ 2r. r =1 is a single point-up triangle, r = m the entire 

original; Figure 24 has r = 2.) 

A T-designation is simply a subset of size m of the set of 

point-up triangles. A T-designation is admissible if, in every 

r-subquincunx, at most r of the point-ups are designated. 

Theorem 34. For a given T-designation, there exists a McKenzie 

tiling having its T-faces at that designation if and only if the 

T-designation is admissible. 

Partial Proof. oOnly if. An r-subquincunx has (r® + r)/2 point- 

up triangles and (r2 = r)/2 point-down triangles. To form a 

McKenzie tiling, the latter must fiap injectively into the former. 

  

This leaves only (rz + r)/2 = (r2 - r)/2 = r point-ups to spare 

(The proof of the converse, that admissibility guarantees 

the existence of a tiling with those T-faces, is a complicated 

nested induction argument, and is omitted.) 

In general, an admissible T-designation does not determine a 

McKenzie tiling uniquely. For example, if either configuration
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in Figure 25 occurs in a 

tiling, it can be transformed 

into the other without 

disturbing any T-faces. In 

the counterexample of Figure 

20, this configuration occurs Figure 25 

three times. At two of these 

times, the transformation of 

Figure 25 reverses an inequality in (30), and therefore disrupts 

the delicate proof of Theorem 29. These considerations suggest 

the following. 

Conjecture. For any size m, for any admissible T-designation, 

there exists a McKenzie tiling having its T-faces at that 

designation, and arising from a generic technology. 

Note that a T-designation does determine the number of L-, 

U- and R-faces in a compatible tiling, via (31). Hence the 

conjecture is a strengthening of Theorem 33fe 

II.9. Enumeration of Technology Types 

The following table gives the number of distinct unlabeled 

McKenzie tilings, and the number of admissible T-designations for 

various values of m, the number of countries. 
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Table 1 

Cou ies Unlabeled Tilings Admissible Designations 

1 1 1 

2 3 3 

3 18 17 

4 187 150 

5 3135 1848 

6 81462 ? 

To get the number of labeled McKenzie tilings, multiply by 

m!. Up through m = 5 (and probably m = 6) this is also the 

number of distinct equivalence classes of technologies in general 

position, which provides the most natural way of classifying 

technology types. (Classification by the location of T-faces may 

also be useful, hence the last column.) 

A word on how these numbers were calculated. For T- 

designations, it is easiest to enumerate the number of 

inadmissible ones and subtract from [(nfi + myQ ], the total 

number of designations. Count the numbe? violating admissibility 

at the 2-level, the 3-level, etc. 

For tilings, consider first m = 3 countries. There are 

three point-down triangles, and each can map to three neighbors, 

yielding 27 mappings. Of these, 9 are not injective, leaving 18. 

This kind of "inclusion-exclusion" argument is not profitable for 

larger m. Instead proceed inductively as follows. For m, 

calculate the number of unlabeled tilings having each possible
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configuration of T-faces in its bottom tier (there are 2" -1 

cases). Now go to m + 1 with a specified configuration of k T- 

faces in its bottom tier. These must intersperse with k-1 U- 

faces (cf. Figures 17b, ¢, 4, and e). Now lop off this bottom 

tier, leaving a size m tiling, with the top halves of the U- 

faces among the T-faces of its bottom tier. This allows 

enumeration based on the m-level data. (Details are omitted. 

This algorithm is not too satisfactory since the amount of work 

doubles with each successive m. Nonetheless the table was hand- 

calculated using it). 

For m > 6 the enumeration of tilings becomes less 

interesting in view of counterexamples such as Figure 20. The 

problem of enumerating technology classes here remains open. 

II.10. The Input Efficiency Frontier for Three Countries 

We have been focusing almost exclusively on the m-country, 

3-industry éase. The output efficiency frontier is embedded in’ 

3-dimensional space, and is in general simpler than the input 

frontier. For the 3-country, n-industry case it is the input 

efficiency frontier that is embedded in the 3-space (L,, L,, Ly) 

of resource inputs. We may again represent this frontier by 

McKenzie tilings. In fact, the entire theory is virtually 

identical to the one developed above. This arises from the 

following simple observation.
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Theorem 35. If pattern's is viable under technology A (of size 

(m, n)), then the transpose of S is viable under the transpose of 

A. 

Proof. Let P,,..., P, W,,..., W be a price system supporting S 

under A. Then P;,..., P;, W;,..., W; is a price system supporting 

S-transpose under A-transpose, where P; = 1/W;, w} = l/Pj, is= 

1,..., m, j =1,..., n. This follows immediately from (4) and 

(5) . 

  

Thus the viable patterns under 3-by-n technology A are 

exactly the transposes of the viable patterns under the n-by-3 

technology A-transpose. The McKenzie tiling in input space 

determined by the former is then identical to the McKenzie tiling 

in output space determined by the latter; from this flows 

everything else. (It is a remarkable fact that, physically, the 

output efficiency frontier is "concave to the origin" while the 

' input efficiency frontier is "convex to the origin" — yet this 

makes no difference to the ensuing theory.) 

‘There .is one instructive contrast concerning the price- 

ratio system. For an input McKenzie tiling arising from a 

generic technology, each face is supported by a wage triple (W,, 

W,, W;) rather fihan a price triple (w,, m,, m5): Given industry j, 

s;; = 1 for any country i minimizing W;a;;. The P, Q, R’s then are 

wage-ratios rather than price-ratios. Because the patterns S 

satisfy a minimizing condition (rather than maximizing 7;j/a;;) the 

inequality results of Theorem 19 (Figure 14) are all reversed.
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This makes no real difference to any subsequent results, except 

that inequality signs must be reversed at appropriate places. 

For example, the counterexample of Figure 20 still works: 

Inequalities (30) are all reversed, still yielding the same 

contradiction. 

III. Conclusions: Open Problems, Further Work and Applications 

This concludes our exposition. The extension of the theory 

of comparative advantage to many countries and industries yields 

a surprisingly rich theory. 

We now present an agenda for further work. The "internal" 

agenda ihvolves filing in the gaps, testing conjectures and 

solving open problems. The "external" agenda involves connecting 

these ideas with the rest of economic theory. 

The "accounting" or "analytic" portion of our paper worked 

with the general m-country, n-industry situation, but the 

"synthetic" portion worked almost exclusively with the 3- 

industry case (or 3-country, by transposition). There are, of 

course, some fairly deep unsolved problems even in this case; 

but the main challenge is to extend the development to the case 

of n = 4 or more industries. 

As a beginning, consider the possible row signatures for 

maximal patterns under generic technology for n = 4. These are 

of three types: (1, 1,..., 4,..., 1, 1) with a single "4", (1, 

1,000y 24900y 35004, 1, 1) with a "2" and a "3", and (1, 1,..., 

2,000y 2,0004 2,404, 1, 1) with three "2"s. Row signatures 
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determine the internal structure of their corresponding "faces" 

(which here are 3-dimensional polyhedra), and in fact, these 

types yield tetrahedra, triangular prisms, and parallelepipids, 

respectively, as one easily finds. The numbers of these faces 

are also known for any generic technology by Theorem 15, being m, 

n? - m, and [ m |, respectively, for m countries. But how these 

pieces fit toézther, and in how many ways, is not known. What is 

the 4-industry analog of McKenzie tilings? 

There is little question this program can be carried out, 

using the methods of this paper. Geometric intuition begins to 

fail for larger n, and more reliance must be placed on the column 

signatures (the "addresses") of the facets involved, so the 

theory will be more algebraic in tone. Here is a concrete 

challenge: Find the number of distinct technology equivalence 

classes for the case of 4 countries and 4 industries. 

A second mfijor task is to extend the synthetic portion to 

exceptional technologies. This is essentially terra incognita 

despite some preliminary observations by McKenzie (p. 175, note 

2). There are both mathematical and economic reasons for 

investigating thefi. First, in technology space, the exceptionals 

form the borderlines between equivalence classes of generic 

technologies. (Moving from one class to another, some Jones 

match must switch. At the point of crossing, at least two 

matches must tie for lowest score, so the technology is 

exceptional.) Learning the facet structure for these
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technologies should provide insight into the relations among 

"adjacent"-McKenzie tilings. 

Further, a number of our results should hold for all 

technologies, not just generic ones. It would be surprising 

indeed if the tiling of Figure 20 could arise from any 

technology. The trouble is that the simple relations involving 

row and éolumn signatures and viable patterns break down for 

exceptional technologies, so the entire quincunx-tiling approach 

is undermined. 

As for the economic motives for studying exceptional 

technologies, consider the 2-by=-2 case (Figure 1). It is not 

unusual in the real world for both countries to produce both 

goods, implying ad = bc. This occurs only if, contrary to the 

Ricardian assumption, there is some "neoclassical" flexibility in 

the technical coefficients a;;. In this case equilibration may 

stop short of complete specialization by either country, and get 

hung up at an "exceptional" structure. (Interpret the a;;’s here 

as being marginal costs). It is still true, of course, that this 

technology can be approximated by another in general position 

with arbitrarily small error. But the gualitative patterns 

change discontinuously, so the exceptionals deserve separate 

study. 

(For the m-by-2 or 2-by-n cases, exceptional technologies 

are easy to deal with: they simply reduce the effective number of 

countries or industries below m or n, respectively. For m, n 2 3 

we are not so lucky.)
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Still another situation of real world importance is where 

some countries cannot produce at all in some industries (a;; = @, 

SO s;; = 0). ' To see that our work does not cover this case, note 

that for a;; finite, no matter how large, pattern S, with s;; =1 

and zeros elsewhere, is viable. Extending this to a maximal 

pattern, we conclude that for any country i and any industry j, 

there is some face under which i produces in j. Clearly this 

face must disappear for a;; = ©, so the McKenzie tiling structure 

— or its higher-dimensional analog — breaks down. 

We now turn to the wider economic implications. The theory 

of comparative advantage is a fragment of a more general model, 

since in itself it says nothing about demand conditions, not to 

speak of dynamical changes in technology, resource supplies, etc. 

The output efficiency frontier may be thought of as 

representing a set-valued supply function (a correspondence): 

When confronted with the price system P = (Pyyee., P)) it 

responds by choosing any point (X,,..., X,) of the facet F,. This 

output vector is attained by a pattern of specialization and 

division of labor that is the main focus of attention of the 

theory. 

The historical association of the theory of comparative 

advantage with international trade is misleading in two respects. 

First, it is a theory of who produces what, not who exports what. 

The latter requires additional information concerning demand, the 

former does not. (The particular point chosen on the efficiency 

frontier also requires demand information, of course, but it is
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the frontier as a unit and the associated configuration of 

patterns that is the object of the theory, and this does not 

depend on demand). 

The association with international trade theory may also 

obscure the scope of the principle of comparative advantage. It 

is the explanation for the pattern of specialization and division 

of "labor" at any level: which parcels of land get assigned 

which uses, which occupations go into which industries, which 

workers enter which occupations, all the way down to the 

interpersonal division of labor — why Adam delved and Eve span. 

This broad scope is useful in the theory of international trade 

itself. By applying it to the problem of assigning factors to 

industries, Roy J. Ruffin has given a "Ricardian" underpinning to 

Heckécher-ohlin theory (Ruffin, 1988). 

Here is another approach that yields similar conclusions. 

Suppose each country has a convex production possibility set (so 

that its output efficiency frontier is "concave to the origin".) 

For n 3 industries, it seems likely that this frontier may be 

approximated as closely as desired by a "physical" McKenzie 

tiling, composed of parallelograms and triangles, which arises 

from some technology. If so, then a country acts as if it were 

an aggregate of m countries with an underlying Ricardian 

technology. And a system of countries i = 1,..., k acts as if it 

were a system of m, +...+ m Ricardian countries. Thus the 

Ricardian assumptions underlying this paper — embodied in 

equations (1), (2), (3) — may have more scope than meets the eye.
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In any case, a more complete model involves adding a demand 

sector and some dynamics. This opens a mine of possibilities: 

In dynamic models of technological change, will some technology 

equivalence classes be favored over others? Is there a tendency 

to move from one to another? 

Another approach is to take one technology type and emulate 

Dornbusch, Fischer and Samuelson (1977) in going to a continuum 

of industries or countries or both. For two countries there is 

essentially just one generic technology class, and the way to let 

n - © is clear; similarly for two industries and m - =. For m, 

n 2 3 we must not only choose avtechnoloqy class, but make sense 

of the ndtion of m or n or both going to the limit. 

Fortunately there is one case where this can be done in a 

natural way, and that is for the simplest possible class of 

technologies in general position. For n = 3 the class is given 

by (34) (more precisely, by (34) with the rows multiplied by 

arbitrary constants) and yields the McKenzie tiling where all 

quadrilaterals are U-faces. 

For the general definition, vith countries i = 1,..., nm, 

industries j = 1,..., n (the ordering by labels is essential), 

technology A has simple structure if, for all countries h, i and 

industries j, k, with h < i and j < k, we have 

A3k < 343 (37) 

We give some characterizations. For distinct countries 

iy..., i, and industries j;,...,j., where i, <...< i,, the match r’ 

(i, 3 se++, (i.,3,)) is downward sloping if j; <...< J.. 
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Theorem 36. For m-by-n technology A, each of the foilowing 

conditions implies the others: 

(i) A has simple structure. 

(ii) Every Jones match is downward sloping. 

(iii) Every match in every viable pattern S is downward 

sloping. 

Proof. (i) implies (ii): Suppose (ii) false, so some Jones 

match, say {(1,3), (2,k),..., (r,q))} is not downward sloping — 

say j > k. The submatch ((1,j), (2,k)} is still Jones, so ajay 

< agady;, contradicting (37). 

(ii) implies (iii): By the generalized McKenzie-Jones 

principle every match in viable S is Jones. 

(iii) implies (i): Suppose (i) false, so that, say, a;a; 2 

a,a,,. Define S by s,, = 1 = s,, and zero elsewhere. Choose 

(Py, ..., P,) by: a,/a,, 2 P,/P, 2 a,/a,, with P;,..., P, very 

small. This price system supports S, so S is viable, 

  

contradicting (iii). 

That A is in general position follows from property (ii) 

since a square submatrix has only one downward sloping match (its 

"main diagonal"). It is also easy to see that every downwafd 

sloping match is a Jones match (since any other match can have 

its score lowered by interchange, by (37)), and from this, that 

any pattern S having all its matches downward sloping is viable. 

(Incidentally, it suffices that (37) holds for i =h + 1, k = 

j + 1 — see Yule and Kendall, p. 57).
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For m and n given, the technologies of simple structure 

constitute a single equivalence class of technologies, since they 

— and only they — have the same Jones matches. It is easy to 

find examples of these technologies, the simplest being a; = 

i+ j. 

The extension to a continuum of countries or industries or 

both is now clear. Suppose for example that both are indexed by 

the real numbers. Technology A is then a function of two real 

variables. It has simple structure if, for all countries U, v 

and all industries %, y, where u < v and x < Yy, we have 

a(u,x)a(v,y) < a(v,x)a(u,y) (38) 

an obvious generalization of (37). 

Must we then work out an elaborate theory extending the 

results of this paper to the continuous case? On the supply side 

the answer is no, because the theory already exists! It is the 

theory of Thiinen systems in location theory (Faden, Chapter 8). 

This requires some explanation. The key observation is 

Theorem 2 above, which characterizes viable patterns in terms of 

the linear programming transportation problem. What happens when 

the theory of comparative advantage extends to a continuum of 

countries and/or industries? Well, there is a natural 

generalization from the ordinary to the measure-theoretic 

transportation problem (Faden, Chapter 7), and these ideas also 

carry over in a natural way to the theory of comparative 

advantage. (The real line is best thought of here as a measure 

space.) 

 



94 

We have no time to give the full story here, but a few 

examples will illustrate how this generalizatisn proceeds. Labor 

resources (L,..., L,) go over to a resource measure on country 

space C. Outputs (X;,..., X,) go over to an output measure on 

industry space I. Allocations (L”), (X;;) are measures on the 

product space C x I. Equations (1) and (2) are expressed in 

terms of marginals. Equation (3) states that the technology 

function A is the density connecting these measures. The pattern 

S of an allocation is now its support — the subset of C x I that 

tells, roughly, where the allocation measure sits. 

Furthermore, Theorem 2 and others generalize too. The 

measure-theoretic transportation problem has a dual, and its 

solution (after antilogging) furnishes P’s and W’'s satisfying (4) 

and (5). The concept of Jones match generalizes. 1In short, the 

entire theory carries over in its basic structure. 

To continue the story, define t(u,x) = log a(u,-x). Then 

(38) becomes, foru<v, x <y. 

t(u,x) + t(v,y) > t(v,x) + t(u,y) (39) 

which is called "positive cross-differences" (Faden, p. 421). 

The theory of Thfifien systems arises when (39) is imposed on the 

cost function in the measure-theoretic transportation problem. 

This special case corresponds exactly to the “continuops" theory 

of comparative advantage under a technology of simple structure: 

"Downward-sloping" goes over to "weight-falloff", etc. 

Summarizing all this in an "analogy" diagram:
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Comparative Advantage Transportation Problem 

finite ca ordinary TP 

continuum cA measure-theoretic TP 

continuum with simple structure Thinen theory 

To carry out the "continuum" strategy of Dornbusch, et. al., 

for the many-country, many-industry case requires only that we 

add a demand side to the supply side that comes ready-made from 

the theory of Th nen systems. 

Ironically, if we actually add transportation costs (or 

tariffs) to the standard comparative advantage model the 

correspondence breaks down: The "law of one price" fails; P; 

must be written as P;; and the entire theory in its present form 

collapses. Nonetheless, the structural connection between the 

theory of comparative advantage and location theory has been 

established.
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