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CAUSALITY AND ECONOMETRICS IN FOCUS 

i The Knowledge Industry, Methodology and Statistics 

(This section is refirinted from my handout of April 21, 1992, entitled The 
Future of Economic Theory: The FOCUS Paradigm). 

Knowledge production is one industry among others. Economics is one of its 
branches. The industry is organized in terms of professions. The output 
consists of journals, books, papers, and, ultimately, of changes in people’s 
cognitive states. 

Most of the markets for this industry are missing, so that, as in all cases of 
this sort, a system of imputed valuations has arisen, involving some 
incomplete degree of consensus among the workers in each branch: the 
"seminality" of ideas, or, more crudely, the number of pages published. (A 
rough model of the knowledge industry would have its workers maximize 
publications, just as politicians are supposed to maximize votes, bureaucrats 
the size of their budgets, etc.) 

Statistics is that branch of the knowledge industry which provides canons of 
acceptable treatment of empirical data for the other branches. (The other 
branches invariably modify these canons for their own purposes; econometrics 
is the modification of statistics adapted to economics). 

As in any industry with imperfect markets, there are distorted incentives and 
inefficiencies in the knowledge industry in general, and in its economic 
branch in particular. We will concentrate on the econometric canon. 

Non-econometricians, including journal editors, do not have the time or 
inclination to examine the foundations of inference critically. What they 
need is a "cookbook" of fairly simple procedures and conceptual tools for 
handling data -- e.g. ordinary significance tests at conventional significance 
levels. 

If one does go more deeply into the foundations of statistics, one finds that 
almost everything is unsettled, up to and including the concept of probability 
itself. Standard statistical procedures have been subjected to withering 
criticism -- e.g. by Lindley, Savage, Berger, Jaynes, Leamer, et. al. All of 
these criticisms have been in terms of the internal coherence (or incoherence) 
of procedures, however. We propose to go beyond this and think of statistics 
in terms of the role it plays in the knowledge industry. 

In effect, this approach endogenizes statistics (and its sub-branch, 
econometrics) into economic theory. The value of statistical procedures 
reflects the expected real social value of the "theses" they help produce. 

This requires taking account not only of the internal coherence of procedures, 
but of the social and psychic context in which they operate -- the bounded 
rationality (limited informational capacity) of the human mind, and the 
behavior of writers, readers and editors in the knowledge industry.



Internal coherence alone leads to Bayesian inference. To grasp the issues it 
is necessary but not sufficient to understand Bayesian inference: other considerations, such as simplicity of models and the need for "objective" 
consensus, also enter. 

il The Value of a Model 

At any time a person has a "model" of the < 
world in his mind (Fig. 1). The term "‘°d€J~f LR 
"model" is not standard. Synonyms might O §\\?//f(«\ ' 3 g . [ be "image" (Boulding), "lifeworld" ] v«n}A 
(Husserl), "behavioral world" (Koffka), ’ 
"umwelt" (Uexkull), or even just "world" 
e.g. in "Christina's World". 1In general, i 
a model is subjective, partial, involves R‘SKVC l 
uncertainty as well as error and 
distortion. A more formal treatment is @ sl 
attempted later. 7 Elav, 

(3:) Lol i\ As time goes by one’s model changes, i AR 
partially by assimilating experience, the 
flow of information, and partially by / * :i; 
thinking (internal information-processing) 17"“(.v 
(Figure 2). 

  

At the same time one is acting (exerting effects upon the world). The quality 
of one's acts reflects the quality of one’'s model, and the value of that model 
is given by the expected value of the results flowing from one’s acts. (The 
capital-theoretic aspects of model evaluation should be noted: The same 
information can be used over and over, and models can be used as inputs for 
the production of better models). 

The value of a model depends on its degree of correctness (resemblance to the 
real world), its scope or degree of completeness, and its degree of precision. 

III. The Structure of Models 

The following material should be in the first chapter of any book on 
econometrics or applied statistics, but it isn't. The terminology in these 
fields is also poor, almost designed to sow confusion. 

A structure is a set of "objects", having properties and relations among 
themselves. Abstract structures are typically defined implicitly by axioms. 
(All of mathematics is the study of abstract structures). Concrete structures 
have objects in the ordinary sense, existing in space and time. 

A proposition is a statement about some structure, which may be true or false 
(e.g. "object t has property x"). Given propositions P, Q, we can form new 

popbsitions? *"not P", "P and:Q", MP or'Q"."  (Technically, ‘the set of all 
propositions about some structure is a Boolean algebra).



Let X be a set of properties such that for each object t in a structure, the proposition "t has property x", x ¢ X, is true for exactly one x. (e.g. let t 
be a coin toss, and X the set (falls heads, falls tails)). This set of 
propositions is an example of a propositional range; 1.e.,, a set of 
propositions such that exactly one of them must be true. (The number of 
propositions in a range may be two, as in coin-tossing, or any greater number 
finite or infinite). A similar construction works for X a set of relations. 

A random variable is the abstract representation of a propositional range. 
Technically, a random variable is a "measurable" function from an underlying 
space {1 to a set X. (I won't discuss measurability here). The set X is 
exactly the set of properties (or relations) discussed above. (It need not 
have the structure of the real numbers). may be thought of intuitively as 
the space of possible structures, models or worlds. (Note that a "random 
variable" is neither random nor a variable, an example of the dreadful 
terminology mentioned above.) 

Consider again a structure and a set of properties X such that, for each 

object t, "t has property x" is true for just one xeX. Each t then determines 
a propositional range, hence a random variable which we may write as X,. Thus 
we have a family of random variables indexed by objects teT. It is important 
that many r.v.’'s come in families. (All of the X,'s are mappings from Q to 
X). 

The set X itself is what statisticians would call a sample space: repeated 
observations on objects t yield in general different points in X. (If 
probabilists use the term, they usually apply it to Q, not X, another example 
of terminological confusion). 

A stochastic process is an indexed family of random variables. Usually the 
index is interpreted as time, but it need not be. We can index by the objects 
of any structure: places, people, countries, etc. (The index is usually 
called the parameter of the process, which invites confusion with the very 
different concept used by statisticians). 

A parameter is a random variable that is not one of an indexed family, but 
stands alone. (Example: repeated tossing of a coin with unknown bias #; let 
X, be the outcome of toss .t. (t=l; 2. 4. .. GConditional on 0, the X.'s are iid 
with Pr(X, = head|f) = §. The r.v.'s are the X, family, together with 4. 

One familiar with ordinary statistics might react to this definition as 
follows: a parameter is an unknown constant, not a random variable. This 

again shows confusion, this time deriving from the so-called "frequentist" 
concept of probability. Yes, a parameter is an unknown constant, but so is 
every random variable -- e.g. X; is either "head" or "tail", we (usually) 
don’t know which. 

Finally, lets take a closer look at I, the set of "all possible worlds". Each 
"possible world" w ¢ 0 specifies the true value of every r.v. (including all 
parameters). One may simply identify w with this specification mapping from 
r.v.'s to their true values. Q is then identical to the cartesian product of 

the sample spaces of all random variables. (Example: in a stochastic process 
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where the index set T is time, 
: 

} is simply the set of all possible time series.) 

In probability theory this is often done. But in econometrics and other applied areas it is not a good idea, for the following reason. The model in one's mind, and its associated set of r.v.'s, represents only a small fragment of the world. One should hold open the possibility of adding new properties new relations, and new objects to one’'s model. The importance of this point, cannot be overemphasized, and will Play a crucial role in the discussion of causality below. (Incidentally, we may also wish to drop some objects from our models if, e.g., they turn out to be fictitious -- cf. the planet Vulcan in astronomy or the study of demonology) . 

oV Probability 

Finally, a way of expressing uncertainty is needed. The most common -- but not the only -- way of doing this is by probability. Probability assigns numbers to Proposition, Pr(S) being most naturally interpreted as the "degree of belief" that S is true, Pr(S) = 1 being complete certainty that S is true, Pr(S) = O being certainty that § is false. More generally, Pr(S|T) is the degree of belief that S is true, contingent on the assumption that T is true ("conditional™" probability). “Degree of belief" can be made operational in terms of hypothetical betting behavior (Ramsey, deFinetti, et. al.). 

A probability distribution assigns probabilities to all the members of a 
propositional range -- or, equivalently, to the random variable that 
represents it. The natural abode of probability is on Q, the space of "all 
possible worlds." This not only determines the distributions of all random 
variables (by projection), but also their joint distributions, and thus 
dependence-independence relations among them. (Technically, probability is a 
measure on the field of measurable subsets of Q, with Pr(Q) = 1). 

Many questions arise. Why should probability be the preferred way of 
representing uncertainty? Is probability objective or subjective? What 
relation holds between probability and frequency? 

The value of models derives from their aid in making decisions (section II 
above). Alternative modes of representing and processing information are to 
be evaluated by this (and the move will tend to supplant the less efficient by 
the general principle of natural selection.) Now, a somewhat persuasive body 
of argument has arisen (Ramsey, deFinetti, Jeffreys, Lindley, Savage, Berger, 
DeGroot, et. al.) which concludes that a necessary condition for "coherent" 
decisions is that one be a Bayesian. (I won't discuss coherence further 
except to say that its lack is analogous to having an inconsistent "eyelical™ 
preference order). 

Being a Bayesian has three facets: 

(1) representation rule: Uncertainty at any one time is to be represented 
by a probability distribution over all random variables (including 
parameters) . 

 



(ii) updati e 
probability distributi 
S, the new "posterior" 

Having observed that proposition F is true, update your on by conditioning on F. That is, for any proposition Pr(S) equals the old sprlor? Pr(S|F). 

(iii) action rule: Act so as to maximize expected utilit , expectati b with respect to your current probability distribution. Y P on being 

Is probability obj?ctive? "Objectivity" has several meanings. The first is representing what is "really out there." In this sense, the judgment Pr(s) . p, where p=0,1, is not objective, but a confession of ignorance: S is true or false, but we don't know which. Pr(S) charges over time, and may eventually hit 0 or 1, at which point we attain certainty. 

But "objectivity" can also mean: judging in conformity to the evidence 
available. Different models may arise largely because different people have 
differe?t streams of experience, your probabilities reflecting the perspective 
from which you view the world which arises from your particular experiences. 
(Indeed, this "perspectival" view of probability seems to me to be the most 
adequate interpretation of what probability "is". There is a school of what 
might be called "objectivist Bayesians" -- Keynes, Carnap, Jeffreys, Jaynes -- 
who have tried to devise principles to select the "grand prior" to start the 
process, but these attempts in my view are totally inadequate). 

A word about the "frequentist" interpretation of probability, the one 
apparently favored by most econometricians, though few have thought very hard 
about it. Consider a stochastic process X,, t =1, 2, ..., t being time, the 
X,'s having a common sample space X (e.g. X = {heads, tails) for coin 
tossing). Instead of attaching probabilities to propositions, frequentists 
attach them to "events" in the sample space itself, e.g. Pr(heads), this being 
interpreted as the limiting (t - «) long-run relative frequency of heads among 
the X,’s. (Thus the "probabilities" are unknown, and must be estimated 
by past relative frequencies). Certain 
problems arise: What if the index t is not 

time? What if the coin melts before t = 

«? How do we know there is a limit? Even 

if it exists, why should it be of interest 

for decisions? These difficulties rule 

out frequentism as a general ground for 

probability, but there is one important 

case where it makes sense: When t is time 

and the X, process is stationary. In this 

case, relative frequencies will converge with probability one (by Birkhoff's 

ergodic theorem), and this limit may be thought of as the "true" probability. 
(But this does not mean that Bayesian procedures should be abandoned for 

incoherent frequentist methods even in the stationary case: (i) Bayesian 

updating moves Pr(X, is heads) toward the "true" probability (ii) in general, 

conditioning destroys stationarity in the short-run future, e.g., in the 

Markev chain with the transition matrix of Figure 3, the long-run frequency of 

heads is .5, but Pr(X, = head|X;.; = head) = .99, not .5). 

 



In summary, "frequentist" thinking has the effect of squeezing probability 
models into a stationary mould, and of sowing confusion, not least the 
confusion between frequencies and probabilities. 

Vs Causality 

Causality -- the sense that things exert influence on each other -- has deeper 
intuitive roots than probability. Every sentence in the English language has 
a verb,.and most verbs appear to express causality, in particular almost all 
transitive verbs -- carries, constructs, eats, plants, etc. 

Causality underlies economic theory. Production functions express causal 
relations from inputs to outputs (and marginal product isolates the influence 
of a particular input). The flow of information, the formation of prices, the 
negotiation of contracts, the internal workings of organizations are other 
examples. 

As noted above, the value of models arises from their aid in selecting 

actions. But to act is to exert influence upon the world. In this sense 

models themselves enter into causal relations "externally", via the minds they 

inhabit. Our aim here, however, is to examine the role of causality in the 

internal structure of models. 

The causality concept plays a somewhat furtive role in econometrics. There 

are occasional references to papers by Simon and Wold. The best known use is 

"Granger causality" (the concept is due originally to Norbert Wiener), which 

unfortunately is tied to a conventional significance test, and is thus 

incoherent according to Bayesian lights (see Zellner'’s critique). 

But this apparently limited role for causality is misleading. I believe that 

all of the central issues in econometrics tie in with this concept -- e.g. the 

specification problem, which tries to find the "correct" model (what is a 

correct model anyway?); the issues surrounding simultaneous equations, such as 

structural equations vs. reduced forms, least-squares bias, etc.; the problem 

of errors in variables; the Lucas critique; the concept of exogeneity; the 

role of parameters. Clarifying the relationship between causality and 

probability is the key to all of these. 

When all this gets worked out, it will show that not merely the content of 

econometric models, but the form of econometric procedures themselves, will 

derive from economic theory. (The same applies to all of statistics, for that 

matter). 

Oddly enofigh, other social sciences have made greater explicit use of the 

causality concept than has econometrics (see Blalock). Specifically, they use 

the path analysis of Sewell Wright, which comes from genetics. (The results 

are not too prepossessing). 

Why bother with causality? The answer is the same as that given above for 

probability -- namely, models constructed causally tend to be better than 

those that are not, in the sense of leading to more effective actions. 

Indeed, the argument here is easier to grasp than the "coherence" argument for 
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probability. But first we need a better fix on what causality is, and how to 
represent it. 

There is some interesting recent work on causality by statisticians and 
computér scientists -- Lauritsen, Darroch, Speed, Pearl, et. al. 

Whittaker 

Pearl 

Lauritsen 

See 

In this work, causality is represented as 
an acyclic directed graph. A directed ot 
graph consists of a set of "nodes" and a el 

set of ordered pairs of these nodes. 1If o \\\\A 4 
(a,b) is one of these ordered pairs, " 
represent this by an arrow going from a to - 
b. Example: Figure 4 represents nodes ls\'(c 1 
(a,b,c,d), pairs (a,b), (a,c): An acyclic 
graph is one in which there is no directed SEap e 
chain of arrows going in a circle, as in T J' 
Eigure 5. 

In the work cited above, the nodes are 
interpreted as random variables, and an 
arrow (a,b) means, intuitively, that 
"causal influence" flows from a to b. 
This vague concept is pinned down by the 
corresponding joint probability 
distribution. First, let ~ (wavy arrow) 

be the transitive closure of - (that is, 

a -~ b if there is a chain of arrows 

a->c>»>d=> ... > b begibning with a and 
ending with b. a ~ b means there is an 
indirect causal influence from a to b). 

Now, given random variable X, let S be the F‘slarc ( 
set of random variables Y such that Y - X, 

and let T be the set of r.v.'s Y = X such 
that X - Y is false. (See Figure 6. Note 
that S is a subset of T, by acyclicity). 

  

1) Then Pr(X|T) = Pr(X|S). 

The basic idea in this equation is 
conditional independence: Given the *g 
information in random variables S, the 
additional information in the remaining ! 
r.v.'s T\S ("T but not S") does not help 
in determining X. A more symmetric way of >< fif\ys 
writing this same property is Figure 7: 
Given §, X and T/S are independent (S 
separates, or screens off, these from each 
other) .



Here are some examples, 

(i) No arrows at all. 
. : T 

see: for any X, S is empty and T is al] other r.v.'s.) (This is easy to 

Note that, in general, the fewer arrows the stronger the statement being made. 

(11) 'Let X;,..X, be the r.v.'s and let XXy it land only if 'i<): i .Then, for any Xi’ O =T = all Ky withiday Thug Q) or Figure 7 say nothing at all, and this .causal Structure"” is compatible with any joint distribution. (Since the 
ordering of the X's is arbitrary, there are n! such structures). 

(iii? X; = %2 T Ry Foriany Xy T «lall Xgiwiith 1<) tand! 'S/ = Kycys Then 
(1) is precisely the Markov property: X;, ... X, form a Markov chain. 

(iv) Reverse all arrows in (iii). Then X,, ..., X, is a Markov chain. But 
this is the same class of distributions as in (144), 'since a 'time-reversed 
Markov chain is still Markov! 

As a final example, given r.v.'s X,Y,Z, suppose X,Y are dependent, but are 
independent conditional on Z: 
This may be represented by 

X>+2Z%YorbyYs=2Z-sX 
X X 

Ty \\ or by Z ~l , but not by S Z 
Y Y 

(Exercise: Show this last graph implies X,Y are independent, and says nothing 
about conditional independence). 

What is one to make of all this? Something important is being said: 
Causality certainty ties up with conditional independence somehow. It is also 

clear that, in general, the distribution does not determine the causal 
structure ("correlation is not causation") nor is it clear yet that knowing 

the causal structure is of any help in making decisions. 

What needs to be done is to go back to the intuitive roots of the causal 

concept (as noted above these are much stronger than the intuitions underlying 
probability). 

First, causal influence goes from the past to the future, not conversely. 
This explains acyclicity, since time does not loop. This irreversibility is 
compatible with "feedback", however: let X;, Y, be two families of random 
variables indexed by time, and let r<s<t. It is perfectly possible that X, 

causally influences Y,, which in turn influences X;, which is feedback between 
X and Y. Finally, note that while time lag is necessary for causal influence, 

it is not sufficient (Post hoc ergo propter hoc is a well-known fallacy). 

Second, it is not quite correct to speak of causal influence flowing from one 

random variable to another. Rather, it flows from a real object at a given 

time to itself or another object at a later time. Recall that random 
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variables are often indexed by objects. To say that r.v. X indexed by i 
influences Y indexed by j is an oblique way of referring to the influence of i 

upon j (which may manifest itself by probabilistic dependence between X and 

Y 

I have just begun to work out the implications of this second observation, and 

for the most part I shall "go with the crowd" and discuss causation among 

r.v.'s. (The kind of causal influence emanating from i to j is itself a 

random variable Z indexed by the pair (i,j), and having a probability 

distribution jointly with the other r.v.'s.) 

In contrast to the treatment above, which takes causality as an adjunct to 

conditional independence, we propose to put causality first, and derive 

conditional independence from it. (The excellent book by J. Pearl 

takes a similar approach.) 

Example: Let X = barometer reading today, Y — weather tomorrow. These r.v.'s 

are, we may assume, dependent, but clearly there is no causal influe?ce frow 

one to the other (even though X precedes Y in time). Instead there is a third 

variable that causally influences both of them: Z = atmospheric cond1tion§ 

today (X « Z - Y). Thus, given Z, X and Y are independent, and the "spurious" 

correlation between X and Y arises from their common cause. There are any 

number of patterns of this sort -- e.g. X = being in the hospital today, Y = 

dying tomorrow. The positive dependence between these may be due to Z = being 

sick yesterday (more controversial: X = smoking, Y = getting lung cancer. Is 

there a causal flow from X to Y, or do they have a common cause Z = genetic 

predisposition, as R.A. Fisher thought?) 

The role of parameters. As a rule, 

parameters causally precede the other 

r.v.’s in a model. Example: coin tossing v 

with unknown bias #. Given 4, the X;'s “//;/ \;::;\\9 
are independent, namely, Pr(X, = head|§) = Xq Y\_ X]_ Lok 

f. Thus Figure 8 is the causal structure. 
(Think of the parameters as being fixed F.S“r‘ £ 

before the model unrolls). 

One essential point. Finding the causal structure usually means adding 
"explanatory" random variables to an existing model, even unobservable ones 
In this sense only does it make sense to ask whether a model has the "correct" 

random variables ("correct" meaning causally closed -- i.e., a model having a 
true causal flow structure that is compatible with the joi 713 . : £ e joint probab 
distribution). J P ility 

Causality and Probability 

Ig is a striking fact that Bayesians, who have the most ade 
what probability is, hardly ever discuss causalit is i D ; y (this is true natural scientists among them, such as Jaynes and Jeffreys). Thee¥:252y Fhe that a complete probability distribution over "all possible worlds" is Zliséne needs to know or can know There is no 

. i room left for additi i i provided by causation or the like. B e 

quate conception of



Granted this, there is still a problem. Who has such a comprehensive 
distribution? The answer is, no one. We don't run around with distribution 
in our heads. Even assessing the distribution of a single real-valued random 
variable is not trivial. To extend this to a joint distribution over an 
indefinitely large number of random variables is a formidable task. 

Once we view distributions as achievements rather than givens -- due to the 
limitations of the human mind -- things begin to fall into place. First, a 
role for causality arises, and a fundamental one at that. (Second, a new 

basis for all of statistical inference arises, based on the reduction of 
complexity costs. This is the so-called post-Bayesian approach, and will be 
discussed briefly below). 

Thesis: Causality is indispensable for assessing joint distribution over many 
random variables. Let X = spring weather, Y = fall crop size. Then we may 
suppose causal influence flows from X to Y. The joint distribution Pr(X,Y) 

merely shows dependencies. Now this can be built up in two different ways as 

Pr(X) Pr(Y|X) and as Pr(Y) Pr(X|Y). I suggest that it is easier and more 
natural to build things up in the former way, that is, to assess effects 
conditional in causes rather than the other way around. The reason is that it 
is more useful to know the effects on the future of what happens now (in 
particular, of what we do now) than the reverse, so that the human mind is 
attuned to this direction. (Note in this connection that the use of Boyes 
theorem, which goes from Pr(Y|X) to PrLX|Y), used to be known as "inverse 
probability", or the "probability of causes". As Kicrkegaard said, we live 
forward but reason backward). 

Another consideration makes this tendency self-reinforcing. The joint 
distribution of X,Y,Z, say, can be built up in 3! = 6 ways, each of these ways 
having 3 blocks, say the probabilities of X, of Y|X, and of Z|X,Y. These "fit 
together”, while, say, Y|X and X|Y do not. Now, the acyclicity of causal 
influence ensures that, if we consistently assess effects conditional on 
causes, then the pieces will indeed fit together. 

Now consider a model having random variables X, and let Y be a different set of random variables. In general, the causal structure of:the X! 
the Y’'s having "normal" values. (Just as a pProduction function depends on the presence of gravity, normal temperatures and an atmosphere, none of which are explicitly mentioned). Under "abnormal" circumstances, some of the causal connections may be switched on or off. 

s depends on 

her index i (the objects in the model). The model has a stationary causal structure if the following holds: if causal influence flows from Xis to X, 
(s<t), then it flows from Xirstg £0 Xy, 44 
for all #. This concept expresses the Y 
"invariance of the laws of nature" . and is t \\{5— & \\\"" RS more plausible than the stronger N e A \\\S assumption of stationarity per se (see SRR 

L 
Figure 9). (More generally, some of those Z.t ’/fl //A //7K 

— 
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causal connections may be switched on or off at v 

response to outside influence). 
system never repeats, but its laws of evolutio 

3 arious times, perhaps in 
Or example, the configuration of the solar 

n are constant, 

Causality and Econometrics 

We end with some thoughts of how all this relates to econometrics. 

First, an econometric model is a probability distribution. It may be 
represented by a set of equations, but these are precisely that, a 
representation. It follows that two different systems of equations yielding 

the same probability distribution are picturing the same model. 

To be more exact, models do not usually give the full joint distribution over 

all random variables considered, but the conditional distribution of some of 

them with respect to the others -- say Pr(Y|X, f). Here Y are usually called 

the endogenous variables, X the exogenous and § the parameters. Further, if 

the X's and Y's are time indexed, this joint Y-distribution may be factored as 

Pr(YylX,0) Pr(¥s|YaX,0) .\ | PelYaly 0 ey X001 

the conditioning Y's then being called "predetermined." 

Let us first adopt a purely probabilistic view of all this, ignoring causality 

entirely (so that "endogenous" and "exogenous" are just names for the 

variables we choose to place on the left or right side of the conditioning 

bar). From this point of view, the question of whether the model is "correct” 

or "incorrect" is meaningless: any collection of random variables has a joint 

distribution. To be specific, suppose in the usual manner you "regress Y on 

X" This is an estimation procedure for the conditional probability Pr(¥|Xx). 

Suppose X = Spring weather, Y = Fall crop size. Then regressing ¥ on X is 

routine. 1Is it legitimate to regress X on Y? The answer is yes. (Assuming 

some conditions that justify regressing -- e.g. (X;,Y;) are joint normal and 

iid given the means and covariances). This estimates Pr(X|Y). Certainly Y 

provides information about X, even though there is no flow of influence from Y 

to X. (Any inference about the past is of this form.) 

Now consider Y and possible "explanatory" variables X,Z (X,Y and Z may be 

vectors). Regressing Y on X yields, say, 

{2) Y = aX + residual. 

Regressing Y on X and Z yields, say, 

(3) Y = bX + ¢Z + residual, 

where, in general a » b. Which model is correct? The question is 
meaningless. The first is estimating Pr(YIX), the second Pr(YIX,Z). Neither 

of these is "more correct" than the other. Which should be used to predict 
(or estimate) Y? Well, if only X is available, use the first. If X and Z are 
both available, use the second. (Why not then regress Y on everything in 

11



ST — 

    
   

  

yesian criti IR Uhich T won't discuss hete.) que of the standard regression 

   
. y 48 ighored 1ife ia wf 

intrinsically exogenous or endogenous r.v.'s s simple. 

joint probability distribution. 
needed to assess the distribution 

There are no 
no ns ”n 

1 i lncorrect” models, just a (?hough causal considerations would have been in the first place). 

When is it satisfactory to ignore causality and f { 0 
probability like this? Roughly, the answez L e e . . when one is concerned onl 
with causal influences from the model to the rest of the world. (Exampley the 
"state of nature" in decision theory, . which influences consequences. but 
cannot be influenced by them). : Hig : But to assess influence from the rest of the 
world to the model, the internal causal structure of the model is needed. 

As an example, consider the weather. Insofar as the weather influences, but 
cannot be influenced by, human activities, it suffices to know its probability 
distribution. But if human activities influence the weather (e.g. cloud- 
seeding, PCB's), the causal structure of the weather system is needed. 

Consider a model involving X,Y and Z again, and suppose that X, but no other 
variable can be influenced directly from outside. 
above correctly assesses the indirect effect on Y? 
the first, the second, or neither. 

Which of the regressions 

The answer is, it could be 

Consider various causal structures. 

In Figure 10, X and Z are independent. X~\\> i 

Then a=b in (2) and (3), and both 2.9 \f k\quc D 

regressions are correct. 

In Figure 11, only (2) is correect. We X\:;a;fgu\ i 

don't want to "hold Z constant" since the / VfUrc 1 

influence of X is transmitted through Z 

(In this case b=0 in (3)). 

In Figure 12, only (3) is correct. Z /fl’x\ ‘. 

causes a "spurious correlation" between X Tk \\3 { Vsurx by 

and Y which must be netted out. AR N 

In Figure 13, neither model is correct. X TLi;r—‘\$~ K 

has no influence on Y, yet in general, P ‘5“f<)? 

neither coefficient a nor b will be zero. 

This is a good place to discuss "Granger causality". Let X,, Y, be two 
families of random variables indexed by time. Suppose there is no causal 
influence from Y to X (there may be some from X to Y). According to Granger, 
one tests this by the consequence that, for any t, X, should be independent of 
all past Y's given all past X's. But this is a fallacy. What prevents there 
from being a third family Z, which influences both the X's and Y's? e 
Figure 12). 1If so, past Y provides information about past Z, and thus 
indirectly about present X; beyond what past X provides. 
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out Sims' "atheoretical" approach. 
for 's X and Y, if X is earlier than Y p y ,» then X i his is the "post hoc ergo propter hoc" falrllacyexerts e 

In effect, this says that 

‘word about simultaneous equations. This is not a good setup fo i 
ausal structure, since it violates the acyclicity condition . Eailcaptfr}ng 

Strotz and Wold tried to remedy this by imposing an ordering.on varzagi iR 
within each period (conditional causal chains). The trouble here was tfizt in 
terms of their economic interpretations, the variables overlapped in time and 
therefore could not have had the causal structure indicated. 

Most econometric models are expressed by regression equations. If these are 

interpreted as expressing causal structure (influence flows from the 

independent to the dependent variables), then the question of correctness does 

become germane. Which econometric models are then correct in the causal 

sense? Probably none. This conclusion arises from several considerations. 

First, the nature of the data that the r.v.'s represent: it is noisy and 

aggregated in space and time. Second, one can almost always think of omitted 

relevant variables: the structures are not causally closed. Third, almost 

every model involves arbitrary decisions concerning functional form, lag 

structure, etc. 

Thus all our models are at best approximations to the "true" causal structure. 

This is OK: good approximations may work well. But this casts grave doubt 

over significance testing in general. Why ask a question to which the answer 

is known in advance?: all null hypotheses are false. And in fact there is an 

alternative approach to all of statistical inference which I call the post- 

Bavesian approach, which is based on complexity costs and the limited capacity 

of the human mind discussed above. 
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