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The elementary geometry of triangles includes properties such as the ex- 

istence and uniqueness of medians, in-centers, orthocenters, 9-point centers, 

formulae for these, relations amongst these, etc. Now, triangles are 2-simplexes, 

and the question arises, which of these properties carry over to arbitrary n- 

simplexes for any dimensions and in what form. For example, are there ana- 

logues of the 9-point circle for any n-simplex and if not, what properties are 

necessary and sufficient for such analogues to exist? 

Simplexes are thought of here as embedded in Euclidean space, but the em- 

phasis will be on their intrinsic properties as determined by the metric among 

their vertices. The barycentric (or affine) approach fits naturally here. 

Formally, an n-1 simplex is given by n points x1,...2z, in R”"! that are in 

general position. This means that the n points (7),... (%) in R™ are linearly 
independent. 

Here (%) appends an extra ”1” component to the column vectors z;,....An 
. : 1 . . . 

equivalent definition is that the n-1 points (ze — 21), (3 — z1), ... (z, —x1) are 
linearly independent in R®~1.). 

Given this set-up, any point y € R*™! is uniquely expressible as an affine com- 

bination y = 101 + ... 4 Tnom, where @y + ... + o = 1. (Proof. (%)... (%) 

are a basis in R™, hence (}) is uniquely expressible as ()ay + ... + (7). 
The last linereads 1 = a; + ... + a,. QED.) 

(Note that we are using the terms affine and barycentric synonymously though 

the latter usually carries the additional requirement o; > 0,4 = 1,...n (the 

"inside” of the simplex). No such assumption is made here since, among other 

things, several of the centers mentioned above can like outside the simplex. In 

any case, the oy, ... a, will be called the affine or barycentric coordinates of y.) 

Let B be the space of all affine n-tuples {aja; + ... + a, = 1}. Also, let Z 
be the space {a|a; +...+ o, = 0}. (Z for zero-sum.) Note that Z is a subspace 
of R", the hyperplane of all n-tuples orthogonal to w = (1,...1) and B is a 
hyperplane parallel to Z.



  

Consider the map L : Z — R® ! given by o » zi01 + ... + Tpa,. This is 

a linear isomorphism. (Proof: Linearity is clear. Isomorphism follows from a 

proof similar to the one above — Just substitute (3) for (¥). QED.) 

Now R”~! has the usual inner product and metric, which can be pulled back to 

Z via the isomorphism given above. This turns out to be a key insight. 

Theorem 1. Let A be the (n,n) matriz given by a;; = dZ;, 
distance form vertex z; to x;. Then there exist o, § € Z, 

the squared Fuclidean 

<a,f>= ——%a'Afi (1) 

Proof aij = (xi — mj) (x: — zj = |zi|* + |=;|*> — 22}z;. Hence, —3a’AB = 

—3 Yot 2og (il + 25 2)85 + (L wscs) (X 2465) = (LaY(LB) =< a, 8 > 
(The double symmetries drop out by a, f € Z.) QED. 

Equation (1) gives the translation between barycentric coordinates and ma- 
trices. For let a, 3 € B be the coordinates of points y,,yg € R*!. Theny€Z 

where v = 8 — o. The squared distance from y, to yg is then |z1y1 + ... + 

xn’}'nlz =< 7,7 >= —"%’YIA'Y 

Concrete example: Take a triangle with sides a, b, c. What is the distance from 

the vertex opposite side ¢ to the midpoint of side ¢? The coordinates of these 

points are (0,0,1) and (3.1,0). Hence the squared distance is 

0 & a? 1/2 1 /11 1 
—= (—,—,—1) ¢ 0 ¥ 1/2 _lplp lo 

2 272 2 B2 0 -3 2" ¥ 4 

As an exercise, show that the squared distance between z; and z; is indeed a;;. 

Now consider the point with coordinates § € B, and compute the mean square 

distance of yg from the n vertices, where the mean is taken with respect to the 

system of weights a € B. 

Theorem 2. The mean squared distance msd = —%fi' A+ aAB (*). If o is 
fized, this attains a unique minimum at 8 = «, with value %a’Aa. 

Proof. Vertex z; has coordinates d;, which equals 1 in place 4, 0 elsewhere, hence 

the squared distance is —%(fl —8;YA(B—8;) = ~—Afl + @3, where a/, is the 7" 

row of A. Multiply by «; and add over i to get (*) 

Note that (*) may be rewritten as 

~5(B— 0 A(B o) + 50/ Ao @) 
which is minimized at # = « since the first term is the inner product < § — 

a,f—a>. QED. O



Expression (2) is rather interesting because it decomposes the msd (*) into 
the sum of its lowest possible value %a’ Ac and the squared distance from the 

minimum point y, to yg. This is reminiscent of the theorem that the msd of a 
probability distribution is minimized at the mean. In fact, it generalizes that 

result in a way in that negative components of a are allowed: actually, —%—a’ Aa 

takes on negative values sometimes. 

We will refer to %a’Aa as the variance of distribution «, o € B. 

Suppose two agents play a zero-sum game on an n-1 simplex. The Max player 
goes first, choosing o € B. Then the Min player choose § € B, the payoff being 

(*). Obviously, the Min Player chooses 8 = «. But what does the Max player 
choose? 

Theorem 3. Let C be the circumcenter of a simplex and let R be the circum- 

radins. Then, for any 6 € B, 

-;—,8’ ApB = R? — (distance® from yg to C) (3) 

Proof. Let oo € B be the coordinates of C. Then (reversing the roles of a, § in 

(2)), the msd of C with weights 8 € Bis —1(a—8)'A(a—B)+ 33 AB. But this 
msd must equal R? for any 8 € B, since the distances from C to each vertex 

are the same. This yields (3). QED. O 

Evidently, the Max player will choose «, getting a payoff of R2. But (3) 
says a lot more. For any point on the hyper-circumsphere with coordinates 

B € B, the variance % B'AB = 0. In particular, this holds for the vertices 

themselves. Consider a triangle with sides a, b, ¢,. A theorem of Euler states that 

the distance? from circum- to incenter is RZ — 2Rr, where r is the inradius. But 

this follows from (3). Note that the coordinates of the incenter are (a, b, c)/(a+ 
b+ ¢) and the variance works out to be abc/(a + b+ ¢) = 2Rr. Similarly, the 
distance® from circumcenter to median is R? — 1/a(a? + b% + ¢?). 
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Fig 1 

We now remove the condition in the preceding theorem: 

Theorem 4. For any simplex, the circumcenter exists and is unique.



  

Proof. Clearly this holds for n = 2 points. Now proceed by induction on n. 

Assume for any simplex of n points in R"~! that there is a unique circumcenter 

C € R™! (the horizontal line in Fig 1). Now go to R™ and add a new point y 

at distance h from R™~! (with h # 0 to preserve affine independence). Consider 
the line through C perpendicular to R"~!. Any point on this line remains 

equidistant from the n old points by Pythagorus. (The new common spherical 

distance = R2 42, where R is the old circumradius.) Further, any point off this 

perpendicular cannot be equidistant from the n old points, for if it were then 

its projection on R"~! would also be equidistant contradicting the uniqueness 

of C. It remains to find the point C’ at distance t from C that equates these 

distances with the distance to y: 

R? +1% = (t — h)? + D? — h?, yielding t = (D?® — R?)/2h 

a unique solution. QED. O 

Below we will give another proof of this theorem that yields explicit formulae 

for C and R. 

Lemma 1. Matriz A is invertible. 

Proof. Suppose that Az = 0 where z is an n by 1 vector. First assume that 

w'x # 0 where v/ = (1,1,...1). By scaling, we may assume u'z = 1, that is, 

z € B. Now let w € B, distinct from z, and with all components positive. Then 

sw'Aw and —4(w — z)’A(w — x) are both positive. Yet Az = 0 implies that 
they add to zero. Contradiction. Thus, we must have w'z = 0, that is, z € Z. 

But then < z,2 >= —12/Az = 0 so z = 0. QED. O 

Theorem 5. Let a € B be the coordinates of circumcenter C and R the 

circumradius. Then o = A 'u/u'A~'u and 2R? = 1/u'A='u, where again 
w=(L,1,...1).


