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THE ABSTRACT TRANSPORTATION PROBLEM 

1. Introduction 

In this paper we generalize the transportation problem of linear pro- 

gramming to the case of a possibly infinite number of sources and sinks. 

Why bother to do this? TIn the first place, the surface of the earth is 

a continuum, and we may always think of transportation as a re-distribution of 

mass from one portion of this surface to another. Many transportation problems 

appearing in the literature achieve their finite character by a lumping together 

of continuum into a finite number of pieces, which are treated as points: for 

example, treating countries as single points in international trade models. 

However, the possible realm of application of the abstract transportation 

model goes well.beyond transportation per se. It is well known that a wide 

variety of models -- of resource allocation, scheduling, etc. -- can be thrown 

into the transportation format. Problems;of the “caterer" form, for example, 

involve the redistribution of mass from ofie point in time to another. Since 

time is a continuum, such problems are often most naturally formulated with a 

continuum of origins and distinations. Again, there is an infinity of types of 

possible commodities or industrial processes; thus, a problem of the form, 

"how shall I assign my resources among various activities?", is again a problem 

with an infinity of sources and sinks. 

Although this paper is not concerned directly with numerical applications, 

one possible "practical-man's" objection should be laid to rest. It is not true 

that the abstract transportation model must be approximated finitely - py the 

lumping process mentioned above -- to achieve numerical results. What practice 

requires is that the set of possible answers be represented by a parameter space 

of relatively low dimension. This can be achieved by the lumping process, but 

can also be achieved in other ways, depehding on the particular problem., This



is illustrated by statistics, where continuous distributions are put to 

practical use by working with families of them indexed by a small number of 

parameters. 

2. Formulating the model 

The transportation problem with m sources and n sinks is -- 

Find mm non-negative numbers X3 5 (e et MR aen) 

satisfying 

2 ey Clmil e ), 1) 

1, = (2 55 %ys ? bj ErEas ), (2) 

and minimizing = 39 
TR 

Here 2; is the capacity of source 1, bj is the reguirement at sink j, 

and rij is the cost incurred per unit shipped from source i to sink J. 

The natural generalization of this uses measures and integrals. We now 

define the necessary concepts.1 

x £ E signifies that x is a member of E., Set E is contained ?fi Set I, 

written EcF, if every member of E is a member of F. The union of sets B and 

F, written EvF, is the set whose members are members of E or F or both. More 

generally, if 4 is an arbitrary collection of sets, its union, written v, is 

the set whose members are members of at least one of the sets of 4. The 

intersection of sets E and F, written EaF, is the set whose members are members 

of both E and F. If & is an arbitrary collection of sets, its intersection, 

written Ng, is the set whose members are members of all of the & sets. The 

complement of set F in set E, written E\F, is the set whose members are members 

of E but not of F. The empty set, written @, is the set which has no members. 

  

lThis paper is self-contained so far as definitions go, but standard 

theorems are quoted without proof.



A set E is countable if its members can be enumerated in a finite or infinite 

Sequence {?l’ @2, ...} . 

Let A be a fixed set, and Z a collection of subsets of A; Zis a sigma- 

field over A if (1) A£Z, and (2) if E ¢ Z , then (A\E) €Z , and (3) if & is 

any countable collection of ¥ -sets, then ud € > . The pair (4,2 ) is called a 

U space, and the members of = are called measurable sets. 

Let (A,X"') and (B, =") be two measurable spaces. The product measurable 

Space, written (A xB, " x5") is defined as follows. A x B is the cartesian 

product of A and B, the set of ail ordered pairs (x, y), (x£ A, y &« B). Any 

subset of A x B of the formE x F, (E£3', F £€3") is called a measurable 

rectangle. ' x 5" is the class of all sets common to all sigma-fields over 

.A x B which have all measurable rectangles as members. X' x =" itself can be 

shown to be a sigma-field over A x B, the sigma-field generated by the 

measurable rectangles. 

A bounded, non-negative function,//c, whose domain is a sigma-field, 

is a measure if Y (v = Zg__o_l #(Gn) whenever & is a countable collection 

£G~, GZ’ GB' ...} of measurable sets which are disjoint (Gm"Gh = @ for all 

m#h).z A probability on (4,X%) is a measure # with domain Z for which « (4) = 1. 

The notation {x!...} represents the set of all x having the property 

stated after the bar. For example, {x/f(x) > q} is the set of all x for which 

the value of a certain function f exceeds the number c¢. Given a measurable 

space (A,5 ), a function f with domain A is said to be measurable, if the sets 

{x!f(x) > q} are measurable for all real numbers c. It can be shown that the 

substitution of ",", "M, op " M for ">" in this definition yields the same 

set of functions. 

  

2 . : 
The £ in this sentence stands for sumation, not for a class of sets. 

The distinction will be clear from the context.



If £ is a bounded measurable non-negative function, and/u.a measure, 

both with respect to (A, £), the integral of f with respect to/x, 

written ff’ du , is defined as j"’p/,(fx[ el i, 
A o 

where the integral on the right is an ordinary Riemann integral of the indi- 

cated (monotone decreasing) function on the real line. If f takes on negative 

values, we splitbit into ifis positive and negative parts: f(x) = max (£(x), 0) 

- max (-f(x), 0), take the integral of each part, and subtract.3 

We are now ready to formulate the abstract transportation problem: 

Given two triples, (A,Zfl,/ufl) and (B, =", «"), and a real-valued function r 

with domain A x B, where 

(1) &' is a sigma-field over set 4, and//L' is a measure on s'; and similarly 

for s", B, and A'; 

(2) r is bounded, and measurable, with respect to the product sigma-field 

Flox s ever-A-k B 

find a measure  on (A x B, 5' x s") which satisfies 

@(E x B) ¢ «'(E) for all E £3', (4) 

g(A x F) 2l R Al HE e (5) 

and which minimizes Jfl rdf over all such measures. : (6) 
AxB 

This bears direct comparison with the finite transportation problem 

(1), (2), (3). A and B are the origin and destination spaces, respectively. 

! is the capacity measure. The constraint (%), which is a direct generaliza- 

tion of (1), states that ¢(E x B), which is the total flow out of region E, 

cannot exceed ««'(E), the capacity of the sources in region E. «" is the 

requirement measure, and (5), the generalization of (2), states that (A x F), 

the total inflow into region F, must at least meet the }equirement for that 

  

)For further reading in measure theory, the reader is referred to 

P.R. Helmos, Measure Theory (Princeton: Van Nostrand, 1950).



region, u"(F). @ is the unknown flow from origin to destination: #(E x F) 

equals the total mass flowing from region E to region F. r generalizes the 

unit cost function. 

A careful check of the definitions shows that, ifl the special case where 

A and B are finite sets, and 2', 3" are the classes of all subsets of A and 

B, respectively, (4), (5), (6) reduce to (1), (2), (3). 

Before going on to the analysis of the abstract transportation problem, 

let us look at some related work, Martin Beckmann has worked on some related 

but non-overlapping problems.a Beckmann makes essential use of the topology of 

2-dimensional Euclidean space, using vector methods (gradients, curls, ete.). 

In this sense his is a special case of ours. On the other hand he deals with 

the entire flow field, whereas we restrict our attention Just to origin- 

destination connections. Thus he is dealing essentially with a transshipment, 

rather than a transportation problem. 

The abstract transshipment problem differs from the abstract transporta- 

tion problem as follows: the spaces A and B, and the sigma~-fields 3' and 3", 

are identical; let us write them as (A, 5 ). There is a net reguirement (signed) 

measure,/#t, on (A, ¥). This differs from an ordinary measuré only in that it 

may take on negative values. The constraints (4) and (5) are replaced by: 

(4 x B) - §(E x A) = «(E) for all E ¢ £. (7) 

The transshipment problem, then, is to find a measure § on (AxA, =x ) 

which satisfies (7), and minimizes (6) over all such measures. 

In the finite case there is a well known procedure for reducing trans- 

o shipment to transportation problems: This procedure breaks down when the number 
  

MEA-continuous model of transportation", Econometrica, 20: 643-660, 
October, 1952; "the partial equilibrium of a continuous space market", 
Weltwirtschaftliches Archiv, 71: 73-87, 1953, 

5A.Orden, "The transshipment problem", Management Science, 2: 276-285, 
April, 1956,



of sets in Z is infinite. The transshipment problem is essentially distinct 

from (and more difficult than) the transportation problem in the general case. 

We shall concentrate our attention on the latter; it should be pointed out, 

however, that several of the theorems we derive have analogs for the trans- 

shipment problem. 

The true locus classicus for the abstract transportation problem is found 

in the work of L.V. Klant.orovich.6 He deals with the problem of (4) - (6) except 

for two minor points: the constraints are taken to be equalities, and A is 

identified with B. (This last identification involves no real loss of generality, 

but can be misleading, as we shall see.) He discusses the existence of optimal 

solutions and their connection with "potentials™ (that is, dual prices, in the 

terminology which developed later on) -- a remarkable achievement for its time. 

Kantorovich's article is peculiar in several respects. It is all of three 

pages long, and written with extreme brevity and apparent haste. In fact, the 

major theorem -- stating the eiistence of dual prices associated with an optimal 

flow -~ is false, as one can show by a simple counter example.7 (The root of 

the error, by the way, lies in the fact that the constraints imposed are those 

of the transportation problem, while the dual prices are defined in a way 

appropriate to the transshipment problem. If the unit cost function r violates 

the triangle inequality -- as it well might -- one can get a counter—example,. 

as footnote 7 illustrates). More surprising is the fact that the method of 

proof used appears to be insufficient to prove the corrected version of the 

theorem. 

  

6"On the translocation of masses', Management Science, 5: 1-4, October, 

1958 (originally published in Doklady Nauk USSR, 37, #7-8, 199-201, 1942). 

7Space contains 3 points {x, y, z}; the capacity at point x equals one; 
the requirement at point z equals one; all other capacities and requirements 
equal zero; r(x, y) =1, r(y, z) =1, r(x, z) = 3; all other r's arbitrary; the 
only feasible, hence optimal, flow is one unit from x to z; there is no Kantorovich 
otential for this flow, since it must satisfy the incompatible relations: UZ‘U E 

g; UZ-Uy.s i Uy’UX z I X



Our aim in the bulk of this paper is to go over the ground sketched out 

by Kantorovich, to derive in a rigorous fashion conditions for the existence of 

optimal solutions, and to give a "pseudo-constructive' method for finding dual 

prices from an optimal solution. 

3. Feasibility 

. We begin the investigation of the abstract transportation problem, (4) - 

(6), with a simple feasibility result. 

Theorem 1: There exists a feasible solution to the constraints (4), (5) iff 

A1(A) 2 i (B). 8 
Proof: If ¢§ is a feasible solution, then//o'(A) v #(A x B) z«"(B), so the 

stated condition is necessary. 

It Conversely, let '(A) 2 4"(B); if #'(4) = 0, both «' and " are 

identically zero, and then the identically zero measure on ' x =" is obviously 

feasible. If «'(A) > 0, define the function ¢ on measurable rectangles E x F - 

by: @(E x F) = 451&%57?i§flifil. (9) 

It is a standard measure theorem that such a "product" function can be extended 

to a measure over the product space (A x B, 3' x £"). One checks immediately 

that this measure is feasible, since 

95 x B) = “HELB) © 1(8), ana 

g(A x F) = «(F). QED 

This may be stated: a feasible solution exists iff total capacity of sources at 

least matches total requirements of sinks. This well known result for the 

finite case thus carries over in general. 

We are also interested in the abstract transportation problem for the 

case where the constraints in (4) and (5) are stated as egualities: 

(B x B) = «'(E) for all E ¢3! (10) 

#(A x F) = ««"(F) for allFest (11)



Theorem 2: If /af(A) = «"(B), then any feasible solution to (4), (5) satisfies 

these constraints with equality (that is, it is in facfi feasible for 

the stricter constraints (10), (11) ). 

Proof: Suppose, for example, that some constraint in (4) is satisfied with 

striet inequality: @(G x B) < «'(G) for some G ¢ ='; then /A,"(B) <@(A x B) 

= ¢(G x B) + @(A\G) x B) < a'(G) + ! (A\G) = «'(A), a contradiction. 

The proof for a strict (5) inequality is similar. QED 

We now have an equally simple feasibility result for the equality-constrained case: 

Theorem 3: There exists a feasible solution to the constraints (10), (11), iff 

I (A) = 4n(B)., . (12) 

Proof: If ¢ is feasible, then «(A) = §(A x B) = w(B). If w'(h) = w'(B), 

then Theorem 1 tells us that there is a feasible solution to (4) and 

(5), and Theorem 2 that these constraints are satisfied as equélities. QED 

4. Duality 

Every finite linear program has a dual, and the dual of the transporta- 

tion problem (1) - (3) is 

Find noun-negative numbers Bl Gl =L, tees, M) and a; CIstl, aes, ) 

satisfying | 

e s e e aon) @) 

and maximizing: ‘Zj ay bj - 5; pia; . (14) 

The dual of the transportation problem with eguality constraints is the 

same as this, except that Py and qj are not constrained to be non-negative. 

Analogously, we define the dual of the abstract transportation problem 

(e (6 tarbare 

Find a bounded, non-negative, function, p, with domain A, measurable with 

respect to 3', and a bounded, non-negative, function, g, with domain B, 

measurable with respect to X", satisfying



gl) = plx) <« plx, ) forall x e A, 2 B (159 

and maximizing: 
f’ qd/”-fpdfl'.. (16) 

B A 

The dual of the abstract transportation problem with equality constraints 

is defined to be the same as this, except that p and q need not be non-negative. 

Apart from the obvious formal similarities between these abstract duals 

and the finite duals, many of the standard relations between primal and dual 

carry over to the general case. We first define one more concept. 

Given a measure ¢ on (AxB, 3" x zj'), its left-marginal measure, ¢', 

is the measure defined on (4, 3') by the rule: _ 

¢*(E) =¢(Ex B), allE & 5. (17) 

Similarly, ¢, the right-marginal measure of @, is defined on (B, 3") by the 

rule: 

g"(F) = §(AxF), allF g s". (18) 

(If ¢ is a probability, its marginals coincide with the usual notion of marginal 

probabilities.) In terms of marginals, the basic transportation constraints 

(4) and (5) assume the simple form - 

¢' < ', and (19) 

gn z n, (20) 

Theorem 4: If ¢ is feasible for the abstract transportation problem, (4) - (5), 

and (p, q) is feasible for the dual, (15), then 

X rd ¢z5 qcbw'—jgpdfd. (21) 

AxB B 

Proof: We adopt the simple convention that '"p" stands both for a function with 

domain A, and for the function with domain A x B defined by p(x, y) = p(x). 

allxe A, y ¢ B; similarly, "q" stands for two functions, with domains B, 

and A x B, related by q(x, y) = q(y); which function we are talking
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about is clear from the domain of integration. Then 

Lflrwz&fl@@w=fiflqw-hfipw= 

j)qd¢”-‘/pd¢'2] qd/«_"-.fpd B (22) 
B A B A % 

(The first inequality follows from (15), the equalities reflect standard inte- 

gration theorems, and the last inequality follows from (19) and (20), together 

with the fact that p and q are non-negative.) QED 

Theorem 5: If ¢ is feasible for the abstract transportation problem with 

equality constraints, and (p, q) is feasible for the dual of this 

problem, then (21) is still valid. 

Proof: Same as above, except that the last "a" should be replaced by "=", QED 

These theorems .carry over the fact thét, in a pair of linear programs, 

the value of the maximum program never exceeds the value of the minimum 

program, for any pair of feasible values. - 

We are now interested in conditions under which the inequality (21) 

becomes an equality, because, in view of theorems 4 aand 5, this would guarantes 

that @, and (p, q) are optimal for their respective programs. 

Definition: Let ¢} be feasible for the abstract transportation problem (4) - 

(5), and (p, q) = O feasible for the dual problem (15). (p, q) is a measure 

potential for ¢ if the following three conditions are satisfied: 

B itz ilalm) - pldia sl i =0, (23) 
@t {x)p(x)'> O} =,/A'{x[p(x) > O}, and (24) 

#" {y]aly) > G = «"fylaly) > O}. (25) 

(23) states that there is no flow on the set of source-sink pairs for which (15) 

is satisfied with strict inequality. (24) states that capacity is used completely 

on the set of sources for which p > 0. (25) states that requirements are just 

met on the set of sinks for which q > O. 

The same definition also serves for the pair of eguality-constrained pro- 

grams, except that (p, g) need not be non-negative. Note also that for equality
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constraints, (24) and (25) are automatically fulfilled, so that they may be 

omitted from the definition. 

Theorem 6: For a given feasible pair, @ and (p, q), melation (21) is an 

equality iff (p, q) is a measure potential for @f. (This applies 

both to the inequality and the equality-constrained programs.) 

Proof: Examining the chain of relations (22), we find that thé first > 

becomes an equality iff (23) is fulfilled, and the last ">" becomes an 

equality iff (24) and (25) are fulfilled. QED 

Corollary: If @ and (p, q) are feasible for their respective programs, and 

(p, q) is a measure potefitial for @, then both are optimal for their 

programs., 

The definition and theorem 6 generalizes the familiar "complementary 

slackness" conditions of linear programming, according to which equality is 

attained in dual program values iffstrict inequality in one program's constraints 

is matched by a zero value of the corfssponding variable in the other. The 

further (and deeper) result in finite linear programming theory that "comple- 

mentary slackness" is a necessary condition for optimality, does not necessarily 

carry over to the infinite case. 

5. Existence of optimal solutions 

Up to this point, maasure—theoretic concepts have sufficed to define our 

concepts and prove our theorems. From here on topological concepts will also be 

needed. Indeed, the author does not know of any method of proving the existence 

of optimal solutions to the abstract transportation problem using measure- 

theoretic concepts alone. Also, we know of no way to construct measure potentials 

directly from optimal solutions. Instead we givé a constrfiction for the related 

notion of "topological potential", and under certain additional conditions 

these turn out to be measure potentials as well. The basic definitions follow.
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Given a fixed set A, let J be a collection of subsets of A. Todsa 

topology over AR @DEn € T, and the empty set ¢ £ 1)D s (2N 5F Gl e T and 

G, € T, then G n G, & J; (3) if Y is any collection of T-sets, then udeT. 

The pair (A, ) is a topological space. The members of J are called the open 

sets. A set is closed if its complement in A is open. 
  

Let (A, J') and (B, ¥") be two topological spaces. The product 

topological space, written (A x B, ¢ x9"), is defined as follows. A x B is 

the cartesian product of A and B, Any subset of A x B of the form G' x G" 

(G' ¢ J', G" g J") is called an ofien rectanglé. 4" x " is the class of 

all sets which are unims of an arbitrary number of open rectangles, together 

with the empty set. It can be shown that J" x J" is, indeed, a topology 

over A x B. 

A topological space (A, J) is separable if there is a countable set 

E C A such that every non-empty open set has a member in common with E. A 

real-valued function f with domain A is continuous for the topology & ifA every 

set of the form {x|a ¢ f(x) <« b}, where a and b are real numbers, 1s open. 

A metric on a set, A, is a real-valued function, d, with domain A x A, 

having the properties (1) d(x, x) = 0; (2) d(x, y) > 0 if x # 3 (3) dlxy) = 

d(y, x); and (4) d(x, y) + d(y, z) 2 d(x, z), for all x, y, z £ A. The pair 

(A, d) is a metric space. A sequence, Xp» Koy eees in a metric space converges 

to x if, for any positive number &, there is an integer N, such that d(xn, x) <€ 

for all n > N. A metric space is complete if, for any sequence X;, X, e« 

having the property that d(Xm, x,) < & whenever m and n exceed some integer N, 

depending on the positive number &, there is an x to which the sequence con- 

verges. (Roughly, when the points of a sequence get indefinitely close to each 

other, they get indefinitely close to some fixed point of the space. )
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Any metric on A determines a topology on A as follows: a set E c A is 

open if, for every point x £ E there is a positive number € such that all points 

within distance € of x are members of E. A topology which is generated by some 

metric in this way is said to be metrizable. If it is generated by some complete 

metric it is said to be topologically complet.e'. A set K in a metrizable topolo- 

gical space (A, J') is compact if any sequence of members of K has a subsequence 

which converges to a member of K. If the subsequence is merely known to con- 

verge to a member of A, the set is relatively compact. 

We will need certain concepts which involve both measure-theoretic and 

topological notions. The Borel field of a topological space is the smallest 

sigma-field of which every open set is a member. (More exactly, it is the 

sigma-field to which a set belongs iff it belongs to every sigma-field to which 

all open sets belong.) The members of the Borel field are called Borel sets. 

Let (4,7 ) be a metrizable topological sfiace, let Z be its Borel field, and let 

M be a measure on Z . A1s sald to be tight if, for every positive number € , 

there is a compact set K such that «(A\K) < €, Let { be a collection of 

measures on X . M is uniformly tight if (1) there is a number M such that 

#(A) £ M for all measures . e M, and (2) for every positive nu‘xfiber e there 1is 

a compact set K such that «(A\K)< & for all tM. (Note that this requires 

more than that each measure of M be individually tight.) Let 4«* be a measure 

on Z, and /“1’ /uz, ... & sequence of measures on 2 ; the sequence SA1r Morees 

is said to converge weakly to w«* if, for every real-valued function f with 

domain A which is bounded, and ceontinuous with respect to f , We have 

Lo fSaa, = Lodap 26) 
n —p o° ‘A /'Ll’l A /u' ( 

(in the ordinary sense of limit of a sequence of real numbers). The set of measures j‘( 5 

weakly relatively compact if every sequence of measures in fl contains a sub- 

sequence which converges weakly to some measure (not necessarily a member of M).
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Finally, we need one or two concepts concerning real numbers. The 

supremuy (abbreviated "sup") of a set of real numbers is the smallest number not 

exceeded by any of the numbers in the set; the infimum ("inf") is the largest 

number which is not greater than any number of the set. (If the set has a 

greatest number, it is the supremum; similarly, if it has a least number, that 

number is the infimum.) Given a sequence of real numbers, Xy Kpy o eees let Vi ° 

be the supremum of the subsequence beginning with the k-th term: Kper Kpeyqo ooed 

the 1limit of the sequence Vi» Tos oo formed in this way is called the lim sup 

of the original sequence. Lim inf of the original sequence is defined in the 

same way from the sequence of infima. 

With these definitions taken care of, we are ready to proceed. The 

following two basic results from the theory of wegk convergence play an essential 

role in our existence proofs. 

. Lemma 1: (Prohorov-Varadarajan) Let N be a collection of measures on the Borel 

field of a metrizable topological space. If /{ is uniformly tight, then./{jfi 

weakly relatively compact. 

Lemma 2: (A.D. Aleksandrov) The following three conditions are equivalent. 

(a) The S8qUeNnce iy, s - bf measures in M converges weakly to/pc*; 

(b) Lim sup/fi4n(F) é‘/L*(F), for every closed set F. (27) 

(c) Lim inf/pen(G) 2 u*(G), for every open set G. _ (28) 

We are now ready to state our first existence theorem. For reasons which 

will become clear later, we treat the abstract transportation problem only for 

the case where total capacity equals total requirement. To assess the practical 

scope of this theorem, it should be noted that N-dimensional Euclidean space is 

  

8P. Billingsley, Convergence of Probability Measures (N.Y., Wiley, 1968), 
Chapter I, is a very clear exposition of the theory for the special case of 
probabilities. K. R. Parasarathy, Probability Measures on Metric Spaces (N 

Academic Press, 1967), is also useful.
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separable and topologically complete; thus the following theorem and its general- 

izations would appear to cover almost all cases to be met with in practice. 

Theorem 7: Let (A, Z', «!'), (B, =", M), and r be as in the abstract trans- 

portation problem, (4) - (6). In addition, assume that = ' is the 

Borel field of a topologj' J' over A, which is separable and topolé- 

gically complete; similarly, =" is assumed to be the Borel field of 

a topology J" over B, which is separable and topologically complete. 

r is also assumed to be continuous with respect to the product 

topology (A x B, J' x J"). Finally, assume . (4) = «(B). 

Then there exists an optimal solution @J* to the abstract transportation 

problem. 

Proof: There exists a feasible solution, by theorem 1. Also the set of values 

assumed by the objective function (6) is bounded, since r is bounded, and 

feasible ¢'s are bounded by constraint (4). Hence there exists a finite 

infimum, V, and a sequence of feasible flows ¢1, ¢2, .eos sSuch that 

Lin f o g, = V. (29) 

We will show that ¢1, ¢2, ... converges weakly to an optimal measure. It 

is known that, in a separable and topologically complete space, any measure on 

the Borel field is tight (Ulam's theorem; see Billingsley p. 5-6). Thus ! 

and " are tight., Hence, for all positive &, there are compact sets K'c A4, 

K" ¢ B, such that «(A\K')< € and «!(B\K")<E. 

Now K' x K" is compact in the product topology (Tihonov's theorem), and 

one verifies that, for any feasible a4, 

g(AxB\K'xK") < @(Ax(B\K") ) + $( (A\K")xB) = «"(B\K") + <« (A\K') < 2€ (30) 

(The equality in (30) follows from the fact that all constraints in (4) and (5) 

are actually equalities here -- from theorem 2 above.) Hence the set of feasible 

solutions is uniformly tight. We now apply Prohorov's theorem (Lemma 1) to con-
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clude that the set of feasible solutions is weakly relatively compact. (To 

justify this, we note that J' x 7" is metrizable since its components are, 

and ' x ¥" is the Borel field of ' x J'" since J'' and J'" are separable 

as well.) 

Thus the sequence ¢l' ¢2, ... contains a subsequence which converges 

weakly. For simplicity we use the same notation for this subsequence. It is 

clear that (29 still applies to the subsequence. Letting @f* be the weak limit 

of the subsequence, we obtain 

Vv =;k}§b = r d¢n = ijB r dg*, . (31) 

from the definition of weak convergence. Thus @* attains the infimum, and we 

need only show that it is feasible to prove that it is optimal. 

To prove feasibility, let ¢in, ¢"n, and @*!', g*", be the left and right 

marginal measures of ¢n and @*, respectively (n =1, 2, ...). The fact that 

¢1, ¢2, ..« cOnverges weakly to ¢*, implies that ¢'1, ¢ ... CoOnverges weakly 12, 

to @*', and similarly for the right-marginals. (Mann-Wald theorem; see 

Billbingsley, p» 30-31.) 

Now let G be any open subset of A, We obtain 

4 (G) = lim inf § '(G) = ¢*'(G). (32) 

{ The First inequality comes from the fact that each measure ¢1, ¢2, leren S 

feasible, hence satisfies (4); the second comes from Lemma 2.) 

Similarly, let F be any closed subset of B, We obtain 

U(F) ¢ 1im sup ¢ "(F) < ¢*"(F). (33) 

Tt is known that the measure of any Borel set of a metrizable topological 

space equals the infimum of the measures of the open sets containing it, and 

also equals the supremum of the measures of the closed sets contained in it. 

Lot E be any Borel subset of A, We obtain
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4! (E) = inf [4{(G)[G > B, G openf > inf{ §*'(G)|G>E, G open§ = #*'(E) (34) 

(The inequality comes from (32).) Also, if E is any Borel subsefi of E, we obtain 

AN (E) = sup i}L"(F)/FcE, F closed} < sup {¢*"(F)[FCE, F closed} = gx"(E), (35) 

(The inequality comes from (33).) 

@* satisfies the constraints (4), according to (34), and the constraints 

(5), according to (35). Hence it is feasible, hence optimal. QED 

What happens if we allow «'(A) to be greater than «'(B)? That is, we 

consider the more general case in which the capacity of sources can exceed the 

requirement of sinks. Surprisingly, theorem 7 breaks down: 

Theorem 8: There is an abstract transportation problem satisfying all the 

premises of theorem 7, except that «J(A) > 4(B), for which no 

optimal solution exists. 

Proof: Let there be just one source, 2, of capacity 1. Let there be a countable 

number of sinks: B = {bl, b2, --;? with requirements identically zero. 

Let every subset of B be open. Let the unit transport cost function 

be: r(a, bn) = % - 1. One easily verifies that all the premises of 

theorem 7 hold (except, of course, that «!'(4) =1, «M"(B) = 0). Yet there is 

no optimal flow, since if n is the smallest integer for which ¢{é, bn§7-0, 

shifting this flow to the sink bn+1 reduces costs, while the identically zero 

flow is the worst of all. QED 

There are, however, certain conditions under which we can still assert 

the‘existence of an optimal flow in the slack capacity case. 

Theorem 9: Let the premises of theorem 7 be altered as follows. 

(1) ' (A) 2 2"(B) (replacing the stronger condition '(A) = &"(B) ) 

(2) (B, ") is compact and metrizable (replacing the weaker condi- 

tion that (B, ") is separable and topologically complete). 

Then an optimal solution exists to the abstract transportation problem.
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Proof: The place where the proof of theorem 7 breaks down if we feplace 

At(A) = "(B) by an inequality is in relation (30), where we cannot 

assert that 

(A = (B\K™) ) + #( (A\K') x B) = wn(B\K") + . (A\K'), 

since theorem 2 does not apply. However, if B itself is compact, we 

can replace K" by B, to obtain 

#(A x B\K' x B) = ¢( (&\K') x B) < (A\K') < €. (36) 

Hence the set of feasible solutions is again uniformly tight, and the 

proof proceeds exactly as in theorem 7. : QED 

Iheorem 10: Let the premises of theorem 7 be altered as follows: ' (4) z,afl(B), 

and r is non-negative. 

Then an optimal solution exists to the abstract tmransportation 

problen. 

We just outline the proof, rather than carrying out the somewhat tedious 

details. Given the original problem, we construct a new problem by adding an 

extra point (z) to the destination space B. We extend the topology J" by 

specifying that G v(z) is to be open iff G is open in J". We extend the measure 

by specifying that the requirement for the singleton set (z) is to be «!(A) 

- o"(B). Finally, we extend the function r by specifying that r(x, z) = 0 

forali x £ A, 

This new problem satisfies all the prewises of theorem 7, including the 

condition that totél capacity = total requirement. (Incidentally, this construc- 

tion is the abstract form of the standard trick of adding an artificial sink to 

take up the slack in an inequality-constrained finite transportation problem.) 

Hence there exists an optimal flow @$** for it. Let ¢* be this flow restricted 

to the original product space A x B, We claim that $* is optimal for the 

original problem.
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To show this, let @ be any feasible flow for the original problem. 

Using the Radon-Nikodym theorem, we can show the existence of another feasible 

flow, §, which satisfies 
~ 

$<¢, (37) 

and satisfies the destination requirements exactly: 

¥(a x E) = w(E), for all E¢ =, (38) 
o~ 

Tt follows from (38) that ¢ has an extension,la, to the extended space A x (Bu(z) ) 
modified 

which is feasible for theAtranSportation problem. Finally, putting everything 

together, we obtain 

= 

- df* = A < ag = af < "d, (39) 
IAxBr / fo(Bu(z))r f /Ax(Bu(z))r f foBr¢ foBr¢ 

which proves that @* is optimal. 

(The equalities in (39) follow from the fact that r(x, 2) = 0; the first 

inequality follows from the optimality of @** for the modified transportation 

problem; the last inequality follows from r 2 0 and (37).) QED 

Finally, we give two results which extend the scope of theorem 7 

considerably. 

Theorem 11: Let the premises of theorem 7 be weakened to read: A jfi) and 

(B, ") are Borel subseté of separable and topologically complete 

spaces. Then there still exists an optimal solution. 

Proof: The only place where topological completeness is used in the proof of 

theorem 7 is to imply that ! and «" are tight measures. But any 

measure on a space satisfying the weakened premises above is necessarily 

tight. (See Parasarathy, p. 29-30.) QED 

In practical terms, theorem 11 means that existence can be asserted not 

only when the origin-destination spaces, A and B, are Euclidean spaces of 

arbitrary finite dimension, but also when they are more or less arbitrary subsets. 

Theorem 12: Let the premises of theorem 7 be satisfied. Let A and ¥ be two
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given measures on (A x B, ' x "), and let feasible flows be 

required to satiéfy not only (4) and (5), but to lie between A 

and V: 

ME) < §(E) < %(E), for all E £ 3 ' x Z'. (40) 

Then, if there exists a feasible flow satisfying (4), (5), and (40), 

thére exists an optimal flow for these constraints. 

Proof: The proof of theorem 7 applies without change, except that.we must 

explicitly assume the existence of a feasible solution to get started, 

since theorem 1 is not available. Thus, we know there exists a seguence, 

¢1, ¢2, oso OF foasible solutions which converges weakly to a measure ¢* 

satisfying (4) and (5), and which achieves the infimum of the objective 

function (6). It remains to show that @* satisfies (40). This can be 

done in exactly the same way that the satisfaction of (4) and (5) are 

proved; namely, we show that 

H(G) > g*(6) (41) 

for any open set G c¢ A x B, and that 

| NP (42) 
for any closed set F ¢ A x B, by the same arguments leading to (32) and (33). 

Then, since ' x 2" is the Borel field of the metrizable space (A x B, j' % 7, 

the inequelities (41) and (42) can be extended to all Borel sets of A x B, by 

the arguments of (34) and (35). Thus (40) is satisfied, §* is feasible for 

9 the more restrictive problem, hence optimal for it. QED 

9Also an unlimited number of further constraints of the form ¢(G.) < 93 

or §(F.) » 4. may be imposed, where G. and F. are open and closed sets,l 
respec%ively} in A x B. The proof that feas%bility implies optimality is 
exactly as in theorem 12: just put the subscript i in lines (41) and (42).



6. Existence of Potentials 

We have seen that, if ¢ and (p, q) are feasible for their respective 

problems, and (p, q) is a measure potential for @, then ¢ is optimal., Here we 

want to tackle the converse (and much more difficult) problem. If @ is optimal, 

-1s there a dual-feasible pair of functions (p, q) which is a measure potential 

for @? 

Actually, as we have.mentioned, our results do not produce measure 

potentials directly, but a related property called a topological potential., We 

proceed to define this, 

Let the quadruple (4, T 2 et bel respectively, a set A, a topology 

T over A, a sigma-field Z over A, and a measure/u.ofi Z . (We do not necessarily 

assume that J ¢ 3, as we have been doing up to now.) Set Ee€A is a neighborhood 

of point x£A if there is an open set G such that x £ Gand GC E. x is a 

point of support of the measure « 1f every measurable neighborhood of x has 

positive . ~-measure. The set of all points of support is called the support 

of e, 

Definition: Let ¢ be feasible for the abstract transportation problem.(4) - 

(5), and (p, q) =z O feasible for the dual problem (15). (p, q) is a topological 

potential for § if the following three conditions are satisfied: 

If (x, y)é & x B is a point of support of @, then 

a(y) - p(x) = r(x, y). (43) 

If x ¢ A is a point of support of (ec! - @#'), then 

plx) = 0. | ) 

If y ¢ B is a point of support of (f" - "), then 

aly) = 0. (45) 

In (43), (x, y) being a point of support of ¢ refers, of course, to the 

product space, so that the guadruple used in defining the concept would be
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(g Byt = i 2' x 5", @). In (44), §'is the left-marginal measure of §, 

so that (/z' - @) is the measure of unused capacity of the sources; the corres- 

ponding quadruple is (4, J', ', «! - @'). In (45), (g -/u..”) is the measure 

of the oversupply above requirements arriving at the sinks; the corresponding 

quadruple is (B, I, 3", @" - L"), 

The same definition also serves for the pair of equality-constrained 

programs, except that (p, q) need not be non-negative. the.also that for 

equality constraints, (44) and (45) are automatically fulfilled, so that they 

may be omitted from the definition. (This follows from the fact that, for 

equality constraints, (' - @§') and (@" - ") are identically zero, and there- 

fore have no points of support; (44) and (45) are thus vacuously true.) 

(43) - (45) have as much claim to generalize the "complementary slackness" 

conditions of duality theory as do the corresponding conditions (23) - (25) 

for measure potentials. Indeed, all three concepts coincide for the finite 

case (with all subsets open and measurable). (x, y) being a point of support 

of ¢ generalizes the notion in the finite case that there is a positive flow 

from origin x to destination y. The complementary slackness condition requires 

in this case that the dual relation for the pair 5, y) be fulfilled with 

equality, and this is exactly what (43) requires; Again, if there is unused 

capacity at a source, the complementary slackness condition requires that the 

dual variable be zero, just as relation (44) does. Relation (45) is a general- 

ization of the analogous condition for oversupplied sinks. 

L s ofvinterest to find conditions under which a topological potential 

will also be a measure potential, for this, combined with the other results of 

the present section, will guarantee that an optimal solution of the primal 

problem implies an optimal solution to the dual such that the two problems have 

the same value, We need the following topological concept.
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Definition: A topological space has the strong Lindelof property if, for every 

collection of open sets Y, there is a countable subcollection §'c 4, such that 

ud = v, 

Any subset of Buclidean N-space -~ indeed, any separable metrizable space 

-- has the strong Lindeldf property, so that it includes most cases of practical 

interest: We now have 

Theorem]é: If (p, q) is a topological potential for @, and the product space 

(A x B, J' x ") has the strong Lindelof property, then (p, qJ is 

a measure potential for @. 

Proof: First we show that (43) implies (23). A point (x, y) such that 

q(y) - p(x) < r(x, y) is not a point of support of @, acéording to (43); 

hence it has a measurable neighborhood N(X v) of @-measure zero. 
9 

There is an open set G(X ) such that (x, y)é& G(x y)C:N(x ) 

Consider the collection,,fi, of 'all these open sets, one for each point 

(x, yj for which the strict inequality holds: q(y) = p(x) < r(x, y). 

By the strong Lindelof property, there is a countable subcollection 

§6,, G,, ...} whose union equals udl. Let {N;, N,. ...} be the neigh- 

borhoods in which these G-sets are respectively contained. We then have 

{x, ) [ o) - p&x) <rlx, y)§ <(Uh) = (G, uG, v...) c(l UN, v..).  (46) 

Hence 

# {(x, ) 1) - p(x) <r(x, y)§ £ #( UN, V..) £ 6(N) + B(N,) + ... =0, (47) 

and this yields (23). i 

For theequality constrained case the proof is completed, since (24) and 

(25) are automatically fulfilled. For the inequality-constrained case, we have 

(p» q) 2 0, and we now show that (44) implies (24) and (45) implies (25). 

First, it is easily verified that the component spaces (A, J') and (B, I'") 

inherit the strong Lindelof property from the product space.
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From this point, the proofs copy the above neasoning exactly. We con- 

sider the set of points x in A such that p(x) > 0, find a neighborhood of each 

one of (! - §')-measure zero, duplicate the reasoning involving open sets, 

and conclude that | 

| (- 1) {x]p(x) > 0} = 0, (48) 
which is the same as (24). Similarly, starting from the points y in B such that 

a(y) > 0, we find neighborhoods of (§" - «!')-measure zero, and conclude that 

(@ - fylaly) » 0} =0, (49) 

which is the same as (25). QED 

A condition for the opposite implication to hold is easier to find and 

to prove: 

Theorem 14: If (p, q) is a measure potential for ¢, and each of the three sets: 

1) {(x $)al) - px) < rlx, ¥)§ 5 (2) {x[p(x) > 0}; (3) {¥y[a(y) >0} 

is open in its respective space (1) (A x B, J' x M), (2) (4,J7"), 

(3) (B, ™)), then (p, q) is a topological potential for §. (In 

the equality-constrained case, it is sufficient for the first set 

to be open.) 

Proof: We will show that, if (43), (44), (45), respectively, is false, and the 

first, second, third set, respectively, is open, then (23), (24), (25), 

respectively, is false. 

Suppose (43) is false. Then there is a point of support (x°, y°) of ¢ 

for which q(¥°) - p(x®) < r(x°, y°). The set {(x, y)/q(y) - p(x) < »(x, y)}, 

being open by assumption, is a neighborhood of (x°, yo); it is also measurable, 

hence it has positive ¢-measure, which is to say that (23) is false. 

This already proves the theorem for the equality-constrained case. For 

the inequality-constrained case, we have (p, q) > 0. The reasoning is the same:
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Suppose (44) is false. Then there is a point of support x° of (et - @1) for 

‘ which p(xo) > 0. The set [x[p(x) > O} is measurable and open, hence 

| (' - 8') {x|p(x) > O} >0, contrary to (24). 

Similarly for (45) and (25). QED 

Note that neither of these theorems makes any assumptions about the 

relations between the topologies and sigma-fields. 

We now come to the main business of this section, which is to construct 

a topological potential associated with a given optimal solution to the abstract 

transportation problem. We shall coficentrate on the equality-constrained case, 

which is somewhat easier to deal with, and indicate later what happens when we 

go to inequalities. The assumptions that have to be made to carry through the 

construction are quite mdderate; the proofs, unfortunately, are rather long. 

We begin by proving a basic lemma, which is then applied to the proof of the 

main result. 

Lemma 3: Let (A,E:'vpd), (B,Eflh/uf) and r be as in the transportation problem, 

(4) ~ (6), where, however, we insist that all constraints be satisfied with 

equality: (10), (11). Let @ be an optimal solution for this problem. Also 

assume that there are topologies J' over A, J'" over B, such that J°' ¢ !, 

7" c 3", and r is continuous with respect to J' x 7", (We need not assume 

Ghat g il le sl St 

Then, if 815 seey @ are amy n points of A, bl’ el bn any n points of 

B (not necessarily distinct in either case), such that (ai, bi) is in the support 

SLRBon (= 0, o, im)i, ot Rollowssthat 

a1b1_+ azbz + .. + anbn‘fi alb2 + a2b3 ¥ e b el (50) 

(where we have abbreviated r(x, y) as xy, a notation we shall use throughout 

this section).
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Proof: Choose & positive number € . Thers are n open sets, L, ool in A, 

and n open sets Ml’ ete Mn in B, with the following properties: 

as£Ly, b el s 
3]s : 

xy >ab, -~ for all xeL,, yeM, (i=1, ..., n), (51) 

Xy <ab,,. +€ forall xel,ye& M 4 E = diiswer ) (52) 

(where we write M, for Mh+l’bl for bn+l) 

To see this, note that, by the continuity of r, there are open sets about 

ay and bi such that (51) is satisfied, and open sets about ay and bi+l such that 

(52) is satisfied. This yields two open sets about each of the points 

Fal; en 5 bl’ e bn). The intersection of these two satisfy all condi- 

tions simultaneously. 

Lot C =%—1 M:'fl.n [QS(Li X Mi)] - (53) 

C is positive, since Li X Mi is a measurable neighborhood of (ai, bi)’ a point 

of support of @. 

: ; i 
We now alter the flow @ by adding to it n measures ¢i (52T annna) 

and subtracting from it another n measures ¢i** (@ =1, .0 n)a These are 

defined as follows on measurable rectangles Ex F (E¢Z!', F & "), 

CHp(ExFn(@, x¥4)) 
¢l** (EXF) = ¢(L. XM.) o (1 SR 1’1) (5",’) 

4 i 

  

(e S /:Li) x 'Mi) ¢ (Li+1 x (F nMi+1) ) 

FE, %) Py, ¥ Hyy) (1=1, ceerm) (55)   g*E=xF) = 

(1L is to be substituted for n + 1 in the formula for ¢n*') 

Tt is easy to see that (54) defines a measure; it is, in fact, prqportional 

to ¢ in the rectangle Li x Mi’ and zero outside it.  (55) is zero outside the 

rectangle Li x Mi+1, and is in "product-measure" form on the rectangle. A



27 

standard extension theorem assures us that it also extends to a measure on 

2% 5 2 

We claim that the altered flow, § +n2i:l (¢i* 2 ¢i**), remains feasible 

' for the transportation problem with equality constraints. First we note that 

C @( (EnLi) x Mi) 
% = %ok = = ¢i (E x B) ¢i (E x B) = e (im=all Soraieayn) (56) 

il i 

so that the marginal condition (10) remains satisfied. Also 

= & ¢(Li x (FnMi) ) 
s Skesk = T = g, *(A x F) g **(A x F) Gt xEy > (i=1L ..., n) (57) 

S 

(n is to be substituted for zero in ¢O* (AxF)) 

Adding up over all changes again leads to cancellation, so that the marginal 

conditions (11) remain satisfied. 

It remains to show only that the altered flow is non-negative everywhere. 

The only negative summands appear on the rectangles Li x Mi' If the measurable 

set E is contained in a certain number of these rectangles, the quantity 

1 
C #(E) ) (58) 

ik i 

is subtracted. (Here the summation extends over those i for which G < Li X Mi') 

From the definition of C, this quantity cannot exceed $(E), the original flow 

value. Hence non-negativity is preserved. This shows that the altered flow 

is feasible. 

Since ¢ is optimal, the change in transportation costs induced by 

Dg. x _ ¢, ** s -negati 2;:1 (¢i ¢i ) must be non-negative. Thus 

n n 
Zi=1 ijBr d ¢i*2:2ii=1 ijB r d ¢i**' (59) 

Now ¢i* is zero outside the rectangle Li X Mi+1; on that rectangle, the inequality 

(52) applies; hence 

fo [a3Ps4g + €] 2 0% ZfoB e S ) (60) 
B 

(b = bl)
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Similarly, ¢i** is zero outside the rectangle Li X Mi; on that rectangle, 

the inequality (51) applies; hence 

a.b.-ed¢.**5J rd@.** (i=1, ..., n) (61) 
ijB[ll g AxB i 

The left-hand integrands are merely constants; also 

¢i*(A x B) = ¢i**(A xB) =C, for all i =1, ..., n: hence, integrating out 

the constants, and putting (59), (60), and (61) together, we obtain 

C(aqb, + ay+ ..o ¥ a b)) +nC€ExC(ajby +ab,+... +ab)-nCe. (62) 

Since C is positive, and € can be taken arbitrarily small, the basic inequality 

(50) is obtained. QED 

Lemma 3 is actually a stronger result than would be obtained if we merely 

assumed ¢ to be optimal for the inequality-constrained problem (4) - (6). 

Indeed, suppose § is optimal for the problem (4) - (6). Then it is neceséarily 

also optimal for an equality-constrained subproblem, namely, the one in which 

its own marginals, @' and ¢, play the roles of 4! and 4", respectively. 

Therefore, inequality (50) holds for this . 

We now come to the main result. The premises are the same as for Lemma 

3. Functions (p, q) are constructed which together constitute a topological 

potential for @. That is, they are bounded and measurable, satisfy the dual 

feasibility condition (15), and the topological potential condition (43). Note 

. that these are a potential for the equality-constrained problem, and as such are 

not guaranteed to be non-negative. (4@5 and (45) are automatically satisfied 

by the fact that § is an equality-constrained optimum. p and q are "constructed" 

in the sense that one can write an explicig formula for them. 

First we need a few concepts relating to continuity. Let (A, 7)) be a 

topological space, and let f be a real-valued function with domain A, £ is 

said to be upper semi-continuous if every set of the form -{x{f(x) < C} is open 

(C being a real number); it is lower semi-continuous if every set of the form
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{le(x) >C‘§ is open. If there is a sigma-field, 2, over A such tfiat T2z 

it follows at once from the definitions that every upper or lower semi- 

continuous function is measurable with respect to £, Let 3 be a bounded 

collection of real-valued functions, all with doméin A; we define infJ to be 

that function whose value at the point x £ A is the infimum of the values assumed 

by the members of F at that point. Sup F is defined analogously for the Supremum. 

It is not hard to show that, if ins a collection of continuous functions, then . 

inf J is upper semi-continuous and sup F is lower semi-continuous. Let 

(AxB, J'"x J") be a product space, and let r be a real-valued func‘t;ion 

with domain A x B; r is equi-continuous if, for every positive number &€ , and 

every a £ A, there is a set G' £ J! such that a £ G', and [r(x, y) - r(a, y)}<e 

for all x £€G', y £ B, and, for every € >0 and every b &€ B, there is a set 

G" ¢ J" such that b € G", and [r(x, y) - r(x, b)[<€ for all x £ 4, y £ G". 

Let (A, d) be a metric space, and let f be a function with domain A; f is 

uniformly continuous if, for all positive € , there is a positive § such that 

d(x;, x,) <§ implies that |£(x) - £(x,)/ < €. Let (4, d') and (B, d") be 

two metric spaces, and r a function with domain A x B; r is uniformly continuous 
  

if, for all positive &, there is a positive J such that d’(xl, xz) <j and 

d"(yl, y2) < 4 imply that /r(xl, yl) = r(xz, yz)/< @ (xl, X, £ A, and ¥y0 Iy R 

Theorem 15: "Let (4, =', &), (B, =", «'), and r be as in the transportation 

problem with equality constraints, (10), (11), and (6). Lef; ¢ be 

an optimal solution for this problem. Assume that there are 

topologies J' over A, and 7T " over B, such that J' c 5!, 

J" c 3", and r is continuous with respect to J' x J'. 

Then there exist functions, p and q (with domains A and B, 

respectively) such that (p, q) is a topological potential for d; 

furthermore, p is lower and g is upper semi-continuous.
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Proof: For any a £ A, we define p(a) as follows: 

(Let x stand for points of A, y for points of B, and abbreviate 

n(x, y) as xy). . 

Consider the class of all finite sequences (x_, ¥y, Xy eees Yoo Xn) 

beginning with a = X, having the property that (xi, yi) is a point of support 

for § (1 =1, ..., n). The value of this sequence is defined to be 

“X Yy T XY - XY, T EY, - el t XY (63) 

(n is an arbitrary integer; we also allow the "'sequence' consisting of X 

alone; this is assigned the value zero). p(a) is now defined as the supremum 

of the value of such permissible sequences beginning with a. 

Having defined p, we now define q as follows: 

For any b ¢ B, 

il 
a®) = {:p(x) +xb] (64) 

We claim that the pair (p, g) is a topological potential for . First 

we show that p is bounded. Clearly p z O, since the sequence consisting of X 

alone is permissible, and has value zero, 

Let (xo, Tyo Xys eee Ty Xh) be a permissible sequence. According to 

(50) of Lemma 3, - 

02 %y = (¥, + X7, = wee + X3, - X9 (65) 

Adding X ¥, - X5 to both sides of (65), we get (63) on the right, so that the 

value of any permissible sequence is bounded above by X ¥ = X9 Let M = 

Sup ]xy[ over x£ A, y £ B; since r is bounded, M is finite. We have just shown 

that p is bounded. In fact 

Z2M =pim 0. (66) 

It follows from this that q is bounded. In fact, from (64) and (66), 

3M > q 2- M ' (67)
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Next we verify (15). In fact, q(y) - p(x) ¢ xy follows at once from 

the definition of g, (64). 

Next we verify (43). Let (a, b) be a point of support for #. For any 

x £ A, we have | 

p(x) 2 - xb + ab + p(a). » (68) 

To see this, note that the right-hand side of (68) is simply the supremum 

over all permissible sequences beginning (x, b, a ...); hence it cannot exceed 

p(x), which is the supremum over a wider class of permissible sequences. Hence 

p(x) + xb attains its infimum at x = a. Therefore 

q(b) = p(a) + ab, (69) 

so that (43) is verified. 

Tt remains only to show that p and g are measurable with respect to 

their sigma~fields, Z' and =", respectively. We do this by proving the 

stronger result thaf p is lower and g upper semi-continuous. 

Holding x fixed, and considering p(x) + Xy as a function of y, with 

domain B, we note that it is continuous with respect to 7", since r is con- 

tinuous with respect to ' x JI'". 

q = inf ¥, where ¥ is the collection of these functions for all 

possible values of x £ A; hence g is uppe; semi-continuous. 

As for p, we first note that 

plx)e T8 [q(y) - xy]. (70) 

This follows at once from the definition of g, (64). DNow let x be a point for 

which p(x) > 0. For any positive €, there must be a permissible seguence, 

beginning (x, Yy % «..) whose value comes within € of p(x): 

p(x) - € < - 2y +x7 + plx) (71) 

Therefors
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p(x) -€<qly;) - xyy, (72) 

from the fact that (Xi’ yl) is a point of support of @, together with (69). 

From (70) and (72), and the fact that € is arbitrary, we obtain 

p(x) = 5% [a) - =], ) 

whenever p(x) > 0. Therefore, we have in general 

p(x) = max [O, ;%PB EQ(Y) - qu]. (74) 

Holding-y fixed, q(y) - Xy, considered as a function of x with domain A, 

is contimows. Also the identically zero function is continuous. p = sup T 

where F is now the collection of these functions for all possible values of 

y £ B, together with the identically zero function; hence p is lower semi- 

continuous. QED 

Theorem 16; If, in addition to the premises of theorem 15, r is equi-continuous, 

then there is a topological potential with p and q continuous (in 

their respective spaces (A, J') and (B, I"), of course). 

If, in addition, d' on A x A, and d" on B x B are metrics such that r 

is uniformly continuous, then p and g are uniformly continuous. 

Proof: We use the same construction as above, and show that it has these 

properties. Let r be equi-continuous., We show that g, defined by 

(64), is such that the set {y] o <q(y)<f{ is open for all real 

nurbers &</fi Let q(b) lie in this set, and choose € small enough so 

that : 

r<g(d) - € < qb) + €<4 (75) 

There is an open neighborhood G" of b such that /xy - xb/< € for all 

x £A, y £G'. Tt follows from (64) that [q(y) - q(b)[< € for all y £ G"; 

hence, by (75), G" c 2y)a\< q(y)<;§} . hence the latter set is open, so that 

g 1s continuous.
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Analogous reasoning applies to the function 

)= 5P [a0) - ), (76) 
which is therefore continuous; hence p = max (0, P) is continuous. 

To prove the second part, assume that r is uniformly continuous with 

respect to the metric spaces (A, d') and (B, d"). For any positive €, there is 

a § such that d"(yl, yz)flf implies {xyi = xy2}<§ for all x € A; hence, again 

from (64), {q(yl) = q(y2)1<65 whenever d"(yl, y2)<v5‘, so that q is uniformly 

continuous. 

Analogous reasoning applies to (76), so that p is unifornly continuous. 

Hence p = max (0, p) is unifbrmly continuous. QED 

Just as for Lemma 3, the conclusions of theorems 15 and 16 apply also if 

# is optimal for the inequality-constrained transportation problem, since it is 

then also optimal an equality-constrained subproblem. 

What has not been shown is that, in this case, there are functions p, g 

which are also fion-negative and satisfy (44) and (45).10 

We conclude with a theorem that wraps up several of our previous 

results., 

Theorem 17: Let (A, ', '), (B, Z", 4") and r be as in the abstract 

transportation problem with equality constraints. Let ¢ be optimal 

for the problem. In addition, suppose that one can find topologies 

71 over A and J" over B, such that (1) T'c S' and T"c 5"; 

(2) ¥' x " has the strong Lindeldof property; (3) r is continuous 

with respect to T' x g%, 

  

10Incomplete investigations make it likely that the construction in 
theorem 15 (or a slight modification of it, perhaps) will in fact have these 
properties as well, in the inequality-constrained case. At the present moment, 

however, this is conjectural,
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Then there exist functions (p, q) with domains A, B, which are feasible 

and optimal for the dual problem, and for which the value of the dual equals 

the value of the primal. 

Proof: (p, q) constructed in theorem 15 is a topological potential for {. 

Hence, by the strong Lindeldf property and theorem 13, it is a measure 

potential. Hence, by theorem 6, the value of the dual equals the value 

of the primal, so that (p, q) is dual optimal. QED 

One final comment. The fact that ¢ is optimal enters into the proof of 

theorem 15 in a tenuous fashion. It is used only to prove Lemma 3, and Lemma 

3 is used only to prove that p is bounded. Hence, if ¢ is any feasible flow, 

not known to be optimal, and we carry out the construction of theorem 15, and 

it turns out to be bounded, then (p, q) is a topological potential for ¢f. If, 

in addition, the strong Lindelsf property holds for J' x 3", then the 

reasoning in the proof of theorem 17 assures us that ¢ is, in fact, optimal. 

Thus, in these circumstances, boundedness of (p, q) constructed in theorem 15 

is both necessary and sufficient for optimality of (.
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