
FOUNDATIONS OF SPATIAL ECONOMICS 

Arnold M. Faden 

1968 

Submitted in partial fulfillment of the requirements for the 
degree of Doctor of Philosophy, in the Faculty of Political 
Seience, Columbia University.



Faden 

TABLE OF CONTENTS 

Chapter~Section Title Page 

Introduction i 

1. The Theory of Commuting i 
lele Itineraries AL 
1.2 A Calendar-Time liodel 5 
1.3, A "Fatigue" Model 9 
loliee Migration and Commuting 11 
1.5, The Commuting Problem b 
1,b. Focal-Point Models 2l 
1.7, A Tentative Explanation for Some 

"Gravity" Models 28 

2. Metrics, Flow-Patterns, and Measures 36 
2.1. Metrics and Geodesics 36 
242 “ Metrical Interpretations 8 
2.30 Flow-Patterns and Market Areas 
2.lye Metrics, Flow-Patterns, and Price-Fields 49 
245 lMeasures and Access-Perspectives sl 

3. The Location of Weberian Activities 59 
3010 The Individual Location Problem 9 
3.2 Weberian Activities 7 
3.3, The Headquarter Location Problem 17 
3olte Service Systems 0 
3.5, The Scale and Spacing of Headquarter Points 98 
3.6, L8schian Equilibrium 112 

o The Theory of Thilnen Systems 121 
Bede Thiinen Systems 121 
Lo2e Land Uses and Land Values 133 
k.3, Direct-linkage Models 157 

Se Selected short Subjects 186 
5.1, Bullding Height and Real Estate Values 186 
Sele Some Problems of Intra-Urban Location 180 
5.3 Police-Criminal-Victim Equilibrium 205



Faden i 

FOUNDATIONS OF SPATIAL ECONOMICS 

Introduction 

The study of the spatial aspects of the economy has a long 

history, but only in relatively recent years has it hogufi to come 

into its own as a major fleld of study. Walter Isard's pair of 

treatises# provide the latest comprehensive summeries of the 

  

# Location and Space-Economy (Cambridge, Technology Press,and New 

York, Wiley, 1956) and Methods of Regionsl Analysis (Cambridge, 

Technology Press, and New York, Wiley, 1960). 

  

state of the art. These two works offer an instructive contrasb 

in point of view. The first is the latest in a traditional line 

of approach whose major emphasis 1s the development of theories 

giving insight into and understanding of spatial phenomena.# 

  

# The major works in this line in Bnglish, in addition to Isard's, 

are Alfred Weber's Theory of the Location of Industriles (C.J. 

Friedrich, ed., Chicago, University of Chicago Press, 1928); 

E.l. Hoover Location Theory and the Ehoe and Leather Industries 

(Cambridge, Harvard University Press, 1937); B.K. Hoover The - 

Logation of Economle Activity (New York, koGraw-Hill, 1948); 

A. L8och The Economics of Loeation (W.H. Woglom, Uranslator, New 

Haven, Yale University Press, 1954). Of foreign works still un- 

translated, the only one of comparable importance would appear to 

be T. Palander Beitrlige sur Standortstheorie (Uppeala, Almqvist 

och Wiksell, 1935). 
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The second--as the title states--concentrates on methods which 

can be applied to practical problems: data~processing frameworks 

and optimization techniques. 

The present work belongs in thebtraditional line, in that 

the primaery aim is insight rather than power. Though short, it is 

fairly comprehensive. We have tried to push back the frontiers 

all along the line, and in several directions: generalization of 

known results, tightening up of theories to modern standards of 3 

rigor, finding new interpretations for theories, and finding new 

theoretical representations for spatial phenomena. Major progress 

has been made in some directions, very little in others. 

Chapter 1, "The Theory of Commuting", 1s pretty much indepen- 

dent logically of the remaining chapters. The subject matter to 

be represented theoretically is the spatial movement pattern of a 

single individual--his itiner. , in the language of Section l.l. 

A simple, rather formalistic, model for the individual's prefer- 

ence order among itineraries is set up, and optimized by a stan- 

dard application of dynamic programming in Section l.2. Section 

1.3 introduces a little "cycling" model which brings us a step 

closer to the commuting models which follow, and are the main 

concern of Chapter 1. These are dealt with in Sections 1.l to 

1.7. The term "commuting" 1s used here not merely in the sense 

of the shuttling between home and work, but in the much wider 

sense of any pattern of routine movements; this usage is discussed 

in Section l.4. The "commuting problem" of Section 1.5 resembles 

the transportation problem of linear programming: given visitation 

frequencies at various sites, one is to find the transport cost- 

minimiging pattern of trip frequencies satisfying these require- 

ments. But the "closed" character of the commuting problem intro- 
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duces essential novelties. In particular, the feasibility problem, 

which is rather trivial for the transportation problem, becomes 

quite interesting, and several striking results are obtained for 

it. In Section 1.6, a further specialization is made. One site, 

the "focal point" is singled out, and all one's trips are assumed 

to start or finish at this site« The optimal pabtern of trip fre- 

quencies is to found, to maximise a uf;ility function of a pre- 

scribed, fairly general, form., The main application of this 

modol cames in the last section, where it 1s put to use to provide 

an explanation--very partial, tentative, and qualified, to be sure 

-=for some of the mysterious empirical regularities known as 

"gravity" formulas. 

Chapter 2 is devoted to building up a conceptual framework 

of basic notions around which most of spatial sconomios is con= 

structed. These concepts are used freely in subsequent chapters. 

Section 2.1 deals abstractly with distances. It seems useful to 

derive these from a slightly more elementary conoept,"dirnct dis~ 

bance. Section 2.2 dlscusses the possible concrete interpreta- 

tions of these mumbers, and the difficulties attending them., In 

particular, 1t discusses the rather stringent conditions on trans- 

port :coats which are required to eastablish ideel distances for 

pairs of sites, and ideal weights For reimxree-mmdlu. A second 

cluster of ideas, concerning flow-patterns over space, is dis- 

oussed in Seotion 2.3. 8till a third cluster, relating to the 

spatial pattern of prices, 1s introduced in Section 2.l. Two 

Pofficiency” postulates are introduced, and some of thelr conse- 

quences spelled out. These will be assumed in all subsequent 

chapters. Pinally, Section 2.5 introduces the concept of measure, 

or physical distribution over spate, and some important concepts
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constructed jointly from distances and measures. 

Section 3.1 discusses the complex nature of the location 

problem for the individual decision-maker, and the structure of 

the real estate market, and suggests some useful analytic simpli- 

fications, Section 3.2 starts by deriving the gite-substitution 

principle, which plays & fundamental role in the rest of this work, 

Next, the general ooncept of activity is defined in a spatial con- 

text, and further sub-classified by dimension. Weberilan activi- 

ties are those located at single points, for which land rent is of 

negligible locational importence. These constitute the major sub- 

Ject matter of Chapter 3. The asite~substitution principle is ap- 

plied to the location of Weberian activities within a system of 

market areas. In Section 3.3 the problem of the previous section 

1s specialized to a single market area and treated abstractly. It 

1s then generaliged in a different direction, to the optimal place- 

ment of N points; this is called the headquarter location problem. 

In Seotions 3.4 to 3.6 the headquarter location problem is itself 

generaliszed to a class of problems in whioh level of output, or 

socale, at each hpndqwtar point is itself a variable to be deter- 

mined, This class of problems ineludes the central L8schisn 

model. Section 3.l discusses various criteria that might be used 

to determine the unknowns, and lists a large number of conorete 

interpretations--called service systems--of this generalised prob- 

iem., It is noteworthy that most of these are intra-wrben in char- 

aoter, although the L8schian system is usually interpreted as 

inter=urban, Section 3.5 is a formal comparative statics analysis 

of the general problem, under the special assumptions that ser- 

vice levels are uniform, placement 1s in a hexagonal lattice pat- 

tern, and met soclal benefits are maximized. The basic parsmeters
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are population density and unit transport costs. Finally, Sec- 

tion 3.6 investigated the L8schian model itself, addressing itself 

mainly ta the question: what portion of the plane goes unserved 

by any headquarter point? 

A Thiinen system is a pattern of land uses in which all points 

equi-distant from a certain distinguished point-~called the nu- 

cleus--carry the same land use. Chepter { 1s devotea to the 

study of these systems., Section .l lists a variety of situations 

which are approximately Thfinen systems, and discusses the condi- 

tions under which these may come into existence. Two special 

cases are singled out for intensive atudj: ontz-sp'ét models and 

direct-linkage models. The former is characterized by the fact 

that ‘trade never occurs directly between two non-nuclear points, 

but only between points and the nucleus. In the latter, points 

can trade directly with each other in a n'fiherically symmetric 

fashion, such that no cross-hauling occurs. Section 4.2 studies 

ontr-pfit systems, in which land is allocated according to the 

ideal real estate market of sqntion 3¢1. It is shown that, under 

very weak assumptions, an ordering conditlon on the distance of 

land uses from the mnucleus can be established, called the weight- 

Lfalloff condition. This condition is then applied to the distri- 

bution of building heights, land speculation, and the distribu~ 

tion of residemces by income of occupant. Comprehensive qualita- 

tive conditions of the distribution of land values can also be 

established. Section .3 deals mainly with direct-1inkege models, 

in which availeble land is a power function of distance from the 

nucleus (a situation called homogensous sccess perspective), and 

in which land use 1s determined by a single overall objective 

function, rather than by social equilibration. Certain far-reach-
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ing remlt.- may be derived under these conditions, e.g., the ratlo 

of lend values to transport costs, and the elasticity of demand 

for transportation. Finally, an attempt is made to syntheslze 

the oquil!i‘brim approach of the last section with the meximiza~ 

tion a.ppro:lah of this ones It is shown that the weight-falloff 

ocondition does solve an optimization problem, and, oconversely, 

direct~-linkage meximization emulates some of the conditions of a 

campetitive equilibrium. This last result arises from an applica- 

tion of Pontrysgin's Maximmm Principle. 

Chepter 5 is devoted to three topics which do not quite fit 

in with previous chapters. Section 5.1 devglops a simple model 

to explain building height, and the distribution of real estate 

value between lot and improvements. Section 5.2 deals with three 

intra-urban problem types. The first concerns the location of a 

"foreign trade"~oriented land use within the context of an overall 

entrepbt system. The second concerns the location of & headquar- 

ter point in a Thilnen system having & "oity-blook" metric. (In 

the course of this discussion, a basic convexity theorem is proved 

which was used without proof in Section 3.3). The third is the 

problem of neighborhood shape and location. We merely suggest 

ulio approaches to this very complicated problem. Section S.3 

deals with a three-population conflict situation, in which orim- 

inale prey upon vietims, who are protected by police. Gume the- 

ory is used to d-km.‘l.no optimal deployments, and a two-regime 

solution emerges bearing e certain resemblance to the urban~rural 

dichotomy.
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To put these results in perspective, and to chart a course 

for future work, we will briefly mention the major topics which 

have been omitted from discussion. First, dynamics. It would 

not be quite correct to say that time is neglected. Indeed, es- 

pecially in Chapter l, the time-spread of activities 1s explicitly 

built in, and in fact essential to some of the results, such as 

those concerning land speculation. But all decisions are made at 

the beginning, and with the passage of time we get an exfoliation 

rather than a development. Transportation construction and migra- 

tion have been all but neglected. 

Except for a few passing references, uncertainty has been 

assumed away. Neighborhood effects have not been discussed, 

except for the sketchy treatment of Sections 5.2 and 5.3. Depar- 

tures from perfect competition have not been discussed (except 

inessentially, in Section 3.6). The rich empirical regularities 

of spatial economics have been discussed only insofar as & basis 

in theory was found for them. Thus, "gravity" models were dis- 

cussed in Section 1.7, but the "central place" literaturs has 

been omitted.t (iWie hope to £ill in many of these omissions in a 

  

% See B.J.L. Berry and A. Pred Central Place Studie (Philadslphin. 
Regional Spience Research In-fi.fi@e, Bibliographio §sr1u, I, 1961). 

  

larger work now in progress).
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1., Tho Theory of Comuutlng 

1.1, Itineraries 

The explanatlon of population movements may bo brokon 

  

iniko twe stepst (1) the explanation of movermsnts fov each ! 

  

vidunl, in terme of his motives, Initial locatlon, infor. 

  

snd opportunitles; (2) the aggregation of thosz imto gross noe 

  

ulatlon movements, which depends on the statlstienl dlate 

  

of individuals by thoir movemeni-sxplanatory chaeractorisi 

There 13 an Interaction between these two levels, agrroegate 

movemonts affecting the individual through several channels: 

  

(1) Aggrogate movements influence the structure of prlees, 

and rentals, and the avellability of facilities, over gpecs mnd 

time, and thereby affect individual opportunities; 

(2) Aggregate movemonts influence the diffusion of informefhior; 

(3) Individual motives may relate directly to the spatisl disirl.    

bution of other people; e.g. one may have a preforonsce for &sIt- 
   

  

clating with certain individuals or types of people, a prefeiont? 

for avoiding certain others, or a preference for irhabiting cu~ 

slze or density of community over anbther. 

Thus a full-blown explenation will involve & rather ceomplox 

interactive system. In this chapter we shall examine one frsj- 

ment of this system: the explanation of indlvidual movemenbs. ¥ 

will become clear that this is adequately difficult in itaself. 

The itinerary of a person is defined to be the function 

giving his location at any time. It thus extends--go far as the 

evidence goes--from the time of a person's birth (or conception) 

to the time of his death, but we shall refer to the function 

restricted to narrvower time segments also as an itinerary. 

To a good first approximation, a person's itinorery can vo
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divided into a sequence of segments with the following properties: 

(1) on every other segment, the location is constant--this repre- 

sents a gojourn by the person at the location prescribed, for the 

given time~interval. 
3!-.9";“\5 

(2) on the remaining 
wor K 

segments, which é 

represent traveling, ¥ 

  

the itinerary is such as to 

make the entire function F‘sm*'*-" 

continuous (see Figurel). 

It 1s not ‘necessary that two succeeding sojourns be at different 

locations. For example, one may take a walk or pleasure-drive 

and end up where one started.d#,i 

bt 

#The sequence of sojourns and travels will be affected by the 

mode of partitioning of the landscape into "locations": the finer 

the partition, the more freguently will travel occur, and the 

shorter will sojourn times be. 

  

w#sfor exsmples of actual itineraries see P. Chombart de Lauwe, 

et al, et 1 tio; 4, 

  

We would now like tto answer such questions as: what deter- 

mines length of sojowrn? frequency of visits to a site? frequency 

of movements between sites? speed of movements between sltes? 

Assume a person picks the most preferred of the itineraries 

available to him. Freference is represented by a utility indi- 

ocator which hes the following form for each itinerary..: 

A person receives a "pay-off" during his sojowns, which accrues
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at a rate depending on calendar time t and the location L at 

which he is at that time, end perhaps other varlables. A trip 

from Ll at ¢t to L, at &) involves a cost C, depending on these 

four variables, and. perhaps others. The utility of an itinerary 

is then given by 
£ : 

D U= 255‘&? vdt —EJC\‘ 5 

where f?h the time of arrival at the i-th sojourn interval, 

‘L? 18 the time of departure from the i-th sojourn interval, 

vV 1s the "pay-off" rate; The i-summation extends over all 

sojourn intervals between the beginning time zero and the time 

horizon T The j-sumation extends over all trips teken in that 

period. 

There are several reasonsble interpretations of this formal 

uh-u, Pay-off and cost may refer to direct satisfactionm, or to 

inocome, or to some ooubinl.'tun. (In the insome interpretation, 

discounting is understood to be built into the C and V functions, 

8o formula (1) need not be modified). Both C and V may assume 

negative values, ) 

Pay-off rate will, in general, depend om the¢ resources 

available with which one ¢an partieipate in activities, at a 

given location and time, and the terms on which they are avail- 

able. Clearly these factors vary by location; over time there ave 

string daily, weekly and amnual cyclical components, as well as 

secular shifts. Furthermore, pay-off rate may depend on the 

length of time one has been sojouraning &t e given location, 

Por example, one may have had a single purpose in viasiting the 

site, with pay-off falling to zero after that purpose has been 

fulfilleds as, eating a meal, making a purchase, seeing & movie,
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getting un operation. MNore generally, a fatigue condition will 

be saiid to operate if pay-off rate eventually declines as a func- 

tior of length of sojowrn. An opposite pattern--which 1s also 

ouite common-=occwrs via adaptation to local conditions, habit 

formation, the development of "goodwill", and "sinking rqotl" in 

a locality, all resulting in an inocreasing pay~-off rate over time. 

(These two conditions are not incompatible; e.g. pay-off may be 

a deoreasing function of present sojourn interval and an increas- 

ing function of total previous time spent at a site). Yet again, 

pay-off may depend on the length of gbsence from a site, either 

rising with time ("absence makes the heart grow fonder™"), or 

falling ("out of sight, out of mind"). Pay-offs may depend on 

  

one's previous itinerary in some more complex fashion. 

Clearly, the mumber of possible models to be explored is 

quite large. We will examine two rather simple ones to illustrate 

the possibilitles., The first takes pay-off to depend only on 

location and calendar time. The second takes pay-off to depend 

only on location and sojourn lengthy and is of the "fatigue" 

variety. After that (in sections l.4. ff.) we make further sim- 

plifications leading to many new results. 

It should be noted that this entire chapter operates under 

the assumption of perfect information. While this could be 

relaxed in some of the following models, for the most part new 

principles would be required. 

Finally, 1t might be mentioned that these results apply, 

mutatis mutandis, to other "itinerant" resources, of which the 

most important case is transportation equipment.
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1.2, A Calendar-Time Model 

Suppose ore has a finite number of sites, and pay-off func- 

tions V"(L.t). differentiable in t, defined over the sites and 

the time iuterval EO,T]- The transportatiom cost function 

  

C(L,t6'.4",t") is defined 6n the quadruple: origin L', departure 

time t!', destination L", arrival time t"; (t'<t"); even aside 

fror. this consideration, not all quadruples need be possible 

o' igin-destination combinations; (e.g., common carriers arrive 

and dopart. at discrete time points). One starts at some parti- 

cular aite at time mero, and the problem is to select the itin- 

erary maximizing (,(D 

¥ o 

{ 

The problem mey be solved in two astages: 

1) Out of the possible quadruples L!,t',L",t", one selects thése 

which give local maxima with respect to t! and t". This can be 

accomplished by elementary calculus if V and C are sufficlently 

smooth in the time variaBles. For example, if for i =L, ang 

L' =L, ond some Time nnSLLwL..& ) possiLle trosoimie 

are conmelvimid L7 Y e g, q m\sm‘ anf] 

C(L"{') L,"'t’ -f-‘E) 2 Z, 4 qur:T, The local WX imUn, 

condifime  are V(L.,f') =V ('-1, t'+3) ; and 

Wth o v, ¥49) 
—-D—{u_ < 3% That is, pay-off rate at 

origin at departure time equals pay-off rate at destination at 

arrival time, and the latter is rising at least as fast as the 

former. If ell departure and errival times which are possible 

are discrete, for all pairs of locations, this step may be omitted.



  

2) For all problems that might arise in practice, the preceding 

step will result in a finite sprinkling ot "reasonable crossing" 

quadruples. The problem then reduces to the combinatorial one of 

selecting that sequence of crossing quadruples ylelding the best 

itinerary. For this, the method of dynamic prograwing is well 

edapted.# 

  

#R, Bellman Dynamic Programming (Princeton, 1957); 

ReE, Bellman and S.E. Dr Applied Dynsmic Programming 
s Priaooton,'{g;) 

  

Dynamic programming embeds the original problem in a wider 

class of problems of the same type. In the present case, this 

olass is: f£ind the optimal itinerary starting from location L 

at time t, for all L, and all t €[5, 7). Let U(L,t) be the func- 

tion giving total net pay-off (i.e., total pay~-off minus total 

transport costs) under an optimal itinerary starting from 

location L at time t, and extending to the horizon T. Iet T 

be the earliest time satisfying the following conditions: 

£<T | wml Thoe 1 a7, ) sl et (L L 1Y) 

15 a "veasomeble tv.ssms" e‘“.)vv‘h ootk me suel & umfs) 
~ 

we Take %t =T . fthat is to say, r-c is the earliest time 

after t at which we contemplate taking a trip away from site L, 

and if there is no such time, T is the time-horizon T. 
Next, consider the two possible cases: (1) there is not a 

reasonable crossing quadruple starting from location L at time t; 

or (2) there is. In the first case, it must be trues that 

& 
9 UU-,T) = f vit, 4T + V(7)) 

t



(3) follows from the fact that, up to time "tat least, there is 

no reasonable option except to remain at site L. Total net pay\- 

off must then equal the sum of pay-off at site L up to time T, 

which is g:lven by the integral, plus net pay-off after time T ’ 

which s U(L;X), by definition. 

In the second case, it must be true that 

¥ 
L vibodr + U, ®) 

9 V1) = man 
¥ o ek [u Wt —eley, Lt)f;,"jl 

This relation follows from the following considerations. In the 

first place, one still has the option of remaining at L. This 

leads to a net pay-off as in formula (3), whose right-hand side is 

repeated in the top line of the maximand. But one also has one or 

more options to oross over to a new location. We let i index 

these possibilities, L] being the i-th destination and tz the cor- 

responding arrival time at that destination. The net pay=-off for 

this option 1s equal to the net pay-off starting from location Lg 

at time t§, minus the transport cost of getting to LY at tj. 

Finally, the option chosen for an optimal itinerary will be one 

having the highest net pay-off, and this maximum will be the 

value of U(L,t)--which is just what relation (i) states. 

Thus relation (i..) not only gives a functional equation for 

net pay-off, but also indicates the correct move to make at each 

choice point: viz., choose the move which maximizes the right 

hand side. (If several moves give the same highest value, they 

are all indifferently optimal). 

The remaining task is to compute the optimal net pay-offs 

and moves. This is accomplished by the standard procedure of



backward recursion.s# First we note that U(L,T) = 0, for all L, 

  

#s6e Bellman and Dreyfus, Op.cit., fOr numerous examples. 
  

by the desfinition of horigon. By substitution into (3) we deter- 

mine aet pay-off for the latest srrival points at every site. 

Substitution of these results int> (l) determines net pay-offs 

for the latest departure points a' every site. By continuing 

this process alternately in (3) and (i) we work our way backward 

in time, and ultimately determine the entire structure of net- 

pay-offs and optimal itineraries. 

An arithmetical exemple. We nuppose that stage one has been 

completed, and we are left with the following system of three 

sites and five reasonsble orossings. (Pigure 2). 

/ 

& « (// w N9 
LJ 4B ——@—L—.—_.@ 

> Time => T 
Figure 2 

Reasonable origins and destinations are indicated by dots; these 

mark off a sequence of time-segments at each site, Each of these 

segments is marked with a number indicating the pay-off integral 

for that segment (e.g. in 1"3 

grals of 5,4,2). Each dashed line represents a reasonable aross- 

ing; each is marked with a number in parentheses indicating 

transport cost for that trip. This is the total body of given 

there are three semgeni:. with inte- 

data. (These numbers were chosen more or less at random).



  

low, starting at T and working leftward, we find successively 

U(L,t) at oach of the dots (the values are circled); ee.ge, for 

the gecond dot from the left on 53. we £ind net pay-off to bo 

max (442, 22 = 6, 25 = 10), or 16; this also indicates the 

choice to be made at this point, viz, move to Ly (indicated by 

the arrow) sixce this gives the highest value, 22 = 6o General 

conclusions nay be read off the diagream: e.g. that tho best place 

to start out from is L, that someone starting from L, should 

not move at all, that everybody ends up at L, at time T, etce 

1.8, A"Fatigue® liodel 

The following simple model may be contrasted with that in 

1.2. Hore again we have a finlte number of sites; the pay-off 

rate at site Ly 1s V,(t), where t is not calendar-time, but 

gojourn time: that is, the time-interval which has elapsed since 

one's latest arrival at site Ly. We assume that V,(t) is e coffimuoiic 

funotion which, for t large onough and for all i, decreases to 

such an extent that it pays to travel to another site. In fact 

we simply assume here that one "makes the rounds" of all sites 

in a regular cycle; the major question is to determine optimal 

sojourn length at each site. The total transport costs for a 

round-trip cycle is a given constant G, and the total travel 

time for a round-trip cycle is another given constant . 

It 1s simplest in this model not to have a time-horigon; instead 

ve take as our oriterion the gversge pay-off rate: that is, the 

total pay=off over a cyole divided by the time-length of 

the oycle. Formally, we are to maximisze 

% 
9 e A j Vit e 

= 5 

  

it b  



over the ‘_t:'. where %: is the sojourn length at the i-th site. 

The solution may be found by elementary calculus. The for- 

mal conditions charaoterizing the solution are quite simple: 

If we write \'j for the maximal attainable value of U, then 

D Vi) =U o eptmal T ba i, 
" 

(A'W, Vi fib 1§ nPn= Increcing ot 1011—'\--9 T;' s 

This result is, in fact, intuitively evident, since if Vf{fiv\;\’. 

we obviously raise the average pay-off rate by stsying a little 

longer at site 1; (if marginal > average, then average is rising); 

conversely, if \l;lfi)&)‘ it pays to leave a little sooner. 

It osn also be shown that a rise in C increases so journ 

lengths (or leaves them unchanged, as a limiting case). In 

effect, one spreads the extra "overhead" over a longer "produc- 

tion" oycle. Also, if “)b. then a rise in travel time 0 also 

inoreases sojourn lengths (or leaves them unchanged). 

Incidentally, this model (and all the others in this chapter, 

in fact) has applications outmside the spatial realm, since it may 

be interpreted as desoribing an individual switching from one 

activity to another, rather than from one site to another. In 

particular, it may be useful for explaining the allocation of 

time among work, sleep, various leisure activities, etc.# 

  

w#on this problem, see G.S. Becker "A Theory of ;2- Alloocation 

of Time" Egonomic Journal January, 1965. 
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l.h. Migretion and Commuting 

It 1s often very useful to divide an activity conceptually 

into gurrent operations and investment. We make an analogous 

distinction here h-uWeen gymmuting snd migration, respectively, 

In common u--46s "commuting" refers to the daily shuttle between 

home - Worke# Here it is used in the wider sense of referring 

  

#This particular problem will be taken up below, in the context 

of Thinen systems. 

  

to any routine pattern of movement. Thus any traveling cycles, 

any trips that one makes on a more or less regular basis, are 

considered parts of one's commuting routine, whether it be work 

trips, school trips by students, church trips by parishoners, 

annual vacations at a resort,"migratory" workers following the har- 

vest, a troupe of performers touring a circuit, bus drivers run- 

ning a scheduled route, or policemen patrolling their beats. 

There 1s a certain vagueness about this character ization. 

This seeems to be unavoidable. On the one hand we are trying to 

isolate invariant aspects of an itinerary. Yet, since movement 

by its very nature involves a change, the inveriants must be in 

the form of averages over time. For very short periods results 

based on averages are useless, and for very long periods secular 

changes may sgain render them useless. Yet far a broad middle 

range, desoription in terms of commuting models seems to be 

adequate, and these offer the advantage of greater analytic trac- 

tability than the more general model sketched in 1.1 eboves 

  

#These difficulties of interpretation are by no means confined
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to commuting models. They enter, for example, in the case of 

steady-state inflow-outflow models, which are fictions even for 

the case of so-called "continuous prosess” industries; also, in 

a diffarent way, in the case of statl'onary stochastic processes. 

  

" Pormally, a commuting routine has the following structure: 
There are a finite muber of sites ‘hioh_ono visits; this set is 

called the gommiting span. (For sxample, it may consist of one's 

residence, one's employment site, the homes of One's friends, the 

places where one shops, the places where one goes for recreation, 

perhaps a school, or church, or clinic, etc.). 

Let x4 be the frequency with whioh one visits site 1 ; the 

commuting span is exactly those sites for which x,_)t}; let x,.j 

be the frequency with which one takes a trip from site % to site 3 

We then have the basic identities: 

7 X = EJ xig > wl X = i Xg¢ : where “Le 

swwmalin, Kode v o) Ccvnm:“v\s aly ity Men i, 

(7) follows from the observation that the frequency of visits to 

a 8ite equals the frequency of arrivails at that site, and also 

oquals the frequency of departures from that site; also, every 

arrival must come from, and every departure go to, some other 

site. Speeification of the commting routine is completed by 

giving t;, the aversge sojowrn length per visit for each site 1. 

(x and t are convenlently measured in the same time umits, ® 

that the product xiti 18 the frastion of one's totel time spent 

sojourning at site 1). We shall be concerned meinly with the 

x values in the remainder of this chapter.
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We now come to migration. Migration is here taken to mean 

merely a ghange in commiting frequencies. Onme may distinguish 
three "degrees" of migration. What might be called weak migration 

occurs when soms of the frequencies x; change, but the commuting 

span remains the same, Z.@., no commuting site is dropped and 

none is added. Partial migration ocowrs when cne's commting 

span changes, but aot to a disjoint set; i.e., une keeps some of 

one's 0ld hauntss (e.g. one changes jobs but no: homes, or vice 

versa). Finally, full migration occurs when the commuting span 

turns oves completely, as might ocour when one makes a long-dis- 

tence change of residence and employment (providing retwrn visits 

do not ocour, or that they are omitted from one's commting span 

1f they do ocouwr). Note that a sequence of partial migrations 

may result in a full migration, if we compare only the firat and 

last conmuting spen. 

We might also distinguish out-migration--dropping a comuting 

site,~from in-migretion--picking up a commuting site. The out- 

migration trip is the last trip away from a site one is dropping. 

The jn-migration trip is the first trip to a site one is picking 

up.' If one makes a full migration in one fell swoop, the migra- 

tion trip is sirultaneously in- and out-. 

One cannct simply, by looking at an itinerary, tell what the 

commting roatine 1s at a certain time, or when a migratixn 

occurs. The £itting of these models to the data is, at loast in 

part, a uatter of judgment and convenisnce. For example, it may 

be useful to simplify by excluding infrequently visited sites from 

the commuting span. 

A person is frequently taken to be located at his residence 

(sege for Census purposes). In effect, one site in the commuting 

©  _s._%_3 ami ~ud mada bn wanmasant tha whole. This simpli-
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fication might perhaps be justified in torms of the large fraction 

of one's time spent at home, or in terms of the high frequency of 

visitation to this site, or in terms of its resistance to migre- 

tory shifts.# In the next seotion we treat all sites symmotri~ 

  

w#Place of employment might be a better overall locator in many 

  

cally. In the sections after that we simpliiy further by singling 

out one special site--which may be talken as orc's residence.: 

Which of these approaches will prove more fruliiful remalns to be 

determined. 

1.5, Ihe Commuting Probles 
The itinerary problem may now be re-formulatii: what commut- 

ing routine will e person choose at any time? For the rest of 

this chapter we ignore the possibility of migration, and restrict 

ourselves to the simpler equilibrium problem: what «cnmmting 

routine will a person choose? Given the set of all :lites in the 

economy, one is to choose for each site I.‘_ average so vurn length 

ty and frequency of visitation X0 and for every pair o' sites 

Lys I.j the frequency of trips from L; to LJ. X343 the x-‘alues 

being constrained by the relation (7). 

As in section 1.2, we assume that the utility indicato. for 

a commting routine is the difference between on-site pay-ofiv 

and transport costs. Onesite pay-offs depend ot the visitatior 

froquencies and sojourn lengthsj transport costs depend on the 

trip frequencies. In this section we foous on the determination 

of trip frequencies; in the next two seotions, on visitation 

frequencies.



Let us treat the visitation frequencies x; as parameters, 

and try to determine the trip frequencies x“ 

relations we obtain will be sub-relations of a larger system 

from them. (Any 

determining trip frequencies, visitation frequencies and sojourn 

lengths simultaneously), Suppose total transport costs =2:i3 q’:)(‘r’.j 

tsj_.1 being the cost incurred on a single trip from Li to Lj" 

(For our purposes here, we need not worry ebout the source of 

these costs, whether in monetary outlay, or time delay, or dis- 

comfort, etc.). This suggests the following problem: 

N v 
Minimize Z:” ZJ"-I <ig xij ovar X;j Z0 

N b Subject 17 Zi'-! x(", =X/ 

N R ey 
J=1 U ‘ 2 / 

X =0 
This will be dubbed the commuting problem. The constraints (8) 

are a slight rewording of (7). The x, are parameters which, 

without loss of generality, may be assumed positive, since if, 

say, Xy 20, then all trip frequencies to and from site Ll mst be 

zero, and we may simply discard that site from consideration. 

We wish to inveatigate not only the gptimality problem of 

minimiging transport costs subject to the constraints (8), but 

also the feasibility problem of determining when non-negative 

solutions to the constraints (8) exist at all. In fact, the 

latter problem has some surprising subtleties, and the results 

we obtain for it seem to be more interesting than the results for 

the former problem.
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First, optimality. The commuting problem bears a strong 

resemblance to the familiar transportation problem: 

M N Minimize 2&-, e i Xi; oLy X;i 20 

SVALJ;CT * i:,f. X(‘ = q‘: t"rll i M 

9 Z"I ‘S 5 rJ ’j";"','/ 

where qj, capacity at source i, and x-J, requirement at sink j, 

are given parameters. Oomparison of the transportation and the 

commuting problems reveals three differences. In two ways the 

commuting problem is just a special kind of transportation prob- 

lem: (1) the number of sources equals the number of sinks; 

(2) sources and sinks can bs paired off in such a manner that 

the capacity of a source oquals the requirement of its corres- 

ponding sink. If this were all, the commting problem would re- 

duce trivially to knowr results. The last 1ine of (8), however, 

provides the third, now, condition: (3) no shipments (i.e. trips) 

are allowed from a source to ites corresponding sink. 

(What this transformation of the commuting problem amounts 

to is the folloving. Each site 1s split into two fictitioms 

pleces, first as a trip origin (source), and second as a trip 

destination (sink). This explains the 1 - 1 source-sink corres- 

pondence, and the equality of requirements (incoming trip frequen- 

cles) aud capacities (outgoing trip frequencies) for corresponding 

sourcss and sinks, The condition, Xj¢ = for all 1, is true by 

definition in the commuting interpretation). 

This transformation furnishes the key for solving the commu- 

£ing problem. The method used is similar to the use of artifi- 

cial varisbles in linesr programming. We simply ignore the con-
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straints X2 D3 we set cg4 equal to some mumber C, for ("J. 

This 1s now an ordinary transportation problem which may be sol- 

ved by standard methods. The solution may, however, be infeas- 

ible for the original commting problem, since some of the xyy 

may be positive. We now let C-3v” This forces down the x,4, 

end the solutions approach a feasible, and optimal,solution to 

the commuting problem, if one exists. If the sequence of solu- 

tions to the tramsportation problem give transport costs going 

to infinity along with C, this implies that no feasible solu- 

tion to the commuting problem exists. 

This procedure takes care of the optimality problem in .ore 

or less satisfactory fashion. But it is a rather cumbersome 

approach to the feasibility problem. We would like, if possible, 

to have some simple necessary and sufficient conditions on the 

visitation frequencies x4 for there to exist a non-negative 

solution to conditions (8). To this task we now turnm. 

The matrix equivalent of the 

feasibility conditions (8) is ren- 

dered as follows (see Figure 3). 

A square matrix is given, with all 

row and column totals prescribed. 

The i-th row sum equals the i-th 

cloumn sum, for ell i. The main 

disgonal is all zerces. Under 

what conditions can the rest of the 

matrix be filled in with non-negative numbers so as to give the 

  

required sums?i#



  

# The following similar problem has been investigated in the 1lit- 

erature: The set-up Is as in Figure 3, except row and column 

sums are not prescribed (though the i-th row sum must still equal 

the i-th column sum); instead, wpper and lower bounds on each Xq4 

are presorihed; we are to solve the feasibility problem, and also 

to minirize transport costs for these new constraints. See 

L.R, ford, Jr., and D.R. Fulkerson Flows in Networks (Princeton, 

1962), II.3 and III.1l. The methods and results seem to have 

1ittle in commén with those presented here. 

  

We say that a sequence of mmbers XyseesXy satisfies the 

polygon condition if and only if none of them is larger than the 

sun of all the others combined.# 

  

#The name is suggested by the fact that a collection of sticks of 

lengths Xy,..,Xy can be Joined to form a polygon (possibly degen- 

erate) if and only if the x's satisfy the polygon condition. 

  

Theorem 1: If the commuting problem has E“ X) 

& feasible solution, then the visitation ! 

frequencies satisfy the polygom condi- 

tion, < 

Proof: Suppose the statement is false; 

then there is some sequence ‘1"""!; x'l 

violating the polygon condition,for x‘ i3 X N 

which a feasible solution exists. Fryure 4 
Suppose, @.g., that x is larger than the sum of all the other x's. 

Partition the matrix as in Pigure L, and let b,c,4 be the sums of
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the sub-matrices B,C,D, respectively. Having regard for the row 

sums, we get b >C¥A; having regard for the column sums, we get 

€ >b+d ; adding and canceling, we get 0>24; this is a con- 

tradiction, since the matrix O is non-negative. The same contra- 

diction arises for any other i in place of 1. QED 

This theorem is intuitively pretty obvious: for if the visi- 

tation frequency at site Iy, say, were larger than that of all 

other sites combined, one couldn't find other places enough to 

g0 to when leaving Ly, or enough other places to come from when 

entering Ly, since every trip is both a departure and an arrival. 

A simple case is that of just two sites. Then one must have, 

for feasibility, X, =X, (=X, = "“, " A‘.’.‘)., which is 

quite obvious. 

Rather more subtle is the fact that the converse of Theorem 

1 is true. There may be a simple proof of this result; the only 

one we have found uses the theory of linear inequalities: 

Theorem 2: If visitation frequencies satisfy the polygon condi- 

tion, then the commuting problem has a feasible solution. 

Proof: Suppose that the equations (8) do not have a non-negative 

solution. We now apply Farkas' lemma in the form given by Gale+. 

  

#D. Gale The Theory of Linear Economic lodels (MNcGraw-Hill, New 
York, 1 » Poltlfe i 

  

After some simplification, we find that there exist numbers 

PysoesPys and Q)s00sQys such that 

P, +Q; 3 0 bor ol () ‘:";"/’JIJ"",“ N 
2 )
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By this last inequality, there must be a k for which P "Ql <o, 

snee el The Rs are nom =ngdive, For ol j #K we 

RO iy ¥ o, -l ddv Ppay a0 & odi 
(fy +&)) +(Pg xQg) 26 ; muliph this by X; | ant 
add o all Y T, T gt 

Zipp (Pyre) X « (g 74T o % 30, 

s aD& “\, teu ol N 16 We L] ‘7 _9 0> Zdlzl (Pj '\'QJ)XJ > 

o, &fRr cen u“nrm, ve af 

(P‘K"’av) ifl*f Xj > (PK*GE)XI/' 

1 ey i Xg S XE, smee PpxQg <o ; 

but this last result shows that the polygon condition is violated. 

These two theorems together state that the polygén condition 

on the visitation frequencies is necessary and sufficient for the 

existence of a feasible solution to the commuting problem. 

We now come to an aspect of the problem which has not yet 

been mentioned. The commuting routine refers to the itinerary of 

one person. To make sense, it must be possible to reach every 

site in the commuting span from every other site by using the 

trip frequencies in the solution. Now it can happen that a sys- 

tem of trip frequencies, even though satisfying the feasibility 

conditions (8), does not have this property. It therefore be- 

comes of interest to find conditions under which there exist 

feasible solutions with this additional property as well.t
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#This aspect of the commuting problem was suggested to me by 
Balder von Hohenbalken. 

  

This property, called irreduci- XI 

bility, may be expressed in matrix A 

form as follows. There must be no Xy 

way of labelling the sites in one's x'fl 

commuting span that would lead to a 

trip frequency matrix in the form of 

Pigure 5, where A and D are square, X %R X, 

and 0 is a matrix of zeroes; for if F'}urc 5% 

this were the matrix, one could never get from any of the sites 

Ly, seesly to any of the sites L,,..,L,, since one takes a trip 

from a site of the former group only to snother site of the same 

group. 

We first state a lemma which will be used in the main theo- 

rem on irreducibility. 

Lemma: If a feasible solution to the commuting problem exists, 

then a symmetric feasible solution exists (i.e., one satisfying 

x,_‘1 = !Ji’ for all 1,§). 

Proof: If x4 is a feasible solution, then xij = %(X.’j -\-)(j{) 

is a feasible solution, as one verifies by direct substitution in 

8); xiJ is obviously symmetric. QED 

This may be re-stated: if a commting routine exists, 

then 'u bi-lateral commuting routine exists with the seme visita- 

tion frequencies. 

We now come to the main result:
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Theorem 3: If a feasible solution to the commuting problem 

exlsts, then an irreducible feasible solution exists. 

Proof: Suppose the atat@nt is false; then there is a sequence 

of visitation frequencies x; for which there exist only reducible 

feasible solutions. Let N be the smallest number of sites for 

which such a sequence exists, and let xl,.;,xn be such a sequence, 

labelad so that a given feasible solution has & matrix in the form 

of Figure 5. Plck out a symmetric feasible solution (which always 

exists, according to the lemma). For Figure 5 to be a symmetric 

matrix, the sub-matrix B must be all zeroes, too, in addition to 

the sub-matrix O; Thus, the trip-frequency matrix is block-dia- 

gonal, with blooks A and D, It follows that the matrix A alone 

is a feasible solution to the commmting problem with visitation 

frequencies XyseosXys and the matrix D alone is a feasidble solu- 

tion to the commuting problem with visitation frequencies 

Xy 000 sXye By Theorem 1, each of these two sub-sequences must 

satisfy the polygon condition. 

We now show the existence of an irreducible feasible solu~ 

tion, thus reaching a contradiction. In the sequence Xjsc.,X, 

we pick out the maximal element (or elements, if several of the 

x's are equally highest); suppose there are m such elements. 

Similarly, in the sequence xm,...xn we pick out the maximal 

elements; suppose there are n of them, Next, pick a small posi- 

tive number €, and subtract n€ from each of the maximal elements 

of the sequence Xypo0 Xy also, subtract é from the maximal ele- 

ments of the sequence X, seesXy; (note the reversal of the roles 

of m and n). It is easily verified that the new sequences result- 

ing from these subtractions still satisfy the polygén condition, 

40 & 42 aurrintontly small. By Theorem 2, there exist feasible
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solutions to the commuting problems having these new sequences 

as visitation frequencies; let 'K be a solution matrix for the new 

sequence resulting from XyseesXys and let % be a solution matrix 

for the new sequence resulting from Xy, s0esXye In Figure Sy 

replace the matrices A and D by Yy and fi, respectively. 

Next, we replace certain elements of the all-zero matrices 

B and O by €'s: namely, in matrix B, wherever a row from a maxi- 

mal element from XysoosXy orosses a colum from a maximsl element 

of XypyyooosXys substitute G for zero, and only in those places; 

similarly, in matrix O, wherever a colum from a maximal element 

Of Xy,00,X, Orosses a row from a meximal element of Xy, seesXy» 

subatitute € for sero, and only in those 

places. (A typical matrix resulting 

from these substitutions is shown in 

Pigure 6, for the case m=2 and 

n=3; all the elements in B and 0, 

except the six indicated, remain zerc). 

Both X ana T are irredusible 

(or rather, can be chosen to be irre- 

ducible), since by assumption N is the F‘S"“ ¢ 

  

smallest number of sites for which only reducible feasible solu- 

tions exist, and both & and D are for fewer than N sites. It is 

easlly shown from this, and from the fact that both B and O are 

transformed to non-completely sero matrices, thd the entire newly- 

constructed matrix is irredusible. Furthermore, it 1s easily 

verified that the row and column sums remain the same as before, 

the net increases in B and O just balancing the net decreases in 

A.end D. We have thus reached an irreducible feasible solution 

end a contradiction. amo¥
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#It would be nice to have a short proof of this theorem. 

  

L aliooy s Ll 
The significance of this last A 

| 
result is somewhat diminished by the (0] =l TS D 
faoct that--even though irreducible Cl( el 

00 
solutions exist--the optimal solution 

Fi)ure 7 
heed not be irreducible. For example, 

in Figure 7 we have a system of fowr sites with transport costs 

between all pairs as indicated; if all four sites have the same 

visitation frequencies, the obvious optimal solution to the com- 

muting problem is to have trips only between A and C, and between 

B and D, which is evidently reducible. One might add further con- 

straints to prevent this denowment, or go back to the original 

full itinerary formulation. 

1.6. Fosal-Point Models 
We now restrict ourselves to the special commuting routines 

in which there is one site to and from which all trips are made. 

An example is depicted in Figure 8, a six 

site commuting span, in which an arc indi- < Focwg 
cates that trips occur between the two sites. 

In the general case all possible pairs might 

be connected, but here we have only five con- F""" & 

nections (N - 1 in the case of N sites), and one point, called 

the foous, is in all of them. 

If the focal point, and visitation frequencies at all other 

sites, are specified, the commuting problem of the previous sec- 

tion becomes trivial, since trip frequencies are completely deter- 

mined. Instead, attention will be focused on the determination
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of the visitation frequencies themselves. (Another problem that 

suggests itself is to determine the location of the focal point; 

this turns out to be identical with the famous Launhardt-Weber 

plant location problem and will be discussed in a later chapter). 

The utility indicator for a pattern of visitation 

frequencies is assumed to be, as in previous sections, the differ- 

ence between on-site pay-offs and transport costs. Formally, the 

problem is to ¥ 

D Maximize V(zl...,x!) - Ei':fi‘i over XyseesXy 30 

This will be called the focal point problem. Here there are N1 

sites--the focus being site Ly=-but of course only N degrees of 

freedom. xi i1s the visitation frequency at non-fooal site I’i 

(= trip frequency between site Ly and the foous I in each direc- 

tion); V is the on-site pay=off function; o, is the round-trip 

transport cost between sites L, and Lj; (as in 1.5., we need not 

be concerned here with the interpretation of the o4 values). 

The focal point model haes considerable unifying power. 

In the first place, there are a number of diverse spatial situ- 

ations all of which have the focal point model as their abstract 

representation: 

1)In an ordinary commuting routine, one site--most likely, one's 

residence~--may dominate to the extent of becoming a focus; 

2) As hinted at above, the focus may represent a plant-site ; 

in this case the x's may represent rates at which inputs arrive 

from various source points, and V a net profitability funoction 

(with outlays on an f.o.b. basis);or some of the x's may repre- 

sent rates at which outputs flow to their various markets, or 

rates at which employees commute from their various residences, 

V and the ¢'s being adjusted to the particular intarpretation;
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3) Oonsider a police-station assigning to each neighborhood in 

its precinct a certain intensity of patrolling, x’.s V here is a 

funotion representing the benefits from suppression of illegal 

aotivities, or perhaps from better traffic regulation; 

L) A charity-fund headquarters assigns to each house in its en- 

virons a solicitation intensity, x4 V here is perhaps net total 

funds raised, exclusive of transport-communications costs. 

Numerous other examples will suggest themselves to the reader. 

In the second place, the focal point problem is sbstractly 

identical to that of the profit-maximising firm operating in per- 

fectly competitive factor markets, and so can avail itself of the 

well-developed theory of this case.# 

  

# P.A. Samuelson Foundations of Eoonomic Analysis (Cambridge, 1947), 
Chapter IV. 

  

A special case of importance is one in which the non-focal 

sites can be p-rt:ltiohod into a smaller number of clusters, such 

that any two sites in the seme cluster are perfect substitutes. 

That is to say, V(zl,..,x,) is of the form 

W, N, 
VC ¢s'| X“ ls;.xil,, SR Z.s' xll") 

where x, 3 is the i-th member of the j-th elutor, vhich oanh!.na 

“,1 sites. Obviously, for optimality one should nevér travel to 

a given site if there is another in the same cluster which is 

nearer (in the scnse of having a smaller oy, not necessarily in 

the sense of geographical distance). This result holds even if 

sites in the same cluster differ in on-site costs per trip 

(e.g. admission charges), since these can be added to, and ab- 

sorbed into, unit transport costs. This paragraph anticipates 

the discussion of service areas.
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We close this sectlon with a simple example of spatial com- 

parative statics. Suppose transport costs per trip fall; we may 

expect, in a genercl way, that trips will become more frequent, 

that new sites will enter one's commuting span, and that the trip 

pattern will spread out in spatial extent. 

Let us write unit transport costs on the round-trip between 

the foour and site I’i as ¢y, 0 boi.ug a parameter, so that we are 

to max‘mize V(xl,..,x') -0 z‘(,, 4X;+ The optimal visitation 

freciencies depend on the parsmeter ©, and we write them as ;1(”' 

Treorem: If V(fi....xu) is homogeneous of degree K, the demand for 

trips, as a function of th. overall transport cost level, has a 

constant elasticity of T(-T' the ratio of trip frequencies to vari- 

ous sites being independent of the cost level; expressed formally, 

this states that 51(0) = Qe i"(l). 

Proof: Suppose for some @ the statement is false. Then there are 

trip frequencies R , Sucl tLot 

v -¢cX > v(g 3-""(»)\ - ec.(eé"z(»)) 

(usms vicln nquTn.) = ef' [V(x(\)) -C)((l)] la7 

homsgena of V, 3 0% [v(x) - -ex] by ovf'm;h‘k) 
n(' -i(') "f q,\7 X j n Pq"‘““h, lar X< g It'l)'zl o 

O g 
2™ [v(e~ %ig)-c(o” ‘I"' K)] = V(R)- o<k, 

899m Ly 4, Lm5m‘7‘7 ity ?“Tm‘s SN e 
afim’.k\s Tos\‘n.g/ Wt 3;1' R cnfiads o 

VIR) -pcX > v(R) - 0% &ED
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It is interesting that we get here neither an addition to 

nor subtraction from one's commuting span with changing trans- 

port costs, nor, of course a change in the spatial spread. This 

perhaps indicates a limitation of the homogeneity assumption. 

The reasonable values of the homogeneity degree are between 

0 and 1, and for this range the demand is never inelastic. 

1.7, A Tentative Explanstion for Some "Gravity" Models 

Investigators of spatial phenomena have found some remark- 

able empirical relations, perhaps none more so than the class of 

"gravity" models. These are of the form 

¢ 

where x, 3 is a measure of the"interaction"from place L; to place 

LJ (e.g. traffic, commodity flow, migration, telephone caila, 

mail); 8, and n, are measures of the "sizes" of places L’. and LJ 

(e.g. population, total income, number of telephones, total 

retall sales), d,_ 3 i1s a measure of the "distance" from place Li 

to phog I"j (e.g. geographic distance, monetary cost, travel time), 

ana %,%,Y, and { are parameters to be fitted. (¢ and Y are often 

set equal to 1). The distance exponent ?unluny ranges between 

-1 and =3. The fits ave, in general, extremely good, considering 

the fact that we are dealing with cross-sectional social data.# 

  

# For a general survey, see W. Isard Methods of Regional Analysis 
(New York, Wiley, 1960), chapter 11l. 
  

No explanation of these regularities in terms of rational 

(1.0, maximizing) behavior has appeared. This is surely a chal- 

lenging situation, and we offer here a small and tentative first
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step in this direction. The impressive feature of gravity form= 

ulae 1s not the "explanatory" variables themselves--"size" and 

"distance" variables suggest themselves naturally as predictors 

of "interaction"--but the power-function form in which they com- 

bine. Accordingly, we concentrate ouwr attention on finding con- 

ditions under which a power-function will emerge from not-very- 

explicit assumptions as to the form of the relation. 

We attack not formula (11) directly, but a somewhat weakened 

version of it. If "k" is substituted for "J" in (11), and the 

0ld formula is divided by the new, we obtain 

Xij _ (sj Y(A:; ¢ 
@ X(K = ?-K) :: ) 

so that, for any two sites, 1‘5 and I'k' the pgtio of their inter- 

aotions with a variable third site L, is a power-function of the 

ratio of their distances from this third site.s# 

  

#Gravity relations are frequently stated in the form (12), the 

best-known case bahl:g "Reilly's Law of Retail Gravitation" (for 

vwhich the interaction term is retall trade in shopping goods, and 

the oxponohe,s:il about -2). See W.J. Reillly "Methods for the 

Study of Retail Relationships" University of Texas Bulletin #29lli, 

November, 1929 (Austin, Bureau of Business Research); 

0. Tuominen "Das Einflussgebiet der Stadt Turku im System der 

Einflussgebiete S - W Finnlends" Fernia, vol. 71, 1949. 

  

As stated above, our main concern 1s to explain the power- 

function form of the relation (12). Suppose, then, that we drop 

the specific functional form in (12), and merely assume that the 

ratio of interactions depends on the sites I.J and Ly and on the
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ratio of the dhtmel, decreasing in the latter variable: 

® - (5 x R ) o el) L¢ . 

where f Ik is a decreasing function. The fundamental result of 

this section is that, with some further, rather mild, assumptions, 

the non-specific form (13) actuslly implies the gravity model (12)3 

Before we launch into details, one more general point needs 

discussion. The gravity models (11) and (12) are for ggeregative 

interactions, yet our snalysis is an explanation of how a rationd 

individusl would behave. There are two ways of justifying this 

procedure. (1) If all individuals have very similar preferences, 

the aggregative level will in some cases turn out to be an "indi- 

vidual writ large": that is, the functional form at the individual 

level is preserved under aggregations (2) we may sometimes be jus- 

tified in treating the aggregate as if it were a rational indivi- 

dual.# In any case, the analysis of this section can hardly be 

e s 

seven sometimes if the real individuals composing it are themsel~ 

ves irrational. See G.S. Becker "Irrationality and Economic 

Theory" Journal of Political Economy, Fabmfl‘ 162, gp. 1 =18, 

—————————————————— 

considered complete without explicitly taking account of the dis- 

tribution of individuals by tastes and location, and aggregating 

over this distribution. This task will not be undertaken here. 

Our basic model is the focal-point model (10) of section 160 

For "Interactions" we simply take the trip frequencies; for 

ngigtances” we take the umit transport cost values. In the 

notation of (10), relation (13) then becomes
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D =43 
Relation (1l}) characterizes trip frequencies as functions of the 

o's, which are now parameters. Site L; in the gravity model is 

the focus. The non-focal sites I‘j and I, are fixed. (Variation 

in the ¢'s can come about through variation in the location of 

the focal point, but also by variation in fares or transport 

conditions between the focus, and some or all of the non-focal 

points). 

We now make certain smoothness and simplicity assumptions 

about the on-site pay-off fumection V(x.l,...xn). None of these 

seems very hard to swallow. 

(1) ¥ 23 (i.0. there are at least thres sites other than the 

focus); (2) V inoreases in each of its arguments; (3) V is 

thrice-differentisble; 

NV is a ghriefly concave Fynclion ! vex +(-8x") > 

OVIXY + h-0)VIX”) for 0681 , \n veclor nofalion , 

The basic mathematical result that we use 1s embodied in 

the following lemma. 

Leuma: If V(x,,..,Xy) satisfies assumptions (1) - (44), and also 

satisfies the condition: 

X 
3% / JLP;-&G e~J7 on _i ki “"J, 

then V is of the form 3(24., a )( ) or 3(23,‘ ay )05)(5) 

for some constants ‘1""'!' and b, md some increasing function g, 
with 95 >0, o<s. 
Proof: (1) - (I), plus the assumption that 

Y P o on an 3 bx\,/ ldpw\( wly on X Xy b Wl 
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tmplies that V s of the form § (ii,:l h; (Xfi> : 
for some functions h].,...tx‘!r and some increasing function g.# 

#Theorem 1 e 389, of S.M. Goldman and H. Uzawa "A Note 
s:x;rabi 1% pfi Dunzl'ul lysis" Econometrica 32:387 - 398, 

I 5/1‘4'/("5) _ Wy i 
s [ oXy ’(Xn) —"L"(X;) dende 

J“wm‘rqrv;.) "7 ‘““WWT\'\ flq‘ de mflg ml 
T 

‘n“ quo J/YK) i b—%x_)_ hu;‘)’ ),e lhfll' 

he (A% 

P\h&snT oL X, $nce § ‘)\AhSt 0 )QfiVt& fl\f rallo 

2\19'- \mc‘ty\fl 5 dl“c{mTMh‘ lv7 )«) end s Hh 
K 

result c-,m) * 2ero ) s \/)JJ;' oy some re- 

ervensomen] | Xy hi" ) < X, by (%0 , 
h/ (%) h () 

Sd"):\ ! smee Mo varialhs are rgrqu";‘( 

XS and XL Ca), v-v7 h\Jtrch;"\.' E boTh sides mnsT . 

gflu.' & ‘fi\sT‘hr’ —r}l +Lt rcsh"fis dl/l‘l(n"l:, 

efl‘kqfiw\ l\; () r % e J TJ'(T,) = -—% , o bcms hh-)rfl'ul,
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yields k’j %) = SJ)(:)r s I:uns a tnglant of 

ln";’nm«. el , unh¥e r) mv] Jc@ml on j ¥ 

o sceond 1\44&%«{ yl!’&; 

L (XJ) r+| _iH‘ " bor (¢ - 

= Sj lls)(j ,For [t 

(am’ now  Conslanly of wT?f)rtflTm a‘wum\s mu] Le 

absorbed wlo the Funchine § | and $0 are \7nwe&); 

St : i 
(’w\“-; , sef r_-:l_ =4y (or ST for 1= ')' anf) 

r+) d,; 4,'>o) from assvmm\ GJ) oeb<), brom ). RED 

We now come to the basic result. 

Theorem: If a commuter maximizes v"i""‘x) - J'lc.‘li' where V 

satisfies conditions (1) - (4) above, and the optimel trip-fre- 

quencies, as Mflom of the c's, satisfy the conditions 

G ; 
Xy. JKQ ) for (el hors N, 

vwhere the functions r‘k are decreasing, then these functionss 

must be of the gravity form, viz., 

X NN : sl teanailivfity S 

XR Px (Cn) ) {-" e ' " 

for some omtcnurlnd PyoeesPye Fur "‘Lumore b ffi -1



N 
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Proof: The strict concavity and differentiability of V assure us 

that -for any vector of trip frequencies x there is a cost vector 

¢ such that x is the maximiger for ¢, and such that the first- 

order conditions )_\_{ 
ax,' =CJ' A j’l,...);’ hold of x, 

T-Kq. 'Rvo ‘hlP Ffl.‘)v\u\t7 VQdTJIS 5 XI and ;("l quufirn.) 

/ " X ; 
! LR -’fi-,; ’uvm) associaled cosT veclors ¢ and ¢”. 

/ 

Xk X ) 

The fundion ;J'&) Luns Jccrc“ln§ ) 18 mvertible, From, 
1 i 

"\\LL lf la”;m ”ufl' c— = C_-L , ‘Va». fle FmT- 

& ’ 
order condifimg | thig 15 equivalenl o 

& v R ) " [ T« - )xj/,x‘ ¢ 

the rat;, %5/:-’%& Jtrgm\s en)7 on the rafio )(%('k 

>
 

Vet nom “fl’)7 e l"“‘"‘ql and conclud ¢ ‘Hn‘f' Vo 
v 

o‘ ‘uu ‘OVM 3(':,;” qJ' XJ‘) or a(zj:'; q\i I‘) xj). 

S m,\s ‘h‘g“ wh The (’"ST‘MJW ‘"\d"‘—;"’; e 
9¢t S 9’ QJLX:,L-' R et = e AW Xy 

NE (LY’ 9 4 Xy O \xe) 

  

n
 
£
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These are both in the gravity form, with § = Tl-—l and, 

< Pjoe Qild—l w the byt case, S‘._,, pe L e 
J q; 

J 

Second  Cage ; Since O‘L“: fs e RED 

We have this derived essentially the weakened gravity form= 

ula (12) (except that we have not been able to identify separately 

the"sise" variables 8y and the parameter Y). The assumptions 

made are not strong enough to go further and derive the full grav- 

ity formula (11). To do this we would have to show that the 

funotion g is linear. However, V enters only through its marginal 

rates of substitution, which leaves it arbitrary up to a monotone 

transformation (and the assumptions (2), (3), (4)), so it cannot 

be shown that g is linear. 

The condition $% !, which drops out as a bonus, is verified 

in the great bulk of empirical fittings of gravity models.& 

w#of. the last part of 1.0, on the aIuE'Io!‘E of demand for trips. 

  

Our results are narrowly limited. We have already mentioned 

the aggregation problem. They are explanatory only in cases 

where the focal-point model makes sense. For example, it is not 

at all olear why migration flows (as opposed to commuting) 

should obey a gravity law--not clear, that is, from the arguments 

presented in this section. Pinally, the"ratio"assumptions in 

(13) and (14) are rather strong and somewhat arbitrary: it would 

be nice to derive these in turn from other plausible models. 

Notwithstanding these limitations, it still has been shown 

that gravity models can be derived from *non-gravity-like" 

assumptions, and further research should be encouraged along 

thaca 14naa. < - B L e 2 e
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2, Metrics, Flow-Patterns, and Neagures 
This chapter will be largely definitional. We hope to set 

out a framework of ideas, in a more rigorous fashion than is cus- 

tomary in spatial economics, which will carry us through the rest 

of this work. 

2.1 Metrics and Geodesics 
In this seotion we give a more or less abstract presentation 

of leading concepts and their interrelations; in the next we will 

offer various interpretations >f these concepts. 

We suppose there are a finite number of sites in our system. 

We are not concerned here with the internal structure of these 

sites, so they my be thought of as geometrical points. 

Por each pair of sites (L,M) there is defined & direct distance 

$(L,M). The direct distancs of & site from itself, S(L,L), is 

always sero. The direct distance between dirferent sites is al- 

ways greater than gero, and may be infinite for .-me pairs. We 

make no further stipulations concerning direct diste-ces, and, 

in particulsr, we do not assume symmetry: $(L,1) need nue oq\ll’l 

< (1,1, 

A route is simply a sequence of sites. 'm.quund ‘ °V:%‘e 

. :%. route (ysec sy Writton STy peeslyds 10 

D 0 @ &lhyeey brimy k) & 8Ly L) £ 5 (ro s L) 

'.l:::"g;fi‘fl“) ’-f’r;t z.‘;o"& 1}: &o‘n’amflafiut ‘distance ovir 

all possible routes beginning with L end ending with M; this is 

written a(L,K); it is easy to show that such a minimm slways 

exists. 

Theorem 1: d satisfies the o uality s 

a(x,L) + a(L,) $ a(x,M). 

E5oafs Let(K, 8y..0,8p, I)be a mininal direct dlstance route
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from K to L, and let (L, Si.... s;,, M) be & minimal direct dis- 

tance route from Lto M. d(K,L) + a(L,X) = Y (K, 8ysves Bgs L} 4 

S(Ls 8] 000y 82,5 W) RTK, 8,000s S5 Ly 811y 81, 1) F A(KM); 
the last inequality follows from the possibility that the route 

shown, going through L, may not be the minimal \irect distance 

route from K to M. QED 

A route Ll'"' Lu is a geodesic if and only it 

AL, oLy) = a(L, L) + ‘“"zvf';’ toeceatdliy goL). 

The triangle inequality implies that the right-hand s\ie of this 

expression is never less than the left-hand side for avy route, 

80 that geodesics are those special routes for which thiy weak 

inequality is pulled tight into an equality. In faot, geocnetri- 

cally, geodesios are simply points along a string which is p\lled 

taut. 

(It need not happen that a given geodesio remains a geodesi: 

if the order of its sites is reversed). 

eorem 23 Any sub-route of a geodesic is a geodesic. (That is, 

1f some of the sites of a geodesic are deleted, without disturd- 

ing the order of the remaining sites, then these remaining sltes 

are also a geodesic). 

Proof: Let Lyj,ees Ly be a geodesic, and L':' pasis L", & sul- 

Yode of Li..\ly ; (16¢ < i c--2, 8N) 5 by 
sevwal apphedfions of The Tnm;le lnc7u<’|r’, we Find 

A, L) » ALy, L) #aly L)+ + 4Ly by) 2 

e, b)) +albi, L)+, w4l LG) wd Ly, L) 

240, L) vd(Li, L) +A(L;,,L,,) > A(L,,l—u) g 

Cmpaning Fust and Yash Tetme 1n Ty chen of |n<=)uJ|7Rs/
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we bind thaT They ol muct b cqualifics 

o dlly el L) e AL, L) 

e Ly ce Ly, 15 e qudsic, GED 
) v 

(These developments may be extended to the case of an in- 

finite number of sites. Ior example, an ordered infinite set of 

points 1s defined to be a geodesic if and only if every finite 

sub=order of it is a geodesic. However, we have no need for this 

extension in this work). 

The ooncept of "geodésic" may now be used to define several 

importent "betweenness" notions. Site L is between K and M iff 

(if end only if) the route (K, L, M) is a geodesic. 

Let R' and R" be two regions (i.e., collections of sites); 

L is a gateway between R' and R" ( in that order) iff L is 

between X and Y for all sites X in R', and Y in R"; L 4is an 

entrepot for region R iff it is between all pairs of different 

sites, both of which are in R. 

A gyelis route is one begimning and ending at the same site 

(and containing at least two sites). The following result is 

imnmediate. 

Theorem 3t No oyclic path is a geodesic. 

2.2. Motrics) Interpretations 
The "friction of space" which forces one to devote time, 

effort and resources for transportation obviously plays a funda- 

mentel role in spatial economics. The act of transportation is 

a rather complex affair, involving outlays, time-delay, traveling 

oconditions, qualitative changes in the eargo, acoompanying motion 

of vehicle and crew, with a variety of options concerning trans-
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port mode, route, speed, handling, etc.. 'For our purposes here 

we simplify, and represent an act of transportation by just four 

variables: (1) the resource~bundle being transported (which may 

include people, freight, mail, water, sewage, electricity, etc.); 

(2) the site of origin; (3) the site of destination; and () the 

cost. There is assumed to be a function o(b, L, M), determining 

the fourth variable from the other three. © ranges over the non- 

negative real numbers; L and M over the sites of the system; 

b over non-negative vectors giving the quantities of the resources 

making up the bundle being transported. 

(We might instead have considered a somewhat less drastic 

simplification, snd inoluded also the times of departure and 

arrival, as in section 1.2 above. The "sites" of ouwr system, 

on which our metric is to be constructed, would then be points 

— of space-time, rather than mere locations. This procedure would 

have the added attraction of enabling us to treat transportation 

and storege simultaneously, storage being merely the special case 

of transportation in which the site of origin is spatially iden- 

tical with site of destination. However, we stick with the sim- 

pler construction, which is adequate for our purposes). 

Let us now fix on one particular © which is not the null- 

bundle (i.e. b contains at least some resources). This makes 

cost a function merely of the sites of origin and destination. 

The same is true of the distance funotion d(L,M) of the previous 

section, and this suggests that one possible interpretation of 

a(L,M) is as the cost function ¢(F, L, M) for a fixed bundle b. 

: To justify this interpretation one must show that such funotions 

“' may be sssumed to possess the properties ascribed to d(L,M). 

We started in 2.1 with the conscept of "direct distance";
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The direct distance §(L,M) is now interpreted to be the cost of 

transporting b from L to N when one insists on using the direct 

route from L to M, where a direct route is one not passing through 

any other of our designated sites (for example, a single stretch 

of highway, or a non-stop plane Ilight). The few properties 

which were specified for direct distances appear quite plausible 

in this interpretations In partisular, if there is no direct 

route from L to M, so that it 1is 1npou1bio to go from one to the 

other with out passing through a third designated site, we may 

take the cost to be infinity, which is a permitted value for 

direct distance. 

The actual route followed is a sequence of these direct hops, 

which can be represented by the sequence of sites at which the 

bwidle successively appears, as i 2.1. The direot distance for 

a route is interpreted to be the sost of transporting bundle b 

along the route, using always the direct route between successive 

pairs of sites. 

The second inequality of (1) states that the direoct distance 

for a route is never greater than the sur of the direct distances 

for the "legs" into which it can be divided. While this inequal- 

ity is not universslly valid in our cost luterpretation, it does 

reflect a pervasive feature of transportatin, viz., the impor- 

tance of terminnl costs (e.g. waiting for cormections, loading 

and unloading, "getting up steam", billing, information costs). 

Thus, when one goes straight through, using the "express" instead 

of the "local"”, one avoids terminal costs at ths intermediate 

stopping poliat. As a rule, fare structures on common carriers 

reflect these cost differentisls to the carriera.# 

  

#Nonetheloss, it is often useful to strengthen the second inequal-
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ity of (1) to an equality, as will be done below. 

  

Finally, if we assume that the route followed in going from 

site L to M is the least-cost route, and that this is ¢ in the 

cost function o(b, L, M), we have the exact analog to the rela- 

tion betwoen distance’ and"direct dilhnco', since A(L,M) is the 

minimal direct distance over all possible routes from L to M. 

The interpretation of d(L,u) as o(b, L, M), therefore, seems 

reasonsble in many cases. 

We now disouss the concept "transportation cost" in its 

turn. As stated asbove, transportation has a number of qualite- 

tively distinct aspects; these have to be compressed into a sin- 

gle real number, the cost. In the case of freight transportation 

one can often find reasonable monetary equivalents for some of 

these aspects; e.g. accident risk is approximated by insurance 

rates; quality changes may be assessed by price comparisons; 

time delays are reflected in foregone interest and/or the cost 

of extra inventory holding. The case of passenger transporta- 

tion is more difficult. We content ourselves with the observa- 

tion that the trade-off rates smong money, time, comfort and 

safety vary considerably from person to person (so that the 

resulting cost-metric itself varies from person to person). 

The problem of assessing a composite cost figure for information 

transmission is perhaps even more difficult. 

In genoral, a good assessment can be made only in the con- 

text of the wider system of which the aots of transportation are 

a part. For example, in the calendar-time model of section 1.2, 

if cost (as defined there) depends only on time-delay, origin 

and destination, and one acts optimally, it can be shown that 

the marginal opportunity loss from time-delay on a trip equals e
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the pay-off rate at dostination at time of arrivel (end also 

equals pay-off rate at origin at time of departure). 

Despite these difficulties, it still seems useful to make 

the simplification and work with a numerisal-valued (rather than 

vector-valued) cost function. 

The metric, so far, has been defined only for the arbitrary 

non-null resource-bundle b. If nothing else is assumed, one 

might get a different metric for every different resource-bundle, 

Suppose, however, that the cost funotion is factorable. 

o(b, L, M) is said to be faotorable iff there are functions 

d(L,M) and w(b) which are real-valued, non-negative, for which 

d(L,M) is positive for L#M, for which w(b) is positive for a 

nonenull b, and for which e¢(b, L, M) = w(b)a(L,M), for all b, L, M, 

If 8o, it is easy to see that substitution of one non-null bundle 

for another, and use of the proscedure outlined above for T, 

results in metrics that differ from each other only in a multi- 

plicative constant, so that "essentially" the same metric is 

defined for all non-null bundles; this metric is proportional to 

the factor-function da(L,M). 

These facts suggest the following procedure when we are lucky 

enough to have a factorable cost function. We take an arbitrary 

non-null resource-bundle; say, one ton of coal. The metric is 

; defined by the cost of transporting one ton of coal. We may al- 

ways choose the w(b) function so that it equals one for a ton of 

coal. With this, the metric is identical with the companion 

function d(L,¥). This will be:called the ideal distsnce from 

L to M. Por any bundle, w(b) will be called its ideal weight. 

Thus, transportation cost equals ideal weight of bundle times 

ideal distance from origin to destination.
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#The notions of"ideal distance" and "ifdeal weight" date back to 

Alfred Weber (1909). It is curious that, while the "ideal weight" 

concept has been widely accepted, "ideal distances™have been 

given short shrift by location theorists. Weber's exposition of 

the latter concept may have been faulty, but it should be clear 

from the treatment above that the two consepts are entirely co~ 

ordinate, and in fact ere only defined jointly. For criticisms 

see B.N. Hoover Loostion Theory end the Shoe and Lesther Indus- 
tries (Cambridge, Mass., 1937), page 4O note 10, and W. Isard 

Location and Space-Economy (New York, 1956), page 109. 

  

  

How reasonable is the assumption that the transportation 

cost function is factorable? There is, no doubt, = general ten- 

dency for the metrics defined by two resource-bundles to resemble 

each other: if L is relatively close to M for bundle b, 1t will 

usually be relatively close to M for bundle ;; However, there 

are several reasons why we may expect substantial deviations from 

the factorability condition. 

1) Different resource-bundles may have different "comparative 

advantages" in being transported by different media, and these in 

turn may be irregularly distributed among pairs of sites. For 

example, l\ippou coal can be tramsported only by rail and water 

only by pipeline. If the pair of sites L, & have good rail and 

poor pipeline connections, and omorulq. for the pair L': lfl',’ 

then the factorability condition breaks down. 

2) A second source of deviations from factorsbility is illustrated 

in Figure 1, and arises from the complex character of flu ,c\: of 

transportation which was discussed sbove. Suppose there is a 

choice of transportation modes, some fast and expemsive, others
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cheap but slow., For the pair 

of sites L',l', the curve 

a'b?c’d! gives the outlay- 

time-delay combinations 

which are available for the 

transportation of both 

bundles 5 and b . Also, 

for the pair of sites L",M", 

  

ouflays 
the ourve a"b"c"a" gives F'j“" ) 

the available outlay-time-delay combinations for both resource- 

bundles. It would seem, at first glance, that the fnctornbnity 

condition 1s satisfied here, with the ideal weights of the bundles 

being equal. Yet this is not necessarily so. Suppose time-costs 

are relatively low for b , and relatively high for 5 3 let UU be 

R curve for B , and VV and WW be MEram 

curves for % (For simplicity, we let these be straight lines, 

as well as letting the available outlay-delay combinations be 

connected curves; the argument is not affected by this). For 

the transportation of b, the combination b! is chosen for the 

trip from L' to M!, and the combination b" 1s chosen for the trip 

from L" to M", These give the same total cost. For the bundle 

f, the combinations chosen are ¢' and o¢", reppectively, which give 

different total costs. Therefore, the metrics assigned by b and 

by § are not in proportion, and factorability breaks down. 

3) Discriminatory tolls, tariffs, and barriers to movement may 

destroy factorability. 

None of the metrics which we have defined need bear any 

close resemblance to the metric defined by geographic distance.#
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# By geographiec distence between two points 1s meant the physical 

length of the shortest curve connecting them and lying on the sur- 

face of the Earth. If the Earth were a perfect sphere these would, 

of course, be great circle distances. 

  

Nature end man combine to distort cost-metrics away from geographic 

metrics; irregularities in elevation, the distribution of land and 

water, wind and water speeds, texture of surface, olimate, the 

distribution of road- and rail-nets, pipeline and electric grid 

systems, ports and airfields, being some of the contributing fac- 

tors. On top of this are powerful institutional factors: common 

carrier routes, tariff systems, movement barriers (especially at 

national frontiers), perhaps bandits and pirates.s 

  

# A graphic picture of the resulting jumble, which takes account 

only of the outlay component, may be found in J.W. Alexander, 

S.E. Brofin, and R.E. Dahlberg "Freight Rates: Selected Aspects of 

Uniform and Nodal Reglons" Economic Geography 34:1-18 January, 1958. 

  

To round off the pioture we should bring in the time-variasbil 

ity of metrics. One may distingulsh daily, weekly, and annual 

cyclic components, and secular trends. Dally components arise 

through peak-load congestion, toll variations (e.g. in telephone 

rates), and visibility conditions; weekly from the varlation 

between work-a-day and week-end travel patterns, and their result- 

ing congestion shifts; amnual from climatic and travel-pattern 

cycles. Secular trend arises, of course, from transportation 

construction, from growing traffic flow, from the introdustion 

of new transportation systems, and from growing private vehicle 

o b it b il
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ownership with rising incomes. 

In summary, the idealization involved in going from the real 

world to a cost-metric is fairly heroic. Analytic difficulties 

make it hard to do much better. 

(As with ideal vs. real metrics, we may contrast ideal with 

real weights. There is considerable distortion in weight ratios, 

even between different-sized bundles of the same resource: "bulk- 

economies" mske the ideal weight of two tons of a commodity less 

than twice the ideal weight of one ton.) 

One final point deserves clarification. The "heroic ideal- 

ization" does not consist in the substitution of ideal weights 

and distances for their physical counterparts. On the contrary, 

only the ideal weights and distences are economically relevant, 

and we may simply forget about physical weights and distances. 

It consists in (1) the compression of costs into a single num- 

ber; (2) the assumption of factorability; (3) the attribution of 

a simple strusture to the ideal metric (e.g. the Euclidean plane 

assumption, as in a later chapter). 

2430 ow=Patt: ket Are 

In this section we deal with just a single commodity. There 

are a finite number of sites, For any pair of sites L, M, we are 

concerned with just the qualitative attribute of the existence or 

non~existence of a flow of the commodity from L to M.# 

  

# This flow-pattern can be represented as a directed graph, an 

arc running from L to M if end only if there is a flow firom L to 

M. All the following definitions thus have immediate graph-theo- 

retic counterparts. 
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The sites may be partitioned into four categories. A 

source point 1s a site having outflows to other points but no 

inflows from other points. A sink point is a site having inflows 

from other points but no outflows to other points. An isolated 

point is one having no flow connections with sny other point. 

All remaining sites are called trans-shipment points. Among 

trans-shipment points msy be distinguished gsgembly points, hav- 

ing inflows from several points and an outflow to just one; \ 

bresk-of-bulk points, having outflows to several points and an 

inflow from just one, and through-points, having an inflow from 

Just one point and an outflow to just one point. 

A flow pattern is acyclic iff there is no cyclic route of 

different sites such that there is a flow from each site to its 

immediate successor (roughly, iff there is no sequence of flows 

going around in a circle). A flow pattern is one-msny iff no 

site has sn inflow from more than one point. It is many-one iff 

no site has an outflow to more than one point. 

A supply system is a flow pattern which is acyclic and many- 

one. A demand system is a flow pattern whioch is acyclic and one- 

many. Site K is linked to site M iff there 1s a sequence of sites, 

Insees Lys (possibly empty), such that there is a flow from K to 

s from L; €0 Loseces ML&IMI-N.IM‘&MLR%H. The 

Supply ares of a sink point is the set of all sites which are 

linked to it. The demand srea of a source point is the set of all 

sites to which it is linked. It is convenient to include the 

8ink point itself in its own supply area, and the source point 

itself in its own demand srea. MNarket sres is the generlo term 

for either a supply or a demand area.#
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# This terminology for "supply”, "demand", and "market" areas 

follows I8sch, and brings out the basic symmetries better than 

the usual 'tominoloy. which calls our demand areas "market areas”, 

and has no generic term. Cf. A. L8sch The Economics of Jocation 

(W.H. Woglom, translator)(New Haven, 1954) page 9; E.K. Hoover 
The Location of Economic Activity (New York, 1948) Chap.l; 

W. Isard Location and Space- Economy, op. cit., Chap.7, Secs.l,2. 

  

It is easy to prove the following basic result. 

Theorem: Every site in a supply system is either isolated, or 

belongs to exactly one supply area; the number of supply areas 

equals the number of sink points. Similarly, every site in a 

demand system is either isolated, or belongs to exactly one i 

demand area, the number of demsnd areas equalling the number of ' 

source points. ‘ 

Figure 2 depicts a demand A ] 

system, en arrow indicating a flow. 

It has 18 sites, 3 demand areas and 

source points, 3 isolated points, 

9 sink points and 3 break-of-bulk Frgure 2 
points.# 

——— 
# The one-many acyclic relations, also known as hierarchies, play 

a fundamental role, not only here, but in the theory of organiza- 

tions, the theory of games, genetics, taxonomy, and meny other 

places. 
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2.y, Metrics, Flow-Patterns, and Price-Fields 

We will now develop some of the interrelations between the 

metrics of 2,1 and the flow-patterns of 2,3, To do this we intro- 

duce still a third spatial system, the price field, which is 

simply a function assigning a real number, the local price of the 

commodity, to each site. 

In an interpretation, the local price is simply identified 

with the actual commodity price at a site (if 1t exists), with 

the understanding that the bundle which is being priced is the 

same as the bundle defining the metric in 2.1. However, actual 

prices will in general exist only at the subset of sites at which 

exchanges of the commodity ocour. There are a number of ways in 

which the gaeps in the price field may be filled. For our purposes 

we choose the simplest, which is to assume that there is a way of 

assigning real numbers to the sites at which no exchanges occur, 

suoh that the resulting full price field satisfies the relations 

postulated below, These numbers may be called yirtual local 

prices. 

We are continuing here with our static approach, so that no 

account is taken of price fluctuations, or the stopping, starting, 

or even reversing of flows over time. As was mentioned above, 

the whole approach may be "dynamigzed" by interpreting sites not 

as points of space, but of space-time, so that prices are spread 

out over time as well as space, and flows move from an origin and 

time of departure to a destination and time of arrivel. This 

line will not be pursued. 

We now postulate the following connections among price-fields, 

flow=patterns and metricss
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D P XdLM) 2 P A Wl ym and 
) W hoe 15 “»« brm. L o M y PL) xd (L, M) = P(n) 

ere p(L) is the local price at site L. 
These are well-known relations. They may be interpreted either 

as competitive equilibrium conditions, or as nermative conditions 

for efficient flow-pabterns. In the first intersretation, (1) 

states that the activities: buying at L, shipping from L to M, 
and selling at M does not yield positive piofl.tl 4 equilibrium 

for any pair of sites; (2) adds that, if a flow occuss, profits 

are not negative either. In the second interpretatioca, the p's 

are "shadow prices", and (1) and (2) are dual relations to vari- 

ous minimal cost flow problems.s 

  

# See P.A. Sammelson "Spatial Priae Equilibrium and Linear lio- 
anming"” % E lfigfi E 283-30; 19523 

?:n. Ford, - oHe erson m&mn. 5 op.oit., 
Chapter III. 

  

We now exsmine some simple consequences of (1) and (2). 

Theorem 1: If K 1s linked to M, then p(K) + d(X,M)=p(M). 

Proof: Suppose K is linked to M; then there is a sequence of sites 

Ky Lyseos L., N such that there is a flow from each site to its 

immediate successor. We now apply (2) several times over: 

pley *A(k,L,) - p(L) g 

P(L) +d (L, L,) <PL) 

P(Ly) ¥4 (L,,, W) = P(M) ; AJf|n$ anf) sm-'hl-/u) e ).1' 

(k) x d(k)L)) ¥d(L, L) ¥ L ALy M) = PIM),
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Erom i fi«nsh Ihu"uq’:t’ v AKR) S Ae,L) wdl) v 

*alby, M) . From ke lagh Twe ruult; , ve 3¢t 

PU) +A(KM) € P(m) ; &T  PO) ¥A(¥, 1) 3 PUm), 

brm (). S e ¥ Ak, n) =elm) QD 

Zheorem 2: If there is a flow from K to Ins from Ly to Loseocos 

n'aan_l toLn, lndtnoml’.xtol, then K, L.I."" I'N' Nisa 

geodesic. 

Proof: Proceeding along the lines of the last proof, we find 

that  P(R) ~ (kL) + . -\»A(L,,, n) = P(M) 
but also, by Theorem 1, P(k) r Ak h) = (M) ; 

S Al M) s dle ) x Al L)y *d(Ly,n). €D 

Theorem 3: Flow-patterns are acyclic. 

Proof: This follows lmuediately from Theorem 2, and Theorem 3 of 
2833 QED 
Corollary: For no pair of distinct sites, L and X, can there be 

flows both from L to M and from M to L. 
This is a special case of cross-hauling. In common usage, 

"oross-hauling" refers to a situation in K o 

which there are two pairs of sites, (J,K) 3 i 

and (L,k), with J and K being relatively 

olose, I and M being relatively close, 

the pairs being relatively distant from each other; yet J ships 

to M end L ships to K (see Figure 3). Let us formalize this. 

Crosg-hauling is said to ocour when there is a flow from J to N, 

& flow from L to K, and d(J,K) + d(L,M) < d(J,N) + a(L,K). 

Fl;ll'( 3
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Theorem li: Cross-hauling does not ocour. 

Proof: The flows lmply that p(J) + d(J,M) = p(M), and 

p(L) + d(L,K) = p(K), by Postulate (2); also p(K) & d(J,X) + p(J), 

and p(M) & 4(L,M) + p(L), by Postulate (1); adding these four 

relations, and simplifying, we obtain 

a(J,M) + a(L,X) § d(J,K) + a(L,M), which contradicts the third 

part of the definition. QED 

Suppose the flow-pattern is a demand system. Every non- 

isolated point is then in exactly one demand area. If Postulates 

(1) and (2) hold, we have the following simple result. 

Theorem 5: 8Site L is in the demand area of a source point 

J whish minimiges p(j) + a(J,L) over all source points J. 

Proof: 8ince the source point J' of the market area in which L 

sits is linked to L, we have, from Theorem 1, p(J') 4 4(J*,L) 

= p(L). On the other hand, for sny other source point j, 

p(J) + a(J,L) Zp(L), by Postulate (1); therefore, J' minimiges 

p(3) + a(J,L) over source points. QED 

The intuitive meaning of Theorem S is, of course, that each 

site purchases rrcn a source minimizing the sun of loecal price at 

the source plus transportation costs, if it pwrchases at all. 

(The minimising source need not be unique, and in this case, 

the price-~field and the metric are not sufficient to determine in 

which demand area the site will fall. This phenomenon ocours 

with a continuum of sites along the borderline between two demsnd 

areas. The difficulty introdusced is minor.) 

Por supply systems, the result anslogous to Theorem S is 

Theorem 6: Site L is in the supply area of a sink point J which 

maximizes p(J) = 4(L,J) over all sink points J. 

The proof follows the seme pattern as that of Theorem 5.
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Theorem 6 means, intuitively, that a site sells to that sink 

offering the highest price net of transportation costs to the 

sink, . 

Theorems 5 and 6 suggest an alternative concept of market 

area which has the property of incorporating all sites, including 

the isolated points. Suppose we have a demand system which satis- 

fles Postulates (1) and (2). The potentisl demand area of source 

point J is the set of all sites L for which J minimizes 

p(J) + a(J,L) over all source points j. That 1s, the potential 

demand area consists of those sites which find J the cheapest 

source of supply, counting in transportation costs. 

The problem again arises of those sites for which two or 

_more sources are equally cheapest. One may simply assume that 

there are no such sites., A more palatable approach uses the con~ 

cepts of the next seation, and assumes that the set of sites for 

which sources are not uniquely assigned is a set of "measure zerd) 

and we agree to ignore anomalies which ocour only on such sets. 

To contrast with "potentlal demand area", our previous defi- 

nition, based on actual flows, will be referred to as effective 

demand area. With the understanding of the previous paragraph, 

which circumvents the non-uniqueness problem, we then have the 

result: 

Theorem 7: In a demand system, the effective demand area of a 

source is a subset of its potential demand area. 

Proof: By Theorem 5, all sites in the effective demend area 

satisfy the oriterion for being in the potential demand area. QED 

A completely parallel construction may be made for supply 

areas., In a supply system, the potential supply area of a sink
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point J is the set of all sites L for which J maximiges 

p(§) = 4(L,§) over all sink points j. The effective supply ares 

is, as before, the set of sites which are linked to J. We then 

have the result: 

Theorem 8: In a supply system, the effective supply area of a 

sink is a subset of its potential supply area. 

This follows from Theorem 6, just as Theorem 7 followed from 

Theorem 5. 

2450 ures cess~Perspectives 

A region is simply a collection of sites. Suppose we have 

in turn a collection of regions with the following property. 

If R' and R" are both in the collection of regions, then their 

union and their difference are both in the collection. That is, 

the region consisting of all sites belonging either to R! or to 

R" (or both) is in the collection, and the region consisting of 

all sites belonging to R! but not to R" is also in the collection. 

A measure is a function which assigns a real number to each region 

of such a collection, and has the additional property that, if 

R' and R" are two disjoint regions of the collection (i.e. they 

have no sites in common), then the measure of their union is the 

sun of the measures of each: /.((R' ve") 'Iu(L’) +,4(Z").“‘ 

  

# This definition is a good deal weaker then the usual mathemati- 

cal definition of "measure”, but it is adequate for our purposes. 
  

Examples of measures abound. Let us take as our regions 

various parts of the Earth's surface. Surface area is a measure; 

so is residential population (at some given moment); so is value 

added (in some given time~interval). As a matter of fact, the
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great bulk of published statistics appear to be, either measures 

themselves, or simple derivations from measures (as, e.g., per- 

capita inocome data are derived from the measures total income and 

total population). 

An important class of regions are defined by metrics. Let 

K be a fixed site, and r a non-negative mmber. The closed 

out-sphere of radius r about K 1s the reglon consisting of all 

sites L such that d(K,L) §r; l.e., the set of all sites not 

further than distance r from site K. The glosed in-sphere, simi- 

larly, is the region consisting of all sites L such that 

a(L,X) £ r. In our cost interprstation of the metric, the out- 

sphere is the set of all sites reachable from K at a cost of no 

more than r (e.g. outlay, or time-delay, etc); the in-sphere is 

the set of all sites from which K is reachable at a cost of no 

F\S\Avt 4 F-7uve g 

We should not expect these "spheres" to look very spherical 

in the geographical sense; (more exactly, we should not expect 

them to be circular discs lying on the surface of the Earth, as 

they would be spproximately if cost-distance coincided with geo- 

graphical ultunoo.) Two important cases are shown in figures 

4 and 5. In Figure lj, X is the hub of a radial system of trans- 

portation arteries. The spheres about K tend to extend "arms" 

along the arteries and have the typical starfish shape shown.
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The situation in Pigure 5 is similar, except that we are now deal- 

ing, e.g., with limited-access highways or commuter railways, so 

that one can get on or off the artery only at the dots. Here the 

"sphere"turns out to be not even connected, ‘since an isolated cir- 

ocular disc arownd a dot is more accessible to K than some points 

further away, even if these points are geographically closer to K. 

Now let us suppose we have a measure defined on all the 

in- and out-spheres about a certain site X; (it will also, of 

course, be defined on other regions besides these). The in-spheres 

about K constitute a one parameter family of regions, indexed by 

their radii, r. The in-access perspective of the point K is the 

real-valued function of a real vumlo,fi:(r). O Y <, which to 

every non-negative value of the independent variable » assigns 

the measure of the closed in-sphere of radius r about K. Substi- 

tution of "out-" for "in-" and repetition of the same construstion 

defines the gut-gccess perspective of the point K, /4';[1)'0 

  

# The access perspective seems to arise naturally as a way of 

desoribing the general accessibility of places. For example, in 

local booster advertising one often comes across statements of 

the form "30 million people live within e f£ifty mile radius of 

X-ville", which is just a specification of one value of the access 

perspective of X-ville, the measure being population. 

  

There are, of course, many access perspectives for a given 

site K: in general, a different one for every different combina- 

tion of metric and measure. If the measure is non-negative-- 

as is usually the case--the access perspective will be a non- 

decreasing function. This follows from the fact that a sphere of
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smaller radius about K is a subset of a sphere of larger radius 

about K. If the former had a larger measure than the latter, the 

"ring" which is their difference would have a negative measure, 

contrary to assumption. The value of /u&(a) (in- or out~ alike) 

is the measure of the single site K itself, 

As an example, suppose we confine ourselves to regions which 

are parts of the Earth's surface, and take surface area as our 

measure. For simplicity, let our metric be ordinary geographic 

distance. Since this is symmetric (i.e. 4(L,l)=d(k,L)), in- 

access perspective and out-mccess perspective coincide for all 

sites. If we neglect the curvature of the Earth and assume we 

are on a Euclidean plane, we get, of course, /AK[{) o r)’ 

the relation between the radius of a circle and its area. (This 

approximation is sufficiently good in many cases to justify its 
use as an assumption. A large fraction of the literature of 

spatial economics does so use it--the "homogeneous plain" 

assumption--and its simplicity compared with alternatives mekes 

it likely that this will continue to be the case). More generally, 

if the Earth were a perfect sphere of radius f, access perspective 

would be M, (r) » 1mp*()- ws§) = wrt - T'L'l + * ves 

br 681 g wp ) =Wl by wgi 
0f greater economic interest would be such measures as 

usable area or vacant area. These would incorporate factors such 

as geographical suitability, previous construction, and multiple- 

story floor space availability, end would, in general, have sn 

irregular access perspective. 

With the aid of aocess perspective, a large class of"inten- 

8ity” or "accessibility" formulas can be constructed.
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The f-intensity gt the site X, with respect to a given metric and 

measure, is 
o 

S [ due, 
where f(r) is a real-valued, positive and decreasing function, 

and the expression 1s a Stieltjes integral (which reduces to an 

ordinary Riemann integral 1s access perspective 1s differentiable). 

One may, of course, iistinguish in- and out-f-intensities, defined 

by in- and out-access perspectives, respectively. 

The f-intersity assigna a single number to the site K, rathe 

than an entirs function. If M is non-negative, then f-intensity 

will be nor-negative. Of the possible funotions f(r) only one so 

far has ittained popularity. John Q. Stewart introduced (3) with 

£(r) v1/r wnder the name "potential"; (thus, "population poten- 

tia)‘, "income potential®, etc., depending on the measure; the 

m-tric is almost always taken to be geographical distance).# 

  

# Por a review, see W, Isard Kethods of Regional Analysis, op. 
cit., Chapter 11. 

  

No one has given a reason why this funotion--or any other, for 

that matter--should be favored, apart from correlations with other 

spatial distributions; (these correlations are, in general, much 

less impressive than the results for gravity formulas). The 

subject needs a theoretical grounding, perhaps along the lines of 

our ocrude attempt for gravity models in 1.7.



raden »7 

3. of Wi ivities 

In this chapter we pick up the thread of Chapter 1, concen- 

trating on a different (and more traditional) set of spatial vari- 

ables: what activities get carried on, and where? We start again 

with the individual decisionemaker, then go on to study the equi- 

1ibria resulting from the interaction of these decision. We also 

take up some normative issues, discussing the problem of optimal 

location patterns. 

3ale dv: blem 

In Chapter 1 we discussed the individual's choice of itiner- 

ary. Here we discuss his land use decisions. These may be broken 

down into two phases: (1) what part of the Earth's surface does he 

i acquire control over, and (2) to what uses does he devote this 

part? 

Let us first discuss phase (1). The formulation is unusual; 

a more trmiti@ epproach is simply to ask, "where does the 

individual locate?” (We are using the term "individual®™ here to 

stand for any decision-making unit, whether it be an individual 

proper, a family, a corporation, a government body, or other 

organisation). But this question misses three aspeots of the 

location decision. First of all, one may choose a pumber of dif- 

fereno locations separated from each other:(e.g. a firm may have 

offices, plants, and warehouses scattered throughout the world). 

Secondly, at each of these locations one must decide on the sise 

of the parcel to acquire. Finally, at each location one must 

decide on the shape of the percel as well.s 

  

# Two noteworthy recent books in the small literature on parcel 

siges are L. Wingo, Jr., Transportation and Urban Land (Washington;
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Resources For The Future, Inc., 1961) and W, Alonso Locgtion and 

Land Use (Cambridge, Harvard University Press, 1964). On parcel 

shapes, one pioneering appromch is found in Alonso's book, Appendix 

Be There is also some work in the geographical literature on set- 

tlement morphology; of. C.P. Barnes "Pconomics of the Long-lot 

Farm" Geographical Review 25:298-301 19353 M.Chisholm Rural Set- 

tlement and Land Use (London, Hutchinson, 1962). There appesrs 

to be no systematic work on the "aumbers” problem, unless one in- 

cludes the problem of optimal spacing in that designation. 

  

All of these aspects are automatically contained in the probd- 

lem of choosing a part of the Barth's surface. If we think of 

the surface as a collection of a large number of sites (perhaps e 

continuum of sites), then the problem is to choose a certain sub- 

set of these sites. 

Not all conceivable subsets are possible options for our indi- 

vidual. We may divide constraints into institutional and dbud- 

getary. Under institutional constraints there are, in the first 

place, restrictions on minimal parcel sigzes in the form of zoning 

and sub-division codes. (Older laws of primogeniture and entail 

perhaps belong in this category). In lom.o places thers are also 

maximal sigze restrictions, a resultant of land reform movements. 

Also, at any one time, a large fraction of the surface is not up 

for sale or lease at any prices much QWMG land, perhaps 

places such as cemeteries or family estates which are held for 

sentimental reasons. (Some of these restrictions can be over- 

ridden if the individual holds the power of eminent domain-- 

e.8. some government bodies and utilities). There may also be 

restrictions on some individuals as mon& to others, based usu- 

ally on race, religion or utionnll.fi': 0.8 segregation laws,
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alien settlement laws, restrictive covenents. 

The budgetary constraint arises, of course, from the fact 

that one must pay a price to acquire controlof the rmi.nins 

avellable parcels, and limited financial resources restricts most 

individuals to a very modest share of the Earth's surface. 

Let us place the location problem in a more dynamic context. 

At any one time the Earth's surface is partitioned by ownership. 

(There remains a portion which is unclaimed by anyone--notably 

the high seas at the present time; there are also all sorts of 

difficulties involving vague boundaries and disputed temitory; 

we ignore all these problems and assume that every site in the 

economy 1s assigned té one and only one owner). The pattern of 

ownership does not coincide completely with the pattern of control, 

since some sites will have been leased by the owners to other 

individuals who actually direct the land uses being carried on; 

also, some sites will Se left standing vacant by their owners. 

Our individual finds the Earth's surface divided into four parts: 

land which he owns and controls, owns but does not control, con- 

trols but does not own, and land neither owned nor controlleds 

the middle two categories reverting to the control of their own- 

ers at various future times. 

The natural units to work with in this dynemic con- 

text are not sites or regions perse, but space-time reglons-- 

i.e. spatial regions over an intervel of time. Any one site is 

partitioned longitudinally into a succession of controllers 

(and also into a succession of owners, which need not coincide 

with the succession of controllers). One must decide where and 

when to sell or lease one's property, and conversely, where end 

when to buy or lease property from scmeone else, subject to the
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inltlgutiond and hudsw_u'y constraints. If the real estate mar- 

ket is imperfect, ocne has further decisions to make as to price 

demands or offers, and searching strategies. 

In phase (2) of the problem--the use to which the land one 

controls is to be put--there are further constraints on action. 

Besides the obvoous restrictions imposed by technology and the 
general prohibition of 1llegal activities, we single out for 

special mention zoning laws, which have the peculiarity of being 

dependent of geographical location, and typically put restrictions 

on type of industrial activity (e.g. multiple-family residential, 

office, commercial, light or heavy manwfacturing), on height and 

bulk of structures, and on density of occupancy. 

The aotual real estate market is evidently a rather complex 

affeir, We now present a schematic version which is more tractable 

for snalytical purposes. Ome big auction occurs, with all land- 

owners on one side of the market and all potential renters on the 

other side. The same individual can, of course, function both as 

owner and as potential renter; it is convenlent to separate these 

roles, just as one separates the roles of an individual who is 

both businessmen and consumer. 

The simplest reasonable behavioral assumption conscerning land- 

owners that can be made is that each site owned is rented to the 

highest bidder for that site. Here we rmust think of the owner 

himgelf, in his role of potential renter, putting in a bid along 

with everyone else. If all other potential renters underbdbid this 

"peservation price”, the owner uses the land himself. 

Suppose (1) there is perfect information in the market; 

(2) the bid which a potential renter will put in for a site does 

not depend on who owns the site. It is easy to see that the
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fingl distribution of sites among controllers (i.e. renters) is 

then independent of the initial distribution of sites among owners 

(provided compensation is made for sny shifts in real estate 

wealth emong owners, as determined by the bidding in the real es- 

tate market). This is an importent simplification. 

This simplicity may be destroyed if either side of the market 

disoriminates. For owners, this means they mct as if the bid were 

adjusted by a "dlscrimination cocffleient", depending on the owner 

and bildder, and the highest of the adjusted values is the one 

chosen. For potential renters, this means that the bids them- 

selves, for a given site and bidder, depend on the pwner.# A 

# See G.S., Becker 2%% ngfiin of Digormgtiog (Chicago, Uni- 
versity of Chicago Press, s PPe 0=9, 

special case is the discrimination by an owner in favor of him- 

  

  

self as renter; in Becker's terminology this may be called 

"auto-nepotism”. It refleots the psychic value of working one's 

own land, eto.# 

  

# Obviously, one finds much more owner-used land than the minute 

amount that would occur if ownership and control of land were 

independently distributed. This may be partly explained by 

auto-nepotism, but also by ignorance and other market frictions. 

  

By our assumptions, the individual qua owner is in equili- 

briun when every site he owns has been rented out ta the highest 

bidder, which may be himself, and where the bids may be adjusted 

for disorimination. For the potentisl remter, equilibrium is 

somewhat more complicated. We assume perfect information and
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ignore the complication that would arise if several equally high- 

est bids are made for the same site. A given collection of sites 

is an equilibrium choice for control by a certain renter only ir 

(1) it satisfies the institutional constraints; (2) the renter is 

willing and able to outbid all other potential renters® axisting 

bilds for all sites in the collection; (3) for all sites nct in 

the collection, they are either not available, or the renter is 

not willing to outbid the highest existing bid on them; ("nct 

willing”" is taken to include the case where a site is so expensiwm 

that the renter's budgetary oconstraint would be violated if he 

rented it). 

These are only necessary, not suffiocient, conditions tor 

renter equilibrium, snd it may be that an entirely different col- 

lection of sites is preferred. This point brings us to one of the 

major complications of the whole subject. The amount one is will- 

ing to bid for a site depends on the location of the other sites 

one will have acquired. As a rule--but not invariably--the acquii- 

ition of a site enhances the value of nearby sites relatively to 

the value of distent sites to the potential renter. This ocours 

because the activities planned by the renter on his sites gener- 

ally call for relatively heavy flows of itraffic and messages 

among these sites: whether it be his own commuting, or the flow 

of goods in an integrated plant system, or the flow of messages 

between headquarters and field offices, etc.; thus, a tight site 

pattern tends to save on tramsport costs (and in faot enhances 

the attraction of more trmportction—intgnlivo plans). The 

limiting case of this tendency is the coalescence of sites into 

large connected parcels. There are many Qanit‘ntaunm of this 

tendency. Thus, plants will buy up excess land in hopes of in-
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ducing "linked " plants to settle there.# Large parcels tend to 

  

be worth more per square foot than small ones.d# 

  

# The gx-uu.un is lmown as "plottage value". See A. M. Weimer and 
H. Hoy iples of Re tate (4th ed., New York, Ronald, 
1960) p. o 

  

Too much should not be made of this agglomerative tendenoy, 

and one can easily find counteracting forces. For example, 

aoquisition of a site suitable for residence usually diminishes 

the bids one will make for nearby residential sites. Facing a 

downward-sloping demand function in a region leads one to 1limit 

plant size there and build elsewhere. 

Given his collection of sites, the renter then chooses his 

most preferred pattern of land vses, subject to an overall budget- 

ary oonstraint, and to constraints imposed by technology, soning 

laws, etc,, on each site. 

We have so far dealt with three systems of decisions which 

the individual must make: (1) choiece of itinerary (in Chapter 1); 

(2) choice of location; and (3) cholce of lend uses. A fourth 

system deals with other forms of transportation and communication: 

shipment patterns, the acquisition and disposal of resources 

other then land, dispatching of agents, sending of messages, etc. 

This is quite a broad and complex subject in itself, bvt it will 

suffice for our purposes to make some radically simplifying 

assumptions concerning it: We assume that the "efficiency" con- 

ditions, Postulates (1) and (2) of Sedion 2.}, are satisfied by
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our individual'’s resource flow choices. Inflow and outflow 

schedules at each controlled site ere determined by the land use 

chosen there, end this fact, together with the assumptions, will 

suffice to determine the full pattern of resource flows in the 

problems we teke up in this work, 

These fowr systems are highly inter-related. In the first 

place, the range of options in each system depen® upon the choices 

made in the others, As just mentioned, there are materialbalance 

identities comnecting resource flow patterns and land uses. 

Some activities may require personal participation, and the deci- 

sion to engage in them therefore constrains one's itinerary. 

The choice in each system determines a net outlay or revenue, 

and these must jointly satisfy a global bwlget‘cmtrune. 

The relation between one's commuting span,and the collection 

of sites one controls, deserves special mention. The two are by 

no means ldentical., llany, or most, of the sites that one visits 

are in fact not controlled by oneself: e.g. students at schools, 

patients at hospitals, patrons at restaurants, movies, or stores, 

employees at work; conversely, one may control esctivity at a site 

without visiting it: e.g., by telephone, or through agents. On 

the other hand, one is barred from admission to msny uncontrolled 

sites of a restricted or private nature except in special circum- 

stances;(e.g. one is admitted to the homes of friends, but may be 

barred from thase of strangers; one is barred from certain mili- 

tary areas without a permit, etc.;; in these cases one's commuting 

span is restriocted by lack of control. 

Secondly, one's preferences among the options in ea.h system 

will, in general, depend upon the choices made in the others.



  
raven 

67 

For example, the utility funotions used in Chapter 1 te determine 
itineraries will, in general, contain parameters depending on the 
individualts chodce of oontrolled sites, land uses, and resource 
flows. The itineraries themselves will, therefors, depend on 
these choices. Conversely, these cholces will depend on the itin- 
erary chosen, so that the full solution to the spatial problem 
for the individual can be attained only by satisfying a system 
of relations simultaneously. 

(If the "individual" we are dealing with is actually an 
organization of some sort, containing N members, the itinerary 
problem of Chapter 1 broadens into the problem of determining N 
itineraries. All the old problems remain, end new ones appear, 
For example, utility may depend on who meets with whom, when, 
where, and for how long; more generally, utility depends in some 
non-trivial menner on all the itineraries, which introduces the 
problem of co-ordination. We will not pursue this line of in- 
quiry in the present worlk. ) 

3.2, Weberian Activities 

We begin by stating a basic location principle. Suppose an 
individual has decided all aspects of his spatial plan--all sites 
to be controlled, all land uses, commuting pattern, and resource 
flows--except for one partioulars he has not decided whether to 
use site L' or L" for a certain activity, L' and L" are assumed 
to be identicel in all respects save that of location: (1) tech- 
nically, the sites are equally feasible for the contemplated 
activity; (2) they are both goned to permit the contemplated 
activity; (3) both are available to the individual. Assume fur- 
ther that our individual doss not discriminate, and that he has 
perfect information, and that he has no sentimental preference
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for one of the sites per se over the other (that is to say, he is 

indifferent to absolute geographical location). Final 

R BTN ios of M En R U g‘fl&"fi:?«»f’ R 
ing: (1) the mctivity plenned for L! takes place at L" instead; 

(2) all resource flows planned to go to L' go to L" instead, keep- 

ing their originel points of departure; (3) all resource flows 

planned to emsnate from L' emenate from L" instead, keeping their 

planned pointis of arrival; (l) sojowns at L" are substituted for 

sojowrns at L'; (5) resources planned to be acquired or disposed 

of locally at L' are instead to be acquired or disposed of locally 

at L", Time sohedules for arrivals, departures, purchases and 

sales at L" are to be the same as plammed for L'. 

What relevant differences remain between the two plans? 

There are possible differences in transportation outlays, since 

the plans differ in traffic flow pattern; there are possible 4if- 

ferences in local prices at the two sites--in particular, rents 

. may differ. In short, the only differences that 

remain are yw-ol.y pecuniary. 

The basis for choice between the two plans is now clear. 

One adds total transportation outlays to total net on-site outlays, 

including rent, under the two plans (properly discounting every- 

where), and chooses the plan with ithe smaller overall total out- 

lay. If one happens to own one or both of the sites, rental 

still remains as an opportunity cost, nd one's final choice will 

not be affected. 

The assumptions leading to this conclusion are rather severse. 

However, one should also note what assumptions need not be made 

ebout motivation. One does not have to assume profit maximizing 

behavior, or in fact snything more than the trivial supposition
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that, other things being equal, more money is preferred to less. 

If there are several contending sites instead of just two, 

the same reasoning leads to the conclusion that one chooses the 

site minimiging the sum of (discounted) transportation outlays 

plus net on-site outlays, including rent. This will be called 

the inciple.# 

  

# This is a special case of the general principle of substitution, 

which is the central theme of Isard's Location and Space-Egonomy, 

op. o0it. Chapters 5 and 6 deal with the present situation. It is 

not made quite clear that a profit maximisation assumption is not 

necessary for the main results. 

  

One broadening of the site-substitution principle that sug- 

gests itself is to go from transportation outlays to transporta- 

tion coets, including time costs. That 1s, we relax the very 

restrictive assumption of identical time-schedules for the con- 

tending plans, and let outlays and time-delays depend on sites 

of origin and destination, as discussed in previous chapters. 

One then converts these time costs to dollar equivalents, and 

minimizes the grand total. Very likely this would have to be 

done in any practical application of the site-substitution prin- 

ciple. But it raises several thorny problems. Revised schedules 

of arrivals and departures at a site may twrn out to be techni- 

cally infeasible. Even if this is not so, one will, in genersl, 

not be indifferent between the original activity and its revision. 

The problem of converting time to dollars to take account of this 

fact is formidable, Time, like space, is not a homogeneous com- 

modity, but a continuum of different commodities.&
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# of. Becker "A Theory of the Allocation of Time", op. oit., and 

Section 2.2 above. 
  

an activity may be represented (not necessarily uniquely) by 

(1) a non-specific site (i.e. a spatial region of a certain size 

and shape); (2) a non-specific time interval; (3) an initial bun- 

dle of resources; (l}) a terminal bundle of resources; (5) a 

stream of resource inflows defined on the time interval; and 

(6) a stream of resource outflows. A special case is a gteady- 

state activity, in which initlal resource bundle is the same as ' 

final resource bundle, and the inflow and outflow streams do not 

depend on time. 

The size and shape of the site may be used for a further 

classificatory breskdown. Consider, for example, (1) a multiple- 

story structure; (2) a farm; (3) a reilroad; () a small manufac- 

turing plant in a rural area. As far as the location of the 

plant is concerned, a single geographical point (given, say, by 

a longitude and a latitude) may be an adequate descriptive repre- 

sentation. The railroad may be adequately desoribed by a network 

of arcs tracing out iya rail pattern. For the farm we may have 

to specify the portion of the Earth's surface over which it 

spreads. Finally, an adequate analysis of multiple-storying 

requires explicit attention to the ver ical dimension. We have 

used geometrical constructs of zero, one, two, and three dimen- 

sions, respectively, in going from the plant to the multiple- 

story structure. In reality, of course, all thése sotivities 

ocoupy three-dimensional spatial realms. The point is, however, 

that in many cases we can and must simplify and idealise to focus 

on the essence of the problem in hand.
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The vory seme sctivlty ney be represented adequately by a 

geometrical construct lu ore problem,and inadequatsly by the same 

construct in another. SYuppome we take a textile mill in the ;ub— 

urbs of a Southern community. For the problem of explaining why 

the plant 1s located in the Southeastern United States, a zero= 

dimensional point description of its location is adsquate. To 

explain ite distance from the central city, on the other hand, its 

two-dimensional surface spresd becomes relevant. inally, to 

explain how it fits into the "skyline" distributlon of the urban 

area, the mill must be consicered as a three-dimensional entity. 

The dimensional characteristics of activiiy locations enter 

into the analysis of problems in two ways, one related to metrics, 

the other to measures. The point differs from the line, surface, 

and volume, in being "simply-located". that 1s, given the metric, 

its distance to and from all other points is uniqusly determined. 

For the other realms, a point of ingress or egress must be addi- 

tionally specified in order to fix distances. Secoadly, the point 

and the line, as opposed to the surface, are of zero areal spread. 

(As for the volume, we need only consider its surface cross-sec- 

tion in this regard). The functional significance of this fact is 

that rent is a negligibly small item in outlays for these activi- 

ties, and has no significance in determining their locations. 

(The surface vs. volume dlstinction wi'l be considered in a later 

chapter). 

We may formulate criterile of adequacy in terms of these dis- 

tinctions: An activity is adequately represented as having a 

point locatlon if (1) it 1s so compect that the ambiguity in its 

dlstance measure to or frem all other relevant sites is negli- 

glbly small for the prodlem In hend, and (2) 1t is so small that 

rent is a negligible item in determining its location for the 
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problem in hand.®* If simple location breaks down but rents are 

  

# For example, in the location of manufacturing activities, rents 

are thought to be a negligible factor in determining broad regional 

patterns, but not negligible for location within a city. 

Hoover Location Theory and the Shoe and Leather Industries, op. 

oit., p. 76, 107 note 17. 

  

8t111 negligible, a one-dimensional representation is adequate. 

(But if we want to explain the fact that, e.g., roads are built to 

swerve around areas of high land values, we must consider the 

width of the road to be non-zero; we get a system of noodles rather 

than a system of arcs). 

An important mixed case occurs when rents are not negligible, 

and yet the activity locus is so compact it may be represented as 

simply located. (This occurs in some problems of farm location, 

of urban land uses, and in Thilnen systeme in general). The diffi- 

culties which arise thereby will be discussed in Chapter L. 

Activities which can be represented by point locations will 

be called Weberian dotivities.# The great simplicity of this 

    

# after Alfred Weber, well-known for his dootrine of plant loca- 

tion, which uses this representation. . See Alfred Weber's Theory 

of the Locetion of Industries, (C.J. Friedrich, ed.) (Chicago, 

University of Chicago Press, 1928) (originsl edition, 1909). 

  

representation commends its use wherever one can get away with 1t. 

The whole theory of commuting of Chapter 1, for example, impli- 

eitly took sites to be simply-looated.
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We now apply the site-substitution principle to the case of 

Weberian activities. That 1s, the one activity whose location is 

8till undecided 1s a Weberian activity. We have; therefore, to 

find the optimal geographical point at which to site this activity. 

The simplest case--and the one usually assumed--is the one where 

every point in the system is a candidate for the site. (More 

generally, some points might be excluded, e.g8., by soning con- 

straints). We are then to minimige the sum of transportation 

outlays plus net on-site outlays, including rent, over all the 

points of the system. By the Weberian assumption, rent is negli- 

gible at all points, so one term of the sum drops out. As a mat- 

ter of faot, the interesting cases, so far as generality of 

results go, are those in which all net on-site outlays drop out 

or can be converted into transportation costs. The only costs 

left to vary from point to point are transportation costs.# 

  

# This 1s the case of "transport orientation"; see fred Weber's 
Theory of the Iocation of Industries, op. cit., Chapter 
1sar § Toca E!.Tzn nn% fiwa-;fi @, op. clt., Chapter 53 
Hoover The cation o. onomic Activity, op. cit., Chapter 3. 

The way in which net on-site outlays may be converted into 

  

transportation costs (when this is possible) may be illustrated 

by Figure 1. We concentrate on some 

resource which i1s an input to our 

Weberlen activity. Suppose that 

its flow pattern is a demand sys=~ 

tem, and let the two irregular Eigii’ A 
reglons in Figure 1 be demand areas, with source points S' and S" 

inside their respective areas. Let K, L, and M be three contem-
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plated sites for our Weberian activity., Neither S' nor S" need 

be one of the other sites controlled by our individual. Let us 

assume first that neither one ’.l. oonfio].lsd. (For example, our 

individual may buy from local stores at K, L, or M, transporta- 

tion of the resource from its sources to local stores being car- 

rigd out by other agents.) Sites Kand L are supplied by S%; 

slte M is supplied by S". 

By Postulate (2) of Section 2.4, p(8')+d(s',K) = p(K), 

and p(S*)+4d(s',L) = p(L). By subtraction, 

d(s1,K) - da(s*,L) = p(K) -~ p(L). Replacement of the local prices 

p(K) and p(L) by the distences d4(S',K) end 4(S',L), respectively, 

would alter the total cost figures for K and L by the same con- 

stant, -p(S'), and so would leave their rankings unchanged and 

lead to the same choice of location. The same argument applies 

to all potential locations within the demand area of S'. If we 

apply the same procedure to site M, however, we find that replace~ 

ment of p(¥) by d4(S",M) alters the totel cost figure for M by 

-p(s"). If p(S!) =p(S"), the replacement of local prices by dis- 

tances preserves rankings both within end between the demand areas. 

If the source prices are unequal, rankings need not be maintained 

between demand areas (e.g. K vs. ¥), though they still will be 

mainteined within any one demand area (e.g. K vs. L). 

A complication arises if, say, S' 1s one of the sites con- 

trolled by our individusl, and the resource movement out of 8! to 

the Weberian site i1s part of his overall plan. If the Weberian 

activity were located outside the demand area of S'--e.8. at Me-- 

the planned shipments from S! to M would violate the efficiency 

" conditions, Postulates (1) and (2) of 2.4. We will assume that 

plans are altered to conform with the efficienecy conditions, even
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though this undermines the "ceteris paribus" comstruction on 

which the site-substitution principle rests.# 

  

# A simller situation arises in international trade, when one 

has a choice of buying from an expensive compatriot or sn inexpen- 

sive foreigner. Here the "individual® is the nation as a whole, 

  

If we concentrate on a resource which is an output of the 

Weberian activity, and whose flow pattern is a supply system, we 

arrive at analogous conclusions. Figure 1 may now represent 

supply areas, S' and S" being sink points. The replacement of 

local prices by cost-distances to the appropriate sink point 

preserves total cost rankings within supply areas, but not neces- 

sarily between them (unless local prices at sinks are equal). 

We assume that each input or output of the Weberian activky 

which 1is acquired or disposed of locally may be treated in the 

foregoing manner. Each resource partitions the economy into a 

collection of (potential) market arcas. The market sreas for one 

particular resource need have no special relation to those of 

another (though the channeling of transportation routes and 

trade centers make for broad similarities of pattern). All the 

resources that enter as inputs or outputs into the Weberlan acti- 

vity are then assumed to be of two types. The first partitions 

the economy into market areas, as above, so that the site with 

which the Weberian activty is linked by the resource varies with 

the location of the Weberian activity. Resources of the second 

type are tied to one fixed site. Commuting offers an instructive 

example. Trip frequencies to snd from the Weberian site (wherever 

it 1s) mx??toh other aite in the economy are specified by the 

plan. Formally, the individual as a commuter acts as if he were
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a large number of resources of the second type, one going to each 

site to which the commuter makes trips from the Weberlan site (e 

kind of output of the Weberian activity), and one coming from 

each site from which the commuter makes trip to the Weberian site 

(a kind of input of the Weberian activity). 

Resources of the second type are in faot a simple limiting 

case of resources of the first type, in which the entire economy 

1s embraced by a single market area. They therefore offer no new 

problems,. 

Let us now superimpose these 

market systems--one ror. each 

resource inputted or outputted from 

the Weberian activity. (Resources 

of type two may be omitted since they 

do not properly partition the scon- 

  

omy.) Pigure 2 depicts the super- 
Flouvg e 

position of part of two such systems, 

market area boundaries of one indicated by solid lines, boundaries 

of the other by dottodtlinu. An glementary sres for a given set 
non= v 

of resources is uwAcollaction of sites which 1s the intersection 

of market sreas, one drawn from the market system of each of the 

resources in the set. For the set of two rescurces whose market 

areas are shown in Figure 2, the elementary areas are the smallest 

pleces into whichthe plane is divided by the two systems of border- 

lines combined; three of these are shaded. If all resources are 

of type two, there is just one elementary area: all sites combined. 

The importence of elementary areas stems from the fact that 

a shift from one site to snother within sm elementary area of our 

Weberian activity does not cause a shift in the source polnt of
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any resourve lmput or the sink point of any resource output; 

whereas a shift in the site of our Weberlan activity between ele- 

mentary areas causes a shift in the source or sink of at least one 

resource input or output; furthermore, one must worry abeut sowrce 

and sink prices in the "between" case, while only transportation 

costs need be considered in making "within" comparisons. The 

upshot is that it is relatively easy to find the optimal Weberian 

loeation within each elementary avea considered separately. The 

optimum optimorum can then be found by direct cost comperison of 

the "semi-finalist" candidate lim, one from each elementary ares. 

3.3. The Hesdquarter location Problem 

Suppose we are given an elementary ares, and we are to find 

the optimal location within it for a Weberian activity, according 

to the site-substitution principle. We assume that the transport 

cost function is factorable, so that a single metric can be defined 

for all resources inputted and outputted from the activity. 

(Otherwise we might obtain as many different metrics as resources, 

and the probler would be most unwieldy). Ideal weights may now be 

assigned to all resource bundles. 

The pattern of oiigin- of resources which are imputs to the 

Weberian activity 1s fixed independently of the location of the 

latter within the elementary area; likewise, the pattern of desti- 

nations of outputs of the aotivity is fixed. Suppose a(l,t) is 

the resource bundle to be delivered to the Weberian activity site 

at time t from site L, and b(L,t) is the bundle to be delivered 

to site L from the Weberian site at time t. (For simplicity we 

assume time 1s disorete, Physically identical resource bundles 

moving at different times are to be regarded as different resource 

bundles, and msy have different ideal weights; this ensbles us to
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allow for changes in transport costs over time, and for discounte 

ing. Discounting, for example, mekes future bundles "lighter" 

than present bundles in i1deal weight.) 

Now consider a region R. Add up the ideal weights of all 

resource bundles a(L,t) over all L éR and ovor all times. This 

gives the total volume of resources to be moved from the reglon R 

to the site of the Weberian activity, measured in terms of the 

(discounted) total transport cost incurred per unit ideal distance. 

This will be called the in-weight of the region R. Analogously, 

addition of the ideal weights of all bundles b(L,t) over all Le¢R 

and over 411 times gives the out-weight of the reg;lon R, This is 

the total volume of resources to be moved from the site of the 

Weberian activity to the region R, measured in terms of the (ils- 

conated) total transport cost inocurred per unit ideal distance. 

We could work with in- and out-weights throughout the follow- 

ing analysis, However, for simplicity, we shall assume that 

1deal distances are symmetric (i.e. d(L,M)=d(K,L)). It is not 

hard to show that, with this symmetry assumption, the only rele- 

vent figure for each region is the sum of its in-weight and out- 

weight, which we simply call the weight of the region. The 

weight of region R 1s, then, the total volume of resources moving 

in both direotions between the Weberian site and region R, meas- 

ured in transport cost terms. Weight, in-weight, end out-weight 

are all non-negative measures. 

Total transportation cost, which is to be minimized, is the 

sum, over all sites and times, of the product of ideal weight of 

resources moved, by ideal distance. When ideal distances ere sym- 

metric, this may be re-formulated in terms of regional weights:
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Total transport cost when the Weberian activity is located at K is 

D JV(K,L)J,,(,_)J 

where M 1s the regional weight as a measure, and we have written 

r(K,L) in place of d(K,L) to avoid too many "d"ts, 

For the situation considered in the last section there are 

Just a finite number of aink and source points, and (1) reduces 

to a summation, one term for each such point. This case has been 

axtens_ivaly treated in the literature, most elaborately when there 

are just three such points (forming a "location triangle"). We 

shall, however, deal with the general case, allowing for regional 

weights that are continuous, and mixed discrete-continuous. (For 

example, the case where a schedule of deliveries is to be made to 

a population distributed continuously over space will be covered). 

The optimal site for the Weberian activity is the K which 

minimizes the integral (1) over all sites within the elementary 

area. Actually, we shall simply ignore this last oconstraint, and 

look for the minimlizer over all possible sites. If the solution 

found happens to lie inside the elementary area then the original 

problem is solved. (This will always happen if the activity uses 

only type two resources, since there is just one big elementary 

area in this case). 

We are thus led to the formsl problem: Given the metric 

r(K,L) and the measure [4, minimive (1) over all sites K. (The 

metric is symmetric, and the measure is non-negative)., If our 

space is the real line, with its customary metric, it 1s easily 

seen that the solution to this problem is the medien of the dis- 

tributionfi; (any median, if there is more than one). (The inte- 
about K 

gral (1) is in this case proportional to the mean davhti.ox;\. vhich
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1s minimized at any median.) This property is sometimes used to 

define the "median" of more general distributlons, end we shall 

follow this practice: The medians of the measure r. wi& respect 

to the metric r, are the sites K which minimize (1) 

For the next few paragraphs we npoehlifi tb the case of 

Euclidesn spaces: The points of an N-dimensional Fuclidean space 

are in 1 = '_1 correspondence with N-tuples of real numbers such 

that r(L1,L") = [Z":JI (x! -x;)‘]*; where xi,..,xy is the 

N-tuple correspording to L', and x]"....,x; the N-tuple correspond- 

ing to L". The two-dimensional case is the one of greatest prac- 

tiocal interast ‘or spatial economics, bub. the one- and three-dimen- 

sional cases ars also of interest (the latter especially ilm:o the 

advent of the "age of space".) 

For such spaces, one may show that a median exists if meas- 

ure is zero outside some sufficiently large sphere. Furthermore, 

1f the entire mass of the distribution is not concentrated along 

a single straight line, ono may show that the m.é"-&‘ (Y]:fihn“‘ 

strictly convex function of position, which implies that the 

medisu is unigus: that is, the occasional multiplicity of medians 

tbot one finds in one-dimensional distributions is a peculiarity 

¢f these alone. The integral, when it axists, is always a 

(weakly) convex function of position. 
Foint L" is called the reflection of point L® through the 

point K 1ff K is between i' and L" along a striight line, end 

r(K,L!') =r(K,L"). Reglon R" is called the reflection of region 

R? through the point K iff 

the points of R" are the re- M K R! 

flections through K of the o i W 

points of RY (1llustrated in 
¥ 

Pigure 3). A measure P is R
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Symmetric ebout the point K iff the measure of any region is equal 

to the measure of its reflection through the point K: ’A (H')-/A (R") 

if R" 1s the reflection through K of R'. We have then 

Theorem 1: If a measure is symmetric about point X in a Euclidean 

space, then point K is a median (if one exists). 

Proof: Suppose point L' is a median, and let T(L') be the value 

of the transport-cost integral (1) at L!'. Let L" be the reflec- 

tion of the point L' through X. By symmetry, point L" must also 

be a median, so that T(L')=T(L"). K is midway between L' and L", 

end the convexity of T therefore implies that 

37(L') + #7(L") 3 T(K). Combining the last two results, 

we get T(L') 2 T(K)., But T 1s minimized at L'; therefore, this 

must be an equality, and XK is also a medlan, QED 

Theorem 1 enables us to pinpoint the median in several sim- 

ple cales, such as a measure uniformly distributed over a region 

bounded by a circle, ellipse, parallelogram, and even-sided regu- 

lar polygon. Of these, the circle, square and regular hexagon are 

of most theoretical interest. 

Point L" is called the reflection of point L' through the 

straight line S iff the line-segment \L',L"] is perpendicular to, 

and bisected by, S. We may now define "reflection of a region 

through the line S" and "measure symmetric about the line S" in 

a manner analogous to the definitions for the point K, above. 

We then have; 

Theorem 2: If a meamsure 1s symmetric about line S in a Buclidean 

space, then a median exists somewhere along line S (if it exists 

at all).
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Proof: Suppose point L' is a median, and let L" be the reflection 

of L' through the line 8. By symmetry, point L" must also be a 

median, so that T(L')=T(L"), Let K be the point midway between 

L' and L". K 1s on the line S, by definition of "reflection", 

and the reesoning in the proof of Theorem 1 shows that K is also 

a median. * QED 

Theorem 2 ensbles us to pimpoint the medians of uniforly 

distributed measures inside any regular polygon. (These have sev- 

eral lines of symmetry; these intersection of these lines must de 

the median, since it 1s on each, and unique). The most important 

odd-sided case is the squilateral triangle. 

Analogous theorems may be derived for planes and hyper-planes 

of symmetry in higher-dimensional Ruclidean spsces. 

It may be objected that the results of the previous theorems 

are obvious; certainly no one will be startled by them. FHowever, 

onse one goes beyond these very elementary cases, the problem 

besomes extremely tedious to solve. (As exercises the skepti- 

cal reader is invited to determine where along their lines of sym- 

metry the median lies for the measure uniformly distributed over a 

region bounded by (1) an isoceles triangle; (2) a semi-circle.) 

Furthermore, the topics treated in this and the next few sections 

are beset by "obvious" results which are very hard to prove, snd 

which have sometimes turned out to be false. Under these ciroum- 

stances it was thought useful to present these results, elementary 

as they are. 

We now generalize the above median-location problem. Again 

we are presented with a metric and a non-negative measurej we are 

also given a positive integer N, and we are to find N sites,
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xl,...xn, minimizing the following generalization of the integral (1): 

= ' 2) sz (%, )dply, 

where Ry 1s the region consisting of all points which are closer 

to point K, than to any of the other N-1 sites chosen. (Points 

which are equidistant from two or more of the K's may be allocated 

to the corresponding reglons arbitrarily without affecting the 

value of the integral sum (2).) The median-location problem is 

Jjust the speciel case when N=1. The general case will be called 

the headquarter location problem. 

This problem has a surprisingly large number of applications, 

and various special cases have been well worked over in the 1liter- 

ature. If the sites xl,..,x,, are thought of as sources (or sinks) 

for a certain resource, it will be noticed that the regions Ri 

are the potential market areas corresponding to these sites in the 

special case when all local prices at the sources (or sinks) are 

equal. We shall refer to R, as the service area of the point xi. 

With the headquarter location problem, we have, in a sense, 

come around full-circle from our original point of view. We 

started with sources and sinks given, and tried to optimize the 

location of a Weberian activity which was linked to these. We 

then generalized from the case of a finite number of source and 

sink points to arbitrary measures; these measures were interpre- 

ted as volumes of traffic flows to and from each site in the 

space. The headquarter location problem now tmats the sources 

(or sinks) themselves as varlables (with the restriction that 

local source or sink prices are everywhere equal). 

The hesdquarter polnts K,,..,Ky are still sites for Weberian 

activities, since they are taken to be simply-located end rent is
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ignored. 

The following result gives a basic necessary condition for 

optimality in the headquarter location problem. 

Theorem 3¢ Each headquarter point in an optimal solution to the 

headquarter location problem is a median of its own service area. 

ZProof: Suppose the statement is false, Then one can find a head- 

quarter location problem with solution Kj,..,Ky, such that, for 

some 1, x,_ is not the median of its service ares Ri. There must, 

therefore, exist another point 'K‘i such that 

j;i r(R; 1) dpl) < fk(r(x,lL) dp(L) ; 

o w f,(& DdplL) +K v(K; L)“r“‘) 
4! 

£ fj,, L’r(k‘; L) dpty) 
i 

The right-hand side of this inequality is the total transport 

cost for the optimal solution. Now suppose we try the sequence of 

»ites K,..K, o, Ky, K, 0000k, 1dentical to the originel solu- 
tion except that X has been substituted for K,. Total transport 

cost for this collection of sites cannot exceed the left-hand side 

of this inequality, since the left-hand side represents total 

transport costs using the new sites and the 0ld service areas, 

and service areas are chosen so as to minimize transportation 

costs given the sites. We have thus rpached a contradistion, 

since a new solution has been found reducing the integral (2) 

below its alleged minimum, QED
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# A special case of Theorem 3 has been observed by Isard: 

Location and Space-Economy, op. cite., ps 233 note 2. Our proof 

follows his in all essential respects. 

  

Theorem 3 may be generaliged to 

Theorem liz Take any subset of sites in an optimal solution to 

the headquarter location problem, and take the umion of the service 

areas assoclated with this subset. Suppose there are N' sites in 

the subset. Consider the headquarter location problem whose meas- 

ure 1s identical to that of the original on the l_bove union, and 

is zero elsewhere, and for which we are to place N' sites opti- 

mally. Then the subset must be an optimal solution to this new 

problem. ; 

The proof of Theorem )., which is entirely analogous to that 

of Theorem 3, is omitted. Theoram 3 is the special case N'=1. 

To 1llustrate the use of Theorem 3, we apply it to some sim- 

ple one-dimensional problems. The solutioms to these are well 

known. Suppose we have to place N headquarter points along a one- 

dimensional strip of length 1; the measure is uniform along the 

strip; the metric is Euclidean. Let Kl’"'xfl be the optimal place- 

e ey 

0 ‘l By e Lfl-’& J 

Figure 4 

ments, going from left to right (see Figure 4). The service areas 

are obviously intervals; let Ly be the border point between Ry 

SRR T 
tions: 

s for =1, 2,,,, H-1, We then have the following rela-
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Lt . =B 
! %_Y\' +Ji v\'+| ) ‘Dl’ e =) 

anwd K‘ - I;_L(-, ‘\'Jil—( (-.f L’=l’1. 

In this second set of formulas we define Ly a8 gero, and Ly, as 

one. The first set of formulas follows from the definition of 

service ares, since the point midwey between xi and 1(“1 separ~ 

ates the points which are oloser to Ky from the points closer to 

Kjyye The second set of formulas follows from Theorem 3, since 
the medien of a measure uniformly distriduted over sn interval is 

at its midpoint. 

The solution to this system of rehtfiu is obvious at a 

glance: the successive points O, K‘.l.' Iys 12,'..,, !‘N-l’ KR,_I 

must be equidistent, from which it follows that K, = (21-1)/2N. 

This solves the problem of placing N headquarter points to mini- 

mige total transport costs to the nearest. 

A variant of this iz a loop (identify the points "O" and "1" 

in Figure l}). The same procedurs as above gives the not unexpec~ 

ted result that equal spacing around the loop is optimal. 

Theorem 3 gives only necessary, not sufficient,conditions 

for a placement to be an optimal solution to the headquarter loca- 

tion problem. This may be i1llustrated by a 

simple counter-example. Suppose we have a 

wniform distribution over a squars, and 

headquarter points are placed in a row along 

a mid-line so that the service areas are 

  

congruent rectangular strips (Figure 5). 

Each point is the median of its service area;
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yet it is eesily verified that a more diffuse scattering of head- 

quarter points over the square lowers total transport costs, so 

the placement 1s non-optimal. 

The proof of Theorem 3 suggests the following successive ap- 

proximations procedure for solving the headquarter location prob- 

lem. ; 

(1) Pick N sites arbitrarily; 

(2) Partition the system into service areas by :ssigning every 

point to the site closest to it cut of the N picked in step (1); 

(3) Pind the medlan of each of these service areus: this gives 

N new points for a second apprcximetion; using thise repeat step (2); 

One then alternates betwwen steps (2) and (3) until a stable con- 

figuration is achieved. 

It is easy to show thut each successive round results in a 

set of N sites which have lower total transport costs than the 

last approximation (or at least no higher than tie last)., But it 

is not known under what conditions this procedurs converges to 

an optimal solution, The above counter-example show: that such 

convergence is not wr.iversal. 

Unlike the medirn, it need not be true, for disirtbutions of 

dimension greater tanan one, that there -~ 

is just one optiral hesdquarter place- 

ment. For examwyle, take the problem of 

plecing two hradquarter points for a 

uniform distecidbution over a eircular 

disc. By use of Theorems 2 and 3, it 

may be skown that the two points must Fu, ure £ 

1lie alcng a dlsmeter (see Figure 6). But obviously one dianeter 

will o as well as another, so there are an infinite mumber of



Faden 88 

optimal solutions. Similarly, for a uniform distribution over 

the surface of an (ordinary) sphere, the two point problem is 

solved by any pair of antipodal points. 

Now let us suppose we have a uniform distribution over an 

entire Euclidean plane, (This is the famous "homogeneous" or 

"featureless" plain of location theory, or at least an aspect of 

it). The headquarter location problem cannot be posed directly 

here, since total transport costs will be infinite in all cases. 

Let us, therefore, consider a sequence of problems which in some 

sense approach the plene as a limiting case. For example, take 

the problems place N hndz.'lweor points optimally on .n uniform 

distribution over a circular disc of area A (of. Figure 6). We 

consider a sequence of such problems as both N ahd A go to infine 

ity in such a way that the ratio A/N remains constant. An alter- 

native approach would be to use the surface of a sphere instead of 

a circular disc, and let the sphere and mmbers of headquarters 

expand to infinite in such a way that the surface area per head- 

quarter point is constant. 

We may now ask (1) does the placement pattern approach some 

stable form as N and A->*? (2) if so, what is 1b? Contrary to a 

widely-held opinien, the answers to these quutinu-‘“' striotly 

speaking, unknown at the present time. SHRN o e e 

The usual assertion is that the optimal L) ‘%.' ’ ; . 

pattern is the hexagonal (or homeyoomd) . A "". 

lattice shown in Pigure 7. A honeycombd § e e e NG Ty 

lattice is any one of a class of point F'au’g 7 

sets, One of thess sets consists of all points of the form 

(1,0)m 4+ (4,415 )n, where m and n range independently over 

the integers; all other members of the class may be obtained
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from this one by rot”ation, translation, and dilatation. If the 

plane were covered by a layer of equilateral triangles (one of 

which is shaded in Pigure 7), their vertices would constitute a 

honeycomb lattice.# 

  

   #of. Ao w-on [he Eo 0 ops oit., p.uo-nh,x 
W. Isard, 3 d_Spece=isoonom o 6lte, po 
B.S. Mills and . ot Areas 1th Free mh'y" 

m&.fi.&l&_&_&m 721218-288, Jume, 1 
Actually these authors make an even stronger olaim, that the honey- 

comb is optimal when demand depends in some general mamner on 

price (in effect, the measure veries with the configwration of 

headquarter points chosen). The hemdquarter location problem 

for the homogensous plain embraces only the speclal case of com~ 

pletely inelastic demands, in effect. The more general oase will 

be toushed on below, Section 3.6. 

  

We don't wish to deny this statement, which is probably 

correct. We do wish o polnt out that a genuine problem is invol- . 

ved, that the arguments addusced for this assertion are not suf- 

ficient, that a demonstration is probably quite difficult; and 

we shall offer a few suggestions for attacking the question. 

The standerd argument goes about as follows: First, the 

service areas are all polygons (convex polygons, in fact.) For 

reasons of symmetry one assumes that these polygons are congruent 

and regular. Since the service areas partition the plane, only 

three cases are possible: the service areas are either all hexa- 

gons, or squares, or equilateral triangles. One can show that the 

latter two cases are non-optimal.# This leaves the hexagonal 

  

# A simple and ingenious sketch of a proof is found in Isard, 

loc. oit., p. 241f, 
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system reigning by default. The hexagonal service areas imply 

the honeycomb lattice pattern for headquarter points of Figure 7 

(where one of the hexagonal service areas is dotted in). 

The lacuna in this ergument is the assumption of congruence 

and regularity of the service areas, a purely intuitive judgment. 

A possible approach is to assume that the headquarter points 

form a general lattice, i.e., they are points of the form 

(1,0)m + (a,b)n, (v#0), where m and n range independently over the 

integers, or they are rotations, translations, or dilatations of 

this point set. (Geometrically, Pigure 7 is "stretched” so that 

the 1ittle equilateral trisngles become some general non-obtuse 

triangles, all still congruent to each other; the service areas 

are still congruent hexsgons~-though not regular, in general-- 

or rectangles, when the little triangles become right triangles). 

One might then try to prove that the honeycomd lattice is optimal 

in this set. Our direct attempts have so far led to intractable 

integrals. 

We conclude that, at the present time, the optimality of 

hexagonal lattices remains one of those obvious but elusive re- 

sults we referred to earliers a plausible conjecture, not a 

theorem. # 

  

     mathematical background on lattice 
der Ebene, auf Kugel 

otc, ses L. Fejes Téth 
E . or R (Berlin, 

   

    

3.4. Service Systems 

In this section the headquerter location p!‘obl.l: will be 

embellished in two ways. First, it will be embedded in the con- 

text of a more genersl problemj second, this problem will bde
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given several concrete interpretations. 

Suppose 'onzagivon a distribution of population over space. 

(This could be a population of individuals, families, firms of e 

certain kind, etc., depending on the interpretation). A set of 

headquarter points is to be found; at these,Weberian activitles of 

a certain type are to be rum. There is to be a flow of "services" 

between these headquarter points and the members of the population. 

The quantity of services going to any member of the population 

can be specified by a non-negative real mumber which 1s the ideal 

weight of the service. ("Servicea" may be flows of people, goods, 

or information, or some bundle of these, depending on the inter- 

pretation.) There 1s a metric, such that the total transport 

costs incurred by the flows of services is the product of ideal 

distence by ldeal weight, summed over all flows. The total "pro- 

duction" of services at each headquarter point is equal to total 

flows of services from that headquarter point to the surrounding 

population. For each potential headquarter site there is e pro- 

duction cost faection., Finally, for each member of the popula- 

tion there is a net benefit function depending on the level of 

flow of services to that member. This whole ensomble will be 

called a gervice system. 

We are to £ind (1) the number and location of headquarter 

points; (2) the volume of flow botween each headquarter point and 

each member of the population. By swmmation, the snswer to (2) 

will also determine the level .of "produstion” of services at each 

headquarter point. These will be the unknowns of the service 

system, 

There are a large number of oriteria by which these unknowns 

might be determined. In the next seotion, for example, we adopt
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a cost-benefit approach, and maximize: total benefits, sumaed 

over the population, minus total transport costs, summed over all 

service flows, minus total production costs, summed over all head~ 

quarter points. This approach is most appropriate for the case of 

public facilities, which are the most importent class of interpre- 

tations for service systems. An alternative approach is that of 

a monopolist, who chooses the number, location, and produstion 

rates of his headquarter points (i.e. plants) to maximize profite. 

Still a third is an industry equilibrium epproach, in which each 

plant is a separate firm, entry is free, and profits are maximiged; 

this 1s the Ldschian approach, and 1s discussed in section 3.6. 

Bubedded in this overall problem of service system design 

are several fragmentary problems, some already discussed, some 

new. Given the production pattern at headquarter points and the 

consumption pattern by the population, the detailing of origin- 

destination flows is a transportation problem. We will assume 

the operation of the efficiency postulates of section 2.4 in all 

cases; this will lead, in genersl, to the formation of demend 

areas with headquarter points as sources. Given total production 

at @ headquarter point, its market area, and the distribution of 

population over this region by location and bemefit function, 

there is the problem of optimal distribution emong this populatim 

(e.g. to meximize benefits minus transport costs). Under certain 

uniformity eseumptions, our original headquarter location problem 

will also turn up (see below). 

We now come to interpretations, The most familiar, and the 

best-explored, is the industry location interpretation, in which 

the headguarter points are manufacturing plants which distribute 

a commodity over their respective demand areas. Closely related
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is the interpretation of headquarter points as warehouses and as 

retall stores. In all three cases we are dealing with the distri- 

bution of commodities. However, the conditions of transportation 

' differ in that retail distribution generally entails a specilal 

“shopping trip" by the buyer; this fact, together with the rela- 

tively small size of package in retailing, means that the ideal 

weight of commodities mold at retail is high in comparison to the 

ideal weight of the peel commodities sold at the manufacturer's 

or wholesale level; (and this in turn is a partial explanation of 

the abundance of retail outlets, as we shall see). 

The distribution of water, gas and electricity, from pumping 

or power stations,introduces the new wrinkle of having special 

purpose transportetion systems--pipelines and wires--which must be 

connected directly to the places where consumption occurs. It is 

not clear whether our simple transport cost assumptions are ade~ 

quate for these eyltemi, Television cable systems are of the 

same sort, with community antennas playing the role of headquar- 

ter points. Similar also are sewage disposal systems, leading to 

treatment plants as headquarter points--except of course that the 

"commodity" flow is inward, end we have a supply system instead 

of a demand system. This reversal raises no new difficulties at 

@ll: "consumer" benefits depend on the quantity of sewage removed, 

and at headquarter points we have disposal costs instead of pro- 

duotion costs, Garbage collection is, in effect, a warshouse dis- 

tribution system in reverse. 

A great variety of service systems involve visits by consum- 

ors who are "processed” at the headquarter points: restaurants, 

theaters, and other entertainment places of all sorts, schools, 

ohwrohes, hospitals, courts, museums, reference libraries. (Lend- 

ing libraries, on the other hand, perhaps have more in common
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with systems in which headquarter points serve as storage places 

for commodities avallable on a rental basis; these in turn are 

closely related to retail store systems). 

Another important category of service systems are those in 

which trips ocour from the headquarter points out into the "field" 

in response to messages: fire orews, police, and rescue squads 

answering calls for aid, taxicab services, home repair services, 

In the systems considered so far, determination of the quan- 

tity of sorvices taken typically rests on the individual consumer, 

subject to pricing or rationing decisions by the managers of the 

headquarter points. However, in several systems of a control or 

housekeeping nature, the quantity of services supplied depends 

also on the headquarter menager: street cleaning and repair, 

public garbage collection, and, especlally, inspection sctivity 

‘of all sorts--police patrollong, welfare, fire, health, housing, 

pollution éontrol, etc. 

Radio and television broadecasting constitute a rather special 

category. There are no trausport costs varying with distance in 

the ordinery sense of the term; instead, the quality of reception 

varies by distance. The telephone and postal systems stend apart 

in that they provide connections between two members of the popu- 

lation, rather than direct services between a headquatter point 

and a consumer. The adequacy of the service system model as & 

representation of the real-world system is rather doubtful in 

these cases. (Broker services--e.m, employment agencles, real- 

estate companies--might perhaps be classified with the telephone 

and postal services). 

We have thus briefly surveyed a wide variety of systeus 

which might vponm.’ be represented by the service system model.
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How adequate this representation would be in any particular case 

can only be decided by a detalled examinastion of the system in 

question. This task will not be undertaken hers. We will, how- 

ever, make some oqmmn on the shortcomings of the service sys- 

tem model which are inherent in the model itself and will appear 

in any application of it. 

These shortoomings may be divided into intra- and inter-sys- 

tematic. Under inter-systematic, we note first that multiple-pur- 

pose trips cannot easily be fitted into the service system frame- 

work; the possibility of visiting several headquarter points from 

different systems, which are located near eamch other, allows one 

to spread transport costs. Secondly, a clustering of headgquarter 

points channels transport flows, and thus affects transport costs 

by allowing economies of mass transportation to be achieved, on 

the one hand, end by inoreasing congestion, on the other. 

Thirdly, production costs at headquarter points depend in part on 

the location of headquarter points of other linked systems. To 

catoh these influences would sppear to require the simultaneous 

determination of several service systems, together with the com- 

muting problem of Chapter 1. 

Under intra-systematic, we note first that production costs 

at a headquarter point depend not only on its own soale of opera- 

tions, but on the location and scale of the other headquarter 

points of the system. These "external esonomies" arise in part 

from the use of common supplies, from the possidbility of pooling 

outputs to meet demand fluctuations, from the eéxchange of infor- 

mation, etc. Seoondly, it may not be possible to express total 

transport costs as a simple summation over the products of 1deal 

ui.ghfi by idesl distances. Thirdly, the concept "level of ser-
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vices to the consumer" is not always clesrcut. In the case of 

commodity flow one has at least a simple quantitative measure 

(though benefits may depend on the level of neighbors! consump- 

tion as well as one's own). But how to measure the level of 

police protestion or fire-fighting services? These will depend 

on density of patrolling, speed of response in emergencies, end 

various qualitative factors; there are strong "neighborhood 

offects" from these services, and benefits presumably depend on 

density of population, character of neighborhood, and other envi- 

rommental variables.# 

  

4 The service system model might be reformulated to mske benefits 

and some costs depend on population density and ares, rather than 

being a sumation over individual consumers. Cf. W.S. Vickrey 

"General and Specific Finanoing of Urban Services" in Public Ex- 

penditure Decisions in the Urban Community (H.G. Schaller, ed.) 

(Washington, Resources For the Puture, 1963), and W.R. Thompson 

A Preface %o Urben Eoonomics (Baltimore, Johns Hopkins University 

Press, 196L), p.27h. 

  

With these reservations in mind we shall now develop further 

the service system model. It 4is hard to do mush with the very 

general definition of service system given above, and so we shall 

exsmine special cases. A full list of assumptions will be given 

h; the next seotion. Here we wish to examine one of them from 

the point of view of interpretive realism: the assumption that 

the quantity of services taken by all consumers is the same. 

At first glance this uniformity assumption seems very crudes 

first, because tastes differ smong consumers, and second, because,
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even if tastes were uniform, the unit cost of services would rise 

with increesing distances from headquarter points, and this 

ghould lead to a fall-off of service levels with distance (unless 

we make the rather extreme assumption of completely inelastic 

demand). No doubt the uniformity assumption is very poor for 

many serviee systems. We merely wish to point out that for many 

other service systems it is much more plausible. 

In the first place, a number of service systems operate 

under constraints which force everyone to receive uniform service 

levels. Compulsory education laws, for example, force 2ll chil- 

dren in certain age brackets to attend achools with (roughly) the 

same number of hours per day and days per week for each. If 

we take hours of schooling as the measure of service level, we 

have an enforced uniformity for this population. Governmental 

service systems are often required to provide uniform services. 

For example, a fire crew will answer all alarms within 1ts terri- 

tory., (It may be ergued that the extra delay in getting to a 

distant fire constitutes a lower level of service; but this may 

also be represented as greater transport cost for the same level 

of service). Police activities, street maintenance, garbage 

collection, public inspections may be required to perform uniform 

services.t 

  

& Writers on public finance discuss a category of commodities 

called "collective goods™ which by their very nature are consumed 

equally by all., Whether there sre such goods or not, it should 

be noted that the products of service systems are not collective; 

equal consumption of these must be provided for by speciel insti- 

tutional arrangements, and will not ocour otherwise. 

o ————————————————————————————
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Secondly, many service systems practive a policy of "freight 

absorbsion". That is, they make their service avallable |:t the 

consumption site on terms independent of the site's distance from 

the serving headquarter point, An example would be a retall store 

making free deliveries. (However, if the consumer has to make a 

shopping trip, or if the extra delay in making deliveries to more 

distant points is important, then there still remains a rising 

cost of services with distance to the consumer, though attenuated). 

Water supply and sewer services, electricity and gas, postal and 

telephone services are other systems which tnficnlly absorb freight, 

at least within a broad "local zonme". If the cost to the consumer 

really is independent of his location, then we need only assume 

uniform tastes to get our mit'o:':n.mt“:nult, not the munh 

stronger assumption of inelastic demand. 

3,5, The Sosle and Spscing of Hesdguarter Points 

We now formally investigete an abstract and simplified ser- 

vice system model.s As dlscussed above, we asaume that everyone 

receives the same level of services. Our space is a Buolidean 

plane, end population is assumed to be distributed uniformly upon 

4t.¢ These assumptions. together imply that the volume of services 

—————————————— 

# Incldentally, the sssumption of uniform service levels Inoreases 

the plausibility of the assumption of uniform population distri- 

bution. Ordinarily, population will tend to erowd up around head- 

quarter points to reduce transport costs, but if uniform services 

are provided this cenmtripetal attraction dissppears. However, 

our aim in this section 1s mot to justify owr assunptions but to 

examine their consequences. (Centripetal attraction will be
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taken up in the context of Thimen systems, in the next chapter). 
  

provided per unit area is uniform throughout the plane. It is 

further assumed that all points are equally suited to be head- 

quarter points; that is, there is a single function giving total 

production cost for any level of production of services, the same 

for all potential headquarter sites. Finally, it is assumed that 

tastes are uniform, in the sense that there is a single function 

giving benefit for any level of services raceived, the seme func- 

tion for all people. The umknowns of the problem are (1) the 

disorete set of points at which headquarters are to be placed, 

and (2) the scale of production at each of these points. 

The criterion by which these unknowns are to be determined 

1s: maximize total benefits minus the sum of totel transport plus 

production costs. This, however, is not quite satisfactory as 1t 

stands, since it will presumably be infinite for several desighs 

~=the plane, after all, and the total uniform population upon it 

are both infinite in our idealization. Instead, we take average 

percapita bensfits minus per capits trensport costs minus percap- 

ita production costs us our oriterion to be meximized. These are 

obviously equivelent for any given finite population, so that it 

4s natural to use the second, which remains bounded even for an 

infinite population. There is still a third formulation which 

w11 prove useful: maximise total benefits minus costs per upit 

grea. Since population density is fixed and uniform, this is 

obviously equivalent to the second criterion. 

Pinally, we assume (1) production levels at all headquarter 

points are the smme, and (2) headquarter points ere arranged in 

a hexagonal lattice. These assumptions are made with a certain
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diffidence, because--with mild conditions on benefit and produc- 

tion cost functions--it is llkely that they could have been dew 
duced from our previous assumptions. If we make the first assump- 

tion, and are given the average number of headquavter points per 

wnit area and the level of production, percapita benefits and per 

cspita production costs are slready determined. The only remaining 

term.in our oriterion function is transport costs, and the optimel 

arrangement of headquarter points is the one minimizing this. We 

have a problem here very similar to owr old friend, the headquar- 

ter location problem of Section 3.3. (They are identical except 

for the additional constraint here that all service areas have the 

same area). Our conclusion in that seotion, it will be recalled, 

was that the hexagonal lattice arrangement was plausible but not 

demonstrated. 

In any case, these assumptions effect an enormous simplifi- 

cation. The number of essential degrees of freedom in the un- 

Imowns is redused from infinity to two: (1) the production level 

abt a headquarter point, and (2) the size of the "mesh” or spacing 

of the hexagonal lattice of headquarter points. These two num- 

bers determine the per capita level of services, the sise of the 

service area, total transport costs in a service ares, and all 

other aspects of interest. 

Our major interest lies in obtaining theorems in comparative 

statics; that 1s, in determining how the unknowns of the system 

respond to changes in the parsmeters of the system. We shall be 

ooncerned with two major parameters: (1) unit transport costs, 

and (2) population density. (A typical question would be "if 

population were denser, would headquarter points be spaced 

oloser together or farther spart?*) In the first part of our ex-
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position wo will be dealing with a fragmentary problem, and here 

it will be convenlent to introduce still a third parameter: 

(3) level of service per unit area. 

For convenience we give a 1ist of the symbols usedt 

Y service density; 1.e. level of service per unit area. 

o transport cost parameters the cost of conveying a unit 
weight of service over a unit distance. 

¥y the scale of operation or level of production of services at 
a headquarter point. 

Cly) average cost of production. 

R the in-radius of a hexagonal *\-\ sorvice area (the radius of / headquar T g the insoribed circle); half  ~ o/ 2 
e 

z 
”~ 

the distance between adjacent ™ 
headquarter points (see 7! 

~ Figure 8, a blowup of - 
Figure 7). 0 Yo boz.hvuu 

A the area of a hexagonal le~ 
service area. R | e R — 

| 

¢ level of services per capite. : 

B(x) per capita benefits. Fryure 8 
P population served by a. single headquarter point. 

First we deel with the fragmented problem in which the ser- 

vice density, Y, iz taken as given. We are to minimize the sum 

of produstion and transport costs per unit area by choosing R and 

¥ optimally. There is in fact just one dagree of freedom here, 

given Y, since y and R have the relation 

)
 population density. 

¢ ) ye AY = fi_-n‘v_ 

The whole system is a collection of comgruent regular hexagonal 

service areas, each with a headquarter point at its center. Owr 

oriterion therefore leads us to. minimize: total cost of produstion
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at a hendquarter point plus total cost of transportation within 
a service area, all divided by the area of the service area. 

Total cost of production equals yG(y). To find the total cost of 

transportation, we note that an element of area dA within the ser~ 

vice area and st dlstance z from the center contributes an smouat 
YOzdA to total transport costs. Total transport costs is the 

integral of this over the hexagon. Taking the hexagon as the 

union of twelve 30-60-90 triangles, we evaluate the integral as 

   
I% Ukacu * 

lzré 2 dz[dx  (see Fiewre 9 3 £ Lol 5 )w e L 

. T\ Yok [z'rqy. ® Secok nb:) (fanw *s.m\‘] R ! 
o ' 

F'fi“" 9 

= ($+0eg3)ver: 

We are, ‘n‘lr\, To mmimze k[" C(fl * (% *1‘5 B)Yokfl' 

When R and A are U(‘;ru.l.fl»( m Torme of y From 

relalions (), Thie becomes 

D YU +a0l[F =M, (vhue o Fands for 

the cmelant n,"‘G + Jog 3)) 

Thus our minimand boils down to the rather simple form (2) with 

two terms, one involving average produstion costs, the other the 

square root of production.# 

  

# Hexagonality of the service area is not at all orucial to the 

form of this result. Any packing of the plane with congrusnt 

service areas would give the same result, except for the constant. 
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» 

If we knew C(y) we could minimize (2) explicitly over y, and 

thus express optimal production (and thus optimal spacing, from 

(1)) as a function of the pulinntvrl © snd Y. However, we can 

also discover properties of this function without specifying q(y). 

To do so, we make use of the following well-known result. 

Lemma 1; Lot ¥ bejoptimal solution to the problems 
minimige h(n,y), where g 

¥ 18 real; X 1s a 

real yu-uour. and h(%,y) is a real-valued function such that 

ahay >0 1in the positive quadrant of the &,y plane; then 

?‘*S o ,Lf the x and ¥ values are all positive.# 

# Cf. Samuelson F%gitimn sg Boonomic Analysis, op. cit. 
p. 32, lq.9t, and Par passim, A bar over a variable’ will’ always 
indloate the optimal value of that varisble in this seotion. 

  

This lemma allows us to discover responses to parametric 

changes by observing the signs of cross-differences (or cross- 

derivatives, if h(«,y) possesses them), which are often obvicus 

on inspection. 

Let us now determine how scale and spasing respond to‘a 

change in unit trsmsport costs, service demsity being held com- 

stant. We let the symbol @&ib)v- stand for the change in § with 

respect to 0, withYbeing fixed. _ 

meemyn () 0 5 (§5) €0 
Zroofs Prom the minimand (2), >0, Apply Lema 1. This 
proves the first statement. 'nuluoeond follows from the fact 

that, givenY, R is a monotoms inoreasing function of y, from &. 

Thus a fall in unit transport costs will inorease the scale 

of operations at each headquarter point and expand service areas 

{or, in the limiting case, leave these unchanged).



Faden 104 

Next, we hold unit transport costs fixed, and invaaticnte 

how scale and sp-oi.ng respond to changes in service denlity- 

Daeem 2 (§F) 
Qf_g__‘ Lemma, lsc}nnnot be applied immediately. However, if. we 

divide (2) through by Y, we get another oriterion function. which 

is equivalent to (2) (in the sense that the same optimal § results 

from both); for this oriterion we get -A-—l<l Now apply Lomnqé;) 

Thus a rise in service density leads to a rise in produstion 

levels. The effect on spacing, on the other hand, can go either 

way, depending on the average coat function C{y). A condition on 

C(y) oan be given, which, however, has little intuitive appeal. 

A 5 A) ¢ It ;‘7(\; 17) >0 (¢0) ' §, then (SL; ; €0 (30 

Proof: It is convenlent to let A be owr unkmown, Substituting 

AY for y in the oriterion (2), and dividing through by Y, we get 

C(AY) + a8fA = M,. mis 16 to be mininised by T. Taking 
oross-derivatives we get M = C’(A\‘) Ay C (AY) 

T*"l% J‘\',(‘lr) The theorem now follows from 

Lemma 1 in i.tl local, differential, form, 

Of the two cases in Theorem 3, the case ;‘.,(1%))0 seems 

more likely %o ocowr in practice. For example, for the broad 

olass of cost funetions of the form ((y) = z‘. o ‘[';’/ with 

o; 30 bor el l" f‘ 40 for & host ame i , we 7&7 

c > 
%(7%} e 2(- %8 Y™ 30 we may thererore axpsot that, 
normally, & rise in service density will lead to a ghrinkage of 

service areas.
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We now turn our attention to the full cost-benefit problem. 

Service donlity'Y)is now an unknown, not a parameter. Taking its 

place 1s population density, : « There are now two degrees of 

freedom for optimization. We shall find it most convenient to 

take as our two basic unknowns the scale of production, ¥, as 

before, and the per capita level of services, X. These, hoset'hn 

with §, then determine Y, R, A, and P. We are again most inter- 

ested in the responses of these variables to chdges in our two 

fundemental parsmeters, unit transport costs and population den~ 

sity. i 

It will be most convenient to use our second criterion, 

per capita benefits minus costs. The criterion (2) gives total 

costs per unit area, and division of this by § converts it to 

total costs per capita . [Y C(y) va gfi:(—] This 1s to be 

subtracted from per capita benefits, B(x), and the difference is 

now to be maximiged. Upon substitution of ngor Y, we get 

3) 8L -xcly) - “%W as ow maximand. 

This 1s to be maximiged over x and y. It will be noticed that, 

while we have two independent parameters, they enter (3) very 

couveniently in just one factor. We need only evaluate the effects 

on X and ¥ of shifts in the single composite parameter ?% to de- 

termine the offects of shifts in both O and¥, by use of the 

chain rule. Let us .bwm.’é asf . 

Lemea 1 is no longer servicesble, since we have two unknowns 

to be optimized jointly. Holding ¥ constant, for example, may 

lead to a reversal of the response X makes to a shift i.n@, com~ 

pared to the case where ¥ is left free to adjust also to shifts 

1n€. Istead, we make use of the following rather specialized 

result.
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Lemmg 2: let X,§ be an optimal solution to the problem: 

mxlmiu"’n(:) - x0(y) ¢]Xy . ¥, 7, and® are all positive, and 

the ordinary first- and second-order conditions hold in a neigh- 

borhood of the maximiger. Then fi €0 and g &0, 

Proof: It will be convenlent to proceed in three parallel steps, 

which are all combined at the end. 

(1) Suppose we transform our variables, X and y, into Eln‘#’), 

where § = XYy, Benfirs The reviged mexmmand only w fhe 

. =0 r 57 a st qna,usous 1: L:mma. 1, ot ol 

Jows thet _§_‘ O R J__Y_ ¥ 9 —é g0, 

(2) By the second order conditions for s maximum, 

BN 
A ‘é——% +9-x ;7’2 So o %X,7, Ix* 

o 4B <o it X. 
dx* 

3_1.’1 = =X 1-&,( 1 € P 37., T‘ o Al X,y 

S 4‘—3’ >0 o 7, 

(3) By tho_ first~order conditions for a maximum, 

B .t = lfl=%—-c-—%x7 =9 .TT("\,_ 
M 

l—-fl - ac - Q * ‘l“ < 4 %,5 e -xr‘; ix 1 o o %5 

Baltiply the second squation by ~§/Z, and add 1t to the first, 

to get
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4B (0 = dc(V) 
o e +y Iy 20 

Differentiate this equation with respect to e: 

AVR(R) 4x AC(?) 
v Si ; 0‘ C(Y) *z 

dx A@ +[ :" j‘l ] “3 —o/ 

  

s 
d'BR) A% (@) 4 or AX s 
e T SR e, 

Now we put everything together. From step (2) the coefficient of 

j% in this last equation is negative, and the coefficient of d 

is positive. Therefore both of these derivatives muat have the 

same sign (or both must be zero). From step (1) it follows that 

this sign cannot be "\'". o JI?; S0 and fi g0 .0 QEp 

  

o Conoceivably, this result could be generalized, or the proof 

made easier, by proceeding along the lines of Ssmuelson's "Gen- 

eralized Le Chatelier Principle", according to which the respon- 

siveness of a variable to a parametric shift rises if a constraint 

is removed. If § is held fixed one easily shows by Lemma 1 that 

f‘% ©0 » and this ghould then st1ll hold if the constraimion § 

is removed; similarly for the roles of X and §¥ reversed. We have 

not investigated this. See Samuelson, op. oit., p.36-38. 
  

Holding population density fixed,d varies in the ssme direcs 

tion as unit transport costs. We then have
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flm:!&lu ( )So 4 (’3];’,5 

flq) (» 
£ S 0, from Lemma 2 and the defini- 

tion of §; .i.muuly for tha second statement. QED 

Thus e fall in unit transport costs leads to a rise in the 

scale of production at each headquarter point and a rise in the 

1level of services received by each person. Theorem . should be 

compered with Theorem 1; unit transport costs is the independent 

variable im both cases, but per capita service levels are held 

constant in Theorem 1 and allowed to vary in Theorem l. 

Holding unit transport costs fixed, @varies in the opposite 

direction to population density. This implies 

B &), v s Bl s 
Eroof: .S?e 

s b 
,;e e 3-3" —;Ol similarly for ¥. QED 

Thus, for example, & rise in population density leads to 

® rige in the level of services received percapita (or in the 

1imit leaves the level unchangedl This is perhaps the most in- 

teresting and least obvious of the four statements in Theorems 

L end 5. It may also be shown that the pet benefits (2.e. bene- 

£4ts minus costs) per capite rise with population density amnd 

fell with higher wnit transport costs: 

@'?-).%o ,(3%) _o wleve 

" BR) -XC() -t \TF 

n dn 138 i 

(rr 9 i 76 (}fi). ’ VL!'G dz’% t”.hls X .,,A 7



( 
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To adyust K vandfins n @, Bal" wnder o‘:fim./ JJs.‘d’ 

bRad g, dn % e ) X and 1% W T Xy <0 35 Fo ; 

S'mlafl—, for the Sccmd Shlemots KD 

  

% Samuelson, 106. 6it., p.3l. 
  

The intultive axplanation of the rise in net per capita bene- 

fits with increased population density is that a higher demand 

allows the headquarter point to take advantage of scale economies 

in production; (average cost must be falling at equilibrium). 

We turn now briefly to examine the responses of other vari- 

ables to shifts in our parameters. Unfortunetely--with one excep- 

tion--these cannot be determined from the results of Theorems L 

and 5 alone. The exception concerns the response of service den- 

sity to a change in unit transport costs, and for this we get 

}j, = %) ) Thiotan 9 ()B : __——) = S( ‘ol brom ! ‘ 

et us take, for example, F. the population of a service 

area. P equals y/X, and since X and y respond in the same direc- 

tion to parametric shifts, the effect on ; cannot be determined 

from this qualitative knowledge alone., We do, however, have the 

following result. 

Ms Under the assumptions of Lemma 2, 

A(I:‘/:) “‘d Z) 30 (%0) IMF’HS thet 

e%)f %0 ('-0)‘ cmp\ (—fi)aéo (40).
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Broof:  Cyyn 5-, 9 dTrmmeg @ @ dTermmeg X end ¥, 

anl ‘"\\se J:Tslmmg l—’ 3 19 \2).5) JP ()P 
STk 

Second faclor 15 90907&:, 0 we wd only Adimime The 

Sh o‘ :‘.E £ A(“i/‘) 

e N - ) 
In e course o 'rwvns o 11 we t‘ohm‘ "'LnT 

A0 AR L5 &MU A dx e -5 +3 _:?-—__é 20, So)vms (w»l’ 

ond Sk‘:&fiufns) we ')cT 

43 L9 5§ R 
LAAB(:) w5 ('(ki)] 

= 4‘56'0 i el 
I 

‘]% -%o, and ‘.—3—5(? 40 S The (AZEV owfide . 

Iyackall 1 30 , s° fln $15n ol %-g s e same o 

4. "?‘ ot B bvackdnd HPressiom and e brst 

Fomont follovs. The secand bulluys b (33) <o 
. . : &€p 

As a corollary, the direotion of response of headquarter spacing 

to changes in unit transport costs can be conditionally ascer- 

tained, since }E) _C(F/S)) sl P 
SR TS ) T('a'o',l
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80 that service areas expand if and only if population served by 

@ headquarters expands. These results offer a remarkable con- 

trast to Theorem 1. There, a fall in unit transport costs must 

result in expanded service areas (or no chamge, in the limit); 

here, there is’ "th. possibility that a fall in treansport costs 

actually leads to a shrinkege of service areas. The wachanism 

i1s that, while scale of production oxpand-.' level of services 

received per person expand in a greater ratio, so that the popu- 

lation and area served by a headquarter point falls. The possi- 

bility seems counter-intuitive, and might be labeled the "spatial 

Giffen paradox. 

So far we have not actually demonstrated that this possibil- 

ity can be realized, and conceivably the crucial expression 

R £BR) | grdied) 
1;':‘ —-Jg; eould never be made positive by any 

choloce of benefit and cost functions. The simplest way of refut- 

ing this contention is by counter-example. 

Let B(x) = m{¥ , and let CG(y) = n/y , vhere m and n sre sny 

positive constents. One may verify that the optimal solutions 

are '\7,_'_“_:{ 7‘:___@.‘_ -,7/.,‘."_!"_9: 
e wintet P 8 mY 

F obviously varies divectly with®, so the "spatiel Giffen para= 
dox" obtains. (The fumctions B(x) and 0(y) were chosen for sim- 

plicity. The particular cholce for C(y) makes merginal produc- 

tion costs gzero; this is not at all orucial. One hn only to 

oboose a suffioieatly "flat” benerit function snd a sufficiently 

"ourvy" ocost funotion to generate the paradox.) 

We will end the investigation of this interesting snd impow- 

taut problem at this point, though the questions that may be posed
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are far from being exhausted. First, the effects of shifts in 

pqpulntion density have not all been worked out. Second, there 

are several other fragmented problems that might be investigated; 

for example, the pattern of locations may be given in advance, 

80 that A and R are no longer unknowns; or, the scale of opera- 

tions at headquarter points may be given, so that y becomes a 

parameter, (Both these cases represent institutional constraints 

which are by no means far-fetched). Finally, one may expand the 

problem by introducing new parameters--for example, shift parae~ 

meters in the benefit and cost functions, like "m" and "n" in the 

counterexample just given. 

3.6. I8schien Equilibrium 

This section differs from the remainder of Chapter 3 in 

that it refers to the interaction of several decision-makers, 

rather than the choice of just one. The model examinadd here i3 

fdentical to that of the last section with the following éxceptions. 

(1) The level of services received by & person dbed no longer bs 

uniform. Instead, it depends on & demand funstion giving the 1svel 

of services for eny looal price (that is, the price of the ser= 

vice at the place where the conswmer is located). It is assuméd 

that all consumers have the same demand function. 

(2) The local price system is aséumed te 8bey the efficienty pos= 

tulates of Section 2.l, so that, in a demand system, the local 

price at any point in an effective demand area equals the hnéqiur'— 

ter price plus transpbrt costs; Headquartéh prisSs are ot €0 

clear the market at the chosen production levels, : ‘ 

(3) Bach headquarter point 1s thought of es an individus] firm, 

'hloh .-oh- its -oni or‘opox‘-ne!.‘anl‘ to maximize its profits, 

profits being production times headquarter price, minus total
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production costs., Each firm is also fieo to re-locate s head- 

quarter point. 

(4) Pree entry and exit of firms is permitted. Formally, the 

effect of this assumption is that no firm makes negative profits, 

and that there is no unused site at which a firm could locate and 

make positive profits at some production level. Idsch goes far- 

ther, and assumes that the average size of service ares is mini- 

mized, subject to ths constraint of non-negative profits for all 

firms, (Since we are on an endless plain, one must interpolate 

some kind of 1limit process to give meaning to this statement, as 

discussed in Seotion 3.3.) 

The remaining assumptions: uniform population distribution, 

uniform cost conditions, Euclidesn metric, are as in the pre- 

vious section, This ensemble is a (simplified) version of the 

L8schian equilibrium system.# 

—————————————————— 

© A, L8soh The Esonomics of Location, op. oit., peW=97. 
e R ; 

Next, wo assume with I8sch that firms will arrange themsel- 

ves in a hexagonal lattice. FPosaibly this is dedusible from the 

assumption that the average size of service area is minimiszed, 

plus some unknown conditions on demand and cost funotions. We 

have alrescdy noted that the wsual arguments are not unn:l.:ui.n 

in the case of the headquarter location problem, and the present 

. problem is far more complicated. In any case we may merely take 

this o8 an extra assurption. Tt is also asswsed that prices 

end scale of production at all headquarter points are equal, end 

mt}«fl.briu profits are sero for all firms. {Again, some 

of these statements may de deduoible from previcus asswptions.
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The logical structure of the L8schian system has never been 

thoroughly investigated).s 

  

4« For oritiques of the IL8schian system uo M.J. Beckmann "Some 
Reflections oanoh'- The of {o:;tuign 1 - 

tNl- 

_355, Tsard, op. 6it., P. her,amt.; 
ccorim Dw.lopmonel of c.ntr         

  

07-120. ;t n or "Toward h 0 o 
;g-l gwm- ructure wmmm_m 

187, 1963. 

  

The service areas are, of course, congruent regular hexagons. 

We now recall the distinction made, in Section 2.l;, between 

effeotive and potential market areas. The potential market area 

of a headquarter point is the set of all sites for which that 

point is the most economical source (for pot.nunl demand areas) 

or sink (for potential supply areas). These potential market 

areas partition the plane completely, and are known as service 

areas in the speclal case where prices at all headquarter points 

are equal (of. Section 3.3). The effective market area of a 

headquarter point, on the other hand, consists of those sites 
which are actually linked to the headquarters by flows; this is 

& subset of the potential market area--a proper subset if some 

sites in the potential market area are not linked to the head- 

quarter point. 

The question now arises: what are the shapes of the effec~ 

$ive market areas in a Lischian system? It seems to have been 

fiplicitly assumed that these coincided with the potential mar- 

ket areas until Kills snd Lav showed that this need not be the 

case.# Their basic argument is ingenious and quite simple.
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# B.S. Mills end M.R. Lav "A Model of Market Areas with Free 

Entry" Journal of Politicel Economy 72:278-288, June 196l, p.283f. 

  

Assume that the demand function 1s non-increasing and contin- 

uous, and that there is some out-off price beyond which demand 

goes to sero, Take a single firm with no nearby competitors. It 

is easy to see that its effective demand area must be a olroular 

diso. (If the headquarter price is set above the cut-off price, 

the disc shrinks to nothing. In a general metric, the effective 

demand area would be an out-sphere, in the terminology of Section 

2,5). By varying its hesdquarter price down or up, the ‘Tirm will 

make its demand eres expend or contract, respectively. Assume 

there is some unique price at which totel profit is maximiged, 

and that this profit is positive. This price, and the correspond- 

ing effective demand srea, are the equilibrium conditions for our 

igolated firm. Let us call this the full area case. 

Now let us suppose that part of the oircular disc becomes 

unavailable to our firm--perhaps because of the encroachment of 

competing firms. OCall thia the truncated . ‘area cade, Sup- 

pose the firm adjusts optimally to this oontretemps so far as 

pricing 1s concerned (but maintains its old location). It is 

fairly obvious that the profit achieved by the firm in the trun~ 

cated area case fallsbelow the profit achieved in the full srea 

case. (Proof: let p, and y, be optimal price and production in 

the truncated oase; let P be the price at which yy will be sold 

in the full case; there always is -uohapnd. mr-. 

”’t‘ thus revenus rises while costs remain the same; the
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optimal price in\tho full area case, Pps cannot do worse than i’. 

and therefore the full ares profit exceeds the truncated area 

profit. QED) 

Suppose next that the production cost function in these two 

oases conteins a set-up cost parameter. An increase in get-up 

costs by an smount k inoreases total production costs by k for 

all levels of output (exeept output sero, for which cost is always 

sero). Such a change has no effect on optimal policy, provided 

profit remains positive, but merely reduces total profit by an 

amount k. . 

1t follows from the preceding theorem that one can always 

choose a set-up cost so that profit in the full area case remains 

positive while profit in a certaln truncated area case beoomes 

negative. This observation is the key to showing that the effec- 

tive demand areas need not cover the plane. For covering to 

ocour, the ciroular disos would have to b§ compressed into reg- 

ular hexagons, by the encroachment of the six firms adjecent to a 

given firm in the honeycomb lattice. By sultable choise of set-up 

cost, one could make profit in this case negative, for sll possi- 

ble combinations of pricing and spacing that £111 the plane com- 

pletely with effective demand areas. Teke the most profitable 

hexagon sise, and inorease the lattice spaoing enough so that the 

eiroumsoribed circles about these hexagons can fit in the plane 

without overlspping. If we have chosen our set-up cost properly, 

the profit for this ocase will be positive. Thus we have shown 

that arrengements giving positive profits may exist even though 

all arrangements filling the plane completely with effective ' 

demand aveas make negative profits, hence are not viable.
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drawing from the industry. Any encroachment whatsoever of firms 

on each other's demand areas will meke profits negative and drive 

them from the industry. The effective demand areas must therefore 

remain oircular discs of radius R. The result is clearly Figure 

103 the firms can not get closer to each other, and need not 

remain farther apart. 

Full space~filling hexagonal effective demand areas also 

ocour--for example, in the case of completely inelastic demand 

functions. 

Given our assumptions of hexagonal lattice arrangement and 

equal prices at all headquarter 

points, the remaining possibili- 

ties are easily found. They are 

all of the form of Figure 11, 

where the effective demand area 

of a typical headquarter point ° 

0 1s depioted. It is bounded 

by twelve pleces. 4,B,C,D,E, 

and F are equal line segments, 

perpendicular to, bisecting, 

and bisected by, the spokes ‘Fljun 1 

comnecting O to its six adjacent headquarter points; @,b,0,4,0, 

and £ are equal circular aros, all with center at O. The arcs 

are part of the rim of the oircle along which local price hits 

the cut-off point. This rim is interrupted by the encroachment 

of adjacent firms, and here the effective demand area follows the 

service area boundaries. The shaded areas, bounded by curvilinear 

triangles, are the portions of the plane uncovered by effective 

market areas. 
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Glven the lattice, Figure 1l retains one degree of freedom: - 

the angle subtended by an arc. As eha“shmruohu zero, the 

arcs disappear, the shaded areas disappear, the line segments join 

to form a regular hexagon, and we are in the case of space~£11ling 

hexagonal effective demand aress. As the angle approaches 605 the 

1line segments disappear, the arcs join to form a full cirole,’ 

and we are in the circular network of Figure 10. Thus these 

special oases are just the termini of a one-dimensional continuwm 

of possibilities.# 

  

# M41ls and Lav, p. 285, have a dlagram very similar to Figure 11. 

In searching for other possible shapes besides hexagons and 

circles, they try out regular dodecagons (and suggest regular 

bn-gons as other possibllities). Here theilr penchant for poly- 

gons seems to have led them astray. Every other side of the do- 

deosgon ==a,b,0,d,0, and f--adjoins unserved territory, snd there- 

fore must bulge out into a circular arc. We wouid conjecture 

that Figure 11, end its two limiting cases, are the only effective 

demand ares types in the L8schian .lylt-. 

  

The basic geometrical fact which underlies the possibility 

of aress of the plane going unserved is that the full areas-- 

which are circular discs--cannot be arranged to cover the plane 

without overlapping. This ia a property of the two-dimensional 

Buclidean metric, and 'fih other fittul it need not ocour. 

Por example, in ono-dimensional Euclidean space (1.e. the real 

1ine) the "spheres"are simply intervals, and these can be fitted 

sougly so that no finite interval is left uncovered. Even in 

two dimensions this may ococur. Let us comsider, for instance,
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the important regtanguler,or city-blook, metric. This is defined 

vy d(L'.i:.").u IX'—X"H-W'-!'L where X',Y' are the ordinary cartes- 

ian co-ordinates of the point L', and X",Y" are the ordinary car- 

tesian co-ordinates of the point L", for a fixed pair of axes.# 

————————————————————— 

# The names arise from the fact that this metric can be generated 

from the Buclidean metric by allowing movements only parallel to 

the axes, as would o~cur in a city made up of rectangular blocks 

(of infinitesimal size), or as a rook moves in chess. 

  

For the rectangular metric it is easy to show that the 

"spheres" are ordinary squares, tilted 4S° so that their dlagonals 

are parallel to the axes. A system 

of service areas huv!.ns this 

shape can cover the plane 

exhaustively (see Figure 12). 

The lattice of headquarter 

points corresponding to this 

system 1s built up from iso-~ 

  

celes right trisngles (one 

of these 1s shaded in Pigure 12), Figure 12 

rather than from equilateral triangles. We end our discussion 

with two conjectures. (1) The optimal arrangement of headquarter 

points, for the headquarter location or L8schian problems, is the 

checkerboard lattice of Figure 12, if the metric is rectangular. 

(2) In L8schian equilibrium the effective demand areas always 

cover the plane, if the metric is rectangular.
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4. of Thi s tems 

L.1. Inlnen Systems 
Thilnen's original work appeared in 1826.¢#+ The central model 

  

# J.H vonllq'hfln-nnax-l     

  

was designed to explain the location of agricultural land uses. 

It postulated an economy isolated from the outside world, consist- 

ing of a single city trading with its sgricultural hinterland. 

Distence from the city was the major determinant of land use, 

profitebility of the various competing uses being influenced by 

transport costs to and from market. 

We shall be interested in a much wider class of models, all 

of which, however, share certain essential features with the ori- 

ginal Thinen model. Suppose we have a metric space which is sym- 

metric (i.e. 4(L,M)=d(M,L)). In this space there is one distin- 

guished point, called the nusleus. Land use at any site depends 

only on the distance between that site end the nuocleus. Any pat- 

tern satisfying these conditions will be called a Thiinen system. 

In the original Thiinen model, it is of course the oity, at 

the center of the isolated state, which plays the role of the 

nuoleus. It need not be assumed that a Thilnen system is out off 

from the rest of the world. Nor need the land uses be only agri- 

cultural in character. 

We now give some conorete illustrations of situations which 

might be satisfactorily represented as Thilnen systems. The best 

one can hope for, of course, is that certein broad features of 

the real-world situation are mi-.ppmme.a by the model. It
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would be mbsurd, for example, to try to locate the exact geo- 

metric point on the surface of the Barth which corresponds to the 

nucleus of the system. The nucleus may be a house, or a neighbor- 

hood, or a central business district, or an entire city (the ori- 

ginal interpretation), or even wider regions: metropolitan areas, 

industrial belts, entire nations. The important point is that-- 

for the particular situation in hand--thess entities or regions 

are s0 small a part of the whole that they mey be thought of as 

points.# It would also be futile to expect an exact ring pattern 

  

# Think of a city a few miles in diemeter surrounded by en agri- 

cultural hinterland stretching scores of miles. Of. the dlscus- 

slon of Weberian activities, Section 3.2. 

  

of land uses surrounding the micleus to manifest itself in a real- 

world situation. 

With these points in mind, one finds a rick variety of situ~ 

ations which epproximately fit the Thiéinen pattern of concentric 

zones of land uses. In addition to city-agricultural hinterland 

systems, one has city-suburb systems. The internal structure of 

cities may sometimes be represented by a OBD surrounded by concen- 

tric zones of different classes of residential housing. Cantimu- 

ing down in scale, we may find the fields surrounding a small 

village differentiated in use by distance from the village. An 

individual farm may be organised as a miniature Thilnen system, 

the nusleus being a oluster of farmstead and barms. Public as- 

seblies, as for speeches, plays or boxing matches, may be 

thought of as Thinen systems in which the "land uses" are differ- 

ent qualities of seating, end the center of attention is the
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nusleus. At the other end of the scale, a nation may have a 

dominant political or economic center which serves as nucleus for 

orgenizing the whole economy into a big Thilnen system. In the 

late 19th -~ early 20th Century, Western Europe may have )éocom to 

some extent such an organising center for the entire world.s# 

  

# On city-hinterland relations see E. deS. Brumner and J.H. Kolb 

Rural Socisl Trends (New York, koGraw-Hill, 1933), Chap. S; 

D.J. Bogue The Structure of the Metropolitan Community (Amn Arbor, 

1949); A.H. Hawley The Changing Shape of Mstropoliten Americe 
(Glencoe, Pree Press, 1956; and a series of papers by K.A. Fox on 

"Punctional Economic Areas”. The "eoncentric circle” theory of 

internal city structure 1s the product of the "Chicago school" of 

urban ecology; see E.W. Burgess "Urban Areas” pp.113-138 of 

Chicago: An Experiment in Social Science Research (T.V. Smith and 

L.D. White, eds.; Chicago, University of Chicago Press, 1929). 

The relevance of the Thilnen model to urban land use was pointed 

out by W, Isard Location and Space-Economy, op. oit., Chap. 8, 

Appendix. Possible applicability of the Thilnen model to. indivi- 

dual villages and farms was mentioned by A. L8sch The Eoonomics 

of Iocation, op. cite, p.62notelS. For very large scale systems, 

see J.Q. Stewart "Bupirical Mathematical Rules Concerning the Dis- 

tribution and Bquilibrium of Population® Geogrgphical Review 

373461-485 July, 1947, for desoription, and, for same theoretical 

speculations, A. Weber "Die Standortslehre und Die Handelspolitik" 

translated by W.P. Stolper, Internationsl Boopomic Papers, #8. 

The quantity of literature that might be oited in addition is 

truly enormous. 
o e e i
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In judging the "goodness of fit" of a Thilnen system to a situ~ 

ation, one must ramember that, even if the fit were perfect, the 

concentric sonen meed not look very oircular in the geographical 

sense. The syrcem is defined in terms of ideal distances which 

need bear no olose relation to geographical distences. PFormally, 

the situation 1s as follows. Take any "sphere" having the nucleus 

as a center. (S8ince tho distence function is symmetric, in- 

spheres coinoide with out-spheres of the same radius). The "rim" 

of this sphere consiscs of all points which are at a certain 

fixed distance from the nucleus, that distance being the radius of 

the sphere. If we do indeed have a Thiinen system here, all these 

points wlll have Leen devoted to the same land use. Conversely, 

1f for every spbere about a certein point, the rim of that sphere 

1s dev:ted to rne homogeneous land use, we have a Thiinen system 

with the comm/n .centerpoint as nucleus. Now the rims of spheres 

may bs quite irregular objests in the geographical sense (ee80 

elongated a.ong transport arteries, oreven split into several 

pieces, as in Figures J and 5, Section 2.5). The zones will fol- 

low thess irregularities, but the whole will remein a Thinen sys- 

tem in 1,004 standing for all that. 

/s shall be anelysing two special kinds of Thinen systems. 

Thest are defined by the strusture of resource flows within the 

ays‘em, - The first will be called an entrepdt system. This one 

4s sheracterized by the faot that the only flows which ocour in 

t's system are between a site and the mueleus (in either direction). 

23y outpus from a site is transported to the nucleus, snd any 

input to a site is transported from the mucleus. There are no 

direct flows between two non-nuclear sites, L and ¥, but one may 

have a resource flow from L to the nucleus N, followed by a flow
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of the same resource frmm N to M. If we assume that flows follow 

routes whioh are geodesics, this means that the nucleus is between 

every pair of different sites, such as L end M, for which this 

phencmenon occurs. In fact, the simplest way of characterising 

-ntrcpat systems~~and the source for the name--is the condition 

that the nucleus is between every pair of different sites, 1.e., 

that it is an entrepdt for the system, in the language of Section 

2.,1. Purthermore, all "foreign trade" is to be channeled through 

the nucleus; that is to say, there is no direct contact between 

non-npclear sites and the outside world. This follows from the 

condition that the nucleus is a gateway between the system and the 

outside world, egain in the langusge of Section 2.1. These two 

conditions~-the nucleus as ont:npae for domestic affairs and as 

gateway for foreign affalrs--serve as 4 definition for an entre- 

pSt —— an alternative 

The second sub-case will be called a - ° tem. 

Again we assume that flows follow geodesic routes, as follows from 

the efficiency postulates of Section 2.4, Direct-linkage systems 

are characterized by the following property of the metric. 

For every point L at distance d from the nucleus, and for every 

d' such that 0<d!'<d, there is a point M at distance 4' such 

that (L,i,H) is a geodesic, N being the macleus. (N,L) is of 

course also a geodesic, since the metric is symmetric. That is 

to say, the geodesic between any site and the nucleus passes 

through the rim of every sphere of radius smaller than d(L,N). 

(By contrast, in the ancrcpae case the geodesic passes through no 

intermediste pointss it is the direct route between L and N, for 

any point L.) In general, this means that the entrepot asswmp- 

tdon no lonmger holds; the gateway assusption is maintained, how-
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overt: any contact with the outside world is channeled through the 

nuocleus exclusively. 

A simple exemple will illustrate these two cases. Suppose 

the land-use at distence d produces a certain comuodity as an out- 

put, while the land-use at distance d' uses the same commodity as 

en input. In the entrepdt case there would be a flow of the com- 

modity from the rim at distance 4 inward to the nucleus, and a 

counter-flow of the seme commodity outward from the nucleus to 

the rim at distence d'. This could not occur under direct 1link- 

age, for it would .fivolve oross-hauling, which violates the effi- 

ciency postuletes. Through any rim a commodity can be flowing 

inward to the nucleus, or outward from the nucleus, or neither, 

but not both at once. The nucleus is by-passed (except for for- 

eign trade) and producers and consumers in the field may be di- 

rectly linked to each other--hence the name. 

Under what conditions may we expect the formation of Thilnen 

systems, or approximations thereto? When will the entrepdt case 

ocour? Direct linkage? Neither? The answers to these questions 

will help put our definitions and interpretations in perspective. 

The most frequent situation in which a Thilnen system becomes 

established seems to be when an activity of great attraotive power 

locates at a site not too close to another of comparable power. 

The competition for nearby land to reduse transportation costs 

to or from the attractive site then leads to the formation of 

rings or gones surrounding that site, and it becomes the nucleus 

of the resulting Thinen system. In this case the system is 

simply the market area of a headquarter point, in a way. (1t 

should be noted, though, that the analysis of Sections 3.5 and 

3.6 depends on the assumption of a single opmmodity flow. In
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Thiinen systems one deals, in general, with heterogeneous, multie 

commodity flows), But not all market areas are Thiinen systems; 

the headquarter activity may be too inconsequential to have an 

effect on its enviromment. In this case the service system super- 

imposes itself on the established pattern without disturbing it. 

The foous of attention is, in any case, completely different than 

it was in Chapter 3. Here the emphasis is on the determination 

of the pattern in the "field"; what goes on at the headquarter 

point or nucleus is taken as exogenous. In the last chapter pre- 

clsely the opposite was the case. 

A second situation is where a convenient point of access to 

the transportation system assumes the role of nucleus and a 

Thiinen system develops around it., Examples are, a natural harbor, 

the head of navigation on a river, a railway station. Subsequent 

development will generally lead to an intense concentration of 

activity in the immediate vicinity of the nucleus, and this situ~ 

ation then merges into the situstion discussed above. 

An off-shoot of the second situation ocours when an original 

point of entry into a territory becomes the nuscleus of a Thiinen 

system; for example, a trading post or fortification. Here the 

system develops from the inside out, so to speak, waves of set- 

tlers pushing outward from the center. In the other cases, the 

system may develop instead by a "condensation” of the surrounding 

pre~existent population, as in rural-urban migration. 

Onoe the original pattern develops, it tends to be self- 

perpetuating for several reasons, ZTransportation construction 

tends to concentrate along the routes of most intense traffic flow. 

These routes will be between the nucleus and the various hinter- 

land points, so construotion tekes the form of a number of spokes
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radiating from the nucleus in several directions. This re-infor- 

ces the attractive power of the nucleus and tends to "freegze" the 

pattern (but also alters the metric, and therefore leads to some 

re-shaping of the Thinen sones). This 1s the situation in which 

“a11 roads lead to Rome". The growth of population, the rise of 

a substantial ocapital plant around the mucleus, the development 

of tles of trade and employment between nucleus and hinterland, 

the growth of sentimental attachments to the land--all conspire 

in the same direction. 

We turn now to our two special cases, the anh‘opet and direct- 

linkege systems. Once again let us emphasize the idegl ized and 

approximative character of these representations. To say that 

a certain metropoliten area is well represented as an mtrop'o\t 

system is not to say that there is a certain lot upon which the 

entire traffic of the community converges. It is to say that the 

great bulk of traffic in the community ds between nucleus and 

hinterland, where the nucleus is spatially very compact and a 

small fraction of the entire land area. 

By and large, the entrepdt model characteriszes “young" 

Thilnen systems, while the direct-linkage model characterises 

“mature” Thiinen systems, In the begimning, Thiinen rings are un- 

1ikely to form without © strong centripetsl pull of some sort, 

and & consequent polarisation of traffic into the entrepSt pattern. 

The building of a radisl transportation system re-inforces the 

entropdt-like characteristics of the muocleus, and, in fact, if 

padial arteries were the only avallable mesns of transportation, 

and if they were all through-roads, with no intermediate turn-offs, 

the metrical requirements for an entrepot system would be liter- 

ally fulfilled: the nusleus would be between every pair of Aif-
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ferent sites. (See Pigure 1). This 

ocondition is usually not even approx- 

imately fulfilled, but there is 

another faotor at work which tends 

to make the system behave as if the 

entrepdt metric were embodied in the e i 

transportation system. This is the "middieman” tion played 

by the nucleus. Suppose there are several potential buyers and 

sellers of a commodity scattered about the countryside and unaware 

of each other's locations. A market et the nucleus, with which 

all are acquainted, serves to bridge this information gap. From 

the point of view of an omniscient observer, buyers and sellers 

all going to a central market involves cross-hauling and excess 

transportation costs. From the point of view of the participants 

themselves, the shortest route to their trading partners goes 

through the market. In brief, iguorance leads to an -n_trspat 

metric, (Bconomies of bulk transactions might also produce this 

centralization even if information were perfect). 

As the system grows, a number of forces arise to disrupt the 

on:up@b pattern. (1) The farther out potential buyers and sellers 

live, the more circuitous becomes trading at the oonu'r, and the 

more is to be gained by trading in the field end by-passing the 

nueleus. (2) Potential trading partners lsarn of each other's 

Jooations in time, which tends to Aiminish the role of the broker 

at the center. (3) Increased volumes of traffic and trade permit 

new headquarter points of all sorts to spring up in the field, 

having a suffiolent demand to become viable. (i) Inoreased tref- 

£40 oreates ever more congestion at the musleus. (S) The heavy



Faden 130 

investment in capital plant around the nucleus, which initially 

i1s an attractive force, may become a net dispersive force on bal- 

ance, as struotures become aged or obsolescent, and as it becomes 

more difficult to find uncluttered parcels of sufffcient sisze for 

new enterprises. (6) Contact with the outside world, perhaps ori- 

ginally channeled completely through the nucleus, because of 

limited information about and access to the hinterland, tends to 

by~-pass the nucleus as time goes on, information improves, nnd‘ 

the transportation network begins to commect the hinterland di- 

rectly to the outside world. 

The direct-linkage model is perhaps a good representation 

for the "mature" condition resulting from the action of the forces 

liated above. The original om;repfit pattern becomes eroded, 

although the Thilnen ring structure persists for some time by his- 

torical inertia. Perhaps there is a further "senile" stage in 

which even the ring structure becomes disrupted. In the mature 

stage, as here conceived, foreign trade is still largely a nuclear 

prerogative. Domestic trade is handled at numerous centers in 

the rield in addition to the original nucleus. The flow of traf- 

fiec is etill largely radiel in pattern (i.e. it moves between 

distance zones, relative to the nucleus), though much of it never 

reaches or stems from the nucleus itself. 

Pigure 2 is an impressionistic 

lttmt to depict the "flow- 

lines" of traffic in a mature 

Thiinen system. The nucleus 

(circled) has lost some of its ~ 

traffio to subordinate centers, 

and the clean lines of Pigure 1 F‘7 wre 2
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have become blurred, but the radial traffioc pattern persists. 

(Radial traffic will dominate, presumably, as long as the Thiinen 

system of zonal land-uses is not disrupted. Moving along a radius 

one orosses diverse land-uses which can trade with each other. 

Moving along a circumference one encounters only the mame land-use). 

The direct~linkage model, in which all traffic moves without cross- 

hauling over a strictly radial transportation system, may be an 

adequate representation of this ccmplex pattern of central and 

sub-ordinate trade centers. 

In the following sections we will develop formally the entre- 

pot and direct-linkege models. They turn out to be surprisingly 

rich in significant theorems, deduced from relatively mild assump- 

tions. Thiinen systems turn out to be quite tractable mathemati~ 

cally. The decisive mathematical simplification they allow is the 

collapse of the location variable to a single dimension: every- 

thing of locational significence sbout a site is summarizged in 

the single number giving its diitanee from the nucleus. (This 

would not be so if there were geographical irregularities, son- 

ing constraints, or other conditions differentiating sites which 

are equidistent from the mucleus; but if this were so, we would 

1o longer, in general, have a Thilnen system). 

We will strive for a great degree of generality in this ex- 

position. In perticulsr, "land uses" will not be confined to 

steady-state activities, but may be of en inherently dynsmio 

character (e.g. sonstruction or mining). In the next section, et 

least, very 1ittle will be demanded of the geometry of the ays~ 

tem, and the assumptions conserning the motives and capabilities 

of the participants in the system will be very mild indeed. Gen- 

erality of spproach seems appropriate in view of the rich variety
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of situations which are plausible candidates for representation 

as Thilnen systems. ‘ 

Of our two special cases, the entrepot model is definitely 

the more elementary, as one might expect. It is probably also 

the more important, as far as applications are concerned. How= 

ever, even if one is only interested in the qntrcpet case, there 

are sdvantages in studying direct-linkege as well. Many of the 

theorems that hold for the entrepSt case carry over into direct- 

linkage as well (though the proofs are generally more complicated), 

and a knowledge of these gives us deeper insight into what depends 

on what. 

There 18 also a more subtle connection between the two cases. 

By an artifice, it is possible to reduce the enfiropet model 

to a special case of the direct-linkage model. This is done as 

follows. Suppose one had a direct-linkege system with the property 

that no resource appears both as an input to a certain land-use 

present in the system, and as an output from another land-use 

present in the system. (Thus, every resource flowing in the sys- 

tem can be clessified unequivocally es an output, or as an input). 

Every output must then flow to the mcleus, since no other site 

will absorb it; conversely, every input at a site must flow from 

the nucleus, since there 1s no other site to produce it. This 

flow pattern apes the cntupst case, where one also has only 

flows to and from the nucleus. This faot 1s the key to the re- 

duotion. Now take any entrepOt system. We construct en®equi- 

valent"direct-linkege system as follows. All land-uses and 

resources sre the same exoept that the ssme resource outflowing 

and Inflowing in the " system 1s taken to be two 

different resources in the direct~linkege system. The latter
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has the proper:y discussed above, that no resource is both en 

input and an output, It i1s clear that the operational properties 

of the two iystems are identical, and the reduction has therefore 

been accovplished. 

Thi, result gives us the "meta-economic" theorem that any 

result jroved for all direct-linkage systems must hold a fortiori 

for a’l entrepdt systems. We will make use of this faot in the 

sequ:l by sometimes proving theorems for direct-linkage systems 

an¢ omitting a spesisl proof for the entrepdt case. 

)e2. Land Uses and Land Values 

The model to be presented here is developed in the framework 

of the real éstate market discussed in Seotion 3.1, the site-sub- 

stitution principle of Section 3.2, and the concept of regional 

“weight" defined in Seoction 3.3. Until further notice we shall 

be dealing with entrepdt systems only. 

A land use is simply a two-dimensional activity, spread out 

over a finite area of the Earth's surface. In the last chapter, 

this "spread" was of negligible importence, and we assumed it 

away to get Weberian activities, but for Thinen systems it is 

orucial, Weberian activities are located at a scattered set of 

points, and do not occupy significant quantities of land. In 

iinen systems--especially in the entrepSt case--there is intense 

competition to get close to the nucleus, and it is precisely the 

finite spread of activities that prevents them from all jumping 

right on top of the nusleus and dicpcni-u them to a greater or 

lesser distance from the nucleus.¥
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# A more general theory would include the nuisance effects (nega- 

tive neighborhood effects) of activities upon each other as a 

cause for dispersion. To include these would require a much more 

refined analytical epparatus than we have been using. 

  

We assume everything starts at time gero, at which time the 

big real estate auction occurs; land 1s parceled out among poten-~ 

tial renters, who assign land uses to the parcels coming under 

their control. These land uses then determine what transpires 

at all sites into the indefinite future (or up to some time hori- 

gon, if there is one). That 1s to say,all the essential decisions 

are made at the very beginning, snd the passage of time simply 

unfolds these decisions in a foregone manner, with no revisions 

occurring, no new information accruing.# 

  

# The system is "metastatic” in the terminology of W.S. Vickrey 

Motastatics and Macroeconomics (New York, Harcourt, Brace & World, 

1951&). Pe3ft. 

  

For simplicity we assume that time is discrete. (No great 

difficulty would attend the use of continuous time). The land 

use assigned to the (two-dimensionsl) site L determines a re- 

source bundle a(L,t) to be delivered from the nucleus to the site 

L at time &, and a resourse bundle b(L,t) to be delivered from 

site L to the nusleus at time ¢, for t=0, 1, 2... (This usage 

roverses the roles of a(L,t) and b(L,t) from those of Section 3.3; 

the reason 1s that we are now foousing on the hinterland rather 

than the Weberian nucleus; an input to one is en output from the
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other, and we want a(L,t) always to stand for inputs and b(L,t) 

always to stand for outputs). Let us suppress"L] and write 

84y for the quantity of resource i arriving at time t, and by, 

for the quantity of resource i departing at time t. 

We next assume that, for all 1 and t, the a,, and by, a8 

measures on the system of sites, are sufficiently smooth to have 

spetilel densities at all points (so that we may measure the arri- 

val of a given commodity at a given time at a given point in, say, 

tons per sere). It will cause no confusion if we let the same 

syubols, a;, and by., stand for densities as well as qun.:tiuol. 

depending on context. Until further notice we will be working 

with densities at a point, so that all costs, 1deal weights, ete., 

are to be understood as "per unit area”. The advantage of this 

procedure is that we now have a simple point location, and distan- 

ces to and from this point can be defined unambiguously. 

Just as in Section 3.3, we may define the weight-density of 

an activity in terms of the ideal densities of its resource imputs 

and outputs (or the weight, in terms of the ideal weights of 

these). The weight-density is the sum over inputs and outputa, 

and over all time, of the ideal densities of the resource-bundles 

involved. A spelling-out will help to oclarify this definition. 

Suppose the metric has already been defined, and let pyy be the 

cost, in ourrent dollars, for transporting a,, over unit (1deal) 

aistence. ’“/l' is the 1desl weight of agy, where s, 1s an ap- 

propriate discount fastor. . . (sy=(ltry)(l4r,)..(142), where 

the r's are short-term discount rates), Similerly, let pj, be 

the ocurrent cost for transporting bu over wnit ideal distance. 

Then the weight-density of the sctivity is 2,5; (Pl(-"'fff)/ze‘
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As we noted in Section 3.3, this formulation allows us to take 

account of improvements in transportation technology, which are 

reflected in secular declines in p and p'. Also, rush hours, for 

example, will be reflected in temporary rises in p and p'. 

The welght-density of an activity has a simple meaning in 

the entrepot case. It is the saving in total transport costs, 

per unit area per unit ideal distance, that results from locating 

the activity in question closer to the nucleus. 

The once-and-for-all strusture of the real estate auction 

means that leaseholds are perpetual; for our purposes, we need 

not distinguish these from outright sales. It is then appropriate 

to refer to the prices at which land is exchanged (or reserved 

for his own use by the owner) as land values rather than as ren- 
  

tals. Land values are dimensionally comparsble to land-use 

welghts: both are measured in time-gzero dollars. Similarly, 

lend value-densities are dimensionally aol.pu'nblo to welght~den- 

sities, both having the dimensions "time-zero dellars per unit 

area”. 

The geometry of the system may be sumnarized in a single 

function: the access perspective of the nucleus, ’4(:‘), giving the 

total available area in ne closed sphere of radius r ebout the 

nucleus, for all r. (See Seotion 2.5). We put no restrictions 

on ,«(r) here, except that it must be non-negative and 
mneredging 

1 Neither distance nor area need have mmy close 

  

# The desirability of using "non~RFuclidean” geometries in this 

oontext has been stressed by L. Wingo, Jre, mmflgn.m 

Urcben Lend, op. 6it., p.75-80, and W. Alonso Igoation and Lend Uso, 

ope 6it., p.130-133. 
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resemblance to geographical distance or area. For distances, 

this fact has already been discussed at length. For areas, one 

may wish to exclude land which is geographically unsuitable or 

pre-empted for public uses. There is en important conventional 

element in choosing which land is to be included in our system, 

and this faot may be utilized by the resourceful researcher as 

follows. 

Below we shall make some rather strong homogeneity assump- 

tions about the sites of the Thilmen system. If in fact the asctual 

sites are rather diverse in character, the assumptions can still 

be salvaged by restricting the system conventionally to sites 

which are fairly homogensous--e.g. to land which is goned two- 

femily residential, or to land on which four-story warehouses 

exist. It turns out that all the results of this section, at 

least, hold for such a fragmentary system. Otherwise stated, one 

may stratify a heterogeneous Thiinen system into homogeneous 

strata so that the results of this section hold within strate, 

though not necessarily between strata. 

A special problem arises with multiple-story structures. 

The simplest way of vegerding, say, a tem-story building covering 

en acre is just as another land use which happens to involve 

using that building. A Aifferent approach regards the building 

as a way of inoreasing access perspective, by placing ten acres 

where there was one aore before (less than ten, if one takes 

sccount of setbacks, stairwells, elevators, etc.). The trouble 

with this second spproach is that stories are not perfect sub- 

stitutes for each other, and that, while some activities may 

thrive on upper stories (e.g. office activities) othersdo poorly 

(e.g. assembly-line produstion processes). (One might say they
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have different degrees of stackability}. .The first approsch will 

be used in this chapter; a simple model more akin tothe second, 

in the next chapter. 

The remaining assumptions for our entrepdt model are those 

used in setting up the site-substitution principle of Section 3.2. 

To recapitulate briefly: all sites having the same area are assumed 

to be equivalent, in the sense that any land use techniocally 

feasible on one site is feasible on another, and there are no zon~ 

ing laws imposing different constraints on different sites. All 

sites are equally available (or unavailable) to all individuals. 

There 1s no dlsorimination, no absolute locational preferences, 

and market information is perfect. 

Two pointe call for commemt. First, one may wonder how to 

reconcile the assumption of perfect information made here with 

the sssertion that imperfect information is an important cause for 

the formation of ontrepat systems, which we made in the previous 

section. The answer is that the degree of "perfection" is differ- 

ent. Perfect market information requires only that people know 

the going prices and locations of all parcels. This is compat- 

1ble with not knowing the locations of one's potential trading 

partners. Ignorence of the latter is what centraliges trade. 

The second point conserms the divigibility of land uses. 

Suppose a given land use covers two mores. If each acre is con~ 

sidered to be a separate site, then by the equivalence assumption 

the overall land use could be separated into two pleces at non~ 

edjacent locations without prejudice to the feasibility of either 

half of the original land use. The equivalence assumption impli- 

oitly denies the influence of the environment on what 1s techni- 

cally feasible at a site, even if the “environment" is, say, the
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other half of a building. In other works, neighborhood effects 

are ignored.# The error so introduced is probably not too impor- 

  

# In this case, positive neighborhood effects (usually called 

"indivisibilities"--a less perspicuous title). We have already 

mentioned that an adequate treatment of neighborhood effects 

would require & more profound set of concepts than we have been 

using. 

  

tant if the realm of influence of neighborhood effects is 

very small in relation to the size of the entire Thinen system: 

for example, if they ocour only within individually~-held parocels, 

and these are very small parts of the whole. 

This last group of assumptions leads to the site-substitu- 

tion principle of Section 3.2, which states, it will be recalled, 

that, given one's entire location plan except for the location of 

one activity, one chooses the site minimizing the suwm of transpor- 

tation costs plus on-site costs. On-site costs here reduce to the 

single item of land value. (Resources originally located on the 

site are included in the real estate packages all other resource 

inputs come from the nucleus, and are racorded under transport 

costs). Transportation costs, by ouwr construstion; are the prod- 

ust of the weight of the land use by the (ideal) distance bdetween 

site and nucleus. 

It is instruotive to compare the form assumed by the site- 

substitution prinoiple here with the form it assumes for Weberian 

aotivities. Land value is negligible for Weberlan astivities, 

but not for land uses in the Thilnen context. But this complica- 

tion is more than compensated for by the great simplicity of
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transportation costs in the entrepbt case. In general, for 

Weberian activities resource flows come and go in eny number of 

different directions, precluding any simple relation between cost 

and location. 1In the ontrep'ét case, all flows come and go between 

the site and a single point--the nucleus--and transportation 

costs are simply proportional to the distance between site and 

nucleus. This fact is the key to the great simplicity of the 

mtrepat case, and the explanation for the rather powerful theo- 

rems which can be derived in this case. 

We will use the site-substitution principle in density form. 

For our oneropst case, this states that one chooses the loocation 

minimiging the sum of land value-density plus the product of 

woight-density by distance to nucleus. Only in this form does 

"distance" have an unambiguous value.i 

  

# The meaning and validation of the site-substitution principle 

in density form involves the comparison, between competing sites, 

of a sequence of regions about thess sites, the sequence shrinking 

to gero as s limit in diameter end area. It will suffice to 

think of "spheres®, of area €, about the competing points, 

where €18 "very small™. One then has to find the optimal sphere 

in which to locate the land use in question, and this sphere is 

determined by the site-substitution principle in density form, 

as applied to the centers of the respective spheres. 

  

80 much for preliminaries. We now oome to the substantive 

resulte. The first is a general ordering principle for land uses. 

The following omes refer to the struoture of land values. 

 



Theorem 1: In an entrepét syatem, in which the site-substitution 
principle (in density form) is satisfied, land use weight-densities 
ue:mn-incnaulm function of distance from the nuoleus (except 
possibly at a set of distances of Lebesgue-measure zero , for which BT 1ot ampare encTaT bt b0, e wumedlstancaf, 7 " 
r" from the nucleus; let v! and v" be the land value-densities at 
the two points; the land uses being run at these points are A! 
and A", having weight-densities w' and w"; assume that r!< p¥, 

The user of point L' preferred this location for A¢ over the 
feasible location at L". Total land value plus transportation 
costs are vi+wirt at L!, and would be v w's" if he chose to run 
A' at L". By the site~substitution principle we must then have 
1) Vitwirt g viqwiph, 

Analogous reasoning for the user of point L" leads to the inequal- 
ity 

2) Vi wirt g vy wipr, 

Adding these inequalities and canceling yields (r"=rt)(w"-wt )S0, 
and, upon dividing by the positive number (r=rt), we get wiSw", 
This proves "non-increasingness" when the two points are at dif- 
ferent distances from the nucleus. When the two points are at 
the same distence from the nucleus, however, the last step breaks 
down, and no conclusion can be drawn: there may land uses having 
different weights at a given distance. But 1t may be shown from 
the "mon-inoreasing” property that such anomalies can ocour at 
most at a countable number of points. (Ome sanmot place an un- 
countable mmber of non-overlapping intervals on the real 1line). 
This proves the parenthetical qualification. QED 

The main conclusion of Theorem 1 will be called the 

L 1 s if r'<r", then w' e,
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Figure 3 portrays some restrictions imposed by, and possibi- 

1ities compatible with, Theo- 

rem 1. Distance ry is one 

of the anomalous distances, 

and activities with weights 

ranging from 'h to '5 cocur 

at that distance. Between 

r, and ry is a flat stretch Y, 

in which all land uses have DicTinec from nucleug 

weight~density v At T, Fnjuu 3 : 

there is a disoontinuous drop in welghtedensity frem v, %o Wiy 

as might ocour at a sharp break in land uses. 

The enomalous case might occur in the following situations’ 

Suppose, because of freight absorbsion or some other quirk in 

&
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the transportation system, that the distance from the nucleus were 

equal over a finite sone of the ontrepfit system. Then it is pos- 

sible that different land uses with diverse weight-densities 

would co-locate in this sone. Whether this case has any practi- 

oal significance is & moot question. 

The reader will have noticed that no use was made of the 

Thiloen assumption,that land uses at a given distance are uniform, 

in Theorem 1. This was done to see to what extent the Thiinen pat- 

tern could itself be derived from more fundamental assumptions. 

Theoren 1 indicates that we can come close to, but not quite 

reach, the Thinen pattern: except for the qualification, any two 

land uses at the same distance must have the same weight, though 

they need not be identical. If one makes the Thilnen assumption 

outright, then of course the qualification to Theorem 1 may be 

dropped. Oceurrences such ss that at ry in Pigure 3 cannot hap-
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pen, and we may simply state that weight-density is a non-inoreas- 

ing function of distance from the nucleus. 

Conoclusions similar to that of Theorem 1 are quite common in 

the literature, though they are usually phrased in terms of "inten~- 

sity of ocultivation" or "density of ocoupancy”, rather than 

weight-densities.# The fundamental contribution of Theorem 1 is 

  

   
# Of. E.S. Dunn The I 0 Agricult P ction (Gaine 
villo,bmivorlity g0 ) !4 6 .z 

4nd Urban Land, 

  

in the weakening of assumptions. The remarkable generality of 

the conditions under which weight-density decreases with distance 

seems never to have been realized. We recapitulate as follows. 

1) The land uses may be quite complex in form, involving multiple 

products, and inputs and outputs in an erbitrary time pattern. 

The concept of welght-density must of course be cor= 

respondingly more sophisticated then, say, tons per sere of outpute 

2) The land uses may be completely variegated by type. Almost 

21l treatments have been of sgrioultural and/or residentisl land 

uses, but we may include manufacturing, commercial, office, reli- 

glous, and other land uses, all bidding against esach other in the 

same oznibus reel estate market. 

3) We need not mssume any simplicity or homogeneity in the pref- 

erenses 0f the various land users. Some may be profit maximisers, 

others not. Tastes in residences and consumer goods may differ 

widely. The only requirement, besides the ones of no disorimina- 

tion and no absolute location preferense which have been disous- 

sed, is the trivial one that, ceteris paribus, more money is pre- 

Lorved to less. (See Seclion ),
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) Nothing need be assumed comornim the incomes of individuels 
or their technical capabilities. 

4) Individuals need not be simply-located. They may have multi- 

ple residences, or multiple businesses, or several of each. The 

discussion of Section 3.2 indicates that such multiple-location 

has no effect on the validity of the site-substitution prinoiple. 

5) Aside from the strong entrepdt assumption, the geometrical 

assumptions are so weak as to be trivial. 

The proof of Theorem 1 is of independent interest, due to 

ite great simplicity. It will be shown below that the same line 

of srgument gives substantial information concerning the struc- 

ture of land values. 

We now go on to spplications of Theorem 1. Theorem 1 cannot 

tell us which land uses, out of all those technically feasible, 

will aoctually be put into practice on some site or other. Nor 

can it tell us how much territéry these land uses will cover. 

If we are already given the fact that two land uses are belng put 

into practice somewhere in the system, Theorem 1 tells us which 

will be more central and which more peripheral; that is, it orders 

land uses by their distances from the nucleus. (The only ambigu- 

ity results from the borderline case when two land uses have the 

same weight-density.) 

A fairly diverse number of questions may be ralsed whioh are 

in a form suitable for the application of Theorem 1. For example, 

why do buildings tend to get taller as we approach the center? 

Wy does land speculation occur largely on the periphery of a 

thilnen system? Why are office-buildings ususlly quite central? 

What kind of manufacoturing sctivities tend to de-centralize? 

Thy does population density fall off with distance, and does it 

always? What determines the distribution of people by inoome? 

By automobile ownership?
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One can, of course, find special-purpose explanations for 

each of these questions, and others of the same form. But Theo~ 

rem 1 permits a unified approach to all of them. There are of 

course caveats to be observed. The ontropst assunption, and the 

premises underlying the site-substitution principle, may be so 

badly off the mark that Theorem 1 becomes useless for explanatory 

purposes. Also, these questions are not specific enough for 

Theorem 1 to make an unhedged prediction; consequently, only & 

statement of "tendencies" can bd expected. 

Let us first apply Theorem 1 to multiple-story structures. 

Nultiple-story structures are, in effect, several land uses 

staocked one atop the other, and surrounded and held in place by 

some edifice. Sinoce they are all over the same site, it follows 

that the weight-density of the whole is the sum of the weight- 

densities of the separate land uses, plus the weight-density 

added by the original construction (coming and going of construc~ 

tion workers and equipment, inflows of cement, stesl, glass, ete.) 

We may expect, then, a fair positive correlation between number 

of stories and weight-density (not perfect correlation, since a 

smaller number of "heavy" one-story land uses can outweigh a 

larger number of "light" ones). From Theorem 1 it follows that 

the "denser" high-rise structures should be found toward the center 

and the low-rise structures (and the open land) should be found 

toward the periphery. 

Next, land speculation. By this we mesn the deliberate 

delay in initiating a land use on a given parcel, for any reason 

whatsoever. Now a delayed land use ocan be thought of as simply a 

different land use, related to the original by having all inflows 

and outflows displaced forward in time, may by T periods, and
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having the first T periods blank., This may be called the T-dig- 

placement of the original land use. = How does the weight-density 

of these various land-uses depend on T? As a rule, the weight- 

density should decline with increasing T, due to a combination of 

discounting and secular improvements in transportation. (If 

Pyy/2; 18 a Qecreasing function of ¢, for all i, it is easy to 

show that density must decline with displacement). Now apply 

Theorem 1. If both a original land use, and a displacement of 1t, 

are spplied somewhere in the entropat system, the displacement, 

being lighter, will lie beyond the original. If a whole sequence 

of aisplacements co-exist, they will be ranged in order of in- 

creasing displacement outward toward the periphery. This gives 

a rough ploture of the usual pattern of land speculation, which 

concentrates in the suburbs. 

This whole argument can also be turned around. Suppose we 

consider two land uses, a "heavy" one and a "light" one. It may 

be that a displacement of the "heavy" land use still remains 

"heavier" then the original "light" one. Suppose that, as it 

turns out, the original "light" use, 

and the displaced "heavy" use, 6o~ 

exist in the entrepdt system. At a 

certain moment in time, the "light" 

use will be already under way, while 

the displaced "heavy" use will ¢till 

be in the offing, the land destimed 

ro:-ifimu silent, waiting its appointed hour. By Theorem 1 the 

displaced activity will be located more centrally than the "1ight" 

one, and cross-sectionally the system will resemble Figure i 
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Zone III has the "light" use on it, and, together with sonel, it 

ig already huming with activity; while gzone II, which is reserved 

for the displaced use, is still inactive. This phenomenon is 

called lespfrogzing. It is interesting that it can arise in a 

perfect market, so that the ususl explanations in terms of diverse 

expectations and imperfect information among landowners need not 

be invoked.i 

  

# Gf. W.R. Thompson A Preface to Urban Esonomios, op. oit., p.326f. 

This is not to deny that these factors also play a role, perhaps 

the major role. 

  

Spatial differentiation by major type of land use--e.g. 

manufacturing, residential, agricultural--may also be treated by 

Theorem 1. The characteristic range of densities of these major 

types places them in a characteristic position in the sequence 

from centrality to peripherality. Thus, the low density of agri- 

culture makes it peripheral. Manufacturing offers an instructive 

example, because the land uses embraced under this heading have 

such an extreme range of densities. The relatively ocentral manu- 

!'not.nu'mg activities are those which lend themselves readily to 

stacking in multiple-story structures, while long low-slung plants 

are oharssteristically suburban.# 

  

@ Ouriously, one gets the impression that so-called "light" manu- 

faoturing is more typically stacked in maltiple-story buildings 

then "heavy" manufacturing, end that the former therefore tends 

to have the heavier weight-density. A plant in the garment dis- 

triot is denser than a sprawling steel mill, for example. 

PRE———————————
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The remsining applications of Theorem 1 to be discussed here 

oonoern residential land uses. The most important contribution 

to the weight of a residential land use will usually be the trips 

people make to and from the residence. The weight contributed by 

a given trip depends on who 1is making the trip, when it is being 

made, and the mode of transportation, among other factors. The 

sumnation over all trips by a given person determines his total direct 

contribution to the weight of the land use. (He will meke indi- 

rect contributions in the form of extra inflows of consumer goods, 

and in other ways). Finelly, the sumation over all persons 

gives the total (direct) contribution by person-trips to residen- 

tial weight. To convert this to weight-density, one divides by 

the area of the site occupled by the residentiel land use, the 

area including homesite, grounds, garage space if any, etc. 

Very schematically, we may analyze the weight-density con- 

tributed by trips into the product of three factors: (1) cost 

per uwnit (ideal) distance per trip; (2) frequency of trips per 

person; (3) persons per unit area. If the firat two factors are 

fized, then weight-density will vary directly with population 

density, and Theorem 1 then predicts that population density 

should in gemeral decline with increasing distance from the nu- 

ocleus. But with diverse population types, weight~density need 

not vary monotonically with population density, and the latter, 

therefore, may behave irregularly over Space.w# For example, 

————————————————————————— 

® ’bouibinty noted by Wingo, op. ¢it., p. 100. 

  

retired people will probably make foewer trips per person on the 

average than employed people; also, their costs per unit distance
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will probably be lower, since they do not forego Jncome in spend- 

ing time traveling. Thus the contribution to weight of each 

retired person will be light, and as a result we may find densely 

populated retirement comsunities at a distance that would sustain 

only a very sparse employed population density. 

The relation between income and residential location has 

been the subject of a sisable literature. How does average income 

of residents vary with distance from the center?s# According to 

  

@ The empirical data on this question are quite mixed. See 

L.P. Schnore "The Socio-economic Status of Citles and Suburbs® 

American Sociological Review 28:76-85 February, 1963, and "On the 

Spatial Structure of Cities in the Two Americas", Chapter 10 of 

The Study of Urbanization (P.M. Hauser snd L.F. Schnore, eds., 

New York, Wiley, 1965). For theoretical approaches see 

Wingo, op. ¢6it., p.95-100; Alonso, op. 6it., 

Pp.106-109; G.S. Becker "A Theory of the Allocation of Time", op. 

cit., p.Slif. 
  

Theorem 1, the answer to this question depends on how weight-den- 

sity of residence varies with income. Suppose we combine the first 

two factors--transport-cost per unit distence, and trip frequensy 

==to give transport cost inourred per unit distance per unit 

time (per persom). For short, let us call this gopt-intengity. 

Let us also take the resiprocal of the third factor, to get area 

per person., We then have the following theorem.
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Theorem 2: Suppose (1) a Thilnen entrepdt system satisfies the site- 

substitution principle; (2) only personal trips contribute to the 

weight-density of residential land uses; (3) there is a population 

characteristic, y (e.g. income), such that the choices of cost- 

intensity, ¢, and area per person, a, are both differentiable 

funotions of y. Then distance from the nucleus increases with y 

if the elastioity of g exceeds the elasticity of ¢ (both with 

respect to y), and decreases with y in the opposite case. 

Proof: The welght-density of a residentlal land use is propor- 

tional to o/a. This decreases with rising y if the elasticity of 

a exceeds the elastidy of g, and increases in the opposite case. 

Now apply Theorem l. RED 

The "elasticity of area per person with respect to income" 

is self-explanatory, but the meaning of "elasticity of cost-inten- 

sity with respect to income" requires some discussion. As income 

rises, the time spent in traveling becomes more expensive, &s & 

rule, in that 1t probably represents greater foregone income. e 

time-delay is the only element of transportation cost, and no 

other adjustments are made, one might assume that cost~intensity 

is proportional to income.®# 

  

# This 1s the procedure of Gary Becker, ibid., in his very suc- 

oinot model. The elasticity of ¢ is then equal to one, so that 

distance rises with income if the elasticity of a exceeds one. 

This is also Beocker's result, of course--obtained, incidentally, 

by & completely different route than the proof of Theorem 2. 
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There are usually several factors which make the rise in 

costeintensity less than proportional to the rise in income, how- 

ever. (1) Larger incomes--at least past a certain point--have a 

greater fraction of unearned income than smaller, and unearned 

income dces not make time more expensive; (2) monetary transpor- 

tation costs do not vary with income (for the same mode of trans- 

portation); (3) in response to rising time-costs with income, 

there may be a cut in trip frequencies (e.g. by making more over- 

night trips, or by ocutting down on recreational trips); (4) in 

response to rising time-costs 

one may choose faster means of transportation (e.g. if congestion 

1s not too severe, private automobile, which avoids walting for 

public transportation; or, one may simply drive faster); (5) over 

and sbove the substitution effect of point(l}), a puke income ef- 

feot leads wealthier people to own more and better automoblles; 

this makes them generally "lighter"” in ideal weight and so re- 

duces transport costs.¥ 

  

# But also leads to a more than compensating inocrease in trip fre- 

quencies (see Section 1.6.) 

  

If the overall effect of these factors is to make the elas- 

tioity of ocost-intensity less than one, then the elasticity of 

demand for space can also be less than one without implying that 

distance from the nusleus declines with inocreasing income.
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It is rather surprising that this entire discussion could 

be carried on without having to refer to land values at all. 

We now get back on the main track, and see what can be deduced 

sbout the pattern of land values in our entrepdt system. It will 

be shown that (1) land value is a function of distance from the 

nucleus; (2) this fumction is continuous; (3) this function de- 

oreases up to any distance at which land 1s not permanently va- 

cant; (l) if weight-density 1s continuous at a certain distance, 

thenthe derivative of land value exists there, and it equals 

minus weight-density; (5) land value is e convex function of dis- 

tance. 

These statements will be proven in a sequence of theorems. 

The basis on which they all rest are the inequalities (1) and (2) 

used in the proof of Theorem 1; we repeat these here for conveni- 

ences 

1) vitwir! £ v'4wir"; (2) vi+w'r" € v!w'rr, 

where v! and v" are land value-densities, w' and w" are weight- 

densities, and r' and r" are distances, for the points L' and L", 

respectively, with land uses A' and A". 

Theorem 3: Land value-density is a function of distence from the 

mcleus. 

Proof: We must show that if r'sr*, then v'sv". Assuming the first 

equality and substituting in (1) and (2), we get v'§v", and 

v'§v’; therefore v'sv’ QED 

fhis result should be contrasted with Theorem 1, where it c;u.ld 

not be proved that equi-distent points carried equi-dense land
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mm: Land value-density decreases with distance up to any 

point at which land is not permanently vacant (i.e. up to any 

point at which weight-density is still positive). 

Proof: Assume that r'<r". From (2) we get v'-v"F w"(x-"-r')>£-., 

Theorem 53 Land value-density is a eofitinuau- function of distance. 

Broof: By a re-arrangement of (1) and (2) we get 

3) W (rtept) € vt €wt (n"ort), 
Now let, say, L" be a variable point and approach L' as a limit. 

As r"r', both ends of this double inequality go to zero, and so 

vy, 4 QED 

Again, both these theorems offer instructive contrasts with 

Theorem 1., It cannot be proved that weight-density decreases 

with distance, but merely that it does not increase. Also, 

weight-density need not be a continuous function of distance. 

Theorem 6: If weight-density is continuous at r', then the deriv- 

ative of value-density exists at that distance, and equals -w'. 

Proofs Suppose weight-density is continuous at r!, and that 

r'<r", A re-arrangement of the inequalities (3) yields 

‘D -w" § (vI=v?)/(r"=r?) 3 ~w'. 

As r" epproaches r! from sbove, =w'-s-w', by continuity; there- 

fore, (v'=v!)/(r%=rt)~>-w'; for r"<r!, merely reverse the signs 

in (l}) and repeat the argument. QED 

(Theorem 6 can be strengthened slightly to read: at any dis- 

tance, the (right-hand, left-hand) derivative of value-density 

exists, and equals minus the (right-hand, left-hand) limit of 

weight-density at that distance.) 
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Theorem 7: Value-density is a convex funotion of distance (i.e., 

if three distances r', »", and r"?, ane such that 

" zArt + (1-\)r"?, where 0<\<|, then v'@ Av! + (1-))v"t.) 

Proof: Assume the premise; we have v+ w'r" < v' +w'r!, and also 

VIew'e" € vP 4 wirtt;  multiply the £irst inequality by ), the 

second by (1-)\), end add, to get 

VO AV 6DV e D e ], 
From the premise, the terms containing the r's drop out, leaving 

Vg AW =)V w 
We portray a typical value-density curve in Figure 5 compat- 

ible with Theorems 3 through 7, just as we did for weight-density 

in Figure 3. The value-density curve is much more restricted, 

since it must be single- 

valued, strictly decreasing, 

continuous and convex. Be- 

£ 
fore Tys and between T, E vs 

and 35 1t is strictly & 

o convex. Between rj and ‘: v, 

Tos and after r3, it is > “ 

linear. Thers are 

kinks® at ry, T,, and ;l . " 5 i : 

r3. The linear stretches = “'F“ AR 

eorrespond to flat stretches s = 

in the weight-density curve, and the kinks correspond to discon- 

tinuous drops in that curve. 

These results must be interpreted with some care. All land 

values are as of time gero, when the landscape is uniform in geo- 

graphical characteristics. As diverse uses are put into opera-
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tion, this pristine uniformity will, in general, be destroyed. 

The following interesting possibility then arises. Suppose some 

inner ring has a land use with a quick "pay-off" that eventually 

leaves the land in a dilapidated condition, while some outer ring 

has a land use with a slow "pay-off" that leaves useful struc- : 

tures. We may then find at some future time that the neat ocross- ! 

sectional pattern of Figure 5 has been undermined, and that land 

values actuslly rise over some distance ranges. This possibility 

cannot be laid to rest without further assumptions. A simple 

assumption that would do the trick is that no land uses modify the 

technical characteristics of a site (e.g. no construstion or min- 

ing occurs). The decaying cores of cities may show that the pos- 

8ibility raised here 1s of more than theoretical interest. 

Concerning Theorems 3 through 7, the same general comments 

apply as were made concerning Theorem 1. Similar results have 

been obtained in the literature. Owr treatment is more rigorous 

and simple, and, most important, our results hold under far more 

general conditions than have been assumed. (Cur assumptions are 

the same as for Theorem 1). 

Figure 5 gives the pattern of land values in terms of 1deal 

distances. In terms of geographiocal distances the pattern may bde 

rather sorambled. For example, our results are quite compatible 

with there being a region of high land values encircling a suburban 

railway station, since such points may be functionally oclose to 

the nucleus. There is, however, at least one case in which the 

pattern of Figure 5 carries over to geographical distances, snd 

which has practical significance:
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ITheorem 8: Suppose ideal distance from nucleus is an increasing 

concave function of geographicel distance fram nucleus, and that 

--as in Pigure 5--value-density is a decreasing convex function 

of ideal distance. Then value-density is a decreasing convex 

function of geographical distance. 

Proof: Let g be the function mapping geographical into ideal 

distence, and v the function mapping ideal distance into value= 

density. We are to show that the composition vog is decreasing 

and convex. ] 

X >x" wo olx!) 35(x") W v(9(x) < V(9(x") | 5o 
Veq g Jccrusms. 

S\-":ou X"« M+ (=)x" , vwhere 04X <t Than 

9(x") 3 A9 (x) +(-2) 5(x") L\/ uht‘wfi of 9. . 

V(1)) & v(a4(x) f(r-A)y(x”)) $ AV(§6) +6-)vHGM) 

The first inequality on this line follows from v being decreasing, 

the second from v being convex, Together they imply that veg is 

a convex function. QED 

The congavity condition on g means that, the more distance 

one has lfiudy covered, the less costly it is to go an extra unit 

distence. Many freight tariffs have this property, but it is 

probably false for car travel, because of increasing fatigue and 

scarcity of time.w 

  

# Cf. E.N. Hoover The Location of Economie Activity, op. 6it., 

P.75¢. Hoover has the essentials of Theorem 8, but states 
ambiguonsly: and ajco 

the condition on g,\u less-than-proportional response,
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as diminighing marginal response, which is correct. The former 

condition (which is diminishing average response) is not suffi- 

clent to derive the conclusion of Theorem 8. 

  

b+3 Direcb-linkage Models 
It will be recalled that direct-linkage models are Thilnen 

systems in which sites may ship directly to each other, rather 

than having to trade only with the nucleus. It was pointed out 

in Section l4.1 that an ontrepat model was equivalent in a certain 

sense to a special kind of direct-linkage model, and the results 

of this section will, therefore, have as corollaries corresponding 

results concerning ontrupat models. 

Direct-linkage models retain the indispenssble "one-dimen- 

sional” feature of Thfinen systems. But the concepts of "weight" 

and "weight-density", which played so fundamental a role in the 

last section, are fairly useless here. The reason is that, while 

some of the inputs and outputs of a land use may travel inward 

toward the nucleus, others may travel outward. The net inward 

pull on the land use is given by the weight of the former compo- 

nents minus the weight of the latter. In the ontrcfit case every- 

thing pulls inward; in the direct-linkage case there are opposing 

pulls, and--this is the crucial point--which components pull in 

which directions depends on the rest of the systems The effective 

net weight of the land use is no longer mn intrinsic property of 

the use alone. 

To compensate for the dropping of the mwofit asgumption, 

we will, later on, strengthen the geometrical assumptions, and 

assune that access perspective is a power function. This case,
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which includes the Euclidean line, plane, and space, is less re- 

strictive than eppears at first glance, and yields some strong 

and interesting results. 

The previous section was framed in a soclal equilibrium set- 

ting, with very little being essumed about the preferences or capa- 

bilities of the individual participants. The present section, by 

contrast, will concern itself with the optimal assigmment of land 

uses with respect to a single overall preference order, which m 

makes it more appropriate for a regional planner, or for a farmer 

laying out his fields. The preference order will be of the .oost- 

minimization type--skin to that of the headquarter location models 

of Chapter 3--or, more generally, of the income-maximization type. 

(The meaning of these phrases in the present context will be 

spelled out below). 

One can sometimes show that a social equilibrium system be- 

haves as if it were maximizing a single utility function. If a 

direct-linkage model can be shown to have this propei'ty, then the 

results of this section will be applicable to it. An interesting 

example will be given later. 

We will need a more detalled discussion of land uses and 

traffic flows in this section than in the last. Let A(r) be a 

function giving, for every distance from the nucleus, r, the land 

use, A, running at that distance ("A" for "aotivity"). By our 

Thiinen assumption, every site at distance r carries the same land 

use, 50 A(r) is single-valued. A(r) determines two funotions, 

agr) and b(r), giving the input and output densities, respectively, 
by size, 

.at distance r. Both a and b are vectors of rather - 

ranging over all commodity-time combinations: 4 ® faid ; os {4503, 

All the components of a and b have the same dimensions, vig.,
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(1deal) weight per unit area. 

The funotion g(r) gives the traffic flow across the rim of 

the"sphere"of radius r about the nuoleus.s# We adoph the conven- 

  

# An ambiguity in the definition of q(r) arises if there is a 

finite blob of area at a given distance. We adopt the convention 

that q(r) is continuous from the left at such distances. For ocon- 

sistency, the integrals below are to be understood as defined on 

olosed half-lines. 

  

tion that an inflow toward the nucleus is positive, and an out- 

flow negative. q is a big vector of the lugmm“m as & or 

b, so that q(r) gives, for each distance, the entire history of 

flows of all commodities: 9 ![‘1‘:& All the components of q have 

the dimension of (ideal) weight; thus q“(r) is the ideal weight 

of commodity i at discrete time t flowing through the rim of the 

sphere of radius r. 

(In the entrepSt case, q would have to be twice the size 

of a or b, since it would have to acoount for flows in both direc- 

tions for each commodity snd time. Under direot-linkage, there is 

po cross-hauling, so, for each commodity and time, either the in- 

ward or the outward flow (or both) is sero, and we may adopt our 

simple sign convention). 

The functions a(r), b(r), and q(r) are connected by a funda- 

mental material balance relation: 

Tworesd: 4(n) * j»(u') -q(r))cfr(r) 
r 

‘L"" ,4(?) is the access perspective of the nucleus, and we use 

the Stieltjes integral notation.®
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# We use the standard convention that the integral of a vector 

function is the vector whose components are the integrals of the 

component functions. 

  

Ercof: For any commodity i and time t, b, (r) ~ a, (r) is the net 

output of that commodity at that time per unit area at distance r. 

The differentisl of access perspective gives the area available 

for the activity A(r) over a small increment of distance, and the 

integral of their product from r to infinity gives the total net 

production of 1 at t in the entire Thilnen system outside the (open) 

sphere of radius r about the nucleus. 

Part of the definition of direct-linkage is that trade with 

the outside world occurs only through the nucleus. This being so, 

a net production surplus has nowhere to go but through the rim of 

the sphere toward the nusleus. Conversely, a net production def- 

i0it has nowhere to be made up from except by an outflow through 

the rim of the sphere away from the nusleus. 

This is true for each i,t combination, and all these results 

together may be sumarized in a veoctor integral. Theorem 1 then 

follows from our sign convention that inflows are positive and 

outflows negative. QED 

It is instructive to contrast Theorem 1 with the result in 

the ontrcpfit case. Inflows and outflows must be handled separ- 

ately. The vector of inflows toward the nucleus at distance r is 

given by j“ biy) ‘f‘(') : and the vector of outflows away from 

: 7t 
the mucleus is given by j > Q""'rlflnmhon with Theorem 1
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shows that, for the same land use assignment, direct-linkage traf- 

f4c flows are simply the algebraic difference of oppositely-direct- 

ed entrepft traffic flows. 

The total net volume of preduction for the entire syatem 

equals f"’(u,) -401)) dpte) » 0 this in turn equals q(0), the 
o 

net traffic flow into the nucleus. (This may then be exported, 

or, if negative, made up by imports; or it may be used in q.l.bnr- 

ian activity at the nucleus. In any ocase we are not concerned 

with this aspect, only with land uses in the fileld). 

Access perspective, ,4(:-). 1s a monotone inoreasing function. 

It therefore has an inverse, which may be written r(,a). (Wherever 

p(r) has a jump discontinuity the inverse function will have a 

gep in its domain. We fill in this gap by taking the value of r 

at which the jump ocours as 

the value of the function in e ~ g 
this interval (See Figure 6). 1, 

This extended inverse func- h // 

tion will also be denoted by 
3 r oA 

!'(lu) and is the one that will Pigure 6 

be used below. It is clearly non-émcreasing) 

Input and output density, end traffic flow--a, b, and g--are 

81l functions of r. Sinse r in turn is a funotion of 4, these 
are also functions of 4, and may be written as a.(/«), b(lu). and 

q(f‘)' In words, a(u) 1s the imput density of the land use in 

operation at the rim of the"sphere” whose area is N3 similarly 

for b(r); q(,‘) 1s the traffio flow through the rim of this sphere. 

These are rather unusual funotions of course, but it turns out 

for mush of this section that P is & more natural independent vari- 

able than r.
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In terms of //I as independent variable, Theorem 1 how reads: 

D W = LT 
where we now have only an ordinary Riemann integral to deal with, 

Suppose we have two land use assigmments, A'(Iu) and A"(/4)-- 

using o8 the independent variable--which are related in the 

following way: A"(o,;) = A'(,«) for ‘11/4. where o 1! some posi- 

tive constant. If ¢ is greater than one, A" is a kind of spread- 

out repetition of A': whatever land use A' assigns to a given dis- 

tance will be assigned by A" to some greater distance.& 

  

# Under certain conditions it may be impossible for both A' and 

A" to be Thilnen systems, since several land uses may have to be 

assigned to sites at the same distance from the mucleus. 

  

The inmput and output densities and traffic flows generated 

by A' are denoted by a', b', and q', respectively; similarly, 

a", b", and q" are generated by A". We then obtain 

Lemma 13 If A"(op)zA%(p), then q"(l!/')toq'(’«). 

Eoof:  q(cp) - f ) ~at))dx = ¢ f:(b"(v) "1"(‘7)"7 
7 

TS f‘(‘l’(") —fi'(\’)) 0‘7 e C i'(r) 3 nl. Fluf h‘h-',"-—) Ve 

Crom Thorm 1, th scamd From the b Tl <y ex, 

the third brom A"(Lr) 1A‘(F)' and fhe Pl Frm 

Theorwm | aqam &eo
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Note in particular that q"(0)=cq?(0). That is to say, the 

net output of the entire system has been multiplied by a factor 

¢ in going from the assigmment A' to A". This leads us to the 

definition: A" 1s the c-fold expansion of A' when they are related 

as in the premise of Lemma 1l. 

We now specialize to access perspectives of the form 

» (r) = (r/O)D, where D and @ are positive numbers. This is the 

olass of homogeneous access perspectives. For the Buclidean line, 

plane and space, we get D=1, 2, and 3, respectively, so it is 

natural to call the parameter D the dimensionality of the system.# 

  

# For these three cases the "spheres" about the nucleus are inter- 

vals, circular discs, and solid spheres proper, respectively; the 

measures /w. are lengths, areas, and volumes, respectively. We 

have been referring to these all indiscriminately as "areas", be- 

cause of the pre-dominant mportano7of the two-dimensional case. 

  

This term should not be taken too literally, as we might easily 

£ind systems on the surface of the Earth for which D=2 does not 

give the best fit. (For example, a riparian nation such as Egypt 

might best be thought of as & one-dimensional Thilnen system). 

Nor need D be confined to integer values. 

What does a c-fold expansion look like when the access per- 

spective is homogeneous? We have to translate the condition 

A"(e)a)'A‘ (,t) back into r as the indepsndent variable. Since 

t(ep) = 8 (t}«)‘b St (Bp*’) = c”’r(,,\), 1t follows that 

A"(ellnr) =A'(r) when land use is expressed as a function of r. 

That is, the land uses of A' are spread out in such a way that
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all distances are multiplied proportionally, by the factor ol/ D. 

It can be shown that the homogeneous access perspectives are the 

only ones for which this 1s true. For all others, a c-fold expan- 

sion multiplies distances in a mote or less irregular manner. 

This simple property of homogeneous access perspectives 1s the 

key to the strong results which follow. 

We next wish to consider the total transportation costs in- 

curred over the whole Thiinen system. The traffic flow of commod- 

ity 1 at time t is measured in ideal weight, so the cost incurred 

per unit distance is given by anl --the absolute value, since 

the same cost is incurred for inflow as for outflow. It follows 

that the cost incurred for commodity 1 at time t is given by 
Y 

‘) j ,?”" (Y)' a\YI using r as the independent variable. 
© 

Total transportation costs is then the summation of (6) over all 

i1 and t. We shall be using pos the independent variable, and 

with this notation (6) becomes 

D f‘”l Uit 1/")| :{(% df‘. using/d as independent variable, 

provided r(}«) is differentiable. 

With these preliminaries we obtain the basic 

Lemma 2: If assigmment A" is a c-fold expansion of assignment A', 

and access perspective is homogeneous of dimensionality D, then 

fotal transportation costs incurred under A" equal ¢ (Hjb) times 

. total transportation costs incurred under A'. 

Proof: Let T' and T" be total transport costs incurred under A' 

and A", respectively. From (7) we obtain
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‘ e li" 
T' = z;ttjo lq’;,(,u)l%;« A 5 

& R L 
= 5:, i« g, ll.’, (‘f‘)l'&'/“ J/A) brom Lemma | ; 

» 4 

=%, g bt ol 
Y i(- So ]?:c'f (X)‘ e 5(‘;‘7, 'f . From the sub- 

shivhon ep =X 

-(1+3) gt g i il,ilg |1‘.‘(,‘),%x, e 
6 

1 v = C‘(\*‘o).r, Groms (5) e 

Lerma 2 has a simple intuitive interpretation. A c-fold 

expansion multiplies all weights by the factor ¢. But it also 

pushes everything further out (for c¢>1) and so multiplies distan- 

ces by the factor cl/ D, Total transport costs are then multi- 

plied by the product of these two factors, which is e(l Mk) - 

(The argument is not affected by ¢ being less than one). 

Up to now no element of choice or volition has been taken 

into account. We now assume the following situation, which is 

reminiscent of the first model of Section 3.5. The planner has a 

technology set of available land uses, any of which can be oper- 

ated at any site. Net deliverles at the nucleus, q(0) are speci- 

fied in advance and must be met. Subject to this restriction, 

the planner is to assign land uses in the Thilnen pattern so as to 

minimige total tre nsportation costs.
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For this model we get 

Theorem 2: If assigmment A' minimizes total transport costs for 

the delivery schedule q(0), and access perspective is homogeneous, 

then assigmnment A", the c-fold expansion of A', minimizes trans- 

port costs for the delivery schedule cq(0), for any positive c. 

Proof: Suppose the statement 1s false. Then for some o, A' is 

optimal for q(0), but A" is not optimal for oq(0). It follows 

from Lexma 1 that A" 1s feasible for cq(0). There must, there- 

fore, be another assigmment, ’K-. l@ that A" is also feasible 

for 0q(0), and such that T"<T". Let X' be the 1/c-fold expan- 

sion of X" (1.e. A" 1s the c-fold expansion of %'). Prom Lemma 1, 

X 1s feasible for schedule q(0). From Lemma 2, T"= o(‘ ) T, 

and = °(| ) B, Therefore, e T!, which contradicts the 

assumed optimality of A'. QED 

Note that Theorem 2 says nothing about the uniqueness of op~ 

timal land use assigments. But an easy corollary of Theorem 2 

is that the number of solutions for the schedule q(0) equals the 

number of solutions for the schedule cq(0), for any positive c. 

We now embed this model in a more complete one, just as was 

done in Section 3.5. Assume that a vector of discounted prices, 

p(0), is given at the nucleus. This is of the same size as a, b, 

or q; the components p“(o) give the (discounted) price for com- 

modity 1 at time t at the nucleus, and run over all 1 and all t. 

The prices are all per unit ideal weight for the particular i,t 

combinations. The inner product 

<; it pu(o)q“(o)unitton for short as p(0)q(0)--is called the 

gross_value of the system. It is simply the value of all inflows 

to the nucleus minus the velue of all outflows from the nucleus, 

evaluated at the prescribed price vestor p(0). The mt.,!.e!&n.
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of the system is defined to be the gross value minus total trans~ 

portation costs. 

Under certain stipulations,"net value"” boils down to a more 

familiar concept. Suppose we have a system in which identical 

profit-maximizing firms ere bidding for land in a competitive 

real estate market. The protlnbnty%‘rmgnpmi o} mm' 

given by the revenue obtained from the sale of outputs at the 

nucleus, minus the outlays incurred from the purchase of inputs 

at the nucleus, minus transportation costs both ways (all dis- 

counted to the present). This is the most that any firm would 

bid for the parcel, and, since there are identicel firms in a ocom- 

petitive market, this is the smount that the parcel will actually 

sell for. The summation of profitability over all parcels is 

easily found to be nothing but "net value® itself. Under these 

conditions, then, "net value" is the same as total land values 

over the whole system. "Gross value", therefore, 1s the sum of 

total land values and total transport costs. 

We assume that the planner maximizes net value. The pre- 

vious eriterion of minimiging transport costs subject to meeting 

a flow schedule at the nucleus is contained in this one, since, 

whatever the optimal flow g(0) turns out to be, meximizing net 

value clearly involves minimizing the transport costs incurred in 

attaining G(0). Therefore Theorem 2 may still apply, if access 

perspective is homogeneous. 

Net value is @ profit-maximization oriterion, sppropriate, 

say, to a farmer trying to extract the highest income from his 

land. Its relevance to a regional planner is much less clear, ir 

1t exists at all. Net value will generally be less than the pres- 

ent value of the corresponding income stream, since total trans-
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portation costs are subtracted to obtain net value, while ordi- 
narily only monetary outlays, not time costs, for transportation 
are subtracted to obtein the income stream. 

ZTheorem 3: Suppose that access perspective in a direct-linkage 
model is homogeneous of dimensionality D. The price system p(0) 
is given. %hen any land use assignment which maximizes net value 
satisfies the condition: net value =J°-totu1 transportation costs. 
Eroof: Let T(q) be the funotion giving minimal total transport 
costs for all land use essignments yielding the delivery schedule 
q=q(0) at the nucleus. 

Pirst we show that T(q) is a homogeneous function of degree 
H"k « Suppose A' 1s a transport cost-minimising land use assign- 
ment for the schedule q(0). According to Theorem 2, A", the c-fold 
expansion of A', is transport cost-minimising for the schedule 

6q(0). Acoording to Lemma 2, the costs for A" are clHt) times 

the costs for A'; so a multiplication of q(0) by ¢ multiplies 

transport costs by e('* ) s and we have verified the assertion 

concerning T(q). 

Let q be .- an optimal value for the delivery schedule vector 
a(0). The net value corresponding to this 1s Gp(0) - (), and 
this number cammot be ™°T**% 40 Lunetitution of any other 
vector for §. In particular, spbstitution of scalar multiples of 

q cannot herouo net value. In algebraic terms, this states 

that ogp(0) - T(oq) must be maximised at the valus c=1. By the 
howogeneity of T, this expression equals ogp(0) - o‘” )'!(fi). 

Differentilation with respect to o ylelds §p(0) -u*t)c*r(a). 
This must equal sero at c=1, and so we get Gp(0) - !(fi)'%!‘(a). 

The left-hand expression is net value; the right-hand expression 

18 1/D times total transport costs. QED
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This is a remarkable theorem, since it does not depend on 

the technology set or on the structure of prices at the nucleus. 

(These prices must be taken as given, however; if the prices 

veried with the delivery vector q(0), the result would no longer 

hold). : 

As a special but important case, when land is controlled by 

identical profit-maximizing firms in an lntrnpat system on a Eu- 

clidean plane, Theorem 3 states that total land values equal 

one-half of total transport costs. 

Theorem 3, by a suitable interpretation, can be generalized 

to the following situation. Suppose q(0), not p(0), is given in 

advance, and that transport costs are minimized for this q(0). 

(That is, we are back in the restricted model of Theorem 2). Sup- 

pose one can find a vector, §, such that the given q(0) maximiges 

Pa - T(4). Then Theorem 3 tells us that $q(0) - T(a(0)) equals 

1/D times total transport costs. The vector  may be a purely 

artificial construct, though in some cases the "net value”, 

$a(0) = T(q(0)), can be given a meaningful interpretation. An 

spplication of this approach will be given below. 

A simple corollary of Theorem 3 is 

Theorem L3 A structural change in a direct-linksge model which 

leaves access perspective homogeneous of the same dimensionality, 

and which results in a (rise, fall) in total transport costs, 

also results in a (rise, fall) in net value. 

Proof: Net value and transport costs vary in proportion, by 

Theoren 3. QED 

In order to find applications for Theorem l, we must deter- 

mine what kinds of structural changes leave dimensionaiity invar- 

iant. (In the formula r\(r)-(l‘/”b, © may be allowed to vary,
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but not D). Obvious cases are those changes not affecting 

either the metric or the measure--e.g. changes in the technology 

set or Mo- in prices at the nucleus. Uniform reductions in 

transportation cost per unit ideal weight also have this effect. 

Less obvious is the following class of cases, which might be 

characteriszed by the term directionally homogensous. Suppose one 

has a Euclidean metric--say a plane, for definiteness--with the 

ordinary areal measure, so that access-perspective is homogeneous 

of degree two. For each geodesic (ray) from the nucleus, let the 

distances be changed by a factor of proportionality; that is, all 

distances along the ray are multiplied by the ssme number. But 

the number itself may vary from ray to ray. The rims of the 

"spheres" in this new metric are homothetic imeges of each other 

(in terms of the old metric). Since these are similar to each 

other, area still goes up as the square of distance, and two-di- 

mensional homogeneity is preserved. 

This transformation is pro- 

duced by the construction of 

radiating transportation arter- 

ies from the nucleus (Pigure 7), 

provided costs are proportional 

to the original Buslidean distances, Q\\ ‘ 

both on the arteries and off them. Figure 7 
Two equi-distent rims are drawn in Pigure 7, shown as homothetioc,, 

indicating the similarity of the corresponding "spheres" about 

the nucleus. (Some "rough" ground is shaded in; this has the 

offect of drawing the rims in toward the nucleus). 

(One should even be able to prove that, if land is of iden- 

tical "roughness" along any ray, then the access perspective will 
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be homogeneous of dimension two-~or whatever the dimen- 

sion of the underlying Euclidean space. Ome could even let 

"roughness" vary with the angle of traversal--e.g. going along a 

road va, crossing it--provided the cost per unit distance is inde- 

pendent of distance along a ray. 

Thus in Figure 8, movements at 

points a, b, and ¢, in the direc- 

tion of the arrows make equal 

angles with the ray and must have 

equal cost per unit distance; likewise for points d, e, and f.)# 

  

thuu ¥ 

et ———————ra e 
# Similar invariances under variation of cost from ray to ray 

have been noted by M.J. Beclmann "Bemerkungen sum Verkehrgesets 

von Lardner” Weltwirtgchaltliches Archiv Band 69 Heft 2,199-213, 
1952, 

—_— 

We shall now apply these ideas to a problem considered by 

Herbert Mohring.# Residents are distributed at uniform density 

  

lidu-inc "L-nd vuuu and the Measurement of Highway Benefits" 
81 Politic: omy 69:236-2449 June, 1961f5or H. Mohring 

: s 8 (Transportation Center, North- 
s Chapter 5, 

   

  

over a ciroular disc about the nucleus (Central Business District), 

on a Buclidean plane. They commuts to the CBD at a uniform rate 

per person. Land values (or rents, since we are dealing with a 

lltom--nh case) start at mero at the limit of settlement, and 

satisfy the condition that land values plus transport costs is a 

constant for all points of settlement. Now a transportation 

artery is buillt along a ray. Residents re-arrange themselves to
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minimigze total transport costs under the new conditions, still 

mainteining the same uniform density and trip frequencies. The 

new land values and transport costs satisfy the same relations. 

Problen: are total land values higher before or after the trans- 

port artery has been constructed? By explicit calculation, 

lohring shows that they fall as a result of the construstion. 

We wish to point out that this result follows immediately 

from Theorem l, and that in fact a more general statement can be 

made. To see that Theorem l is applicable, one notices first that 

the system remains directionally homogeneous after the artery has 

been built, so that,before and after,access perspective is homo- 

geneous of dimensionality two. The technology consists of Just 

the single land use in operation, producing a single "commodity". 

One can find a P such that the system behaves as if 1t were max- 

imiging net value: namely, § equals transport costs from the limit 

of settlement. Since total transport costs clearly decline after 

the artery is built, net value must decline. A moment's reflec- 

" tion shows that total land value, as here defined, must be the 

seme as net value, and so it declines. 

A bit more may be stated: total land value equals one-half 

of total transport costs, from Theorem 3. (Mohring finds this by 

explicit calculation). So far we have just come to the same con- 

clusions as Mohring by a roundabout process, but now a generali- 

satlion suggests itself. Any change in the transportation system 

which leaves access perspective homogeneous otd’.mmflm two will 

have the same qualitative effeoct as the building of a single 

transportation artery along a rny; For example, any finite num- 

ber of radiating spokes will do, in any angular pattern. These 

may incorporate diverse transportation modes: a road here, a rail-
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way there, a river elsewhere. Entire sectors may be cut out, as 

occurs when the system fronte on a lake or ocean. The country- 

side may be hilly in one direction and flat in another. In all 

these cases, total land vqlues will be one~half of total transport 

costs, so that any transportation improvement, by reducing the 

latter, will reduce the former. One might also generalize to the 

case of non-uniform densities and trip frequencies; as Mohring 

points out, no blanket statement can be made about the direction 

of the effect of transportation improvement on land values. If 

market demand for transportation is elastic, a transportation 

improvement will raise total transport costs, hence total land 

values. 

If we confine ourselves to antrg'c}t systems, an instructive 

generalization of Theorem 3 can be obtained. We need a few more 

definitions. The contribution to net value by a unit of land at 

distance r from the nucleus, upon which is operating a land use 

of weight-density w, with input and output densities of a and b, 

is z‘. Zt (6‘," _q“) P“(o) — ¢ W “hich is the value of 

net output, evaluated at nuclear prices, minus trensport costs, 

all per unit of erea. As we mentioned above, this figure will 

turn out to equal land value-density in a competitive profit-max- 

imiging market, and it is natural to abbreviate it as Y. As a 

matter of fact, it can be shown that, if net value is maximised, 

all the theorems concerning land value-densities of the previous 

seotion remain velid. In particular, Theorem 6, which states 

that, as functionms of r, dv/dr c-w, wherever w is continuous, 

remains valid. 

We now consider a truncated system consisting only of a 

"gphere” of radius R and area M about the nucleus. This could be
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a complete system in which one simply runs out of land beyond dis- 

tance R--e.g. an island, an impenetrable valley, or the Earth 

after reaching the antipodes--or it can be just a plece of a sys- 

tem extending beyond R to which we confine oub attention. 

It will be convenient to use the Il‘.l,/k as our independent 

variable, rather than the distance, r. ITotal net value for the 

sphere of radius R is defined to be the contribution to net value 

of all the land uses located in this sphere. This equals 

M 

LG4 
b c ity velue for the 

sphere of radius R is defined 

to be Mv(M)--i.e., the area of 

the whole sphere multiplied by 

the value-density at its rim. 

Finally, totael differential 
hucleus 

Vi for the ere of radius Fiaure 9 

SCMCIT, value 

va
lu
e 

- d
en

si
ly

     
R 1s defined to be total net value minus total scarcity value. 

(See Pigure 9; the totals are the integrals 74. of the densities).® 

  

# For the case of the island these definitions are in mccord with 

standard usege of the terms "scarcity" and "differentisl® rents, 

but not for the case of a truncation of a larger system. See 

p.85f. of B.H., Stevens "An Interregional Linear Progremming Model" 

Journal Of Regional Science vol.l #1, 60-98, Sumser, 1958. 
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We shall also need the concept of Yotal transport costs gen- 

srated by the sphere of radius R, which refers only to flows be- 

tween the nucleus and points in the sphere.# This equals 

  

# This total may be less than transport costs incurred in the 

sphere, since flows from points beyond R may be passing through. 

We shall not use this latter concept. 

  

M 

L egongw dp. 
We are now ready to state the generalization of Theorem 3. 

Theorem S: Suppose that access perspective in an mtrupét model 

is homogeneous of dimensionality D, at least up to distance R. 

The price system p(0) is given, Then any land use assignment 

which maximizes net value satisfies the condition: total aiffer- 

ential value for the sphere of radius R = 1/D times total trans- 

port costs generated by the sphere of radius R. 

Proof: (This proof is given under the assumption that w(r) is 

continuous. The statement is true without this restriection, 

though a more tedious proof is then required). 

Total differential value = f"v(,.) .I'“ - My(m), 
o 

Upon performing an integration by parts, we find that this equals 

LU dv 
‘J. /‘4 T; 'lf\ : '3'7d T:uonm ¢ ;l( Secliom, ‘i,ll a* -w 

VEare el i 
Tluwt(-grc' JT; 3o W V‘f" 37 e 1!06\-070\0’7 

e 
(pu‘f’:m' [ or*) so Thet };" 2 %/Ab ! and 

!
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‘iy;‘ = - \igl“{;" ’ So 7:7;‘ d:#"vnfia’ Va'ut 

M 1 " 1 s _wo - g o 
f, p (- ) ap r T 

=z ) i ) ; 5 L win) r(r-) 4,4 e Tola ] ‘hmc’o(T wsle. QTD 

VWhen v(M) =0, scarcity value disappears, and Theorem 5 re- 

duces to Theorem 3 for the .nfiropflt case, as it should. 

So far we have been neglecting the other perameter, 0, in 

the access perspective relation ,h(r) = (r/O)D. A.moment's reflec- 

tion indicates that O plays the role of a transportation cost 

parameter: a doubling of O doubles the cost of getting 

access to a sphere of a given area about the nucleus. io are now 

interested in discovering how the system responds to variations 

in 0. The function T(q), it will be recalled, gives the minimal 

total transport cost required to attain a delivery schedule q at 

the nucleus. O enters as a multiplicative parameter in T(q). 

This fact could be ignored before, because O was held fixed, but 

now we write explicitly 0t(q) for total transport costs re- 

quired for q, where t(q) is now free of the parameter 0. 

It is easy to see that t(q) shares with T(q) the fundamental 

property of being a homogeneous function of degree l+'k. ir 

access perspective is homogeneous of dimensionality D. Our first 

result concerns optimal delivery schedules as a function of O3
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Theorem 6: If access perspective in a direct-linkage model is 

homogeneous of dimensionality D, and § maximizes net value for 

0=1, then G0"" maximises net valus for any 0, prices p(0) being 

held fixed. 

Proof: This follows the pattern of the proof of Theorem 2. Sup- 

pose the statement is false. Then there is a @ for which EO'D 

does not maximize net value. That is, there 1s a q such that 

P -0t() > 1) 6™ -0 t(76), 
> 

mm‘,l»] ‘fl«voh}L L7 6 

P05 0° - 0" 45) > g - 0" ' t(5070) 
Sinee t s Lomajsnwh« of hjne It %)’ thig mey be 
re-wrillin ag 

P F0°-1(§0°) > 00T - (), 
But thi ¢lalonanT comfvadicle the s5stmcd b‘fl'-n.-m:’ 

b ke b, acp 
In the next fow paragraphs we assume there is a unique opti- 

mal land use assigmment. If this were not so, similar but slight- 

ly more complicated results could be obtained. 

Theorem 6 states that, for example, in a Euclidesn plane, a 

halving of unit transport costs would lead to a quadrupling of 

net deliveries at the nucleus, provided nuclear prices were not 

affected. With the aid of previous roauie- we can say much more. 

Combining Theorem 2 with Theorem 6, we £ind that the response to 

a change in transportation parsmeter from 1 to 0 is a O'D-tol.d 

expansion of land use assigmments. With access perspective howo-
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geneous of dimensionality D, we know that, in a c-fold expansion, 

all land uses spread out in such a way that distances are multi- 

plied proportionally, by the fastor o0, Buv (0-°)/P« 170, 

We have proved . 

Theorem 7: A change in transport cost parameter © leads to an 

expansion of the system in such a way that corresponding distances 

are inversely proportional to the parameter. 

Thus, a halving of unit transport costs spreads out all land 

uses to twice their original distances. This result does not de- 

pend on the dimensionality of access perspective. Pinally, 

we have 

Theorem 8: If acoess perspective is homogeneous of dimensionality 

D, the system elasticity of demand for transportation is ~(D+1). 

(Here,"volume of transportation" is defined as total transport 

costs deflated by the cost parameter 0). 

Proof: Lemma 2 states that a c-fold expansion multiplies total 

transport costs by c(l « The same applies to the volume of 

transportation, since O is held fixed in Lemma 2. The induced 

0"P.£01d expansion therefore results in a multiplication of the 

volume of transportation by the factor 0°D{|"+) = @ o +1). QED 

This elasticity can be broken down into an elasticity of -D 

for the total weight to be moved, and an elasticity of -1 for the 

average distance to be moved. Thus in a Euclidean plane a halving 

of unit transport costs octuples the volume of transportation, 

quadrupling the tonnage and doubling the average mileage. 

' All these results are predicated on the assumption that the 

prices p(0) are unaffected by changes in the inflow=-outflow
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schedule q(0). This assumption is appropriate for an individual 

farm, and also# for a small seaport which takes world prices as 

  

# as suggested to me by William Vickrey. 

  

given. 

We end this long chapter by trying to tie a few strings to- 

gether. There is a marked contrast between the social equilib- 

riun approach of Section l.2 end the optimization approach of this 

section. To the extent that these approaches can be shown to be 

compatible, or even to imply each other, to that extent will the 

range of applicability of each of ‘them be broadened. We there- 

fore ask (1) does the antxwpfit social equilibrium discussed in 

Section .2 optimize any criterion of significance? and (2) can 

one find a socilal equilibrium in a direct-linkage model which 

maximiges net value? 

The firat :luution is the easier to answer. According to 

Theorem 1 of Section lj.2, the entrept scclal equilibrium satis- 

fies the following weight-falloff condition: If a land use of 

weight-density w' 1s operating at a point at distance r! from the 

nuclems, end also a use of density w" at a point at distance r", 

and if r'<r", then w'3w". 

The weight-falloff condition turns out to be necessarily sat- 

isfied by a solution to a certain optimization problem. To set 

this up we need the concept of an allotment. An allotment is an 

areal measure on the set of land uses. For example, a certain 

allotment might allocate two scres to turnip-growing, & hundred
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acres to residences, and so forth over a class of subsets of the 

set of land uses. An allotment differs from a land use assign- 

ment in that the latter tells where each land use 1s to be oper- 

ated, while the former merely states how much land is to be allo- 

cated without neming specific sites. There is a many-one rela- 

tion between assigmments and allotments, end a single allotment 

can be realized by a large number of different assigmments. Two 

assignments corresponding to the same allotment are spatial re- 

shufflings of each other's land uses. 

Now consider the problems Given an om;ropSt system and an 

allotment, minimize total transport costs over the class of all 

assignments which realize the given allotment. Call this the 

allotment-aesigrment problem. We then have 

Theorem 9: Any solution of the allotment-assignment problem sat- 

isfies the weight-falloff condition. 

Proof: Suppose the statement is false. Then one can find a solu- 

tion to the problem which violates the weight-falloff condition. 

That 1s, one can £ind two points, at dlstances r' and r" from the 

nucleus, to which are assigned land uses of weight-densities w* 

and w", respectively, such that r'<r" and w'<w". Now construct 

a new assignment as follows: take small spherical neighborhoods 

of equal u-en:nbom: each of these points and switch their land 

use assignments, leaving the assignment in all other places un- 

changed. This new assignment clearly realizes the allotment, 

since 1t is just a reshuffling of the solution assigrment. The 

land uses which were switched farther away from the nucleus must 

ship an extra distance of r"-r'!, end this adds en amount
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(r"=r?)w'€ , neglecting higher-order terms in €, to total trans- 

port costs; the land uses which were moved closer to the nucleus 

save an equal shipping distance, and this reduces total transport 

costs by an amount (r"-rt)w"€, sgain neglecting higher-order 

terms in €. The net saving is (r"-rt)(w'-w')¢ (plus higher-order 

terms), end for small emough € this must be positive. But this 

ocontradicts the assumption that the original assigrment ninimLM 

total trensport costs. QED 

The conversedbf Theorem 9 is also trues any assigmment real-~ 

izing the allotment and satisfying the weight-falloff condition 

solves the allotment-assigrment problem. 

As for the second question: a social equilibrium maximizing 

net value can eaeily be found in the special case of -ntrepst sys~ 

tems. Identical profit-maximizing entrepreneurs who bear trans- 

port costs between their sites and the nucleus will maximige net 

value, given prices at the nucleus and their common technology 

set. This result follows from the two facts (1) net value is the 

integral of net profit per unit ares, and (2) the profitablility 

at a given point is completely independent of what goes on else- 

where in the mystem. ‘ 

Much more difficult is the problem in the direct-linkage case, 

because the independence mentioned in point (2) iu-uku down. The 

following discussion is meant to be suggestive rather than rigor- 

ous. It points to the conclusion that profit-maximising entrepre- 

neuss, with identical technologies, acting under competitive con- 

ditions, will meximise met velue in the gemeral direct-linkage 

case, just as they do in the entrepdt case. 

We um that a system of local prices is gemerated. pgq(r) 

1s the (41scounted) price of commodity 1 at time t at distance r
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from the nusleus. For short, the whole system of prices at r 

will be written p(r). The muclear prices p(0) are simply the 

local prices at the nucleus. p(0) is special in that it is given, 

while all other price structures are built up by the action of 

egents in the system, The ocontroller of each site selects that 

land use which maximismes his profits, the latter being calculated: 

on the basis of the local prices at that site, That is to say, 

the controller of a site at distance » solves the problem 

"""‘A"“’-‘- s't' i(- ("l'-t —qh‘) e (f). where A ranges over 

his technology set, and the b's and a's are the output and input 

densities for land use A. All individusls have the same technol- 

ogy set. ; 

Finally, prices and flows are assumed to satlafy the effi- 

clency conditions of Section 2.4. For the direct-linkage situe- 

tion this means (I) I%f.rj._ €1 ® ¢ ‘j,‘,(!) 30) 

  

then i:;;"ll) ==~ W ¢ 14'[- (7)<0' then J-*——f{“”:] 

0 
Y 

Condition (2) states that, if there is an inflow toward the nuocleus, 

price declines with distence; condition (3) states the corres- 

ponding fact for outflows. 

These last two paragraphs state conditions that might reason- 

ably hold in a regime of profit-maximigers under divect-linkage 

oconditions. We will now show that these conditions also arise if 

an overall planner were to m-:m:o net value. If these condi- 

tions : * _are sufficient to determine a solutlon maximizing 

net value, we would be assured that the competitive social equi-
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1ibrium did in fact maximize net value. To derive these condi- 

tions, which are nscessary rather than sufficient for a solution, 

we shall use the Meximum Prineiple of Pontryagin.# 

  

# L.S. Pontrysgin, V.G. Boltysnskii, R.V. Gamkrelidse, and E.F. 

Uischenko The Mpthematioal Theory of Optimal Processes (K.N. 
Trirogoff, translater; New York, Interscience, 1962). 

  

Omitting detaills, vo may outline the principle as follows. 

One 1s to maximige j F(.z(,) A(V)) dY, where r is a real 

variable, q and A are vneor functions of r, £ is a real-valued 

function; the integral limits r and r, may also be subject 

to choice, but for our purposes they may be taken as fixed. The 

functions q(r) and A(r) satisfy the system of differential equa- 

tions dg/dr =g(q(r), A(r)). The element of choice enters in 

the function A(r), which may be any bounded measurable funotion 

whose range lles in a certain closed set, T, which is specified 

in advance. This cholce, together with initial conditions on q, 

determines the entire course of q(r), hence £ and the integral. 

This sets wp the problem. The Maximm Principle introduces 

en euxiliary vestor function, Y/(r), and forms the Hemiltonian 

function He £4-Yg, (The last term is an immer product). The fol- 

lowing relations are then satisfied by the optimal solution. 

(1) Por every r, the optimal choice of A is one maximising H over 

the possible choloes AtT. (2) ¥(r) satisfies the system of dif- 

ferential equetions . d¥ _ 2H 
=5
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We now translate the problem of maximizing net value into 

the Pontryasgin form. r, q, and A will retain their customary 

meanings of distence from nucleus, traffic flow, and land use, 

respectively. The set T from which A is to be drawn i simply the 

technology set. The differential equations da/dr=g(q(r), A(r)) 

are, when written out in full, m --Ur -a )‘l 

dr it b ff ¥ 

where by and 8, are output and input densities for the land use 

A in operation at distance r. This follows immediately from Theo- 

rem 1 of this section, Pinally, the integral to be maximized is 

[ za o Gy s - |400]] or. 
This expression perhaps needs some explanation! Comparison with 

Taecren 1 shows that the Firet torm is mothing BubTLp,, (0)agy(0), 
which is gross valne. Comparison with formula (6) shows that the 

integral of the second term r-‘:t:tnl transportation costs, so the 

entire expression does indeed equal net value. 

We now form the Hamiltoniant 

H < 2,3, [oylo) ¥l [Lbiyte) -5, (0] 2L 

= i«'it ' 1:’4 ('),. 

Let us abbreviate y“(o) - W“(r) a8 p“(a), for r)0. It oan be 

“shown that Y, (0) $0 for all & and &, so this notation extends to 

ra0 as well. 

The first part of the Maximum Principle states that the op- 

timal land use at any distance is one maximising H, or, equival- 

ently, maximising zltt p“(r)(bn(r) = 844(r)) over the technol- 

ogy set: But this is exactly what oud profit-maximising control-
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lers at distance r-will do, if the pu(xv) may be identified with 

the local prices which they face. To justify this identification 

1t ought to be shown that these p,,(r) satisfy the efficdency con- 

ditions (1), (2) and (3). 

The second part of the Maximum Principle states that 

SAhe oM g W dly 
Ar 3%+ 29, d 9t 

= -, af Gee 20 , =1, W 10<0 l'\JLr:/mmaTcl 

i Gip =0, Thie gives ug 

dptn _ _ 4w, s e r - RS 
e <0 T thd¥le mndTe 7 Y "o, 

The first two parts of this triple statement are precisely the 

efficiency conditions (2) and (3). By considering smooth approx- 

imations to the absolute value funotion, it might also be shown 

that condition (1) holds as well. 

This concludes our discussion. It has been shown that a 

certain social equilibrium system imitates the optimality condi~- 

tions for maximizing net value in a direct-linkage model, as given 

by the Maximmm Principle. (This discussion is interesting in 

another way. It shows that a principle designed for optimisation 

over time can also be used for optimisation over space).



Faden ' : 186 

S. lected t ot 

Sl . and Re tate 8 

We present here a simple model relating the intensity of 

land use, the value of unimproved lots, and the value of improve- 

ments. "Intensity" is phrased in terms of building heights, but 

the model is perhaps applicable to such quantities as residential 

population density or intensity of fertiliser use. 

Suppose that a syndicate acquires control of a vacant lot, 

upon which it erects an N-story bullding. The size of the bulld- 

1 
ing, and the use to which it ;.mt. are chosen to maximize present 

value. For simplicity, it ’.'l\ assumed that N can assume any non- 

negative value, If, in fact, N can assume only integer values, 

the error committed will be at most half a story. 

The present value of en N-story building, together with its 

lot, when put to its most profitable use, and assuming no further 

construetion is undertaken on the lot, is assumed to be 

D V(h-5N) = RN, 
where h and k are parameters depending on the location of the lot. 

In this model, k is assumed to be fixed for all sites, but he- 

which may be called the rentability of the site--is assumed to 

vary, being generally higher on sites closer to the center of town. 

The cost of construction of an N-story building is assumed to be 

D a+bN+ SN" = cw) , bor N30 Co)=0, 

where a, b, and o, are again parameters which may depend on looa~ 

tion, but in this model are assumed to be the same for all sites. 

Pormula (2) arises from the following construction._  There 

is & set-up cost of g for initiating any improvement. The mar-
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ginal cost of the N-th story is b+cN (or b - ¢/2+oN, if N assumes 

only disorete values). That is, part of the cost is the same for 

each additional story, and part is proportional to its height 

above the ground (due to vertical transportation costs, elevator 

shafting, etc.) Formula (1) is a quadratic approximation, with 

the additional specification that no improvements at all bring in 

no net revenue. 

Of the five parsmeters--a, b, ¢, h, and k--the first four will, 

in general, be positive. The sign of k is less certain. On the 

one hand, the costs of vertical transportation diminish the value 

of lofty heights, and tend to make k positive; on the other hand, 

higher stories escape the noise and fumes, and offer a commanding 

view "far from the madding crowd"--considerations which tend to 

meke k negative. (It would appear, in general, that marginal 

value at first rises with height, but then declines for very high 

stories. To incorporate this would require the use of. at least a 

cubic in N, and so it was avoided). These opposed tendencies sug- 

gest that it would be worthwhile to explore the special case k= Yo 

We will assume that &, b, and ¢, are positive, and also that 

{Z'i" >i0n ond thel h-L >m. This last relation 

turns out to be the condition that optimal N be positive, and the 

next-to-last relation is the condition that optimal N be finite. 

If construotion time is negligibly short--as we will assume 
==then the value of the vacant lot upon which nn N-story building 

is erected, is simply R(N) - C(N)=V(N). In a competitive market 

of identical profit-meximisers, the selling price of the lot will 

be the maximal attainadble value of V(N). Assume there are no son- 

ing restrictions or other constraints on N. Then the selling 

price of the 1ot vill be g n<w VO =V V.



We are interested mainly in the ratios of R, C, and V, to 

each other, and how these respond to changes in the parameter of 

rentability, h. There are, in fact, some interesting empirical 

regularities here. The ratio V/C tends to rise as one approaches 

the center of town.# Thus for residential land uses the value 

  

“ g!..c.n. Douglas Land Value Rating (London, Hogarth Press, 1936), 
pe.2f. 

  

of the unimproved lot is generally a small fraction of the 

cost of the bullding placed on it, while for the highest-prisced 

uses in the heart of the central business district, a rule-of- 

thumb 1s that the value of the lot and the cost of the bullding 

placed on it should be about equal.# 

# S.LaloMichael and R.P. nugn'm i Values 
(Olflglngg& Stanley MoMichae mfl%fi?fi%fl%mws), 
Pe » g 

    

It seems reasonable that central locations have high renta- 

bilities compared with peripheral locations. 

Iheorem 1: If W is adjusted to maximise profits, V/C rises with h.
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& Proof: Maximizing V over N, we find that N = ‘:‘-":% 

57 S‘h‘afifi"f-km, vV = 0‘ l') -Q and 
1(c4-k) ’ 

€« Chd bkt L C m’-}); + L il v.néore) 

< ] G 
9 :\-i' D) (k-fl" 

e q 

Zc-rk)" (I.-I,)(u—r.) '(_I:LT" 

Since h>b, a rise in h increases the numerator of (3) and de- 

oreases the denominator, : 4 QED 

Iheorem 2¢ If k=0, and N is adjusted to meximize profits, then, 

~ @8 h goes to infinity, the vatio V/C approaches 1. 

Proof: In formula (3), tfio 1imit approached as h 2w is obviously 

  

[1 -\-n) g Tk 2l - - —-C_-/- - .’c—— X For K’fl) ‘”"5 "' 3 QEp 

2 Cere)” § 

The conclusion of Theorem 1 donforms with the ov!.domo/ / 

oonolusion of mnoru 2'1s the rule-of-thumb V=G for very hlah 

values of h. " 

A further interesting result of this model ias 

Jheorem 3: As h goes to infinity, the number of stories goes wp 

/ asymptoticelly as the square-rcot of land value. 

Rrooft ¥ is a lineai funotion of h, while ¥ is a quadratic funct 

tion of h. g QED
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5.2. Some Problems of Intra-tivban Location 

Three general problem types will be considered in this sec- 

tion. (1) Within the general oconfines of an cnerepst system, 

where will land uses which are linked directly to the outside 

world locate? (2) Suppose a headquarter point is to service an 

entire Thinen system; where will it locate? (3) What cen be sald 

about the shape and loocation of neighborhoods within a city? 

We start with an ontropSt system, so that all land uses are 

linked exclusively to the nucleus. A new land use is introduced 

which trades directly with the outside world in addition to its ' 

trade with the nucleus. (An example would be a manufacturing 

plant whose exports do not ell go through the nucleus). It is 

assumed that this new land use occuples a negligible quantity of 

space in relation to the whole system, so that the overall pattern 

of land uses and land values is not disrupted. 

Now suppose there is a system of 

transportation arteries radiating from 

the nuoleus, as in Piguve 7 of Section  nslews 8 
4.3 or Figure l of Section 2.5. One N 

of these--NBO--is shown in Figure 1. 

The line ABC crossing the artery has < 

1l its points equi-distant from the Figure 1 
nucleus. 

Just as any other land use, our new one obeys the site-sub- 

stitution prineiple in locating; that 1s, it minimizes the sum of 

transport costs and land values. Thers are two components to 

transport costs here: coests incurred for flows to and from the 

nuoleus, and costs incurred for flows to and from the outside 

workd. Thus there are three components to consider in the site-
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substitution criterion. 

Let us now compare the three points A, B, and C with each 

other. Transport costs to the nucleus will be the same for all 

three points, since they are equi-distant., Land values will be 

the same at all three points, according to Theorem 3 of Section 

L.2. The only remaining distinoction which can arise is transport 

costs inocurred on trade with the outside world. Under the great 

majority of plausible circumsteances, point B will be closer to the 

outside world than points A or C, provided these are close enough 

to B. (For exemple, this will ocour when the geodesios from A 

and C to the outside world have stretches in common with the art- 

ery NBO, and the underlying metric is Euclidean). 

It follows that points such as A and C are eliminated as po~ 

tential sites for our new land use, since they are dominated by 

point B. We conelude that land uses having direct links with the 

outside world, when situated in en entrepdt system having radiat- 

ing transport arteries, will locate somewhere on the arteries. 

In this argument we have been assuming that the new land use 

occupies a negligible amount of lend. Suppose thic were not so. 

It is easy to see in a qualitetive way what will happen. Compe~ 

tition among outside-linked land uses for land along the trans- 

port arteries will drive up land values there compared to land 

velues at non-highway-oriented locations. The pure entrepdt- 

2inked land uses will be driven away from points sush as B. 

The general pattern that emerges is that land uses which 

trade exolusively with the mmoleus will locate off the arteries, 

at points such as A and C. To these the conolusions of Seotion 

42 still apply: the weight-falloff condition and convex decreas- 

ing land value-densities. Strips of land along the arteries,
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having higher value-densities than points at equal ideal distances 

off the highways, will by oocupled by land-uses linked in part to 

the outside world. 

For example, manufacturing plants which import or export 

materials from outside the 106;1 community will locate on river 

fronts, railways or highways. Tourist-catering retall trade, 

entertaimment places, hotels, eto., are strung out along major 

readial highways. 

We now come to the second problem. A certain city is a Thi- 

nen system, so that points equi-distant from the nucleus carry 

the same land uses. Into this symmetrical arrangement is to be 

placed a headquarter point serving the entire system. (Exemples 

would be the oity hall, the central post office, or the municipal 

airport, provided there is to be just one city hall, post office, 

or airport for the cntu-o‘ eity). The land to be occupied by the 

headquarter point is compaoct and small enough to be thought of as 

a geometrical point, but--unlike the situation of Chapter 3--not 

so small that land values can be neglected. 

The level of services provided by the headquarter point is to 

be uniform in the following sense. All points carrging the same 

land uses receive the same level of services. Actually, for our 

purposes, we may make the even weaker assumption: all points equi- 

distant from the nucleus receive the seme level of servioes (per 

uvnit area). That is, thers is a function g(r) giving the level 

of services per umit area at distance r from the nuscleus. 

We shall assume that the metric is rectangular, as discussed 

at the end of Seotion 3.6. Without loss of generality, the nu~ 

cleus may be placed at the origin of a pair of co-ordinate axes.
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By corvention, let us assume that the X~axis runs from West to 

Bast, and the 7-axis runs from South to North (See Figure 2). 

o, point witn co~ordinates (x,y) is at distance |x|+ |y| from 

»ae nucleus, end the"spheres” about the nucleus are the 1,5°-t11ted 

square disca whose dlagonals are coinoident with segments of the 

ayas.# 

  

# To nlarify e possible ambiguity in Figure 2, 1t should be noted 

that the axes do not represent low cost transport erteries. If 

thsy did, we would obtain a more complicated non-rectangular 

motric. The spheres for this latter metric are depicted in 

Alonso Loscation and Land Use, op. oit, pel32. 

  

Lot the hesdquarter point be located Vorth 

at (X,¥). We assume that headquarters is 

directly-linked to all other sites in the 

system, so that the distance between it 

and the point with co-ordinates (x,y) is oS 
Ix - |+ |y - F]. . (Whether the other 

points are directly-linked to each other 

or not is irrelevant for our purposes). 

Ve nuw invoke the site-substitution 

prineiple. The headquarter point is to be lecated 80 as to mini- 

l’rll the sum of total transport costs plus land values. 

Totel transport costs is a fairly complicated expression in 

X andy. However, for our purposes we neod only the 

Wes?, East 

Sowth, 

F'j"" 2L
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fact that it 1s a convex function of position: for 04)\ < 5 

TOR, +0-0%, | AT, +6-0F,) & AT(R,T) + (-2 TG, 7). 
Lemua: Por any non-negative measure over the plane (representing 

required delivery levels) total transport costs under a rectengu- 

lar ufiio are a convex function of the position of the headquar- 

ter point. 

Zroofs Suppose the measure is yolu.tin at jJust a single point, 

(x',y'). Total transport costs are proportional to li;x'l'f' 5=y » 

which 1s easily seen to be & convex function in (X,¥). Now sup- 

pose we have an arbitrary discrete distribution. Total transport 

costs for this is the sum of transport costs for each of the points 

of the distribution. But a sum of convex functions 1s a convex 

funotion, and the result is established for any discrete distri- 

bution. PFinally, let us take a continuous distribution (or a 

mixed discrete-continuous distributicn). Approximate this by a 

disorete distribution in the following way. Partition the plane 

into regions such that no region has a dismeter larger than some 

number €, Place snywhere in each region a single point having a 

mass equal to the measure of the original distribution in the re- 

glon. It is easily established that, for any headquarter loca- 

tion, th« srror made in estimating total transport costs for the 

original dilstribution by using the discrete approximation i of 

the order of €. Now take a sequence of approximations with €-»0. 

Por each of the approximations, transport costs are a convex 

function of position. But the limit of a sequence of convex 

functions is a convex function, which esteblishes the result in 

general.# QED
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# The same argument, word for word,--with the exception that 

TE ) x (397> is swbstisuted for 1X-x’] +[5-y') -cestab~ 
lishes the result for the Buclidean metric, a fact which was 

stated without proof in Section 3.3. Cf. H.W. Kuhn and R.E. 

Kuenne "An Efficient Algorithm for the Numerical Solution of the 

Generalized Weber Problem in Spatiel Ecomomics" Journal of Reg- 

lonal Science vol. L, #2, 21-33, Winter, 1962, especially p.25f. 

  

The main result may now be derived. 

Theorem: An optimal headquarter location exists on the l;.5°-nl.opo 

diagonals running from South-west to North-east and South-east to 

North-west, if it exists at all.(These are dashed in Figure 3). 

Proof: Consider the points A, B, C, D, and E, which lie symmetri- 

cally placed ebout the SE-NV dia- W N,,,fl‘ ”‘/ 

gonal in FPigure 3. These points & 

are all equidistant from the nu- 

cleus, and so they all have the 

same land value-density. There- 

fore, only transport costs in- 

fluence their rolative desirabdil- 

1ty as headquarter locations. 

By symmetry of the whole distri- 

bution, transport costs at A and 

B are equal, transport costs at Fiyure 3 

B and D are equal, and the ssme applies to any pair of points equi- 

distant from ¢ along this line. Suppose B were optimal; then D 

would also be optimal, by symmetry; but then C, on the diagonal, 

  

South N\



Faden 196 

would be optimal, too, by the convexity of the total transport 

ocost funotion. We have proved that, if any location were -optimal, 

then 1ts perpendioular projection on the nearest diagonal would 

also be optimal. QED 

This theorem does not prove that an optimal cannot be off 

the diagonal as well. To esteblish the stronger result that only 

the diegonal contain optimal points, one must establish the 

strict convexity of the transport cost function, at least in the 

vicinity of the dlagonals. It may be shown that this local strict 

convexity holds at the points (i ¥, X) 1f f‘:gmdr >0, 

By symmetry, there are slways at least four optimal head- 

quarter locations. For example, if point C is optimel in Figure 3, 

the points !, C", and C"' are also optimal. 

Nothing has been saild, so far, about how far out along the 

diagonal the optimal location should lie. A standard comparative- 

statics argument shows that, the denser the headquarter land use 

is, the closer to the mucleus it will lie--a not unexpected re- 

sult in view of the weight-falloff condition for entrepdt systems. 

Thus, a light land use such as an airport will lie far out along 

a diagonal, while a dense use such as a central post office will 

1ie close in. 

14 : 

We mow come to the third problem: u@borhnod shapes and 

locations. This is a very intricate problem, and the discussion 

which followa is more in the nature of a study of approaches and 

1lines of attaok than a presentation of results. 

A geighborhood is a fairly cocherent region of similar land 

uses. This definition is rather vague, in that degree of "simi-
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larity® required is not specified, nor degree of "coherence". 

If the seme type of land use is found on both banks of a river, 

or both sides of a street, for example, we may for some purposes 

think of the river or street as demarcating the boundary between 

two neighborhoods, and for other MIOI ignore them and use a 

more inolusive neighborhood concept. 

. In Thiinen systems the neighborhoods are rings, or parts of 

rings, enclosing the nucleus. This formation arises, in entrepdt 
systems at least, from the operation of two forces on the indivie 

dual land users: the attraction of the nucleus, and the repulsion 

from regions of high land value. We now wigh mou upon 

these forces other kinds of forces, which will have the effect of 

distorting or dlsrupting the ring formation caused by the first 

two acting alone. 

One broad category of edditional forces is made up of re- 

strictions on land uses or land users. Let us take goning laws, 

for exemple. If the chosen land use on site L in the absemce of 

soning resprietions would be A, and A is not prohibited by the 

law, then A will still be chosen; the restriction is not binding. 

If A were prohibited, the alternative permitted use meking the 

highest bid for the site will be the one ohosen, and land value 

will, in general, be lower than it would be in the absence of sen- 

ing.& 

  

% This statement may appear incompatible with the often-advanced 

thesis that smoning preserves or enhances land values. If neigh- 

berhood effects had been included in our analysis, this could in- 

deod happen. The prohibition of a land use on one parcel sould 

ovhance the value of adjscent parcels, and since this effect is
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reciprocal, it is possible for all values to rise, even though 

the direct effect of restrictions on land use in a parcel is to 

depress its value. For more on the effects of zoning see Alonso, 

ope oite, Chapter 6.D. 
  

In general, the effeots of excluding a land use type from a 

certain territory are--in addition to driving it from that terri- 

tory-=to expand the smount of remaining area devoted to that use, 

and to shift the distribution of uses withih the type toward more 

intensive uses; (e.g., exclusion of a minority group from one 

part of a city increases orowding and leads to "invagions" of 

other perts of the city). The entire process may be called 

pseudomorphosis of the land use type, on the geological analogy. 

A second broad category is made up of forces of attraction of 

similar land uses upon each other.# There is a variety of under- 

  

# This and the final category to be discussed lead to voluntary 

segregation of land uses, as opposed to the perhaps involuntary 

segregation induoed by restrictions. Cf. G.S. Beoker The Boonom- 

108 of Disorimination, op. oit., pe59. 

  

1ying ceuses produsing such attraction. The first, and simplest, 

1s the "Dirds-of-a-feather" phenomencn, the desire of people to 

associate with their own kind. A second cause is informationsl 

economy. For exsmple, a foreign-langusge enclave may fm. not 

necessarily becsuse people have any direct preference for the 

company of their co-linguists, but simply because the ease of oom=- 

mmication makes it that much easier to get on. Also, communica- 

tion-oriented industries, which depend heavily on the flow of
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information among their component firms, tend to cluster. 

  

# See E.M. Hoover and R. Vernon Anat: of a Metropolis (Garden 

City, New York, Doubleday Anchor Books, s Do . 

  

A third cause is the economy of pdoling. Dense concentrations of 

complementary resources smooth out demand fluctuations for each 

of them.s 

  

# P.S. Florence The Logic of Industrial Organization (London, 
Kegan, Paul, 1933), Chapter 1; Hoover and Vernon, 100. ¢it., p.62. 

  

low is this raw material to be worked up into a model? One 

might try to derive the relations for individuasl optimization for 

each of the land users of the neighborhood, and solve them simul- 

taneously. These would be highly interdependent, owing to the 

attraction of land uses upon each other. A possible short-cut 

1s the following approach. We assume the entire neighborhood 

locates so as to optimize a criterion. For example, suppose a 

land use allotment 1s given (See Section l.3) which the neighbor- 

hood is to realize. Subject to the constraint of realizing the 

allotment, maximize: "self-attraction »f the meighborhood" minus 

total transport costs incurred by the neighborhood minus total 

value of the land occupied by the neighborhood (if devoted to al- 

ternative uses). "Self-attraction of the neighborhood" is given by 

9 H F(r(x, w) 4p o0 At 

where )4 is, say, the population measure of the ‘inhebitants of the 

neighborhood, x and y range independently over the points of the 

system, r is distance, and f(r) is a decreasing real-valued func-
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tion. f(r) represents the "utility" contributed by a pair of peo- 

ple at distance r apart. 

This is certainly not an easy problem to solve, but one may 

make plausible conjeotures as to what the solution looks like in 

certain simple cases. In particular, let us take the antrapst 

case on the Euclidean plane. We would conjecture that the solu- 

tion to the stated problem has the general form of the shaded 

area of Figure §: somewhat elliptolid in boundary, topologically 

a disc, symmetric about a radial spoke from 

the nucleus, and elongated in a directilon 

perpendicular to this ray. The intultive macleus 

argument for this conjecture is the fol- N 

lowing. If only transport costs and land 8 

values had received consideration, the . 

neighborhood would be a circular Thilnen Fla Y L‘ 

ring about the nucleus. If only the "self-attraction of the 

neighborhood" received consideration, the neighborhood would be 

(presumebly) a circuler disc. The neighborhood of Flgure Yisa 

"gompromise" between these two extremes. It should also lie 

roughly at the distance from the nucleus that the Thiinen ring 

would have been. 

The pattern of land values will also be distorted from the 

deernghu convex function of distance in the entrepft case. If 

the attrsction of neighborhood people on each other is strong 

enough, there should emerge a local peak of land value-density 

somewhere in the middle of the neighborhood, since this will pre- 

sumably be the "coziest" part of the neighborhood, and competition 

for the middle part will drive up land values there.
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A rather different category of forces are those which form 

neighborhoods, not by attracting uses or users to each other, but 

to a third object which is attractive to all activities of a cer- 

tain type. The Thilnen rings themselves may be thought of as 

formed by a force of this type, the common attraction being the 

nucleus. 

Points of access to the transportation system, such as local 

railway stations, serve as nuclei for the formation of small Thi- 

nen systems within the overall context of larger ones. Points 

of access to major utilitles, such as water or power sources, may 

play a afllilnr role. But the neighborhoods thus formed are 

rather heterogeneous, since access to transportation or utilities 

is an attractive force on all land uses. To explain the forma- 

tion of neighborhoods of a fairly homogeneous character, we need 

objects which attract only a limited range of land uses. 

Consider a facllity, located at a site L, whose services 

appeal only to people in a limited taste range. These people tend‘ 

to move toward site L, and the resulting rise in land values 

about L (and fall in land values in the places these people vacate) 

tends to drive away people who are indifferent to the facility at 

L. The argument can be extended from this dichotomous case to 

the case where there is a distribution of tastes over the popula- 

tion. Measure the net attractiveness of the site to a person by 

the marginal rate of substitution of land value-density for dis- 

tance from site L.# There will be a tendency for people to ar- 

  

% A full-blown location theory for onbrcpst systems has been 

constructed by William Alonso from the indifference mapsof "bid- 

price" curves from which these marginal rates of substitution
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are derived. See Alonso, ops ¢it., Chapters 3-5. 

  

range themselves so that the most attracted are the closest, and 

the least attracted (or most repelled, perhaps) are the farthest, 

from site L. 

For example, stores specializing in luxury goods will attract 

the Tich., Churches of different denominations scattered about 

give rise to a tendency for clusterings to occur by their respec- 

tive parishoners around each, and for non-churchgoers to move 

away from them all. In general, a process of voluntary self-seg- 

regation of peovle by taste and income classes tends to occur. 

Not only does the existence of diverse rncilifiioa lead to a 

process of segregation, but conversely, segregation leeds to the 

existence of facilities. A facility will not be constructed with- 

out there being a certain threshold demand level concentrated at 

a point, and this will be passed when & sufficient number of peo- 

ple with a taste for the services of the facility are concentrated 

at sufficlent density in the vicinity of the point. The cumulative 

effect of this interaction may be much greater than that of the 

first process acting alone, in creating diverse neighborhoods.# 

  

& Gf. W.R. Thompson A Preface to Urban Economics, ope. cit., p.128; 

C.M. Tiebout "A Pure Theory of Looal Expenditures” Journal of 

  

Political Economy 6l :416-42l, October, 1956, In Tiebout's analy- 

sis, the self-segregated neighborhoods that are formed are local 

political jurisdictions, and the corresponding diverse facilities 

which serve them are the bundles of public goods offered by each. 
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Any significant scale economies in the production of services 

above the point of threshold demand accentuates the effects of this 

interaction. 

In attempting to set up at least a partial model for these 

processes, we might start with (l), the expression for self-attrac- 

tion of a neighborhood. Since people are not attracted to each 

other, but to the facility located at site L, (L) might be re- 

placed by the simpler expression 

S JH L) iy 

  

# Alonso has used (5), with Iu.unirorm, as the expression for the 

utility of an individual lot to its user, where the integral is 

taken over the lot area, and L i1s the location of the user's 

"front door". See Alonso, op. cit., Appendix B. Without dis- 

cussing the merits of this approach, we suggest it is at least as 

applicable to the problem of neighborhood location as it 1s to 

individuals. 

  

Given an allotment, one might now maximize the criterion: 

expression (5), minus transport costs, minus land values, and 

arrive at a solution not too dissimilar to Figure . Site L may 

be fixed in advance, or it, too, may be subject to choice. When 

the scale and type of services to be provided by the facility at 

L are also variable, this relatively simple approach appsars to 

break down, and a re-formulation along the lines of Section 3.5 

mey be in order. Not only are scale and spacing of service facil- 

ities to be chosen, but also type of services, and the distribu- 

tion of population over space by tastes. iork on models of this
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complexity has scarcely begune 

Alonso has pointed out that self-attractive neighborhoods 

will tend to string themselves out along tranaport routes, because 

of the high internal accessibility which such a route affords. 

If both radial routes (such as NO in Figure l;) and crosstown 

routes (such as AB in Figure J;) are available for such purposes, 

it 1s plausible that the crosstown route would be preferred. 

Elongatlion along e crosstown route allows the.neighborhood to 

remain close to its "natural" distance from the nucleus, as deter- 

mined by the weight-falloff condition. But slongation along a 

radial route would place a good portion of the neighborhood too 

close, and a good portion too far, from the nucleus. This obser- 

vation veakens the case for Alonso's equilibrium explanation of 

the "sector ‘theory” of urban growth.# The latter specifies 

  

# Alonso, ibid., p.140-1lj2. The "sector theory" was proposed by 

Homer Hoyt in The Structure and Growth of Residentiel Neighbor- 

hoods in American Cities (Federal Housing Administration, 1939), 

  

radially elongated neighborhoods. 

If the land allotment is not given in advance, some interest- 

ing interactions between self-attraction, density, and radial dis- 

tance of neighborhoods from the nucleus occur. Let us take as an 

exemple that very special neighborhood--the office-building com- 

plex of the central business district. This neighborhood has a 

astrong self-attraction, due to the face-to-face contact require- 

ments for negotiations, etc. This fact, coupled with the easy 

stackability of administrative activities, leads, as we know, to 

the use of very dense, high-rise office bulldings, and this in
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turn leads to a very centralized location for the whole complex 

in an overall entrcpét system, by the weight-falloff condition. 

An innovation which loosens these bonds of attraction (o.s.; high- 

fidelity closed-circuit television) would reduce the density at 

which office activities were carriol on, and decentralize the 

neighborhood. . 

5.3. Police-Crim =Victim Equilibrium 

ie have sald almost nothing so far about the spatial patterns 

that result from the interaction of several population groups. 

Here we develop a simple model involving three groupss a popula- 

tion of potential Victims, a population of potential Criminals, 

who commit crimes upon the Victims when the opportunity presents 

itself, and a population of Policemen, who try to prevent Crimi- 

nals from perpetrating their misdeeds. The type of crime which 

this model fits best is robbery, though the basic elements are 

prosent in a whole spectrum of crimes. 

The entire region of study is assumed to be divided into n 

precinocts, the area of the i-th precinct being My, the area of 

the whole being H-I‘-M’_. In the i1-th precinct there are vy vic- 

tims, ci criminals, and P1 policemen; there are V, C, and P in 

the whole region, respectively, so that v=ztv1, c -‘iici’ P 'E.'PL' 

All three groups may move among the precincts, but the totals are 

fixed. The population density of victims, oriminals, and police 

in the i-th precinet is v,=V,/M,, 0y=0y/M,;, and py =P,/li;, re- 

spectively. (All of t:l:: JI%::? assumed to be positive; some of 

the other quantities may be zero). For simplicity, ve assume 

that these quantitles can take on any real values, rather than 

being confined to integers. Let Ki be the orime rate in the i-th
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precinct (1.e. total crimes per unit time), ky = Kl/"i the orime 

rate density, and K'=Z",Ki the regional crime rate. 

We want an expression for the crime rate, Ki’ in the %*th pre- 

einct, in torms of the other quantities. It is assumed that our 

three sub-populations wander independently and at random within 

the 1l~-th precinct. Let us first take the case where there are no 

policemen present. We assume that & crime occurs whenever a 

chance "encounter" takes place between a criminal and a victim. 

The simplest reasonable assumption i1s that the expected number of 

encounters per unit time per unit area is proportional to the den- 

sity of victims, and to the demsity of oriminals.®% By choosing 

  

# Cf, the Law of MKass Action in chemistry, in which the reaction 

rate of two substances is proportional to the product of their 

molecular densities. 

  

units appropriately, we can make the constant of proportionality 

equal 1, so that we get 

6) K =ev =0,V =0y, =CVAM,. 

Now let us Introduce policemens Some of the chance encoun- 

ters will not lead to crimes if there is a policeman neardby to 

inhibit the criminel. Again making the simplest assumption, we 

postulate that an encounter will lead to a crime if and only if 

no policeman is present within a certain distance of the point of 

encounter. The probability of this absence decreases exponential~ 

ly with the density of policemen. By choosing the unit of area 

appropriately, we can make this factor equal e Pi, where e is the 

base of natural logerithms. By assumption, this event is indepen=~
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dent of the occurrence of the encounter, and so the expression in 

(6) must be multiplied by this factor to get the expected orime 

rate. Thus we get 

7 E, = oqvylije Pl 

as tho complete expression for the crime rate in precinct i. 

These crime rates motivate the distribution of our three pop- 

ulations. For victims, the most relevant data are crime rates per 

victim for each precinct, since this gives the expected rate at 

which crimes will be committed against any individual person. 

This is K;/Vy=e4e”P1, and vietims will tend to move from pre- 

cinots where this datum 1i high to precincts where it is low. 

For criminals, the most relevant data are crime rates per 

criminal for each precinct, since this determines expected "income™ 

of criminals in that precinct. This is K1/01= vio‘Pi, and orimi- 

nals will tend to move from precincts where this datum is low to 

precincts where it is high. 

As for the police, we assume they distribute themselves so 

as to minimige the total crime rate K, btaking into moccount possible 

repercussions of their moves on the distribution of victims and 

criminals. 

Let us first consider the no-police case. We assume that 

victims move between precincts whenever there is a chance to re- 

duce the orime rate per victim exposure by so moving. A criminal 

will move to enother precinct whenever the other one has a higher 

erime rate per oriminal than the one he 1s in now. We then arrive 

at the following simple result.
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Theorem 1: If victims move to precinots with lower crime rates 

per victim, and oriminals move to precincts with higher crime 

rates per criminal, and there are no policemen, then the only 

equilibrium solution is the one where the population density of 

viotims is the same for all precincts, and the same is true for 

criminals. 

Proof: Crime rate per victim in the i-th precinct equals Oy» and 

crime rate per criminal equals Vo If the cy's are all equal, no 

viotim has an incentive to move; if the vi's are all equal, no 

eriminal has an incentive--so this at least is an equilibrium solu- 

tion. To see that it 1s the only solution, suppose that another 

equilibrium solution existed with 61>y There cannot be any 

victims in precinect 1, else they would leave; but if there are no 

victims the criminals will leave, which contradicts our assump- 

tion. Also, suppose another solution existed with v1>Vy. There 

cannot be any oriminals in precinct 2 in this case; but then all 

victims would go to precinct 2, giving another contradiction. QED 

This could easily be turned into &n explicit dynamic model 

--for example, by making migration rates for victims proportional 

to the origin-destination differential in crime rates per victim, 

and similarly for oriminal migration. It then turns out that the 

equilibriwm solution of Theorem 1 is stable--in fact, globally 

stable. Intuitively this may be seen as follows. The precinots 

of greatest victim density will be receiving a criminal influx, 

which causes victims to leave eventually. The precincts of low= 

est oriminal density will be receiving a vistim influx, which 

causes criminals to enter eventually.
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The simple equilibrium of Theorem 1 has a rather intriguing 

property. Suppose two people, Vic and Crim, are playing a szero- 

sum game, in which the pay-off to Crim is the total crime rate, K. 

Vic has a total quantity V which he can deploy in any way among 

the n precincts, whose areas M; are given., Crim has a total 

quantity C with the same freedom, and the pay-off for each pre- 

oinct is given by (6). Then the equal density solution for each 

gives the unique saddle-point among pur; strategies. 

To show this, we note that 

min = Whin pk : 

BT RE N ()Y s Y 
Mmax 5 max, L 

B TG () 
The first inequality becomes an equality if and only if all the 

denaities 6, are oqual; the second inequality becomes an equality 

if and only if all the densities v, are equal. This establishes 

the result. 

Hore interesting results are obtained when policemen are ad- 

mitted. Criminal movements are as above, toward precincts of high 

orime rates per criminal. We shall now assume, however, that the 

distribution of victims is fixed, unaffected by the actions of 

oriminals or police. That is to say, the incidence of orime is 

assumed to be of negligible ‘mportance in determining the distri- 

bution of the general population of victims, compared with other 

forces. We agaln have a two-person game of sorts, this time be- 

tween criminals and police, rather than criminals and victims.
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Formally, two people, Pol and Crim, are playing a zero-sum 

geme, in which the pay-off to COrim 1s the total crime rate, K, 

which equals Zivicp'r’-/li. from formula (7). Crim can choose 

any non-negative quantities G4, subject to the construintilcgs C, 

vhere C is given; Pol can choose any non-negative quantities P,, 

subject to the constraint fil"-l’, where P is given. For the pol- 

ice, this game-theoretic behavior is assumed explicitly, since 

they are to be deployed to minimize the total crime rate. For 

oriminals, it must be verified separately that their independent 

actions lead to the seme result as would ocour if some underworld 

mastermind were deploying them. 

It turns out that a far-reaching characterization of the 

solution to this geme can be given. To arrive at this we need the 

foldowing preliminary result. 

Leuma: Iafi.:l‘:;} 0, v4 >0, for 1#1, 2,..u. Consider the following 

two minimigation problems; in both cases the minimistion is to be 

over non-negative quantities Py, subject to the constraint 4Py =P, 

(1) Minimise: Lax; vie"PL/Mi; (2) Minimiser EyvyN e PI/M4, 

Both these problems have the same unique solution. 

Proof: Let ) be the minimal attainable value for the objeotive 

funstion of problem (1). Then Agvie Pi/Mi, for all 1, anmd, 

12 F; >0, then hwvie"FI/ML, e firet relation 1s obvicus. To 

prove the second, suppose it were false for soms I for this 1!, 

we would hlvo\>v1p'r1/'1'; 1r B, were reduced slightly, and the 

other s increased in compensation, )\ would be reduced, contra- 

dicting its essumed optimality. Given P, these relations unique- 

1y determine A and the 51.
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Turning to the second problem, we note that the derivative 

of the objective function with respect to Py is -vio'n/ui- 

According to the Kuhn-Tucker Theorem,# there is a number, which 

  

# HoW. Kuhn and A.W. Tucker "Non-linear Programming", p.}81-492 of 

ceed £ the Seco: on B tical Sta- 

tistics and Probability (Berkeley, University of California Press, 

1951). 
  

may also be called )\, such that ) - vye~ -Pa/uy S0, for all 1, and, 

ir $,>0, then ) - vye” -F1/Ms . 0, But these are the sums 

relations as in problem (1). Since, as we have noted, these 

have a unique solution, the lemma is established. QED 

With the aid of this result, the existence and uniqueness of 

a solution to the police-criminal game may be established in Theo- 

rem 2. The detailed nature of this solution will be spelled out 

in Theorem 3. 

Theorem 2: The gero-sum game with pay-off to Crim orz,_vic,.."if“i- 

as described sbove, has & pure-strategy saddle-point. The strat- 

egy for Pol is unique, and, if, for all 1, vy p X (vhere 
Min =P 

2= PR3 IM‘X.' Vil ‘]), then the optimal strategy for Crim 

is also unique. 

Proof: The existence of the saddle-point will be established by 

proving the following chain of equalities and inequalities. 

- Min Ra My M -R/n; 
D=k avte 
= C)\ ) where 31, 1s]1, 2...n, is a particular strategy for Crim 

which will be specified below. The truth of these relations
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implies that the weak 1lnequalities are in fact equalities, and 

this shows that the pair (zflfi-fle a saddle-point, vhere {f‘} is any 

minimizer of Ziviéle'PW1. 

Of these relations, the two Inequalities stem from general 

properties of the "Max" and "Iin" operators. The first equality 

1s established as follows. Suppose that a deployment of police- 

men is given. All criminals will move to those precincts for 

which orime rate per criminal, vie'Pi/"i. is a maximm, This will 

yield a total crime rate of C luxivia"i/“i. The minimization of 

this over police strategles is ( h{" {h‘-xl. v, e"’c/fl;] S CH 

which is the first equality. 

To establish the last equality, we choose the following 

strategy for Crim. In the problem--Minimize: Max, vie'Pi/ui. 

there is a unique solution, according to the Lemma. Let I be the 

set of precincts for which P,>0 in this solution. All criminals 

are to be placed in I, in such a way that the density of criminals 

1s the same for all these precincts. That is, for 1 €I, c; = C/M', 

whore li' is the total area of the iirecinotn in I, and ¢;=0 for 

W T, v, G g 5 Vsl R “1.. ’ . 

Wi B ey o XY ey 2?3 87 he L:M».q : TS 

l\:.(, ‘n.c Same salnT.m R ‘Hu. Pw“&m -- hinmize 

Max X 7 © P'm_ For Thi Pth»., P, >0 by H-I 

wnd s0o Ve 7/” ey (TL¢ nanehon T i wa ks 

hy Jlll’lffl’\“) Tlere Llf(.) F’ i"‘r v M‘n e Fq./n‘r 

ST N = S MA = O il s e el
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We have thus established the fact that the following pair of 

strategies 1s a saddle-point: for Pol, the deployment that solves 

the problems of the Lemma; for Crim, an equal density at gg’.gcmfl:s 

for which there are police, and no criminals elsewhere. 

The uniqueness of the Pol strategy follows from the unique- 

ness of the solution to problem (1) of the Lemma--any deviation 

will raise the value of C Mnxivie'Fi/ui. 

Finelly, let us consider alternative optimal strategies for 

Crim. There are two types possible. The first is a redistribu- 

tion of eriminals among the precincts of I, so that criminal den- 

sities are no longer equel. It is not hard to show that a shift 

of police from low to high criminal density precincts will re=- 

duce the total crime rate below C>\, so this is non-optimel for 

Orim, The second type is a shift of criminals outside of I. 

If, for all 11, vy<), such a ehift automatically reduces the 
crime rate. In this case, the saddle-point strategy for Crim is, 

therefore, uniquely optimal, £ QED 

(In the knife-edge case where vy =\ for some 1, it can be 

shown that there are, indeed, multiple solutions for Crim. This 

case seems hardly worth exploring. In all other cases, police 

and criminals are either both present in a precinct, or both ab- 

sent.) 

' We now characterize this saddle-point solution in detail. 

For simplicity, it will be assumed that the knife-edge case men- 

tioned above does not occur, so that everything is uniquely deter~ 

mined. Let A be as above, the minimal value of the objective 
function of problem (1) of the Lemma.
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Theorem 3: In the game-theoretic equilibrium, precincts fall 

into two radically different regimes, depending on whether thelr 

victim densities, Vs are less than, or greater than,)t e« All 

precincts for which v1<)\ have no police, no criminals, and no 

crime, and nothing more need be said about them. The rest of 

this theorem refers to the precincts for which vi>k. Police 

density is given by: P »log(vy/A). The following quantities 

are the same for all these precincts: density of oriminals, 

orimes per unit area, and crimes per oriminal (the latter being 

equal to }\). Crimes per victim are inversely proportional to the 

density of victims. 

Proof: If a precinet has police, the equation M= v,_o"i must be 

satisfied (see the proof of the Lemma). This is impossible if 

vi<)‘. so none of these precincts have police. In the saddle~ 

point, there are criminals only where there are poné., 80 orim- 

inals are absent, too. This takes care of the first type of pre- 

cinct., Precincts for which vy >) must have police, far otherwise 

the relation A;vie"fii would be violated. Since they have volice, 

A= v,_a'f’l, and 80 By =1log(vy/A). Orimes per criminal in the i-th 

prooinct=vifiio"i/€1=vio"l’i =), a constant, The constant den- 

aity of criminals is given by the saddle-point. These last two 

facts imply the constancy of crimes per unit area. This last 

fact implies that orimes per victim are inversely proportional to 

the density of victims. QED 

The results of Theorem 3 are presented graphically in Fig- 

ure 5. The independent variable is density of victims for a pre- 

cinet, increasing from left to right. The vertical scales of the
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five functions depicted are 

    

     

     

    

    
       

Crimes per chosen for convenience, and 
vu‘fm‘ 

are not comparable with each 

other. All five functions 
Crimes  per 
<imingl 

dansi®y of S—-—— 
CYimée e 

are zero to the left of VHX. 

so that four of them are dis- 

continuous at )\. Apart from 

this drastic change of regime, 
Jcnsfi; o+ 
criminalg 

o\cn1|T7 of 
the most surprising result is 

police 
the curve for crimes per vic~ 

tim, The victims who are g A 

worst off are the ones living c\mu"" s vicheg 3% 

at medium densities, just above N. S 
We may now investigate the effects of changes in the parame- 

ters of the model-~the vy's, Ill's. C, and P, Just a few cases 

will be considered here. It is easily verified that a uniform 

doubling of viectim population doubles }. » doubles crime rates, and 

has no effect on the deployment of police or criminals by precinct. 

A doubling of the total oriminal population, C, merely doubles 

orime and criminals everywhere, and has no effect on the deploy- 

ment of policemen. 

Lore interesting 1s the effect of a rise in the total number 

of policemen, P. Of course this leads to a fall in the total 

orime rate, but 1t does so by reducing )x. An unfortunate pre- 

cinct whose victim density is just below the old )\ level, and just 

above the new one, will find that orimes per victim jump from zero 

to the highest level in the region--a result of increased law en- 

forcement] The explanation, of course, is that criminals spread
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into "greener pastures" when police become too numerous in the 

more densely populated precincts. 

Law enforcement is often alleged to have beneficial "spill- 

over" effects--for example, through the apprehension of criminals 

who might prey on other communities. This effect certainly 

exists, but the present model--which does not deal with the appre- 

hension of criminals--points up the existence of a spillover 

effect in the opposite direction, which may be more important. 

Stricter law enforcement induces potential criminals to emigrate 

to other communities. 

A community whose population density (:t victim density) 

rises may find itself in the midst of a orime wave when the orit- 

lcal density \ is orossed. Many suburban comrunities seem to be 

in this situation.
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